
The Cost of Address Translation
Extended Abstract

Tomasz Jurkiewicz∗ Kurt Mehlhorn†

Abstract

Modern computers are not random access machines (RAMs).

They have a memory hierarchy, multiple cores, and virtual

memory. In this paper, we address the computational

cost of address translation in virtual memory. Starting

point for our work is the observation that the analysis of

some simple algorithms (random scan of an array, binary

search, heapsort) in either the RAM model or the EM

model (external memory model) does not correctly predict

growth rates of actual running times. We propose the VAT

model (virtual address translation) to account for the cost of

address translations and analyze the algorithms mentioned

above and others in the model. The predictions agree with

the measurements. We also analyze the VAT-cost of cache-

oblivious algorithms.

1 Introduction

The role of models of computation in algorithmics is
to provide abstractions of real machines for algorithm
analysis. Models should be mathematically pleasing
and have predictive value. Both aspects are essential.
If the analysis has no predictive value, it is merely a
mathematical exercise. If a model is not clean and
simple, researchers will not use it. The standard models
for algorithm analysis are the RAM (random access
machine) model [SS63] and the EM (external memory)
model [AV88].

The RAM model is by far the most popular model.
It is an abstraction of the von Neumann architecture. A
computer consists of a control and processing unit and
an unbounded memory. Each memory cell can hold a
word, and memory access and logical and arithmetic
operations on words take constant time. The word
length is either an explicit parameter or assumed to be
logarithmic in the size of the input. The model is very
simple and has predictive value.

The external memory model was introduced be-
cause the RAM model does not account for the mem-
ory hierarchy and hence the RAM model has no pre-
dictive value for computations involving disks. Modern

∗Max Planck Institute for Informatics, Saarbrücken, Germany;

The Saarbrücken Graduate School of Computer Science.
†Max Planck Institute for Informatics, Saarbrücken, Germany.

machines have an extensive memory hierarchy involv-
ing several levels of cache memory, main memory, and
disks, see Section 2.2 for more details.

This research started with a simple experiment.
We timed six simple programs for different input sizes,
namely permuting the elements of an array of size n,
random scan of an array of size n, n random binary
searches in an array of size n, heapsort of n elements,
introsort1 of n elements, and sequential scan of an array
of size n. For some of the programs, e.g., sequential
scan through an array and quicksort, the measured
running times agree very well with the predictions of
the models. However, the running time of random scan
seems to grow as O(n log n) and the running time of the
binary searches seems to grow as O

(
n log2 n

)
, a blatant

violation of what the models predict. We give the details
of the experiments in Section 2.

Why do measured and predicted running times dif-
fer? Modern computers have virtual memories. Each
process has its own virtual address space {0, 1, 2, . . .}.
Whenever, a process accesses memory, the virtual ad-
dress has to be translated into a physical address. The
translation of virtual addresses into physical addresses
incurs cost. The translation process is usually imple-
mented as a hardware-supported walk in a prefix tree,
see Section 3 for details. The tree is stored in the mem-
ory hierarchy and hence the translation process may
incur cache faults. The number of cache faults depends
on the locality of memory accesses: the less local, the
more cache faults.

We propose an extension of the EM model, the
VAT(virtual address translation)-model, that accounts
for the cost of address translation, see Section 4. We
show that we may assume that the translation process
makes optimal use of the cache memory by relating the
cost of optimal use with the cost under the LRU strat-
egy, see Section 4. We analyze a number of programs,
including the six mentioned above, in the VAT model
and obtain good agreement with the measured running
times, see Section 5. We relate the cost of a cache-
oblivious algorithm in the EM model to the cost in the

1Introsort is the version of quicksort used in modern versions

of the STL. For the purpose of this paper, introsort is a synonym
for quicksort.

VAT model, see Section 6. In particular, algorithms
that do not need a tall-cache assumption incur no or lit-
tle overhead. We close with some suggestions for further
research and consequences for teaching, see Section 8.

Related Work: It is well known in the architec-
ture and systems community that virtual memory and
address translation comes at a cost. Many textbooks
on computer organization, e.g. [HP07], discuss virtual
memories. The papers by Drepper [Dre07, Dre08] de-
scribe computer memories, including virtual transla-
tion, in great detail. [Adv10] provides further imple-
mentation details.

The cost of address translation received little at-
tention from the algorithms community. The survey
paper by N. Rahman [Rah03] on algorithms for hard-
ware caches and TLB summarizes the work on the sub-
ject. She discusses a number of theoretical models for
memory. All models discussed in [Rah03] treat address
translation atomically, i.e., the translation from virtual
to physical addresses is a single operation. However,
this is no longer true. In 64-bit systems the translation
process is a tree walk. Our paper is the first that pro-
poses a theoretical model for address translation and
analyses algorithms in this model.

2 Some Puzzling Experiments

2.1 Seven Simple Programs We used the following
seven programs in our experiments. Let A be an array
of size n

• permute: for j ∈ [n − 1..0] do: i := random(0..j);
swap(A[i], A[j]);

• random scan: π := random permutation; for i from
0 to n− 1 do: S := S +A[π(i)];

• n binary searches for random positions in A; A is
sorted for this experiment

• heapify

• heapsort

• quicksort

• sequential scan

On a RAM, the first two, the last, and heapify
are linear time O(n), and the others are O(n log n).
Figure 1 shows the measured running times2 for these
programs divided by their RAM complexity; we refer
to this quantity as normalized operation time. If
RAM complexity is a good predictor, the normalized
operation times should be approximately constant. We
observe that two of the linear time programs show linear
behavior, namely sequential access and heapify, that one

of the Θ(n log n) programs shows Θ(n log n) behavior,
namely quicksort, and that for the other programs
(heapsort, repeated binary search, permute, random
access), the actual running time grows faster than what
the RAM model predicts.

How much faster and why?

Figure 1 also answers the “how much faster” part
of the question. Normalized operation time seems to be
a piecewise linear in the logarithm of the problem size;
observe that we are using a logarithmic scale for the
abscissa in this figure. For heapsort and repeated binary
search, normalized operation time is almost perfectly
piecewise linear, for permute and random scan, the
piecewise linear has to be taken with a grain of salt.4

The pieces correspond to the memory hierarchy. The
measurements suggest that the running times of permute
and random scan grow like Θ(n log n) and the running
times of heapsort and repeated binary search grow like
Θ
(
n log2 n

)
.

2.2 Memory Hierarchy Does Not Explain It We
argue in this section that the memory hierarchy does
not explain the experimental findings by determining
the cost of the random scan of an array of size n in
the EM model and relating it to the measured running
time.

