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Abstract

Multi-party communication complexity involves distributed computation of a function over inputs held

by multiple distributed players. A key focus of distributed computing research, since the very beginning,

has been to tolerate crash failures. It is thus natural to ask “If we want to compute a certain function in a

fault-tolerant way, what will the communication complexity be?” This natural question, interestingly, has

not been formally posed and thoroughly studied prior to this work.

Whether fault-tolerant communication complexity is interesting to study largely depends on how big

a difference failures make. This paper proves that the impact of failures is significant, at least for the SUM

aggregation function in general networks: As our central contribution, we prove that there exists (at least)

an exponential gap between the non-fault-tolerant and fault-tolerant communication complexity of SUM.

Our results also imply the optimality (within polylog factors) of some recent fault-tolerant protocols for

computing SUM via duplicate-insensitive techniques, thereby answering an open question as well.

Part of our results are obtained via a novel reduction from a new two-party problem UNIONSIZECP

that we introduce. UNIONSIZECP comes with a novel cycle promise, which is the key enabler of our

reduction. We further prove that this cycle promise and UNIONSIZECP likely play a fundamental role in

reasoning about fault-tolerant communication complexity.

∗This article is the full Technical Report version of the PODC’12 paper with the same title. The first three authors of this article

are alphabetically ordered.
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1 Introduction

Fault tolerance in communication complexity and our exponential gap. Multi-party communication com-

plexity [10] involves distributed computation of a function over inputs held by multiple distributed players. A

key focus of distributed computing research, since the very beginning, has been to tolerate failures. (Through-

out this paper, failures refer to node crash failures unless otherwise mentioned.) It is thus natural to ask “If we

want to compute a certain function in a fault-tolerant way, what will the communication complexity be?” For

the question to be meaningful, we impose two restrictions before moving forward. First, we allow the com-

putation to ignore/omit the inputs held by those players that have failed (i.e., crashed) or been disconnected.

This means that the function needs to be well-defined over any subset of the inputs. Second, we will assume

that there is one special root player that never fails and only this player needs to learn the final result. This

allows us to focus on the communication complexity of the function instead of the difficulty of, for example,

achieving fault-tolerant distributed consensus. This also nicely maps to our target scenarios later in wireless

sensor networks and wireless ad-hoc networks, where the root corresponds to the base station.

While the above question is natural, interestingly, it has not been formally posed and thoroughly stud-

ied — see later for our speculations on the possible reasons. Whether such fault-tolerant communication

complexity is interesting to study, given the extensive research on “non-fault-tolerant” communication com-

plexity, largely depends on how big a difference failures can make. This paper proves that the impact of

failures is significant, at least for the SUM function1 in networks with general topologies: As the central con-

tribution of this work, we prove that there exists (at least) an exponential gap between the non-fault-tolerant

(NFT) and fault-tolerant (FT) communication complexity of SUM. Here FT communication complexity is the

smallest communication complexity among all fault-tolerant protocols that can tolerate an arbitrary number

of failures, while NFT communication complexity corresponds to all protocols. To our knowledge, ours is

the first such result on FT communication complexity. This exponential gap attests that FT communication

complexity needs to be studied separately from NFT communication complexity.

The SUM function. Consider a synchronous wireless network (e.g., a wireless sensor network or a wireless

ad-hoc network) with N nodes and some arbitrary topology. Each node has a binary value, and the SUM

function asks for the sum of all the values. Note that SUM can be easily reduced to and from some other

interesting aggregation functions such as SELECTION. Communication complexity has significant practical

relevance here since i) wireless communication usually consumes far more energy than local computation,

and needs to be minimized for nodes operating on battery power or nodes relying on energy harvesting, and

ii) the capacity of wireless networks does not scale well [18].

Existing results on SUM. In failure-free settings, by leveraging in-network processing, a trivial tree-aggregation

protocol can compute SUM with zero-error while requiring each node to send O(log N) bits. For (ǫ, δ)-
approximate results, it is possible to further reduce to O(log 1

ǫ + log log N) bits per node for constant δ.

In comparison, to tolerate arbitrary failures, we are not aware of any zero-error protocol for computing

SUM that is better than trivially having every node flood its id together with its value and thus requiring

each node to send O(N log N) bits. For (ǫ, δ)-approximate results, researchers have proposed some pro-

tocols [5, 13, 25, 26, 31] where each node needs to send roughly O( 1
ǫ2

) bits for constant δ (after omitting

logarithmic terms of 1
ǫ and N ). All these protocols conceptually map the value of each node to exponen-

tially weighted positions in some bit vectors, and then estimate the sum from the bit vectors. Same as in

one-pass distinct element counting algorithms in streaming databases [1, 16], doing so makes the whole pro-

cess duplicate-insensitive. In turn, this allows each node to push its value along multiple directions to guard

against failures. Note however, that duplicate-insensitive techniques do not need to be one-pass, and fur-

thermore tolerating failures does not have to use duplicate-insensitive techniques. For example, one could

1As an example where the impact of failures is not significant, consider the MAX function. Appendix A gives a simple folklore

fault-tolerant MAX protocol based on binary search, where each node sends only a logarithmic number of bits.
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Figure 1: Summary of our exponential gaps. All NFT upper bounds are either well-known or are obtained

via standard tricks — they are described in Section 3. All FT lower bounds are novel and are our main

contributions. They are obtained in Section 4 (for 1 ≤ b ≤ 2 − c), Section 5 (for 2 − c < b ≤ N0.25−c or
1

