
The Cost of Doing Science on the Cloud: The Montage Example

Ewa Deelman1, Gurmeet Singh1, Miron Livny2, Bruce Berriman3, John Good4

1 USC Information Sciences Institute, Marina del Rey, CA
2 University of Wisconsin Madison, Madison, WI

3 Infrared Processing and Analysis Center & Michelson Science Center, California Institute of
Technology, Pasadena, CA

4 Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA

Abstract

Utility grids such as the Amazon EC2 cloud and
Amazon S3 offer computational and storage resources
that can be used on-demand for a fee by compute and
data-intensive applications. The cost of running an
application on such a cloud depends on the compute,
storage and communication resources it will provision
and consume. Different execution plans of the same
application may result in significantly different costs.
Using the Amazon cloud fee structure and a real-life
astronomy application, we study via simulation the
cost performance tradeoffs of different execution and
resource provisioning plans. We also study these
trade-offs in the context of the storage and
communication fees of Amazon S3 when used for long-
term application data archival. Our results show that
by provisioning the right amount of storage and
compute resources, cost can be significantly reduced
with no significant impact on application performance.

1. Introduction
Over the years the research community has developed
a wide spectrum of funding and usage models to
address the ever growing need for processing, storage,
and network resources. From locally owned clusters to
national centers and from campus grids to national
grids, researchers combine campus and federal funding
with competitive and opportunistic compute time
allocations to support their science. In some cases,
research projects are using their own clusters or pool
their resources with other communities (for example in
the Open Science Grid (OSG) [1]), or they apply for
compute cycles on the national and international
cyberinfrastructure resources such as those of the
TeraGrid [2] or the EGEE project [3]. Each of these
solutions requires a different level of financial
commitment and delivers different levels of service.
When a project purchases a cluster, this cluster may be
expensive but it is fully dedicated to the needs of the
project. When joining the OSG, a project contributes

some of their resources to the overall collaboration
while being able to tap into the capabilities provided
by other members of the community. The resource
provider still has control over their own resources and
may decide on how to share them with others.
Providers can also potentially gain the capacity
contributed by other members of the collaboration.
This system works on the principle that not all the
resources are needed at the same time, and when a
project does not need their own resources, these cycles
are made available to others in the broader
collaboration.

Another model of computing is delivered by the
TeraGrid, which is a national-level effort to provide a
large-scale computational platform for science. Instead
of funding individual clusters for individual science
projects, it pools together the financial resources of the
National Science Foundation to deliver high-
performance computing to a broad range of
applications. Research projects can apply for
allocations of compute cycles that allow them to
execute jobs on particular clusters or across the
TeraGrid resources. However, the quality of service is
not routinely guaranteed on the TeraGrid. Although
reservations [4], and “urgent computing” [5] are
becoming available, an application may not be able to
obtain the necessary resources when they are needed
(for example, advance reservations generally require
one week advance notice).

A new dimension to the research computing landscape
is added by the cloud computing business model [6].
Based on the economy of scale and advanced web and
networking technologies, cloud operators such as
Amazon [7] and Google [8] aim to offer researchers as
many resources as they need when they need them for
as long as they need them. Cloud providers charge
applications for the use of their resources according to
a fee structure. In addition to supporting on-demand
computing, clouds, which use virtualization
technologies, enable applications to set up and deploy

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

a custom virtual environment suitable for a given
application. Cloud-based outsourcing of computing
may be attractive to science applications because it can
potentially lower the costs of purchasing, operating,
maintaining, and periodically upgrading a local
computing infrastructure.

In this paper we ask the question: given the availability
of clouds, how can an application use them in a way
that strikes the right balance between cost and
performance. In particular we examine the cost of
running on the cloud in the context of an astronomy
application Montage [9], which delivers science-grade
mosaics of the sky to the community composed of both
professional and amateur astronomers. We want to find
out what it would mean for a project such as Montage
to rely on the cloud, such as the one provided by
Amazon [7] to: 1) handle sporadic overloads of mosaic
requests, 2) provide resources for all its computations,
and 3) support both computation and long-term data
storage. Finally we also ask a domain question: how
much would it costs to compute the mosaic of the
entire sky on the cloud.

The rest of the paper is organized as follows: Section 2
describes the application that motivated this work,
Section 3 describes the Amazon computational model
we use for the experiments. Section 4 refines the goals
of this work, Sections 5 and 6 give an overview of the
simulator used in the studies and present the results.
Related work is shown in Section 7. Section 8
concludes the paper.

