
87

The cost of being object-oriented:

A preliminary study

Zoran Budimlić ∗, Ken Kennedy and Jeff Piper

Center for Research on Parallel Computation, Rice

University, CRPC – MS 41, 6100 Main Street,

Houston, TX 77005-1892, USA

E-mail: zoran@rice.edu

Since the introduction of the Java programming language,

there has been widespread interest in the use Java for the high

performance scientific computing. One major impediment to

such use is the performance penalty paid relative to Fortran.

To support our research on overcoming this penalty through

compiler technology, we have developed a benchmark suite,

called OwlPack, which is based on the popular LINPACK li-

brary. Although there are existing implementations of LIN-

PACK in Java, most of these are produced by direct trans-

lation from Fortran. As such they do not reflect the style of

programming that a good object-oriented programmer would

use in Java. Our goal is to investigate how to make object-

oriented scientific programming practical. Therefore we de-

veloped two object-oriented versions of LINPACK in Java, a

true polymorphic version and a “Lite” version designed for

higher performance. We used these libraries to perform a de-

tailed performance analysis using several leading Java com-

pilers and virtual machines, comparing the performance of

the object-oriented versions of the benchmark with a version

produced by direct translation from Fortran. Although Java

implementations have been made great strides, they still fall

short on programs that use the full power of Java’s object-

oriented features. Our ultimate goal is to drive research on

compiler technology that will reward, rather than penalize

good object-oriented programming practice.

1. Introduction

Since the introduction of the Java programming lan-

guage, there has been widespread interest in the use

of Java for high performance scientific computing.

The principal impediment to such use is poor perfor-

mance, relative to the similar programs written in For-

tran and C. There are three main reasons why Java pro-

*Corresponding author.

grams do not achieve high performance by comparison
with Fortran and C:

• Java compilers and execution environments are

not yet on par with the traditional optimizing

compilers. Although there has been a significant

advancement in this area lately [2,7,9], especially

with the run-time compilation and optimization

techniques, Java systems still have to improve to
be able to compete with the traditional languages.

• The non object-oriented features of Java add sig-

nificant overhead. Bytecode portability requires

that major optimizations be delayed until run

time. Garbage collection, synchronization, and
the exception mechanism all require additional

overhead for their implementation. Java security

measures force the virtual machine implementa-

tion to examine the code for security holes be-

fore execution. All these requirements, important

as they are, reduce the performance of Java pro-
grams at run time.

• Java is an object-oriented language, and as such

it encourages programers to use object-oriented

style when writing scientific programs. It is far

more natural for the programers to thinks of ma-
trices, vectors and complex numbers as objects

and pass them around and use encapsulation and

code reuse when performing operations on them,

than to perform all the operations directly on

the Fortran-style arrays. Later in the paper, we

show that Java compilers (both static and JIT)
are not yet up to the task of effectively optimiz-

ing away the overhead resulting from using the

object-oriented style.

In spite of the cost, much of the value of using

Java is lost if the programmer does not freely use

the advanced features of the language, particularly the
support for object-oriented program development. The

right solution is to build compiler systems that mini-

mize the penalties for fully utilizing the features of the

language. However, effective research on Java com-

piler systems must be driven by experimental methods.

Scientific Programming 7 (1999) 87–95

ISSN 1058-9244 / $8.00  1999, IOS Press. All rights reserved

88 Z. Budimlić et al. / The cost of being object-oriented: A preliminary study

Without good benchmarks on which to conduct these

experiments, it will be difficult to validate the compiler

strategies proposed by researchers.

The majority of benchmarks available for evaluation

of the cost of using Java in high performance scientific

computing are either microbenchmarks or benchmarks

obtained by direct translation from Fortran (either au-

tomatic [4] semi-automatic or manual [11]). Neither of

these two closely resemble the programs that Java pro-

gramers would prefer to write. The need for a bench-

mark that would closely reflect the ‘real world’ sci-

entific computation in Java is clear. Unfortunately, al-

though there have been some reports of scientific appli-

cations implemented in Java that could be easily con-

verted to serve as benchmarks, we suspect that many

of these have been translated to Java without a corre-

sponding conversion to true object-oriented program-

ming style. A good example is the Java version of the

LINPACK Benchmark, which strongly resembles the

Fortran version.