Let si, i > 0, be the size of the i-th level Ci of the
memory hierarchy; s−1 = 0. We assume Ci ⊂ Ci+1 for
all i. Let ` be such that s` < n 6 s`+1, i.e., the array
fits into level ` + 1 but does not fit into level `. For
i 6 `, a random address is in Ci but not in Ci−1 with
probability (si−si−1)/n. Let ci be the cost of accessing
an address that is in Ci but not in Ci−1. The expected

2All programs were compiled by gcc in version “Debian 4.4.5-

8” and run on Debian Linux in version 6.0.3 on a machine with
processor Intel Xeon X5690 (3,46 GHz, 12MiB3 Smart Cache,

6,4 GT/s QPI). The caption of Figure 2 lists further machine
parameters. In each case we performed multiple repetitions and
took the minimum measurement for each considered size of the

input data. We chose the minimum as we are estimating the cost

that must be incurred. We also experimented with average or
median and the results did not change. We grew input sizes

by factors of 1.4 to exclude influence of memory associativity
and made sure that the largest problem size still fitted in main

memory. We also performed the experiments on other machines

and operating systems and obtained consistent results.
3KiB and MiB are modern, non ambiguous notations for

210∗2 and 210∗3 bytes, respevtively. For more details refer to

http://en.wikipedia.org/wiki/Binary_prefix.
4We are still working on a satisfactory explanation for the

bumpy shape of the graphs for permute and random access.

ru
n

n
in

g
ti

m
e/

R
A

M
co

m
p

le
x
it

y

0	

20	

40	

60	

80	

100	

120	

140	

160	

9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	

permute	

random	 access	

binsearch	

heapsort	

heapify	

introsort	

sequen>al	 access	

log(input size)

Figure 1: The abscissa shows the logarithm of the in-
put size. The ordinate shows the measured running time
divided by the RAM-complexity (normalized operation
time). The normalized operation times of sequential ac-
cess, quicksort, and heapify are constant, the normalized
operation times of the other programs are not.

total cost in the external memory model is equal to

TEM(n) :=n ·

n− s`
n

c`+1 +
∑

06i6`

si − si−1
n

ci

 =

=nc`+1 −
∑

06i6`

si(ci+1 − ci).

This is a piecewise linear function whose slope is c`+1

for s` < n 6 s`+1. The slopes are increasing, but
change only when a new level of the memory hierarchy
is used. Figure 2 shows the measured running time of
random scan divided by EM-complexity as a function
of the logarithm of the problem size. Clearly, the figure
does not show the graph of a constant function.5

3 Virtual Memory

Virtual addressing was motivated by multi-processing.
When several processes are executed concurrently on
the same machine, it is convenient and more secure to
give each program a linear address space indexed by the
nonnegative integers. However, theses addresses are now
virtual and no longer directly correspond to physical
(real) addresses. Rather, it is the task of the operating
system to map the virtual addresses of all processes
to a single physical memory. The mapping process is
hardware supported.

5A function of the form (x log(x/a))/(bx − c) with a, b, c > 0

is convex. The plot may be interpreted as the plot of a piecewise
convex function.

ru
n

n
in

g
ti

m
e

/
E

M
co

m
p

le
x
it

y

7	

9	

11	

13	

15	

17	

19	

9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	

log(input size)

Figure 2: The running time of random scan divided by
the EM-complexity. We used the following parameters
for the memory hierarchy: the sizes are taken from
the machine specification, and the access times were
determined experimentally.

Memory Size 3 log(maximum Access Time
Level number of elements) in Picoseconds

L1 32kiB 12 4080
L2 256kiB 15 4575

L3 12MiB 20,58 9937
RAM 38746

Memory is viewed as a collection of pages of
P = 2p cells. Both virtual and real addresses con-
sist of an index and an offset. The index selects a
page and the offset selects a cell in a page. The in-
dex is broken into d segments of length k = logK.
For example, for processors of the x68-64 family (see
http://en.wikipedia.org/wiki/X86-64) with 64 bit ad-
dresses the numbers are: d = 4, k = 9, and p = 12;
the remaining 16 bit are used for other purposes.

Logically, the translation process is a walk in a
tree with outdegree K; this tree is usually called the
page table [Dre08, HP07]. The walk starts at the root;
the first segment of the index determines the child of
the root, the second segment of the index determines
the child of the child, and so on. The leaves of the
tree store indices of physical pages. The offset then
determines the cell in the physical address, i.e., offsets
are not translated but taken verbatim.

The page table is stored in the RAM and nodes ac-
cessed during the page table walk have to be brought to
fastest memory. A small number of recent translations
is stored in the translation-lookaside-buffer (TLB). The
TLB is a small associative memory that contains pairs
consisting of virtual and corresponding physical index.
This is akin to the first level cache for data.

4 The Virtual Address Translation Model
(VAT model)

The full version of this section can be found in the
appendix. Our model abstracts from the above. The
translation is performed by a walk in a tree of outdegree
K and depth d as described above. The translation
process uses a translation cache TC that can store W
nodes of the translation tree.6 The TC is changed by
insertions and evictions. Let a be a virtual address and
let vd, vd−1, . . . , v0 be its translation path; vd is the root,
vd−1 is the child of the root selected by the first segment
of a, and so on. Translating a requires to access all
nodes of the translation path in order. Only nodes in
the TC can be accessed. The translation ends when v0
is accessed. The next translation starts with the next
operation on the TC.

The length of the translation is the number of
insertions performed during the translation and the cost
of the translation is τ times the length. The length is
at least the number of nodes of the translation path
that are not present in the TC at the beginning of the
translation.

4.1 TC Replacement Strategies Since the TC is
a special case of a cache in a classic EM machine, the
following classic result applies.

Lemma 4.1. ([ST85, FLPR12]) An optimal replace-
ment strategy is at most by factor 2 better than LRU7

on a cache of double size, assuming both caches start
empty.

For TC caches, it is natural to assume the initial
segment property.

Definition 4.1. An initial segment of a rooted tree
is an empty tree or a connected subgraph of the tree
containing the root. TC has the initial segment
property (ISP), if the TC contains an initial segment
of the translation tree. A TC replacement strategy has
ISP, if, under this strategy, TC has ISP at all times.

ISP is important because, as we show later, ISP can
be realized at no additional cost for LRU and at little
additional cost for the optimal replacement strategy.
Therefore, strategies with ISP can significantly simplify
proofs for upper and lower bounds. Moreover, ISP
are easier to implement. Any implementation of a
caching system requires some way to search the cache.
This requires an indexing mechanism. RAM memory is

6In real machines, there is no separate translation cache.

Rather, the same cache is used for data and the translation tree.
7LRU is a strategy that always evicts the Least Recently Used

node.

indexed by the memory translation tree. In case of the
TC itself, ISP allows to integrate the indexing structure
into the cached content. One only has to store the root
of the tree at a fixed position.

Lemma 4.2. When the LRU policy is in use, the num-
ber of TC misses in a translation is equal to the layer
number of the highest missing node on the translation
path.

Proof. The content of the LRU cache is easy to describe.
Concatenate all translation paths and delete all occur-
rences of each node except the last. The last W nodes
of the resulting sequence form the TC. Observe that an
occurrence of a node is only deleted if the node is part of
a latter translation path. This implies that the TC con-
tains at most two incomplete translation path, namely
the least recent path that still has nodes in the TC and
the current path. The former path is evicted top-down
and the latter path is inserted top-down. The claim now
easily follows. Let v be the highest missing node on the
current translation path. If no descendant of v is con-
tained in the TC, the claim is obvious. Otherwise, the
topmost descendant present in the TC is the first node
on the part of the least recent paths that is still in the
TC. Thus as the current translation path is loaded into
the TC, the least recent path is evicted top-down. As
the consequence, the gap is never reduced.

The proof also shows that whenever LRU detaches
nodes from the initial segment, the detached nodes
will never be used again. This suggests a simple
(implementable) way of introducing ISP to LRU. If LRU
evicts a node that still has descendants in the TC, it also
evicts the descendants. The descendants actually form
a single path. Next, we use Lemma A.2 (see appendix)
to make this algorithm lazy again. It is easy to see that
the resulting algorithm is the ISLRU as defined next.