2. Motivating Application
Montage is a general engine for computing mosaics of
input images [9]. The input images for the mosaics are
taken from image archives such as the Two Micron All
Sky Survey (2MASS) [10], Sloan Digital Sky Survey
(SDSS) [11], and the Digitized Sky Surveys at the
Space Telescope Science Institute (STScI,
http://www.stsci.edu/resources/). A service, hosted at
the Infrared Processing and Analysis Center
(http://www.ipac.caltech.edu/) provides Montage-
based mosaics on demand. The input to the service is
the region of the sky whose mosaic is desired, the size
of the mosaic in terms of square degrees, and other
parameters such as the image archive to be used etc
[12]. The input images are first reprojected to the
coordinate space of the output mosaic, the reprojected
images are then background rectified and finally
coadded to create the final output mosaic. Figure 1
shows the structure of a small montage workflow. The
tasks in the workflow are depicted by the vertices in

the graph and the edges represent the data
dependencies between the tasks in the workflow. The
numbers in the vertices represent the level of the task
in the workflow. The tasks that are not data dependent
on other tasks are designed level one. The level of any
other task is one plus the maximum level of any of its
parent tasks. For the montage workflow, all the tasks at
a particular level are invocations of the same routine
operating on different input data. For example, the
tasks at level one are invocations of the routine
mProject which reprojects an input image to the scale
defined in an input file called the template header file.
This header file is used by all the tasks at level one.
The reprojected images produced by the tasks at level
one are further processed by the tasks at level two as
indicated by the edges between the tasks at the two
levels.

Montage is a data-intensive application. The input
images, the intermediate files produced during the
execution of the workflow and the output mosaic are
of considerable size and require significant storage
resources. The tasks on the other hand have a small
runtime of at most a few minutes. Section 6.3
quantifies the communication to computation ratio of
the montage workflow. As a result of these
characteristics, it is desirable to run the montage
application in a resource rich environment where the
availability of storage resources can be assured.

Figure 1. Montage workflow.

The Montage mosaic engine
(montage.ipac.caltech.edu) was funded by NASA's
Earth Sciences Technology Office, and is maintained
by IRSA. By design, the engine preserves the
calibration and astrometric fidelity of the input images,
rectifies background radiation to a common level

across the mosaic, supports all World Coordinate
System (WCS) projections, and is portable across all
common *nix platforms. The same code can be run on
desktops, clusters, grids and supercomputers. There
have been over 300 downloads of the source code
through a click-wrap license issued by Caltech.

3. Computational and Cost Models
We picked the Amazon services [7] as the basic model.
Amazon provides both compute and storage resources
on a pay-per-use basis. In addition it also charges for
transferring data into the storage resources and out of
it. As of the writing of this paper, the charging rates
were:

� $0.15 per GB-Month for storage resources

� $0.1 per GB for transferring data into its
storage system

� $0.16 per GB for transferring data out of its
storage system

� $0.1 per CPU-hour for the use of its compute
resources.

There is no charge for accessing data stored on its
storage systems by tasks running on its compute
resources. Even though as shown above, some of the
quantities span over hours and months, in our
experiments we normalized the costs on a per second
basis. Obviously, service providers charge based on
hourly or monthly usage, but here we assume cost per
second. The cost per second corresponds to the case

where there are many analyses conducted over time
and thus resources are fully utilized.

In this paper, we use the following terms:
application—the entity that provides a service to the
community (the Montage project), user request—a
mosaic requested by the user from the application, the
cloud—the computing/storage resource used by the
application to deliver the mosaic requested by the user.

Figure 2 illustrates the concept of cloud computing as
could be implemented for the use by an application.
The user submits a request to the application, in the
case of Montage via a portal. Based on the request, the
application generates a workflow that has to be
executed using either local or cloud computing
resources. The request manager may decide which
resources to use. A workflow management system,
such as Pegasus [13], orchestrates the transfer of input
data from image archives to the cloud storage
resources using appropriate transfer mechanisms (the
Amazon S3 storage resource supports the REST and
HTTP transfer protocol [14]). Then, compute resources
are acquired and the workflow tasks are executed over
them. These tasks can use the cloud storage for storing
temporary files. At the end of the workflow, the
workflow system transfers the final output from the
cloud storage resource to a user-accessible location.

While the above gives a high-level description of the
overall process, we present three different
implementation models that correspond to different
execution plans for using the cloud storage resources.
In order to explain these computational models we use

Figure 2. Cloud Computing for a Science Application such as Montage.

the example workflow shown in Figure 3. There are
seven tasks in the workflow numbered from 0 to 6.
Each task takes one input file and produces one output
file except for task 6 that takes three input files.

Figure 3. An example workflow.

We explore three different data management models:

� Remote I/O (on-demand): For each task we stage
the input data to the resource, execute the task,
stage out the output data from the resource and then
delete the input and output data from the resource.
This is the model to be used when the
computational resources used by the tasks have no
shared storage. For example, the tasks are running
on hosts in a cluster that have only a local file
system and no network file system. This is also
equivalent to the case where the tasks are doing
remote I/O instead of accessing data locally.