To address this issue and to help foster more re-

search on Java compilation, we have designed and im-

plemented in Java an object-oriented version of the

LINPACK linear algebra library. We call this library

OwlPack (Objects Within Linear algebra PACKage).

We used OwlPack to perform a detailed analysis of the

performance of Java programs written in different pro-

gramming styles. Specifically, we compared the per-

formance of the object-oriented version of the bench-

mark with a version written in a style closer to Fortran.

We then analyzed the cost of the additional overhead

incurred when object-oriented design is used in high-

performance computing.

The principal contributions of this research are as

follows:

• We have constructed an object-oriented Java im-

plementation of the LINPACK library that is

available to the public (http://www.cs.rice.edu/

∼zoran/OwlPack.zip) for evaluating the perfor-

mance of Java compilers and run-time systems.

• We have used this package to evaluate the cost

that is associated with object-oriented design of

scientific programs using the best Java compilers

and VMs available today.

• We have analyzed the results of these experiments

to illuminate important issues that must be ad-

dressed by Java compiler and run-time systems

research if we are to improve the performance of

scientific programs written in Java.

The rest of this paper is organized in the following

way: in Section 2 we describe the design of our im-

plementation of the OwlPack, present the class hierar-

chy and explain some design decisions. In Section 3

we present the experimental results we obtained by ex-

ecuting several of our routines on various VMs and

using different static compilers, along with the same

experiments performed on a Fortran-style version of

LINPACK library. In Section 4 we provide some in-

sights and guidance for compiler designers, based on

the results reported in Section 3. In Section 5 we de-

scribe some of the work related to the topic of this pa-

per and future research plans.

2. OwlPack design

The creation of a general framework for classes in

Owlpack is motivated by the primary goal of employ-

ing the most natural hierarchy possible while achieving

the highest level of abstraction. The central design de-

cision was how to store the elements of a matrix. Using

two-dimensional array of primitive types, like double

and float, permits direct manipulation of the data and

does not force translation during parameter passing to

the library, since the users would be likely to have their

data in this form. However, this approach suffers from

the disadvantage that the class hierarchy would have to

be replicated for each primitive type.

On the other hand, a polymorphic solution could be

achieved by creating a new abstract class of numbers

to which any primitive type can be translated. This ap-

proach allows for a single implementation for all prim-

itive types and can be extended to any type for which

the required operations are defined. Therefore, it is eas-

ier to program, easier to maintain, and more general

than the specializing the code to each primitive type. In

that sense, it uses the full power of the object-oriented

features of the language.

As an experiment, we decided to explore both styles.

We created two different matrix abstractions, Matrix

and NMatrix, that represent the different storage strate-

gies while performing the same numeric computations.

The Matrix class is the superclass of all classes that are

specialized based on primitive types and gives rise to a

replicated class hierarchy parametrized by primitive el-

ement type. We call the resulting style of programming

“lite” object-oriented style (Lite OO) style.

The classes that derive from NMatrix all use the ab-

stract number class, LNumber. Thus NMatrix is fully

polymorphic and can be extended to new number types

Z. Budimlić et al. / The cost of being object-oriented: A preliminary study 89

Fig. 1. LNumbers class hierarchy.

Fig. 2. OwlPack class hierarchy.

easily. We will refer to this style of programming as

object-oriented (OO) style.

FMatrix, DMatrix, and CMatrix all extend Matrix

and contain the BLAS (Basic Linear Algebra Sub-

routines) for the corresponding data type (F = float,

D = double, C = complex). The CMatrix class is fur-

ther specialized for double and single precision com-

plex numbers. In our current implementation, the com-

plex numbers used in CMatrix are objects that are an

extension of our LNumber class, although consistency

with the efficiency goals of the Lite OO style would

dictate that CMatrix use pairs of two-dimensional ar-

rays of primitive types – one array for the real part of

the complex numbers and one array for the imaginary

parts. We plan to make this change in a future version.

All classes whose names begin with an N are exten-

sions of NMatrix and use LNumbers.

For all classes, the next differentiation is based on

the storage type, so DMatrix is extended by DBanded,

DPacked, DTDiag, and DFull (and similarly for FMa-

trix, CMatrix and NMatrix). By separating the matri-

ces by storage form, the classes further down the hier-

archy can reuse code because the internal variables are

accessed the same way.