Definition 4.2. ISLRU (Initial Segment preserving
LRU) is the replacement strategy that always evicts the
lowest descendant of the least recently used node.

Proposition 4.1. ISLRU for TCs with W > d is at
least as good as LRU.

Definition 4.3. ISMIN (Initial Segment property
preserving MIN) is the replacement strategy for TCs
with ISP that always evicts the node that is not used for
the longest time into the future among the nodes that are
not on the current translation path and have no descen-
dants. Nodes that will never be used again are evicted
before the others in arbitrary descendant–first order.

Theorem 4.1. ISMIN is an optimal replacement strat-
egy among those with ISP.

Proof. Let R be any replacement strategy with ISP, and
let t be the first point in time when it departs from
ISMIN. We will construct R′ with ISP that does not
depart from ISMIN including time t and has no more
TC misses than R. Let v be the node evicted by ISMIN
at time t.

We first assume that R evicts v at some later time
t′ without accessing it in the interval (t, t′]. Then R′

simply evicts v at time t and shifts the other evictions
in the interval [t, t′) to one later replacement. Postpon-
ing evictions to the next replacement does not cause
additional insertions and does not break connectivity.
It may destroy laziness by moving an eviction of a node
right before its insertion. In this case R′ skips both.
Since no descendant of v is in the TC at time t, and v
will will not be used for the longest time into the future,
none of its children will be added by R before time t′;
therefore the change does not break the connectivity.

We come to the case that R stores v till it is accessed
for the next time, say at time t′. Let a be the node
evicted by R at time t. R′ evicts v instead of a and
remembers a as being special. We guarantee that the
content of the TCs in the strategies R and R′ differs
only by v and the current special node till time t′, and
is identical afterwords. To reach this goal R′ replicates
the behavior of R except for three situations.

1. If R evicts the parent of the special node, R′ evicts
the special node to preserve ISP, and and from now
on remembers the parent as being special. As long
as only Rule 1 is applied, the special node is an
ancestor of a.

2. If R replaces some node b with the current special
node, R′ skips the replacement and from now on
remembers b as the special node. Since a will
be accessed before v, Rule 2 is guaranteed to be
applied and hence R′ is guaranteed to save at least
one replacement.

3. At time t′, R′ replaces the special node with v,
performing one extra replacement.

We have shown how to turn an arbitrary replacement
strategy with ISP into ISMIN without efficiency loss.
This proves the optimality of ISMIN.

We can now state an ISP-aware extension of Lemma 4.1.

Theorem 4.2.

MIN(W) 6 ISMIN(W) 6 ISLRU(W) 6

6 LRU(W) 6 2MIN(W/2),

where MIN is an optimal replacement strategy and A(s)
denotes a number of insertions performed by replace-

ment strategy A to an initially empty TC of size s > d
for an arbitrary, but fixed sequence of translations.

Theorem 4.2 implies LRU(W) 6 2ISLRU(W/2) and
ISMIN(W) 6 2MIN(W/2). These inequalities can be
sharpened considerably.

Theorem 4.3. LRU(W + d) 6 ISLRU(W) and
ISMIN(W + d) 6 MIN(W).

5 Analysis of Algorithms

In this section, we analyze the translation cost of
some algorithms as a function of the problem size n
and memory requirement m. For all the algorithms
analyzed, m = Θ(n). We assume:

1. τd 6 P ; the cost of moving a single translation
path to the TC is no more than the size of a page,
i.e., if at least one instruction is performed for each
cell in a page, the cost of translating the index of
the page can be amortized.

2. K > 2, i.e., the fanout of the translation tree is at
least two.

3. m/P 6 Kd 6 2m/P , i.e., the translation tree
suffices to translate all addresses but is not much
larger. As a consequence log(m/P) 6 d logK =
dk 6 1 + log(m/P) and hence logK(m/P) 6 d 6
1/k(1 + log(m/P)).

4. d 6W , i.e., the translation cache can hold at least
one translation path.

Sequential Access: We scan an array of size n,
i.e., we need to translate addresses b, b+1, . . . , b+n−1
in this order, where b is the base address of the array.
The translation path stays constant for P consecutive
accesses and hence at most 2n/P indices must be
translated for a total cost of at most τd(2 + n/P). By
assumption (1) this is at most τd(n/P + 2) 6 n+ 2P .

The analysis can be sharpened significantly. We
keep the current translation path in cache and hence the
first translation incurs at most d faults. The translation
path changes after every P -th access and hence changes
at most a total of dn/P e times. Of course, whenever the
path changes, the last node changes. The next to last
node changes after every K-th access and hence changes
at most dn/(PK)e times. In total, we incur

d+
∑

06i6d

⌈ n

PKi

⌉
< 2d+

K

K − 1

n

P

TC faults. The cost is therefore bounded by 2P +2n/d,
which is asymptotically smaller than RAM complexity.

Random Access: In the worst case, no node
of any translation path is in cache. Thus the total
translation cost is bounded by τdn. This is at most
τ
kn(1 + log(n/P)).

We will next argue a lower bound. We may assume
that the TC satisfies the initial segment property. The
translation path ends in a random leaf of the translation
tree. For every leaf some initial segment of the path
ending in this leaf is cached. Let u be an uncached node
of the translation tree of minimal depth and let v be a
cached node of maximal depth. If the depth of v is larger
by two or more than the depth of u, then it is better to
cache u instead of v (because more leaves use u instead
of v). Thus up to one the same number of nodes is
cached on every translation path and hence the expected
length of the path cached is at most logKW and hence
the expected number of faults during a translation is
d− logKW . The total expected cost is therefore at least
τn(d−logKW) > τn logK n/(PW) = τ

kn log(n/(PW)),
which is asymptotically larger than RAM complexity.

Lemma 5.1. The translation cost of a random scan of
an array of size n is at least τ

kn log(n/(PW)) and at
most τ

kn(1 + log(n/P)).

Binary Search: We do n binary searches in an
array of length n. Each search searches for a random
element of the array. For simplicity, we assume that
n is a power of two minus one. Binary search in an
array is equivalent to search in a balanced tree where
the root is stored in location n/2, the children of the
root are stored in locations n/4 and 3n/4, and so on.
We cache the translation paths of the top ` layers of the
search tree and the translation path of the current node
of the search. The top ` layers contain 2`+1− 1 vertices
and hence we need to store at most d2`+1 nodes8 of the
translation tree. This is feasible if d2`+1 6 W . For the
sequel, let ` = log(W/2d).

Any of the remaining log n − ` steps of the binary
search cause at most d cache faults. Therefore the total
cost per search is bounded by

τd(log n− `) 6τ
k

(1 + log(n/P))(log n− `) =

=
τ

k
log

2n

P
log

2nd

W
.

This analysis may seem coarse. After all once the search
leaves the top ` layers of the search tree, addresses of
subsequent nodes differ only by n/2`, n/2`+1, . . . , 1.
However, we will next argue that the bound above is
essentially sharp for our caching strategy. Recall that if

8We use vertex for the nodes of the search tree and node for
the nodes of the translation tree.

two virtual addresses differ by D, their translation path
differ in the last dlogK(D/P)e nodes. Thus the scheme
above incurs at least∑

`6i6logn−p

⌈
1

k
log

n

2iP

⌉
>

∑
06j6logn−`−p

1

k
log 2j >

>
1

2k
(log n− `− p)2 =

1

2k

(
log

2nd

PW

)2

.

TC faults. We next show that it essentially holds true
for any caching strategy.