� Regular: When the compute resources used by the
tasks in the workflow have access to shared storage,
it can be used to store the intermediate files
produced in the workflow. For example, once task 0
(Figure 3) has finished execution and produced the
file b, we allow the file b to remain on the storage
system to be used as input later by tasks 1 and 2. In
fact, the workflow manager does not delete any files
used in the workflow until all the tasks in the
workflow have finished execution. After that files g
and h which are the net output of the workflow are
staged out to the application/user and then all the
files a – h are deleted from the storage resource. As
mentioned earlier this execution mode assumes that
there is shared storage that can be accessed from the
compute resources used by the tasks in the
workflow. This is true in the case of the Amazon
system where the data stored in the S3 storage

resources can be accessed from any of the EC2
compute resources.

� Dynamic cleanup: In the regular mode, there might
be files occupying storage resources even when
they have outlived their usefulness. For example
file a is no longer required after the completion of
task 0 in Figure 3 but it is kept around until all the
tasks in the workflow have finished execution and
the output data is staged out. In the dynamic
cleanup mode, we delete files from the storage
resource when they are no longer required. This is
done by Pegasus by performing an analysis of data
use at the workflow level [15]. Thus file a would
be deleted after task 0 has completed, however file
b would be deleted only when task 6 has
completed. Thus the dynamic cleanup mode
reduces the storage used during the workflow and
thus saves money. Previously, we have quantified
the improvement in the workflow data footprint
when dynamic cleanup is used for data-intensive
applications similar to Montage [16]. We found
that dynamic cleanup can reduce the amount of
storage needed by a workflow by almost 50%.

4. Study Goals
The main focus of the paper is to examine the tradeoffs
of different execution and resource provisioning plans
for providing science services to a community using
cloud computing. We pose several questions related to
the main aim:

Question 1: Assume that an application has a set of
resources available to them but sometimes it needs
more resources than it has, so it reaches out to the
cloud from time to time to meet the additional
demands. In this case, the application will provision a
set of resources from the cloud and bring in the data
and stage the results back to a location where the user
can access it. The question is how many processors to
provision in order to optimize application performance
while minimizing the monetary cost.

Question 2: Assume that an application has very
limited computational resources and wants to rely on
the cloud resources to provide the necessary
computing power. Also assume that the application
provisions a certain amount of resources over a period
of time to sustain the expected computational load.
That set of resources requested is assumed to be larger
then the needs of any single computation. Thus the
requests can run at their full level of parallelism. Here
the cost is measured only as the cost of the resources
used by a single request. We assume that the

g

feh

dc c

b b

a

0

1 2

3 4 5

6

b

application would incur the cost of the resources over
time and would need to decide how much to charge the
user for a given request. In this case we are only
calculating the cost of this request to the application
and not the premium the application may decide to
charge on top of it.

Here we also examine two situations:
Question 2a: Given that the application has a local
data archive and just wants to farm out the computing,
the question is, how much each user request will cost?

Question 2b: Assume that the application relies fully
on both the compute and storage services on the cloud.
Here besides the cost of a particular request, we also
determine how many requests it would take to make
the cost of storing the data on the cloud worthwhile.
The issue is that if you have only a few requests, the
cost of storing large amounts of data over time can be
prohibitively expensive, so for a small number of
requests, it may be cheaper to stage data to the cloud
on demand.

Question 3: Finally, we answer a totally application-
focused questions: 1) how much money it would cost
to generate the mosaic of the entire sky? This sky
mosaic based on 2Mass data can be created by
combining 3,900 plates (mosaics) in three frequency
bands, each of 4 degrees square; 2) if one calculates a
mosaic, how long does it make financial sense to store
it on the cloud rather than recomputed it on demand.

5. Simulator Description
In order to answer the questions raised in the previous
section, we performed simulations. No actual
provisioning of resources from the Amazon system
was done. Simulations allowed us to evaluate the
sensitivity of the execution cost to workflow
characteristics such as the communication to
computation ratio by artificially changing the data set
sizes. This would have been difficult to do in a real
setting. Additionally, simulations allow us to explore
the performance/cost tradeoffs without paying for the
actual Amazon resources or incurring the time costs of
running the actual computation. The simulations were
done using the GridSim toolkit [17]. Certain custom
modifications were done to perform accounting of the
storage used during the workflow execution.

We used three Montage workflows in our simulations:
1. Montage 1 Degree: A Montage workflow for

creating a 1 degree square mosaic of the M17

region of the sky. The workflow consists of
203 application tasks.

2. Montage 2 Degree: A Montage workflow for
creating a 2 degree square mosaic of the M17
region of the sky. The workflow consists of
731 application tasks.

3. Montage 4 Degree: A Montage workflow for
creating a 4 degree square mosaic of the M17
region of the sky. The workflow consists of
3,027 application tasks.

These workflows can be created using the mDAG
component in the Montage distribution. The
workflows created are in XML format. We wrote a
program for parsing the workflow description and
creating an adjacency list representation of the graph
as an input to the simulator. The workflow description
also includes the names of all the input and output files
used and produced in the workflow. The sizes of these
data files and the runtime of the tasks were taken from
real runs of the workflow and provided as additional
input to the simulator.