To attain a high degree of generality, Matrix and

NMatrix contain the size information, an internal pivot

array and the base interface for all of the methods

available for matrices. These method are, in gen-

eral, overridden by the extended classes. However, the

base functions throw an exception whenever the base

method is not overridden because it does not always

make sense to provide every method for every exten-

sion. For example, with banded matrices it does not

make sense to implement the inverse operation, be-

cause the inverse would require more storage than the

allocated for the original Matrix. In the interest of ab-

stracting these functions, our solution is to throw an

exception whenever an invalid function call is made.

This brings most of the interesting methods to the Ma-

trix level where storage form and data type are not im-

portant.

In order to raise solve() and determ() to the highest

level, we created a Vector class that is barely more than

an array of the primitive type being used in the corre-

90 Z. Budimlić et al. / The cost of being object-oriented: A preliminary study

for(int i=0; i<cols; i++) {

if(pivot[i] != i+1) Det[0].negate();

Det[0].multTo(Mat[i][i]);

if(Det[0].equal(0)){

return Det;

}else{

while(!(Det[0].abs()).greaterOrEqual (1)) {

Det[0].multT(10);

Det[1].subTo(1);

}

while((Det[0].abs()).greaterOrEqual (10)) {

Det[0].divTo(10);

Det[1].pplus();

}

}

}

return Det;

Fig. 3. Object-oriented style determinant computation.

sponding Matrix. Since Matrix must account for sin-

gle, double, and complex precision, but cannot see the

types of the Matrix elements inside it, solve() and de-

term() could not return an array of the same type. In-

stead, they return a subclass of Vector that contains an

array of the needed primitive type.

The next level of the structure was determined so

that the subclasses of this level could have the most in

common. Because floats, doubles, and any new num-

ber type cannot interact with each other easily, the stor-

age type was deemed to be the most useful factor of

separation between the Matrices. By having FMatrix,

DMatrix, CMatrix, and NMatrix, we obtained a set of

abstract classes that contain the BLAS for each type,

which is the natural basis for such a set of routines.

The doubly subscripted array that each of these classes

also holds was chosen over a faster design consisting

of a single array with computed subscripts because the

form (arguably) better represents the way people think

about matrices. An example of the differences among

the OO style, the Lite OO style, and the code result-

ing from direct Fortran translation code is provided in

Figs 3, 4, and 5 by the code for computing and normal-

izing the determinant.

The OO style code works for all LNumbers, in-

voking methods for comparison and numeric opera-

tions.

The Lite OO style allows for the direct manipula-

tion of the information within the array, so that primi-

tive operations are performed on the elements directly.

Before returning with the determinant, though, a new

Vector must be formed.

for(int i=0; i<cols; i++) {

if(pivot[i] != i+1) Det[0] = -

Det[0];

Det[0] *= this.Mat[i][i];

if(Det[0] == 0){

return (new DVector (Det));

}else{

while(Math.abs(Det[0]) < 1) {

Det[0] *= 10;

Det[1] -= 1;

}

while(Math.abs(Det[0]) >= 10) {

Det[0] /= 10;

Det[1]++;

}

}

}

return (new DVector (Det));

Fig. 4. “Lite” OO style determinant computation.

The Fortran-style code, while similar in appearance

to the second style above, follows Fortran conventions

of passing in the Matrix and breaking out of loops. This

function also gets a reference to det as an argument and

hence there is no need to return it.

DBanded, DFull, and DTDiag all extend DMatrix

and are at the highest level of non-abstract Matrices.

These classes contain the Gaussian (LU) decomposi-

tion routines since they are the most general routines

that can be used by any Matrix with the corresponding

storage form. If a Matrix is declared as a sub-class of

one of these types, it can be factored and solved with

Z. Budimlić et al. / The cost of being object-oriented: A preliminary study 91

for (i=0; i < n; i++) {

if(ipvt[i] != i) det[0] = -det[0];

det[0] *= a[i][i];

if (det[0] == 0.0) break;

while (Math.abs(det[0]) < 1.0) {

det[0] *= 10 ten;

det[1] --;

}

while(Math.abs(det[0]) >= ten) {

det[0] /= ten;

det[1]++;

}

}

Fig. 5. Fortran style determinant computation.