By Theorem 4.2, we may assume that ISLRU is used
as the cache replacement strategy, i.e., TC contains top
nodes on recent translation paths. Let ` = dlog(2W)e.
There are 2` > 2W vertices of depth ` in a binary
search tree. Their addresses differ be least n/2` and
hence for any two such addresses their translation paths
differ in at least the last z =

⌈
logK(n/(2`P)

⌉
nodes.

Call a node at depth ` expensive if none of the last z
nodes of its translation path are contained in the TC
and non-expensive otherwise. There can be at most W
inexpensive vertices and hence with probality at least
1/2 a random binary search goes through an expensive
node, call it v, at depth `. Since ISLRU is the cache
replacement strategy, the last z nodes of the translation
path are missing for all descendants of v. Thus, by
the argument in the preceding paragraph, the expected
number of cache misses per search is at least

1

2

∑
`6i6logn−p

⌈
1

k
log

n

2iP

⌉
>

∑
06j6logn−`−p

1

2k
log 2j >

>
1

4k
(log n− `− p)2 =

1

4k

(
log

n

4PW

)2
.

Lemma 5.2. The translation cost of n random binary

searches in an array of size n is at most τ
2kn

(
log 2nd

PW

)2
and at least τ

4kn
(
log n

4PW

)2
.

We know from cache-oblivious algorithms that the van-
Emde Boas layout of a search tree improves locality. We
will show in Section 6 that this improves the translation
cost.

Heapify and Heapsort: We prove a bound on the
translation cost of heapify. The following proposition
generalizes the analysis of sequential scan.

Definition 5.1. Extremal translation paths of n
consecutive addresses are the paths to the first and the
last address in the range. Non-extremal nodes are
the nodes on translation paths to addresses in the range
that are not on the extremal paths.

Proposition 5.1. A sequence of memory accesses that
gains access to each page in a range, causes at least one

TC miss for each non-extremal node of the range. If
the sequence of pages in the range n is accessed in the
decreasing order this bound is matched by storing the
extremal paths and dedicating logK(n/P) cells in the TC
for the required translations.

Proposition 5.2. Let n, ` and x be nonnegative inte-
gers. Number of non-extremal nodes in the union of the
translation paths of any x out of n consecutive addresses
is at most

x`+
2n

PK`
.

Moreover, there is a set of x =
⌈
n/(PK`)

⌉
addresses

such that the union of the paths has size at least x(` +
1) + d− `.

Proof. The union of the translation paths to all n
addresses contains at most n/P non-extremal nodes on
the leaf level (= level 0) of the translation tree. On level
i, i > 0, from the bottom, it contains at most n/(PKi)
non-extremal nodes.

We overestimate the size of the union of x trans-
lation paths by counting one node each on levels 0 to
` − 1 for every translation path and all non-extremal
nodes contained in all the n translation paths on the
levels above. Thus the size of the union is bounded by

x`+
∑
`6i6d

n/(PKi) < x`+
K

K − 1

n

PK`
6 x`+

2n

PK`
.

A node on level ` lies on the translation path of K`P
consecutive addresses. Consider addresses z+ iPK` for
i = 0, 1, . . . ,

⌈
n/PK`

⌉
− 1, where z is the smallest in

our set of n addresses. The translation paths to these
addresses are disjoint from level ` down to level zero and
use at least one node on levels `+ 1 to d. Thus the size
of the union is at least x(`+ 1) + d− `.

An array A[1..n] storing elements from an ordered
set is heap-ordered if A[i] 6 A[2i] and A[i] 6 A[2i+1] for
all i with 1 6 i 6 bn/2c. An array can be turned into a
heap by calling operation sift(i) for i = bn/2c down to 1.
sift(i) repeatedly interchanges z = A[i] with the smaller
of its two children until the heap property is restored.
We use the following translation replacement strategy.
Let z = min(log n, b(W − 2d− 1)/ blogK(n/P)cc − 1).
We store the extremal translation paths (2d− 1 nodes),
non-extremal parts of the translation paths for z ad-
dresses a0, . . . , az−1 and one additional translation path
a∞ (blogK(n/P)c nodes for each). The additional trans-
lation path is only needed when z 6= log n. During the
siftdown of A[i], a0 is equal to the address of A[i], a1 is
the address of one of the children of i (the one to which
A[i] is moved, if it is moved), a2 is the address of one of

the grandchildren of i (the one to which A[i] is moved,
if is moved two levels down), and so on. The additional
translation path a∞ is used for all addresses that are
more than z levels below the level containing i.

Let us upper bound the number of TC misses.
Preparing the extremal paths causes up to 2d+1 misses.
Next, consider the translation cost for ai, 0 6 i 6
z − 1. ai assumes n/2i distinct values. Assuming
that siblings in the heap always lie in the same page9,
the index (= the part of the address that is being
translated) of each ai is decreasing over time and hence
proposition 5.1 bounds the number of TC misses to the
number of the non-extremal nodes in the range. We use
Proposition 5.2 to count them. For i ∈ {0, . . . , p} we
use the Proposition with x = n and ` = 0 and obtain a
bound of

2n

P
= O

(n

P

)
TC misses. For i with p + (` − 1)k < i 6 p + `k,
where ` > 1 and i 6 z − 1, we use the Proposition with
x = n/2i and obtain a bound of at most

n

2i
· `+

2n

PK`
= O

(
n

2 i
· `+

2n

2 i

)
=

= O
(n

2 i
(`+ 2)

)
= O

(
n

i

2 i

)
TC misses. There are n/2z siftdowns starting in layers
z and above, they use a∞. For each such siftdown,
we need to translate at most log n addresses and each
translation causes less than d misses. The total is less
than n(log n)d/2a. Summation yields

2d+ 1+(p+ 1)O
(n

P

)
+

∑
p<i6z−1

O

(
n

i

2 i

)
+
nd log n

2z
=

=O

(
d +

np

P
+

nd log n

2 z

)
.

For any realistic values of the parameters, the third term
is insignificant, hence, the cost is O

(
τ(d + np

P)
)
. We

next prove the corresponding lower bound under the
additional assumption that W < 1

2n/P . At least one
address must be completely translated, hence, cost of
Ω(τd). The addresses in a0 . . . ap−1 assume at least one
address per page in subarray [n/2..n], as ai can never
jump by more than 2i+1. First the addresses are swept
by a0, then by a1 and so on, and no other accesses to the
subarray occur in the meantime. Hence, if LRU strategy
is in use, and W < 1

2n/P , there are at least pn/(2P) TC
misses to the lowest level of the translation tree. This
gives the Ω

(
np
P

)
part of the misses lower bound. Hence,

the total cost is Ω
(
τ(d + np

P)
)
.

9This assumption can be easily lifted by allowing an additional
constant in running time or in TC size.

6 Cache-Oblivious Algorithms

Algorithms for the EM model are allowed to use the
parameters of the memory hierarchy in the program
code. For any two adjacent levels of the hierarchy,
there are two parameters. The size M of the faster
memory and the size B of the blocks in which data is
transfered between the faster and the slower memory.
Cache-oblivious algorithm are formulated without ref-
erence to these parameters, i.e., they are formulated as
RAM-algorithms. Only the analysis makes use of the
parameters. A transfer of a block of memory is called
an IO-operation. For a cache-oblivious algorithm let
C(M,B, n) be the number of IO-operations on an input
of size when M is the size of the faster memory (also
called cache memory) and B is the block size. Of course,
B 6M .