We simulated a single compute resource in the system
with the number of processors greater than the
maximum parallelism of the workflow being
simulated. The compute resource had an associated
storage system with infinite capacity. The bandwidth
between the user and the storage resource was fixed at
10 Mbps. Initially all the input data for the workflow
are co-located with the application. At the end of the
workflow the resulting mosaic is staged out to the
application/user and the simulation completes. The
metrics of interest that we determine from the
simulation are:

1. The workflow execution time.
2. The total amount of data transferred from the

user to the storage resource.
3. The total amount of data transferred from the

storage resource to the user.
4. The storage used at the resource in terms of

GB-hours. This is done by creating a curve
that shows the amount of storage used at the
resource with the passage of time and then
calculating the area under the curve.

6. Results
Question 1: Cost of running sporadic
computations on the cloud.
Here we examine how best to use the cloud for
individual mosaic requests. We calculate how much
would a particular computation cost on the cloud,

given that the application provisions a certain number
of processors and uses them for executing the tasks in
the application. We explore the execution costs as a
function of the number of resources requested for a
given application. The processors are provisioned for
as long as it takes for the workflow to complete. We
vary the number of processors provisioned from 1 to
128 in a geometric progression. We compare the CPU
cost, storage cost, transfer cost, and total cost as the
number of processors is varied. In our simulations we
do not include the cost of setting up a virtual machine
on the cloud or tearing it down, this would be an
additional constant cost.

Montage 1 Degree Square
The Montage 1 degree square workflow consists of
203 tasks. Figure 4 shows the execution costs for this
workflow. The most dominant factor in the total cost is
the CPU cost. The data transfer costs are independent
of the number of processors provisioned. The Figure
shows that the storage costs are negligible as compared
to the other costs. The Y-axis is drawn in logarithmic
scale to make the storage costs discernable. As the
number of processors is increased, the storage costs
decline but the CPU costs increase. The storage cost
declines because as we increase the number of
processors, we need them for shorter duration since we
can get more work done in parallel. Thus we also need
storage for shorter duration and hence the storage cost
declines. However, the increase in the CPU cost far
outweighs any decrease in the storage costs and as a
result the total costs also increase with the increase in
the number of provisioned processors. The graph
shows the storage costs with (Storage Costs (C)) and
without cleanup (Storage Costs) as described in
Section 3. The storage costs with cleanup are slightly
less than the storage costs with cleanup. The total costs
shown in the Figure are computed using the storage
costs without cleanup. The total cost with cleanup is
very similar and virtually indistinguishable in the
figure if drawn. The total costs shown in the graphs are
aggregated costs for all the resources used.

Based on Figure 4, it would seem that provisioning the
least amount of processors is the best choice, at least
from the point of view of monetary costs (60 cents for
the 1 processor computation versus almost 4$ with 128
processors). However, the drawback in this case is the
increased execution time of the workflow. Figure 4
(bottom) shows the execution time of the Montage 1
Degree workflow with increasing number of
processors. As the Figure shows, when only one
processor is provisioned leading to the least total cost,
it also leads to the longest execution time of 5.5 hours.

The runtime on 128 processors is only 18 minutes.
Thus a user who is also concerned about the execution
time, faces a trade-off between minimizing the
execution cost and minimizing the execution time.

Figure 4. Execution Costs and Execution time for Montage 1
Degree Workflow.

Figure 5. Execution Costs and Execution time of Montage 2
Degree Workflow.

Montage 2 Degree Workflow
Figure 5 shows similar results for the Montage 2
degree workflow as for the Montage 1 degree
workflow. The total cost is an increasing function of
the number of the allocated processors while the
execution time is a decreasing function of the number
of allocated processors. The Montage 2 degree
workflow consists of 731 tasks. At the extremes, the
cost of running the workflow on 1 processor is $2.25
with a runtime of 20.5 hours whereas running the same
workflow on 128 processors results in a runtime of less
than 40 minutes with a cost of less than $8.

Figure 6. Execution Costs and Execution time of Montage 4
Degree Workflow.

Montage 4 Degree Workflow
Figure 6 show similar results for the Montage 4 degree
workflow as for the Montage 2 degree and Montage 1
degree workflow. The Montage 4 degree square
workflow consists of 3,027 application tasks in total.
In this case running on 1 processor costs $9 with a
runtime of 85 hours; with 128 processors, the runtime
decreases to 1 hour with a cost of almost $14.
Although the monetary costs do not seem high, if one
would like to request many mosaics to be done, as
would be in the case of providing a service to the
community, these costs can be significant. For
example, providing 500 4-degree square mosaics to
astronomers would cost $4,500 using 1 processor
versus $7,000 using 128 processors. However, the
turnaround of 85 hours may be too much to take by a
user. Luckily, one does not need to consider only the
extreme cases. If the application provisions 16

processors for the requests, the turnaround time for
each will be approximately 5.5 hours with a cost of
$9.25, and thus a total cost of 500 mosaics would be
$4,625, not much more than in the 1 processor case,
while giving a relatively reasonable turnaround time.