Gaussian elimination by calling its super class’s factor

and solve routines. DPacked is an abstract class which

does not contain the Gaussian routines.

DFull also contains the singular value decomposi-

tion, qr-decomposition, and Cholesky’s updating rou-

tines. The code for Cholesky decomposition is also in

DFull so that both symmetric subclasses can use it, but

it is impossible to call it from DFull.
In designing NMatrix, we encountered some diffi-

culties when dealing with LNumbers, because these
two classes are completely separate in their internal
representation and LNumber is a fully self-supporting
class. There were several instances when a new LNum-
ber was needed inside an NMatrix, but because LNum-
ber is an abstract class, it was impossible to create a
new instance. To solve this problem, we made LNum-
ber implement Clonable() and added the methods set-
Zero() and setOne() which would set the value of the
LNumber to zero or one, respectively. An example
of the intended implementation can be found in the
method NFull.determ():

Det[0] = Mat[0][0].Clone();

Det[1] = Mat[0][0].Clone();

Det[0].setOne();

Det[1].setZero();

Another consideration when implementing LNum-

ber was the way in which methods should be called.

For example, LNumber could have add defined to take

LFloat, LDouble, LCFloat, and LCDouble and throw

an exception if the method is called and not overloaded

for the type, much the way Number.getValue() is

implemented in the standard Java library. Every class

would overload the method that took its own type and

perform the operation quickly because it knows pre-

cisely what the passed object is. While slightly faster,

this method was not considered appropriate for the full

object oriented version, since it would introduce into

LNumber a knowledge of all of the classes that extend

it. Instead, by having the method take an LNumber and

cast it, only one version of the method is written, and

the exception is still thrown if an incompatible LNum-

ber is passed.

3. Experimental results

We compared our implementation of the LINPACK

library with the partial Java version from FPL Statis-

tics Group [11], obtained by the straight-line transfor-

mation from the Fortran source code. We will refer to

this version of the code as “Fortran style”. We have

only included the timings for the routines that have

been implemented in the FPL version – factorization

and solving the positive definite matrix, LU and QR

decomposition and solving of the full matrix, inverse

and determinant computation and singular value de-

composition. These routines were only available for

double precision floating point numbers, so we com-

pared the running times of their equivalents in our im-

plementation: DPoFull and DFull classes handle these

functions in our “Lite” OO version, while NPoFull and

NFull classes instantiated with LDouble numbers han-

dle them in our OO version. A short description of

these routines is given below:

• dpofa factors a 300×300 random generated pos-

itive definite matrix

• dposl solves the equation A ∗ x = B, where A

is the matrix factored by dpofa and B is random

generated vector of 300 numbers

• dpodi computes the determinant and the inverse

of the 300 × 300 positive definite matrix

• dgefa performs an LU factorization of a 200 ×

200 random generated full matrix

• dgesl solves A ∗ x = B, where A is factored

full matrix, B is a vector size 200

• dgedi computes the determinant and the inverse

of a full 200 × 200 matrix

• dqrdc performs QR decomposition with pivot-

ing on a 300 × 300 random full matrix

• dqrsl solves A∗x = B, where A is QR decom-

posed matrix, B is a vector

• dsvdc performs the singular value decomposi-

tion on a random 100 × 100 matrix

The tests on Solaris were performed on the Sun Ul-

tra 5, with 64MB of memory, running under Solaris

2.6, with the jdk 1.1.5 from JavaSoft for the interpreter

92 Z. Budimlić et al. / The cost of being object-oriented: A preliminary study

Table 1

Execution times for Sparc Ultra 5

jdk 1.1.5 interpreter jdk 1.2 JIT

Fortran style “Lite” OO OO style Fortran style “Lite” OO OO style

dpofa 4.669 5.548 115.155 1.353 1.584 21.862

dposl 8.820 10.362 127.392 2.582 2.831 12.036

dpodi 12.736 14.315 297.346 2.614 3.462 70.965

dgefa 3.226 3.511 81.981 0.698 0.838 18.496

dgesl 4.079 4.640 35.868 0.865 0.967 4.488

dgedi 6.234 6.971 161.868 1.428 1.677 33.288

dqrdc 21.197 25.139 538.53 6.921 8.118 123.438

dqrsl 14.504 15.757 162.044 3.953 3.903 15.459

dsvdc 9.008 15.439 226.495 1.456 3.043 64.054

Table 2

Execution times for Pentium Pro

jdk 1.1.6 interpreter Symantec JIT 3.00.029 Microsoft VM 4.79.2405

Fortran style “Lite” OO OO style Fortran style “Lite” OO OO style Fortran style “Lite” OO OO style