For several fundamental algorithmic problems, e.g.,
sorting, FFT, matrix multiply, and searching, there are
cache-oblivious algorithm that match the performance
of the best EM-algorithms for the problem [FLPR12].
These algorithms are designed such that they show good
locality of reference at all scales and therefore one may
hope that they also show good behavior in the VAT
model. Some of these algorithms require the tall-cache
assumption M > B2.

Theorem 6.1. Consider a cache-oblivious algorithm
with IO-complexity C(M,B, n), where M is size of the
cache, B is size of a block, and n is the input size. Let
a := bW/dc and let P = 2p be the size of a page. Then
the number of TC faults is at most

d∑
i=0

C(aKiP,KiP, n).

Proof. We divide the translation cache into d parts
of size a and reserve one part for each level of the
translation tree.

Consider any level i, where the leaves of the trans-
lation tree are on level 0. Each node on level i stands
for KiP addresses and we can store a nodes. Thus the
number of faults on level i in the translation process is
the same as the number of faults of the algorithm on
blocks of size KiP and a memory of a blocks (i.e., size
akiP). Therefore, the number of TC faults is at most

d∑
i=0

C(aKiP,KiP, n).

Theorem 6.1 allows us to rederive some of the
results in Section 5. For example, linear scan of an
array of length n has IO-complexity at most 2 + bn/Bc.

Thus the number of TC faults is at most

d∑
i=0

(
2 +

n

KiP

)
< 2d+

K

K − 1

n

P
.

It also allows us to derive new results. Quicksort
has IO-complexity O((n/B) log(n/B)), and hence the
number of TC faults is at most

d∑
i=0

O
(n

K iP
log

n

K iP

)
= O

(n

P
log

n

P

)
.

Binary search in van Emde Boas layout has IO-
complexity logB n, and hence the number of TC faults
is at most

d∑
i=0

log n

log(KiP)
=

d∑
i=0

log n

p+ ik
6

log n

p
+ log n

d∫
0

1

p+ kx
dx

=
log n

p
+

log n

k
ln
p+ dk

p
6

log n

p
+

log n

k
ln
k + log n

p

Matrix multiply with recursive layout of matrices
has IO-complexity n3/(M1/2B), and hence the number
of TC faults is at most

d∑
i=0

n3

(aKiP)1/2KiP
<

K3/2

K3/2 − 1

n3

a1/2P 3/2
.

7 Commentary

We received a number of comments from the program
committee; we address them in this section.

7.1 The model does not cover everything Cur-
rent computers are highly sophisticated machines with
many features. Each single feature requires a lot of at-
tention to be modeled properly. We concentrated on the
feature that leads to the greatest analysis discrepancies
for the sequential algorithms. The model in the current
form applies to various architectures (even though it was
developed in context of the x64 machines), too precise
modeling would remove this advantage. Moreover, the
model was designed as an independent extension to the
RAM model. This way it can be coupled with other
(for instance parallel) models as well, with little or no
modification.

7.2 How does it relate to EM? In the VAT model
we ignore the EM cache misses. However, since every
translation is followed by a memory access, one can
see the RAM memory just as one additional level of
the translation tree. Therefore, in fact VAT implicitly
covers the EM cache misses up to the branching factor
K

7.3 The model is too complicated While we re-
ceived comments that the model is too simple, we also
received ones saying that the model is too complicated.
This impression is probably due to the fact that some
of our proofs are somewhat technical. Some arguments
simplify if asymptotic notation is used earlier, or if the
VAT cost is obviously upper bounded by the RAM cost
(for sequential access patterns to the memory). How-
ever, as this is the first work on the subject, we find
it appropriate to be more detailed than absolutely nec-
essary. With time, more and more simplifications will
appear. In particular, there is evidence that for many
algorithms the exact value of K does not matter and
hence K = 2 may be used.

7.4 The translation tree is shallow It is true that
height of the translation tree on today’s machines is
bounded by 4, and so the translation cost is bounded.
However, even though our experiments use only 3 lev-
els, the slowdown appears to be at least as significant as
one caused by a factor of log n in operational complex-
ity. Therefore, decreasing VAT complexity has a high
practical significance. Please note that while 64 bit ad-
dresses are sufficient to address any memory that can be
constructed according to known physics, there are other
practical reasons to consider longer addresses. There-
fore, current bound for the height of the translation tree
is not absolute.

8 Conclusions

We introduced the VAT model and analyzed some fun-
damental algorithms in this model. We showed that the
predictions made by the model agree well with measured
running times. Our work is just the beginning. There
are many open problems, for example: Which transla-
tion cost is incurred by cache-oblivious algorithms that
require a tall cache assumption? Virtual machines incur
the translation cost twice. What is the effect of this?
What is the optimal VAT-cost of sorting?

We believe that every data structure and algorithms
course must also discuss algorithm engineering issues.
One such issue is that the RAM model ignores essential
aspects of modern hardware. The EM model and the
VAT model capture additional aspects.

References

[Adv10] Advanced Micro Devices. AMD64 architecture
programmer’s manual volume 2: System programming,
2010.

[AV88] Alok Aggarwal and S. Vitter, Jeffrey. The in-
put/output complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, September 1988.

[Dre07] Ulrich Drepper. What every programmer should
know about memory. 2007. http://lwn.net/

Articles/250967/.
[Dre08] Ulrich Drepper. The cost of virtualization. ACM

Queue, 6(1):28–35, 2008.
[FLPR12] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ra-

machandran. Cache-oblivious algorithms. ACM
Transactions on Algorithms, pages 4:1 – 4:22, 2012.
a preliminary version appeared in FOCS 1999.

[HP07] John L. Hennessy and David A. Patterson. Com-
puter Architecture: A Quantitative Approach. Morgan
Kaufmann, San Diego, 2007.

[Mic07] Pierre Michaud. (yet another) proof of optimality
for min replacement. http://www.irisa.fr/caps/

people/michaud/yap.pdf, October 30 2007.
[Rah03] Naila Rahman. Algorithms for hardware caches

and TLB. In Ulrich Meyer, Peter Sanders, and Jop
Sibeyn, editors, Algorithms for Memory Hierarchies,
volume 2625 of Lecture Notes in Computer Science,
pages 171–192. Springer Berlin / Heidelberg, 2003.
10.1007/3-540-36574-5 8.

[SS63] J. C. Shepherdson and H. E. Sturgis. Computability
of recursive functions. Journal of the ACM, 10(2):217–
255, 1963.

[ST85] D. Sleator and R.E. Tarjan. Amortized efficiency
of list update and paging rules. Commun. ACM
(CACM), 28(2):202–208, 1985.

Appendix
A The VAT model

VAT machines are RAM machines that use virtual ad-
dresses. Virtual addresses were motivated by multipro-
cessing. If several programs are executed concurrently
on the same machine, it is convenient and more secure
to give each program a linear address space indexed by
the nonnegative integers. However, now the addresses
are virtual. They do no longer correspond directly to
addresses in the physical memory. Rather, the virtual
memories of all running programs must be simulated
with one physical memory.