Question 2a: Cost of relying on the cloud for
all computing needs
Here we examine the issue of the cost of user requests
for scientific products when the application provisions
a large number of resources from the cloud and then
allows the request to use as many resources as it needs.
The application is in this scenario responsible for
scheduling the user requests onto the provisioned
resources. In this case, since the processor time is used
only as much as needed, we would expect that the data
transfer and data storage costs may play a more
significant role in the overall request cost. As a result,
we examine the tradeoffs between using three different
data management solutions: 1) remote I/O, where tasks
access data as needed, 2) regular, where the data are
brought in at the beginning of the computation and
they and all the results are kept for the duration of the
workflow, and 3) cleanup, where data no longer
needed are deleted as the workflow progresses. In the
following experiments we want to determine the
relationship between the data transfer cost and the data
storage cost and compare it to the overall execution
cost.

Figure 7 (top) shows the amount of storage used by
the workflow in the three modes in space-time units.
The least storage used is in the remote I/O mode since
the files are present on the resource only during the
execution of the current task. The most storage is used
in the regular mode since all the input data transferred
and the output data generated during the execution of
the workflow is kept on the storage until the last task
in the workflow finishes execution. Cleanup reduces
the amount of storage used in the regular mode by
deleting files when they are no longer required by later
tasks in the workflow.

Figure 7 (middle) shows the amount of data transfer
involved in the three execution modes. Clearly the
most data transfer happens in the remote I/O mode
since we transfer all input files and transfer all output
files for each task in the workflow. This means that if
the same file is being used by more than on job in the
workflow in the remote I/O mode the file may be
transferred in multiple times whereas in the case of
regular and cleanup modes, the file would be
transferred only once.

The amount of data transfer in the Regular and the
Cleanup mode are the same since dynamically
removing data at the execution site does not affect the
data transfers. We have categorized the data transfers
into data transferred to the resource and data
transferred out of the resource since Amazon has
different charging rates for each as mentioned in
Section 3. As the figure shows, the amount of data
transferred out of the resource is the same in the
Regular and Cleanup modes. The data transferred out
is the data of interest to the user (the final mosaic in
case of Montage) and it is staged out to the user
location. In the Remote I/O mode intermediate data
products that are needed for subsequent computations
but are not of interest to the user also need to be stage-
out to the user-location for future access. As a result, in
that mode the amount of data being transferred out is
larger than in the other two execution strategies.

Figure 7. Data Management Metrics for the Montage 1 degree
Workflow.

Figure 7 (bottom) shows the costs (in monetary units)
associated with the execution of the workflow in the
three modes and the total cost in each mode. The
storage costs are negligible as compared to the data
transfer costs and hence are not visible in the figure.
The Remote I/O mode has the highest total cost due to
its higher data transfer costs. Finally, the Cleanup
mode has the least total cost among the three. It is

important to note that these results are based on the
charging rates currently used by Amazon. If the
storage charges were higher and transfer costs were
lower, it is possible that the Remote I/O mode would
have resulted in the least total cost of the three.

Figure 8 and Figure 9 show the metrics for the
Montage 2 and 4 degrees workflow respectively. The
cost distributions are similar for all the workflows and
differ only in magnitude as can be seen from the
figures.

Figure 8. Data Management Metrics for the Montage 2 degree
Workflow.

The total cost shown in Figures 7-9 does not include
the CPU cost of running the workflow tasks on
Amazon EC2 resources. Figure 10 compares the CPU
cost of these workflows with the other costs shown in
earlier figures (aggregated and shown as DM, Data
Management costs in Figure 10). As the figure shows,
the CPU cost is slightly higher than the data
management costs for the remote I/O execution mode.
The CPU cost is invariant between the three execution
modes (Remote I/O, Regular, CleanUp) shown in the
earlier figures.

In these experiments we ignore limitations on the
granularity of Amazon fee structure in time and
assume the least possible granularity i.e $ per Byte-

seconds for storage, $ per Bytes for transfers and $ per
CPU-second for compute resources.

Figure 9. Data Management Metrics for the Montage 4 degree
Workflow.

Figure 10. The CPU and other costs of the execution of Montage
Workflows.

If we compare these results with the costs we observed
in the case of provisioning a fixed amount of resources
for the duration of the workflow request (Question 1),
we see that these costs are significantly different. For
example, the cost of running the 4 degree square
Montage workflow on 128 processors is $13.92 in the
provisioned case, whereas the workflow which is
charged only for the resources used is only $8.89. The
maximum parallelism of that workflow is 610. This
shows that CPU utilization can be low in the
provisioned case.