dpofa 5.528 6.309 242.138 0.591 0.861 131.890 0.721 0.711 52.966

dposl 16.724 18.547 160.460 8.202 7.621 132.630 6.690 7.011 40.278

dpodi 13.019 13.860 384.954 1.252 2.183 307.523 1.792 1.943 164.547

dgefa 3.986 4.186 135.414 0.421 0.521 67.267 0.541 0.581 41.420

dgesl 5.398 5.859 45.716 0.571 0.701 17.164 0.531 0.561 8.912

dgedi 7.210 8.032 238.172 0.842 1.041 107.475 1.051 1.101 68.509

dqrdc 24.185 28.521 830.104 3.925 4.466 1054.887 3.725 4.477 275.226

dqrsl 18.757 19.969 264.510 2.083 2.264 164.376 2.123 2.103 67.307

dsvdc 11.106 20.639 450.548 1.713 2.594 176.955 1.052 2.734 91.542

tests, and the jdk 1.2 Production Release for Solaris for

the JIT tests.

The PC tests were performed on a 200 MHz Pen-

tium Pro with 64MB of memory, running under Win-

dows NT Workstation 4.0, using the jdk 1.1.6 from

JavaSoft for the interpreter tests, and the Symantec JIT

3.00.029 that comes with Symantec Visual Cafe for the

JIT tests. We also measured the execution times for the

Microsoft VM 4.79.2405 that comes with Microsoft

Java SDK 3.0.

All tests are run as single processes on empty ma-

chines with no other processes running. All times are

an average of three runs. All the classes were compiled

using javac from jdk 1.1.6 with the -O option.

We encountered a surprising result with the Syman-

tec JIT on Windows NT: the 3.00.053 version that

comes with jdk 1.1.6 had virtually identical results on

Fortran style and on the “Lite” OO benchmarks as the

3.00.029 version of the Symantec JIT that comes with

Symantec Visual Cafe, but on the OO benchmarks the

3.00.053 JIT was 50–100% slower than the 3.00.029

version.

For reference, we performed the same measure-

ments of the Fortran version of the LINPACK, using
the Fortran 90 native compiler for Solaris and the Dig-

ital PowerStation F90 compiler for the Windows NT
machine. In general, the execution times for Fortran

style Java LINPACK on the jdk 1.2 Production Release

and on the Microsoft VM were within the factor of four
of native Fortran code.

4. Analysis of the results

The data presented in the previous section provides
some interesting and somewhat surprising results. The

substantial performance hit associated with the object-

oriented design was expected, although the magnitude
of this cost exceeded our expectations.

In general, the Lite OO version of OwlPack per-
formed slightly slower than the Fortran-style version,

with differences ranging from 7% faster for dposl on

Symantec JIT, to around 2.7 times slower for dsvdc
on Microsoft VM. The main reason for this perfor-

mance degradation is extra indirection in the innermost

Z. Budimlić et al. / The cost of being object-oriented: A preliminary study 93

loops of our routines. The Fortran-style library has all

the matrices passed by reference to the targeted rou-

tines, where the argument of the routine contained the
direct reference to the matrices involved in the compu-

tation. The “Lite” OO library treats matrices as objects,

with the reference to the actual array that contains the
matrix data stored as an instance variable. The most

natural way to reference the matrix data is through the

instance variable, i.e., Mat[i][j], but this generates
an extra field access to obtain Mat from this refer-

ence, followed by the usual array access instructions.