We concentrate on the virtual memory of a single
program. Both real (physical) and virtual addresses are
strings in {0,K − 1}d {0, . . . , P − 1}. The {0,K − 1}d
part of the address is called index, and its length d is
an execution parameter fixed a priori the execution. It
is assumed that d = dlogK(last used address/P)e. The
{0, . . . , P − 1} part of the address is called page offset
and P is the page size. The translation process is a
tree walk. We have a K-nary tree T of height d. The
nodes of the tree are pairs (`, i) with ` > 0 and i > 0.
We refer to ` as the layer of the node and to i as the
number of the node. The leaves of the tree are on layer
zero and a node (`, i) on layer ` > 1 has K children
on layer ` − 1, namely the nodes (` − 1,Ki + a), for

a = 0 . . .K − 1. In particular, node (d, 0), the root,
has children (d − 1, 0), . . . , (d − 1,K − 1). The leaves
of the tree store page numbers of the main memory of
a RAM machine. In order to translate virtual address
xd−1 . . . x0y, we start in the root of T , and then follow
the path described by xd−1 . . . x0. We refer to this path
as the translation path for the address. The path ends
in the leaf (0,

∑
06i6d−1 xiK

i). Let z be the page index
stored in this leaf. Then zP + y is the memory cell
denoted by the virtual address. Observe, that y is part
of the real address.

The translation process uses a translation cache TC
that can store W nodes of the translation tree.10 The
TC is changed by insertions and evictions. Let a be a
virtual address and let vd, vd−1, . . . , v0 be its translation
path. Translating a requires to access all nodes of the
translation path in order. Only nodes in the TC can be
accessed. The translation of a ends when v0 is accessed.
The next translation starts with the next operation on
the TC.

The length of the translation is the number of
insertions performed during the translation and the cost
of the translation is τ times the length. The length is
at least the number of nodes of the translation path
that are not present in the TC at the beginning of the
translation.

A.1 TC Replacement Strategies Since the TC is
a special case of a cache in a classic EM machine, the
following classic result applies.

Lemma A.1. ([ST85, FLPR12]) An optimal replace-
ment strategy is at most by factor 2 better than LRU11

on a cache of double size, assuming both caches start
empty.

This result is useful for upper bounds and lower
bounds. LRU is easy to implement. In upper bound
arguments, we may use any replacement strategy and
then appeal to the Lemma. In lower bound arguments,
we may assume the use of LRU. For TC caches, it is
natural to assume the initial segment property.

Definition A.1. An initial segment of a rooted tree
is an empty tree or a connected subgraph of the tree
containing the root. TC has the initial segment
property (ISP), if the TC contains an initial segment
of the translation tree. A TC replacement strategy has
ISP, if, under this strategy, TC has ISP at all times.

10In real machines, there is no separate translation cache.

Rather, the same cache is used for data and the translation tree.
11LRU is a strategy that always evicts the Least Recently Used

node.

Proposition A.1. Strategies with ISP exist only for
TCs with W > d.

ISP is important because strategies with ISP are
easier to implement. Any implementation of a caching
system requires some way to search the cache. This
requires an indexing mechanism. RAM memory is
indexed by the memory translation tree. In case of the
TC itself, ISP allows to integrate the indexing structure
into the cached content. One only has to store the root
of the tree at a fixed position. We will show that ISP can
be realized at no additional cost for LRU and at little
additional cost for the optimal replacement strategy.

A.2 Eager Strategies and the Initial Seg-
ment Property Before we prove an ISP analogue of
Lemma A.1, we need to better understand the behavior
of replacement strategies with ISP. For classic caches
premature evictions and insertions do not improve effi-
ciency. We will show that the same holds true for TCs
with ISP. This will be useful as we will use early evic-
tions and insertions in some of our arguments.

Definition A.2. A replacement strategy is lazy if it
performs an insertion of a missing node only if the node
is accessed right after, and performs an eviction only
before an insertion for which there would be no free cell
otherwise. In the other case the strategy is eager. If
not stated otherwise, we assume that a strategy being
discussed is lazy.

Eager strategies can perform replacements before
they are needed, and can even insert nodes that are
not needed at all. Also, they can insert and re-evict,
or evict and re-insert nodes during a single translation.
We eliminate this behavior translation by translation as
follows. Consider a fixed translation and define the sets
of effective evictions and insertions as follows.

EE ={evict(a) : there are more evict(a)

than insert(a) in the translation.}

EI ={insert(a) : there are more insert(a)

than evict(a) in the translation.}

Please note that in this case “there are more” means
“there is one more” as there cannot be two evict(a)
without an insert(a) between them, or two insert(a)
without evict(a).

Proposition A.2. The effective evictions and inser-
tions modify the content of the TC in the same way
as the original evictions and insertions.

Proposition A.3. During a single translation while a
strategy with ISP is in use:

1. No node from the current translation path is effec-
tively evicted, and all the nodes missing from the
current translation path are effectively inserted.

2. If a node is effectively inserted, no ancestor or de-
scendant of it is effectively deleted. Subject to obey-
ing the size restriction of the TC, we may therefore
reorder effective insertions and effective deletions
with respect to each other (but not changing the or-
der of the insertions and not changing the order of
the evictions).

Lemma A.2. Any eager replacement strategy with ISP
can be transformed into a lazy replacement strategy with
ISP with no efficiency loss.

Proof. We modify the original evict/insert/access se-
quence translation by translation. Consider the current
translation and let EI and EE be the set of effective
insertions and evictions. We insert the missing nodes
from the current translation path exactly at the mo-
ment they are needed. Whenever, this implies an in-
sertion into a full cache, we perform one of the lowest
effective evictions, where lowest means that no children
of the node are in the TC. There must be such an ef-
fective eviction as otherwise also the original sequence
would overuse the cache. When all nodes of the current
translation path are accessed, we schedule all remain-
ing effective evictions and insertions at the beginning of
the next translation; first the evictions in descendant-
first order and then the insertions in ancestor-first order.
The modified sequence is operationally equivalent to the
original one, performs no more insertions, and does not
exceed cache size. Moreover, the current translation is
now lazy.

A.3 ISLRU, or LRU with the Initial Segment
Property Even without ISP, LRU has the property
below.

Proposition A.4. When the LRU policy is in use,
number of the TC misses in a translation is equal to
the layer number of the highest missing node on the
translation path.

Proof. The content of the LRU cache is easy to describe.
Concatenate all translation paths and delete all occur-
rences of each node except the last. The last W nodes
of the resulting sequence form the TC. Observe that an
occurrence of a node is only deleted if the node is part of
a latter translation path. This implies that the TC con-
tains at most two incomplete translation path, namely

the least recent path that still has nodes in the TC and
the current path. The former path is evicted top-down
and the latter path is inserted top-down. The claim now
easily follows. Let v be the highest missing node on the
current translation path. If no descendant of v is con-
tained in the TC, the claim is obvious. Otherwise, the
topmost descendant present in the TC is the first node
on the part of the least recent paths that is still in the
TC. Thus as the current translation path is loaded into
the TC, the least recent path is evicted top-down. As
the consequence, the gap is never reduced.

The proof above also shows that whenever LRU
detaches nodes from the initial segment, the detached
nodes will never be used again. This suggests a simple
(implementable) way of introducing ISP to LRU. If LRU
evicts a node that still has descendants in the TC, it also
evicts the descendants. The descendants actually form
a single path. Next, we use Lemma A.2 to make this
algorithm lazy again. It is easy to see that the resulting
algorithm is the ISLRU as defined next.

Definition A.3. ISLRU (Initial Segment preserving
LRU) is the replacement strategy that always evicts the
lowest descendant of the least recently used node.

Due to the construction and Lemma A.2 we have the
following.

Proposition A.5. ISLRU for TCs with W > d is at
least as good as LRU.