Impact of the Communication to Computation
Ratio on the Cost of the Request
Obviously, Montage is only one of a number of
scientific applications that can potentially benefit from
cloud services. Here we also explored the costs of
applications that would have different communication
(data) to computation ratios (CCR). The CCR of a
workflow is defined as follows. Let F = {f1, f2,…,fk}
be the set of files used or produced in the workflow
and let s(fi) denotes the size of file i in bytes. Let V =
{v1, v2, …, vn} be the set of task in the workflow and
let r(vi) denotes the runtime of task vi in seconds on a
standard reference CPU. Let B be reference bandwidth
in bytes per second. Then the CCR of a workflow (V,
F) is

�

�

�
�

�

Vv

Ff

vr
B

fs

CCR
)(

)(

The CCR of the Montage workflow computed by this
equation and based on a bandwidth B of 10 Mbps is
shown in the table below.

Workflow CCR
Montage 1 Degree 0.053
Montage 2 Degree 0.053
Montage 4 Degree 0.045

For the set of experiments described in this section, we
change the CCR of the Montage workflows by
appropriately scaling the file sizes in the workflow.
For example, let CCRd be the desired CCR and CCRr
be the real CCR of the workflow. Then we multiply
each file size by CCRd/CCRr to get the desired CCR.

Figure 11 shows the execution costs for the Montage 1
Degree workflow with changing CCR. For these
experiments, we provision 8 processors for as long as
required to execute the workflow. 8 processors were
chosen since they represent a reasonable compromise

between the execution cost and execution time as seen
in Section 6.1.

As the CCR increases, we see that the storage costs,
both with and without cleanup increase. The transfer
costs which were constant earlier also increase due to
the increase in the size of the data. The workflow
execution time increases since it takes longer to stage
in the input data. The CPU cost also increase due to
increase in the execution time of the workflow. As a
result, the total cost is also an increasing function of
the CCR.

Figure 11. Execution costs of Montage 1 Degree workflow with
changing CCR.

The results for the Montage 2 and 4 degree workflows
are similar to the 1 degree workflow and hence not
shown here. From these experiments we can see that
the transfer and storage costs increase in proportion to
the increase in CCR or even higher (for the storage
costs). Thus it seems that it may be beneficial to pre-
store all the input data in the cloud in order to reduce
the transfer costs as the applications become more
data-intensive. In the next section, we examine the use
of the cloud for data archival purposes.

Question 2b: Cost of running and storing data
on the cloud
In this section we answer the question of benefit of
relying on the cloud to do computing and to store the
large datasets required to do science. In the case of
Montage, one of important datasets is the 2Mass data
(2 Micron all sky survey
http://www.ipac.caltech.edu/2mass/releases/allsky/),
which contains images of the entire sky in three
different bands. The size of entire data set is 12
Terabytes. If we were to store the entire collection on
the cloud, the application would benefit from low data
access latencies (for input data) and the cost of these
accesses would be zero. However, the cost of storing
the data can be significant and equal to 12,000 × $0.15
= $1,800 per month. The cost of producing a 2 degree
square mosaic when the input data are already

available in the cloud is $2.12 which includes a $2.03
CPU cost (Figure 10) and $0.09 data management cost
as storage charges for the temporary files during the
execution run and the transfer charges for transferring
the final mosaic to the user. The cost of the mosaic
that has to bring in the data from outside the cloud is
$2.22 (Figure 10). Thus in order to be able to
overcome the storage costs, users would need to
request at least $1,800/($2.22-$2.12) = 18,000 mosaics
per month. These figures to do not include the initial
cost of transferring the data to the cloud, which would
be an additional $1,200 at ($0.1 per GB). This cost
would only be incurred once and would need to be
amortized over time. A possibly better solution is to
pre-stage some popular data sets. This would require
application developers to analyze their requests
patterns and where possible discover trends.

Question 3: Cost of large-scale science on the
cloud
In this section, we examine the cost of creating the
mosaic of the entire sky. This can be done by making a
complete set of mosaics covering every region of the
sky (with some overlap). Roughly it would translate to
about 3,900 4-degree-square mosaics or about 1,734 6-
degrees-square mosaics.

The cost of creating a 4 degrees square mosaic in
regular mode was $8.88 (Figure 10). Thus the total
cost would be 3,900 x $8.88 = $34,632. If we assume
that the input data is already archived in the cloud,
then the execution cost of the 4 square degree mosaic
is $8.75 leading to a total cost of 3,900 x $8.75 =
$34,145.