In most, but not in all cases, the JIT compilers were
able to optimize this extra reference away. This prob-

lem could be easily eliminated even in a static compiler

with some form of loop invariant code motion.
The most interesting timings were the ones recorded

for the OO version of the OwlPack. The object oriented

version was substantially slower in all of our tests,
ranging from arount 4 times slower than the Fortran-

style version for dqrsl and dgesl on jdk 1.2 on So-

laris, to more than 250 times slower for dqrdc on the
Symantec JIT. The average slowdown was from a fac-

tor of 19 for the Solaris JIT to the factor of 140 for the

Symantec JIT.
Although the Lite OO version of OwlPack has an

enormous performance advantage over the OO ver-

sion on current Java implementations, the polymor-
phic object-oriented style results in a code that is much

smaller in size – a factor of 3 for OwlPack, expected to

grow to factor of 4 when the intended implementation
of CFMatrix and CDMatrix is complete. In addition it

is easier to maintain because algorithmic changes need

only be made once. Ideally, future compiler technolo-
gies will be able to automatically transform the OO

style OwlPack code into something that approaches the

Lite OO version in performance.
The main reasons for the poor performance of the

OO version are fairly obvious:

• Every number that is a part of a computation is al-
located on the heap as a separate object, requiring

additional overhead for instantiation and garbage

collection.
• Numbers that are elements of a matrix are scat-

tered over the heap, effectively eliminating the

cache performance benefits of spatial locality in
standard matrices used in the Fortran and OO Lite

versions.

• All operations on numbers are done through
method calls to the corresponding objects, incur-

ring additional overhead for the method invoca-

tion and the dynamic dispatch required to deter-

mine which method is being invoked (since all

numbers are abstracted in the LNumber class).

• There is a much greater memory requirement for

the OO style, as every number takes up memory

associated with object representation in addition

to memory for the data itself.

• The presence of objects and method calls pre-

vents some forms of local compiler optimization,
such as common subexpression elimination, that

are possible in the Fortran and Lite OO versions.

It should be possible to eliminate most of these
performance penalties through advanced compiler op-

timizations. A form of specialization or procedure

cloning [5,6,8] could convert the NMatrix class hierar-

chy into four specialized hierarchies based on the four

types of the numbers that could be used as elements

of the matrix (LDouble, LFloat, LCDouble, LCFloat).

This optimization alone would not bring significant

performance gains, but coupled with unboxing or ob-

ject inlining [3,9,14] that would convert the internal
representation from arrays of LDouble for example, to

arrays of double and inline all of the operations on

numbers, it would generate a class structure very simi-

lar to the Matrix hierarchy in OwlPack. The real chal-

lenge is to improve on these techniques so they can

be applied in Java environment without sacrificing the

portability and security of the Java VM.

5. Related and future work

Dongarra et al. [10] are currently working on auto-

matic translation from Fortran to Java and applying it

to LAPACK library. While this is an attractive way to

quickly transform existing high performance Fortran
codes into Java and obtain reasonable efficiency (as

demonstrated in this paper), the resulting code would

not reflect the best object-oriented programming style.

If the goal is to conduct research on how to ameliorate

the cost of using the powerful object-oriented features

of Java, code produced by this process would not make

an ideal benchmark.

Pendragon Software Corporation [16] provides one

of the most frequently cited benchmarks for Java.
However, the benchmark is not designed to reflect the

high performance scientific computation. Furthermore,

the product is a microbenchmark, which has led to

some controversy about the practice of matching pat-

terns in the code.

This paper demonstrates that there is a need for

further research on compiler technology for object-

94 Z. Budimlić et al. / The cost of being object-oriented: A preliminary study

oriented languages like Java. The JIT compilers of to-

day are not sophisticated enough to eliminate the over-

head incurred by polymorphic object-oriented imple-

mentations. Static compilers must overcome special

problems even before they can apply traditional opti-

mizations because the exception mechanism interferes

with control flow analysis and makes it difficult to use

the straightforward implementation of some code mo-

tion optimizations [2].

Whole [7] and almost whole [3] program optimiza-

tion techniques have to be further developed for Java

environment. Because these strategies sacrifice some

of the portability and security of the language, they

might not be acceptable to some users.

Dean et al. [7,8], Agesen [1] and others [2,3,

5,9] have been working on compiler technologies

that would utilize whole program optimization and

type analysis to deliver procedural code from object-

oriented programs and eliminate the overhead imposed

by the object-oriented design. It has been shown that

the use of object inlining [2,3,9] and specialization and

customization techniques [5,8] in compilation of sci-

entific Java programs can lead to major improvements

in running time. However, these techniques have yet to

be validated on a large scale, real world applications

and in a more restrictive Java bytecode environment.

One goal of the benchmark suite we have produced is

to make such evaluations possible.