Remark A.1. In fact the proposition holds also for
W 6 d, even though ISLRU no longer has ISP in this
case.

A.4 ISMIN: The Optimal Strategy with the
Initial Segment Property

Definition A.4. ISMIN (Initial Segment property
preserving MIN) is the replacement strategy for TCs
with ISP that always evicts the node that is not used for
the longest time into the future among the nodes that are
not on the current translation path and have no descen-
dants. Nodes that will never be used again are evicted
before the others in arbitrary descendant–first order.

Theorem A.1. ISMIN is an optimal replacement
strategy among those with ISP.

Proof. Let R be any replacement strategy with ISP, and
let t be the first point in time when it departs from
ISMIN. We will construct R′ with ISP that does not
depart from ISMIN including time t and has no more
TC misses than R. Let v be the node evicted by ISMIN
at time t.

We first assume that R evicts v at some later time
t′ without accessing it in the interval (t, t′]. Then R′

simply evicts v at time t and shifts the other evictions
in the interval [t, t′) to one later replacement. Postpon-
ing evictions to the next replacement does not cause
additional insertions and does not break connectivity.
It may destroy laziness by moving an eviction of a node
right before its insertion. In this case R′ skips both.
Since no descendant of v is in the TC at time t, and v
will will not be used for the longest time into the future,
none of its children will be added by R before time t′;
therefore the change does not break the connectivity.

We come to the case that R stores v till it is accessed
for the next time, say at time t′. Let a be the node
evicted by R at time t. R′ evicts v instead of a and
remembers a as being special. We guarantee that the
content of the TCs in the strategies R and R′ differs
only by v and the current special node till time t′, and
is identical afterwords. To reach this goal R′ replicates
the behavior of R except for three situations.

1. If R evicts the parent of the special node, R′ evicts
the special node to preserve ISP, and and from now
on remembers the parent as being special. As long
as only Rule 1 is applied, the special node is an
ancestor of a.

2. If R replaces some node b with the current special
node, R′ skips the replacement and from now on
remembers b as the special node. Since a will
be accessed before v, Rule 2 is guaranteed to be
applied and hence R′ is guaranteed to save at least
one replacement.

3. At time t′, R′ replaces the special node with v,
performing one extra replacement.

We have shown how to turn an arbitrary replacement
strategy with ISP into ISMIN without efficiency loss.
This proves the optimality of ISMIN.

We can now state an ISP-aware extension of
Lemma A.1.

Theorem A.2.

MIN(W) 6 ISMIN(W) 6 ISLRU(W) 6

6 LRU(W) 6 2MIN(W/2),

where MIN is an optimal replacement strategy and A(s)
denotes a number of insertions performed by replace-
ment strategy A to an initially empty TC of size s > d
for an arbitrary, but fixed sequence of translations.

Proof. MIN is an optimal replacement strategy, so it is
better than ISMIN. ISMIN is an optimal replacement

strategy among those with ISP, so it is better than
ISLRU. ISLRU is better than LRU by Proposition A.5.
LRU(W) < 2MIN(W/2) holds by Lemma A.1.

A.5 Improved Relationships
Theorem A.2 implies LRU(W) 6 2ISLRU(W/2) and
ISMIN(W) 6 2MIN(W/2). In this section, we sharpen
both inequalities.

Lemma A.3. LRU(W + d) 6 ISLRU(W).

Proof. d nodes are sufficient for LRU to store one
extra path, hence, from the construction, LRU on a
larger cache always stores a superset of nodes stored by
ISLRU. Therefore, it causes no more TC misses as it is
lazy.

Theorem A.3. ISMIN(W + d) 6 MIN(W).

In order to reach our goal, we will prove the
following lemmas by modifying an optimal replacement
strategy into intermediate strategies with no additional
replacements.

Lemma A.4. There is an eager replacement strategy
on TC of size W + 1 that except for a single special
cell has ISP, and causes no more TC misses than
optimal replacement strategy on TC of size W with no
restrictions.

Lemma A.5. There is a replacement strategy with ISP
on TC of size W + d that causes no more TC misses
than a general optimal replacement strategy on TC of
size W .

Since ISMIN is an optimal strategy with ISP, Theo-
rem A.3 follows from Lemma A.5.

In the remainder of this section some lemmas and
theorems require the assumption W > d and some
do not. However, even for the latter theorems, we
sometimes only give the proof for the case W > d.

A.6 Belady’s MIN Algorithm Recall that Be-
lady’s algorithm MIN, called also the clairvoyant algo-
rithm is an optimal replacement policy. The algorithm
always replaces the node that will not be accessed for
the longest time into the future. An elegant optimal-
ity proof for this approach is provided in [Mic07]. MIN
does not differentiate between nodes that will not be
used again. Therefore, without loss of generality let us
from now on consider descendant–first version of MIN.
For any point in time, let us call all the nodes that
are to be still accessed in the current translation the
required nodes. The required nodes are exactly the
nodes that are on the current translation path, and are
descendants of the last accessed node (or the whole path
if the translation is only about to begin).

Lemma A.6. 1. Let w be in the TC. As long as w
has a descendant v in the TC that is not a required
node, MIN will not evict w.

2. If W > d, MIN never evicts the root.

3. If W > d, MIN never evicts a required node.

Proof. Ad. 1. If v will be accessed ever again, then
w will be used earlier (in the same translation), and
so MIN evicts v before w. If v will never be accessed
again, then MIN evicts it before w because it is the
descendants–first version. Ad. 2. Either TC stores
whole current translation path, and no eviction occurs;
or there is a cell in the TC that contains a node off the
current translation path, hence, the root is not evicted
as it has a non required descendant in the TC. Ad.
3. Either TC stores whole current translation path, or
there is a cell c in the TC with content that will not be
used before any required node. Hence, no required node
is the node that will not be needed for the longest time
into the future.

Corollary A.1. If W > d, MIN inserts root into the
TC as a first thing during the first translation, and never
evicts it.

Lemma A.7. If W > d, MIN evicts only (non-required)
nodes with no stored descendants or the node that was
just used.

Proof. If MIN evicts a node on the current translation
path it cannot be descendant of the just translated node
(lemma A.6, claim 3), it also cannot be ancestor of the
just translated node (lemma A.6, claim 1). Hence, only
the just translated node is admissible. If the algorithm
evicts a node off the current translation path it must
have no descendants (lemma A.6, claim 1).

Lemma A.8. If MIN has evicted the node that was
just accessed, it will continue to do so also for all the
following evictions in the current translation. We will
refer to this as round robin approach.

Proof. If MIN have evicted a node w that was just
accessed, it means that all the other nodes stored in the
TC will be reused before the evicted node. Moreover,
all subsequent nodes traversed after w in the current
translation will be reused even later than w if at all. In
case of W > d the claim holds by lemma A.7.

Corollary A.2. During a single translation MIN pro-
ceeds in the following way:

1. It starts with the regular phase when it inserts
missing nodes of a connected path from the root up
to some node w, as long as it can evict nodes that
will not be reused before just used ones.

2. It switches to the round robin phase for the
remaining part of the path.

It is easy to see that for W > d, in the path that
was traversed in the round robin fashion, informally
speaking, all gaps move up by one. For each gap between
stored nodes, the very TC cell that was used to store
the node above the gap now stores the last node of the
gap. Storage of other nodes does not change. This way
the number of nodes from this path stored in the TC
does not change either. However, it reduces numbers of
stored nodes on side paths attached to the path.