Another interesting question is whether it makes
economic sense to archive the generated popular
mosaics in the cloud instead of always generating them
on demand from the basic input data. For the 1 degree
Montage workflow the CPU cost was 56 cents (Figure
10). This cost can be totally saved by just storing the
mosaic which had a size of (173.46 MB) and serving it
again when another similar request is received. For the
cost of 56 cents, this mosaic can be stored for 21.52
months assuming storage charges of $0.15 per GB-
month. Similarly the size of the 2 square degree
mosaic is 557.9 MB and the CPU cost for creating it
was $2.03 cents. For this cost, the mosaic can be stored
for 24.25 months. Similarly the size of the 4 square
degree mosaic is about 2.229 GB and the CPU cost for
creating it is $8.40. At this cost, the mosaic can be
stored for 25.12 months. Thus in summary, if it is
likely that the same request would be repeated with the

next two years, then it would make economic sense to
store the generated mosaic instead of recomputing it.
Therefore, it would be cost effective to save popular
mosaics of the sky (areas such as those around Orion
for example) in the cloud.

7. Related Work
There has been many proposals for Grid systems that
operate using market mechanisms such as Grace [18],
Spawn [19], Tycoon [20] among others. However,
Amazon Web Services is among the first providers that
have made computational and storage resources
commercially available on pay per use basis on a
production level. IBM has a cloud computing initiative
underway called Blue Cloud [21]. There are other
storage providers that cater to niche markets such as
Nirvanix [22] that optimizes storage for media files.
Some recent work have focused mainly on the
performance issues related with these services [23].
There has not been much work on the classification
and quantification of the execution costs of scientific
applications on these systems.

Cost-aware execution of workflow structured
applications have been addressed previously [24, 25].
The model in [24] however, is a futures-based resource
market model whereas in the case of Amazon services,
all the resources are available for immediate
occupancy and there is no concept of advance
reservations [25]. Previously, we have explored the
performance cost tradeoff while provisioning resources
for workflows [26]. However, in that study we did not
take storage resources into consideration. Cost-based
scheduling of scientific applications has also been
addressed in [27]. In [27], the model is of service
providers that undertake to execute individual tasks in
the application at different prices. In our case we
allocate computational resources from providers.
Individual tasks are executed by transferring the
executable program to the compute resource and then
invoking it using the proper arguments. Thus, resource
providers are agnostic to the tasks being executed on
their resources and only charge for the occupancy of
their resources.

The question of what resources to provision has also
been investigated in earlier works. In [28] the optimal
size of the resource request to make is considered in
order to minimize the workflow completion time. The
cost of the resources however is not taken into
consideration. In a number of earlier works [29, 30]
the size of the resource request is optimized so that the
sum of the wait time to get the requested resource and

the run time of the application on the resource is
minimized. With the advent of cloud computing that
provides resources on demand these issues become
irrelevant as there is no wait time involved to get the
resources. It is possible that as the demand for the
cloud resources increases, it might increase beyond
supply and the resource providers would then have to
deal with admission control issues [31, 32]. In these
cases, when there are advance purchase discounts, the
completion time of the workflow would be an
important criterion to consider.

8. Conclusions
Cloud computing offers a new business model for
supporting computations and provides a new option for
scientific applications to have on-demand access to
potentially significant amounts of compute and storage
resources. Using the Montage application and the
Amazon EC2 fee structure as a case study, we showed
that for a data-intensive application with a small
computational granularity, the storage costs were
insignificant as compared to the CPU costs. Thus it
appears that cloud computing offers a cost-effective
solution for data-intensive applications.

Clouds are still in their infancy--there are only a few
commercial [7, 21, 22] and academic providers [33].
As the field matures, we expect to see a more diverse
selection of fees and quality of service guarantees for
the different resources and services provided by
clouds. It is possible that some providers will have a
cheaper rate for compute resources while others will
have a cheaper rate for storage and provide a range of
quality of service guarantees. As a result, applications
will have more options to consider and more execution
and provisioning plans to develop to address their
computational needs.

In this paper, we explored only one aspect of using
cloud computing for science, examining the tradeoffs
of different workflow execution modes and
provisioning plans for cloud resources. Many other
aspects of the problem still need to be addressed.
These include the startup cost of the application on the
cloud, which is composed of launching and
configuring a virtual machine and its teardown, as well
as the often one-time cost of building a virtual image
suitable for deployment on the cloud. The complexity
of such an image depends on the complexity of the
application. We also did not explore other cloud issues
such as security and data privacy. The reliability and
availability of the storage and compute resources are
also an important concern. According to Amazon

sources, the targeted availability of the S3 storage
system is 99.9% [34] which is also verified by
independent studies [23]. However, when the system
goes down, as it did twice in the first 7 months of
2008, the possible impact on the applications can be
significant. Due to the mainly commercial nature of
cloud computing, there are expectations and penalties
resulting from any violation of the user-provider
contract are clearly spelled out [34]. These and other
issues such as scalability of the new computing
paradigm are still open questions.

Acknowledgments
This work was funded by the National Science Foundation
under Cooperative Agreement OCI-0438712 and grant #
CCF-0725332. This research made use of Montage, funded
by NASA's Earth Science Technology Office, Computation
Technologies Project, under Cooperative Agreement Number
NCC5-626 between NASA and the California Institute of
Technology. Montage is maintained by the NASA/IPAC
Infrared Science Archive.