6. Conclusions

We have designed and implemented object-oriented

versions of the BLAS and LINPACK linear algebra li-

brary in Java. The implementation has been done in

two flavors: a fully polymorphic, object-oriented ver-

sion and a more performance-oriented “Lite” version.

Using several leading Java implementations, we com-

pared the performance of the object-oriented versions

of the benchmark with a version using Fortran style

Java generated by a translator and analyzed the cost of

additional overhead that object-oriented design brings

to the high-performance computing. We observe that

there is a substantial cost associated with a full object-

oriented design in scientific programs, and that the cur-

rent compilers and VMs have a room for substantial

improvements in this area.

We should emphasize that the intention of this

project was not to design a linear algebra library that

scientific programmers should use in their Java pro-

grams – if that were the goal we would probably use

the translation from Fortran or the Lite style. Instead,

our goal was to expose the performance penalties that

are associated with object-oriented design and pro-

gramming style, and to provide compiler researchers

with benchmarks that more closely reflect how numer-

ical applications would be implemented using the full

power of an object-oriented language. Our long-term

goal is to drive our own research (and that of others)

on the Java compiler technology needed to eliminate

the overhead of the object-oriented approach. If this re-

search is successful, it will reward, rather than penal-

ize, good programming practice.

Ideally, scientific programmers should be able to de-

sign their systems in an object-oriented style, without

attention to the performance issues. One goal of Java

compiler research should be to help achieve that ideal.

References

[1] O. Agesen, Concrete type inference: delivering object-oriented

applications, Ph.D. thesis, Stanford University, 1995.

[2] Z. Budimlić and K. Kennedy, Optimizing Java: theory and

practice, Concurrency: Practice and Experience 9(6) (1997),

445–463.

[3] Z. Budimlić and K. Kennedy, Static interprocedural optimiza-

tions in Java, Rice University technical report CRPC-TR98746,

1998.

[4] H. Casanova, J. Dongarra and D.M. Doolin, Java Access to Nu-

merical Libraries, http:// www.cs.utk.edu/f2j/hpjhtml/

[5] C. Chambers and D. Ungar, Customization: Optimizing com-

piler technology for Self, a dynamically-typed object-oriented

programming language, in: Proceedings of the ACM SIGPLAN

’89 Conference on PLDI 24(7) (July 1989), 146–160.

[6] K. Cooper, M. Hall and K. Kennedy, Procedure cloning, Pro-

ceedings of the 1992 International Conference on Computer

Languages, Oakland, CA, April 1992, pp. 96–105.

[7] J.A. Dean, Whole program optimization of object-oriented lan-

guages, Ph.D. thesis, University of Washington, 1996.

[8] J. Dean, C. Chambers and D. Grove, Selective specialization

for object-oriented languages, in: Proceedings of the ACM SIG-

PLAN ’95 Conference on PLDI (June 1995), pp. 93–102.

[9] J. Dolby, Automatic Inline Allocation of Objects, in: Proceed-

ings of ACM SIGPLAN Conference on POPL, Las Vegas, NV,

June 1997.

[10] J.J. Dongarra, C.B. Moler, J.R. Bunch and G.W. Stewart, LIN-

PACK Users’ Guide, SIAM, Philadelphia, 1979.

[11] FPL Statistics Group, Linear Algebra for Statistics Java Pack-

age, http://www1.fpl.fs.fed.us/ linear_algebra.html

[12] P. Havlak, Interprocedural symbolic analysis, Ph.D. thesis,

Rice University, Dept. of Computer Science, May 1994.

[13] M.T. Heath, Scientific Computing: An Introductory Survey,

WCB/McGraw-Hill, 1996.

Z. Budimlić et al. / The cost of being object-oriented: A preliminary study 95

[14] X. Leroy, Unboxed Objects and Polymorphic Typing, in: Con-

ference Record of the Nineteenth Annual ACM SIGPLAN-

SIGACT Symposium on POPL, Albequerque, NM, January

1992, pp. 177–188.

[15] T. Lindholm and F. Yellin, The JavaTM Virtual Machine Speci-

fication, Addison-Wesley, Reading, MA, 1996.

[16] Pendragon Software Corporation, Caffeine MarkTM Java

Benchmark, available on the Web: http://www.webfayre.com/

cm.html

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