A.7 Proof of Lemma A.4 We introduce a replace-
ment strategy RRMIN12. We add a special cell rr to
the TC, and we refer to the remaining W cells as reg-
ular TC. We will show that the cell rr allows us with
no additional TC misses, to preserve ISP in the regu-
lar TC. We start with an empty TC, and we run MIN
on a separate TC of size W on a side and observe its
decisions.

We keep track of a partial bijection13 ϕt on nodes
of the translation tree. We put one timestamp t on
every TC access, and in the regular phase of MIN one
more between each two accesses. We position evictions
and insertion between the timestamps, at most one of
each between two consecutive accesses. At time t, ϕt

maps every node stored by MIN in its TC to a node
stored by RRMIN in its regular TC. Function ϕt always
maps nodes to (not necessarily proper) ancestors in the
memory translation tree. We denote this as ϕt(a) v a,
and in case of proper ancestors as ϕt(a) @ a. We say
that a is a witness for ϕt(a).

Proposition A.6. Since the partial bijection ϕt al-
ways maps nodes to ancestors, for every path of the
translation tree, RRMIN always stores at least as many
nodes as MIN.

In order to prove the lemma A.4 we need to show how
to preserve properties of the bijection ϕt and ISP. In
accordance to the corollary A.2, MIN inserts a number
of highest missing nodes in the regular phase, and uses
round-robin approach on the remaining ones.

Let us first consider the case when MIN has only
regular phase and inserts the complete path. In this
case we substitute evictions and insertions of MIN with
those described below.

Let MIN evict a node a. If ϕt(a) has no descendants
RRMIN evicts it. In the other case we find ϕt(b) a
descendant of ϕt(a) with no descendants on his own.

12Round Robin MIN
13A partial bijection on a set is a bijection between two subsets

of the set.

RRMIN evicts ϕt(b), and we set ϕt+1 (b) := ϕt(a).
Clearly, we preserved properties of ϕt+1

14 and ISP
holds.

Now let MIN insert a new node e. At this point we
know that both RRMIN and MIN store all ancestors of
e. If RRMIN did not store e yet, RRMIN inserts it and
we set ϕt+1 (e) := e. If e is already stored, it means it
has a witness ϕ−1t (e) that is a proper descendant of e.
We a find a sequence e A ϕ−1t (e) A ϕ−2t (e) A . . . A
ϕ−kt (e) = g, that ends with g RRMIN did not store yet.
Such g exists as ϕ−1t is an injection on a finite set, and
is undefined for e. We set ϕt+1 (h) := h for all elements
of the sequence except g. RRMIN inserts highest not
stored ancestor f of g and we set ϕt+1 (g) := f . Note,
that inserted node f might not be a required node.
Properties of ϕt are preserved, and RRMIN did not
disconnect the tree it stores. Also, RRMIN performed
the same number of evictions and insertions as MIN.
Note as well, that for all nodes on the translation path
ϕt is identity. Finally, proposition A.6 guarantees that
all access are safe to perform at the time they were
scheduled.

Now let us consider case when MIN has both regular
and round robin phase. Assume that the regular phase
ends with the visit of node v. At this point, MIN stores
the (nonempty for W > d due to collorary A.1) initial
segment pv of the current path ending in v, it does not
contain v’s child on the current path, and it contains
some number (maybe zero) of required nodes. Starting
with v’s child, MIN uses the round-robin strategy.
Whenever, it has to insert a required node, it evicts
its parent. Let `r and `rr be the number of evictions in
the regular and round-robin phase, respectively.

RRMIN also proceeds in two phases. In the first
phase, RRMIN simulates the regular phase as described
above. RRMIN also performs `r evictions in the first
phase and ϕt is the identity on pv at the end of the first
phase; this holds because ϕt maps nodes to ancestors,
and since MIN contains pv in its entirety at the end
of the regular phase. Let d′ be the number of nodes
on the current path below v; MIN stores d′ − `rr of
them at the beginning of the round-robin phase, which
it does not have to insert, and does not store `rr of them,
which it has to insert. Since ϕt is the identity on pv
after phase 1 of the simulation and maps the d′ − `rr
required nodes stored by MIN to ancestors, RRMIN
stores at least the next d′ − `rr required nodes below
v in the beginning of phase 2 of the simulation. In the
round-robin phase RRMIN inserts the required nodes
missing from the regular TC one after the other into rr
disregarding what MIN does. Whenever MIN replaces

14ϕt+1 is equal to ϕt on all arguments not explicitly specified.

a node a with its child g, in case of W > d we fix ϕt by
setting ϕt+1 (g) := ϕt(a). By proposition A.6, RRMIN
does no more evictions than MIN. Therefore, as it also
preserves ISP in the regular TC the lemma A.4 holds.

A.8 Proof of Lemma A.5 In order to prove the
lemma we will show how to use additional d regular
cells in the TC to provide functionality of the special
cell rr while preserving ISP in the whole TC. We run
the RRMIN algorithm aside on a separate TC of size
W + 1, and we introduce another replacement strategy
we call LIS15 on a TC of size W +d. LIS starts with an
empty TC where d cells are marked. LIS preserves the
following invariants.

1. Set of nodes stored in the unmarked cells by LIS is
equal to set of nodes stored in the regular TC by
RRMIN.

2. Set of nodes stored in the marked cells by LIS
contains the node stored in the cell rr by RRMIN.

3. Exactly d cells are marked.

4. LIS has ISP.

5. No node is stored twice (once marked, once un-
marked).

Whenever RRMIN can replicate evictions/insertions of
LIS without violating the invariants, it does. Otherwise,
we consider the following cases.

1. Let RRMIN in the regular phase evict a node a
that has marked descendants in LIS. Then, LIS
marks the cell containing a, and unmarks and evicts
one of the marked nodes with no descendants that
does not store the node stored in rr. Such a node
exists, as the only other case is that the marked
cells contain all nodes of some path excluding the
root, and the leaf is stored in rr. Therefore, a is
the root, but root is never evicted due to ISP.

2. In the regular phase, RRMIN inserts a node c to an
empty cell while LIS already stores c in a marked
cell. In this case LIS unmarks the cell with c, and
marks the empty cell.

3. In the round robin phase, RRMIN replaces content
of the cell rr, LIS (if needed) replaces the content
of an arbitrary marked node with no descendants
that is not on the current translation path. Since
the root is always in the TC and there are d marked
cells, such a cell always exists. ISP is preserved, as
parent of this node is already in the TC.

15Lazy strategy preserving the Initial Segments property

At this stage if we drop notions of ϕt and marked
nodes, LIS becomes an eager replacement strategy on
a standard TC. Therefore, we can use lemma A.2 to
make it lazy. This concludes the proof of lemma A.5.

Remark A.2. We believe that requirement for d is es-
sentially optimal. Consider the scenario when we access
subsequent cells uniformly at random. Informally speak-
ing, MIN will tend to permanently store first logK(W)
levels of the translation tree as they are frequently used,
and will use a single cell to traverse the lower levels. In
order to preserve ISP we need d−logK(W)+1 additional
cells for storing the current path. Not uniform random
patterns should lead to even higher requirements. This
does not seam to give much more space for improve-
ment.

Conjecture A.1. Strategy of storing higher nodes
(lemma A.4) and using extra d cells to not evict nodes
from the current translation path (lemma A.5) can be
used to add ISP to any replacement strategy without ef-
ficiency loss.