References
[1] "Open Science Grid,"www.opensciencegrid.org.
[2] "TeraGrid,"http://www.teragrid.org/.
[3] "Enabling Grids for E-sciencE (EGEE),"http://www.eu-

egee.org/.
[4] "TeraGrid Resource Reservations,"

www.teragrid.org/userinfo/resource_reservation.php.
[5] "Special Priority and Urgent Computing Environment,"

http://spruce.teragrid.org.
[6] G. Lawton, "Moving the OS to the Web," Computer,

vol. 41, pp. 16-19, 2008.
[7] "Amazon Web Services,"

http://aws.amazon.com,http://aws.amazon.com.
[8] "Google App

Engine,"http://code.google.com/appengine/.
[9] "Montage Project," http://montage.ipac.caltech.edu.
[10] The Two Micron All Sky Survey.,

"http://www.ipac.caltech.edu/2mass," -+*.
[11] Sloan Digital Sky Survey., "http://www.sdss.org/."
[12] "Image Mosaic Service,"

http://hachi.ipac.caltech.edu:8080/montage/.
[13] E. Deelman, G. Mehta, et al., "Pegasus: Mapping Large-

Scale Workflows to Distributed Resources," in
Workflows in e-Science, I. Taylor, E. Deelman, et al.,
Eds.: Springer, 2006.

[14] "REST vs SOAP at Amazon,"
http://www.oreillynet.com/pub/wlg/3005?wlg=yes.

[15] A. Ramakrishnan, G. Singh, et al., "Scheduling Data -
Intensive Workflows onto Storage-Constrained
Distributed Resources," in CCGrid 2007.

[16] G. Singh, K. Vahi, et al., "Optimizing workflow data
footprint," Scientific Programming, vol. 15, pp. 249-
268, 2007.

[17] R. Buyya and M. Murshed, "GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource

Management and Scheduling for Grid Computing,"
Concurrency and Computation: Practice and
Experience, vol. 14, pp. 1175-1220, 2002.

[18] R. Buyya, D. Abramson, et al., "The grid economy,"
Proceedings of the IEEE, vol. 93, pp. 698-714, 2005.

[19] C. A. Waldspurger, T. Hogg, et al., "Spawn: a
distributed computational economy," IEEE
Transactions on Software Engineering, vol. 18, pp. 103-
117, 1992.

[20] K. Lai, B. A. Huberman, et al., "Tycoon: a Distributed
Market-based Resource Allocation System," Technical
Report, Hewlett-Packard Laboratories, Palo Alto, CA,
September2004.

[21] "IBM Blue Cloud," http://www-
03.ibm.com/press/us/en/pressrelease/22613.wss.

[22] "Nirvanix," http://www.nirvanix.com.
[23] M. Palankar, A. Onibokun, et al., "Amazon S3 for

Science Grids: a Viable Solution," in 4th USENIX
Symposium on Networked Systems Design &
Implementation (NSDI'07), 2007.

[24] G. Singh, C. Kesselman, et al., "A Provisioning Model
and its Comparison with Best-Effort for Performance-
Cost Optimization in Grids," in HPDC 2007, pp. 117-
126.

[25] H. Zhao and R. Sakellariou, "Advance Reservation
Policies for Workflows," in 12th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP),
Saint-Malo, France, 2006.

[26] G. Singh, C. Kesselman, et al., "Performance Impact of
Resource Provisioning on Workflows," USC
http://www.cs.usc.edu/Research/TechReports/05-
850.pdf 05-850, 2005.

[27] J. Yu, R. Buyya, et al., "Cost-based Scheduling of
Scientific Workflow Applications on Utility Grids," in
1st IEEE International Conference on e-Science and
Grid Computing, 2005.

[28] R. Y. Huang, H. Casanova, et al., "Automatic Resource
Specification Generation for Resource Selection," in
Super Computing Conference, Reno, 2007.

[29] W. Cirne and F. Berman, "Using Moldability to
Improve the Performance of Supercomputer Jobs,"
JPDCg, vol. 62, pp. 1571-1601, 2002/10 2002.

[30] A. B. Downey, "Using Queue Time Predictions for
Processor Allocation " in Proceedings of the Job
Scheduling Strategies for Parallel Processing Springer-
Verlag, 1997 pp. 35-57

[31] G. Singh, C. Kesselman, et al., "Adaptive Pricing for
Resource Reservations in Shared Environments," Grid
2007.

[32] A. Sulistio, K. H. Kim, et al., "Using Revenue
Management to Determine Pricing of Reservations," in
e-Science and Grid Computing, IEEE International
Conference on, 2007, pp. 396-405.

[33] "Nimbus Science Cloud,"
http://workspace.globus.org/clouds/nimbus.html.

[34] "Amazon SLA,"
http://www.amazon.com/gp/browse.html?node=379654
011.