ǫ0.5−c ), and Section 7 (for b > N0.25−c or 1
ǫ0.5−c ).

repeatedly invoke the tree-aggregation protocol until one happens to have a failure-free run. There is also a

large body of work [3,7,11,12,20,22,23] on computing SUM via gossip-based averaging (also called average

consensus protocols). They all rely on the mass conservation property [23], and thus are vulnerable to node

failures. There have been a few efforts [15, 21] on making these protocols fault-tolerant. But they largely

focus on correctness, without formal results on the protocol’s communication complexity in the presence of

failures. Despite all these efforts, no lower bounds on the FT communication complexity of SUM have ever

been obtained, and thus it has been unknown whether the existing protocols can be improved.

Our results. Our main results in this paper are the first lower bounds on the FT communication complexity (or

FT lower bounds in short) of SUM, for public-coin randomized protocols with zero-error and with (ǫ, δ)-error.

These FT lower bounds are (at least) exponentially larger than the corresponding upper bounds on the NFT

communication complexity (or NFT upper bounds in short) of SUM, thus establishing an exponential gap.

Private-coin protocols and deterministic protocols are also fully but implicitly covered, and our exponential

gap still applies.

Specifically, since there is a tradeoff between communication complexity and time complexity, Figure 1

summarizes our FT lower bounds when the time complexity of the SUM protocol is within b aggregation

rounds (defined in Section 2), for b from 1 to ∞. For b ≤ N0.25−c or 1
ǫ0.5−c where c is any positive constant

below 0.25, the NFT upper bounds are always at most logarithmic with respect to N or 1
ǫ , while the FT lower

bounds are always polynomial.2 For b > N0.25−c or 1
ǫ0.5−c , the NFT upper bounds drop to O(1), while the

FT lower bounds are still at least logarithmic. Our results also imply that under small b values, the existing

fault-tolerant SUM protocols (incurring O(N log N) or O( 1
ǫ2 ) bits [5, 13, 25, 26, 31] per node) are actually

optimal within polylog factors.

Our approach. Our FT lower bounds for b ≤ 2 − c are obtained via a simple but interesting reduction

2Here for (ǫ, δ)-approximate results, we only considered terms containing ǫ. Even if we take the extra terms with N into account,

our exponential gaps continue to exist as long as 1

ǫc
= Ω(log N).
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from a two-party communication complexity problem UNIONSIZE, where Alice and Bob intend to determine

the size of the union of two sets. In the reduction, without knowing Bob’s input, Alice can only simulate

the SUM oracle protocol’s execution in part of the network. Furthermore this part is continuously shrinking

due to the spreading of such unknown information. Failures play a fundamental role in the reduction —

they hinder the spreading of unknown information. The FT lower bounds under b ≤ N0.25−c or 1
ǫ0.5−c

are much harder to obtain. There we introduce a new two-party problem called UNIONSIZECP, which is

roughly UNIONSIZE extended with a novel cycle promise. Identifying this promise is a key contribution

of this work, which enables the continuous injection of failures to further hinder the spreading of unknown

information. We then prove a lower bound on UNIONSIZECP’s communication complexity via information

theoretic arguments [4]. This lower bound, coupled with our reduction, leads to FT lower bounds for SUM.

We further prove a strong completeness result showing that UNIONSIZECP is complete among the set of

all two-party problems that can be reduced to SUM in the FT setting via oblivious reductions (defined in

Section 6). Namely, we prove that every problem in that set can be reduced to UNIONSIZECP. Our proof

also implicitly derives the cycle promise, thus showing that it likely plays a fundamental role in reasoning

about the FT communication complexity of many functions beyond SUM. Finally, our FT lower bounds under

b > N0.25−c or 1
ǫ0.5−c are obtained by drawing a strong connection to an interesting probing game, and then

by proving a lower bound on the probing game.

Other related work. Despite the developments (e.g., [8, 10, 19, 28, 29]) on different models for communi-

cation complexity, to the best of our knowledge, fault tolerance has never been considered. Among them,

the closest setting to fault tolerance is perhaps unreliable channels [8, 28, 29] that either flip the bits adver-

sarially or flip each bit iid. The specific techniques and insights there have limited applicability to our fault-

tolerant setting. Under the iid unreliable channel model, there have also been some information-theoretic

lower bounds [2, 17] on the rates of distributed computations. We suspect that such a lack of prior work

on fault tolerance is due to two reasons. First, one needs to define correctness in a meaningful way when

failures are possible, since some of the inputs can be missing. For this work, recent applications in wireless

sensor networks have shown us how to do so [5]. Second, communication complexity problems tend to be

challenging to study, and taking failures into account only makes things harder. For this work, we rely on

several quite recent results [9, 19].

2 Model and Definitions

This section describes the system model and formal definitions used throughout this paper, except in Sec-

tion 8. For clarity, we defer to Section 8 various relaxed/extended versions of the system model and defini-

tions, under which our exponential gap results continue to hold. All “log” in this paper means log2.

System model. We consider a wireless network with N nodes and an arbitrary undirected and connected

graph G as the network topology. Each node has a unique id, and one of the N nodes is the root. We assume

that the topology G (including the ids of each node in G) is known to all nodes. The system is synchronous

and a protocol proceeds in synchronous rounds. In each round, a node (which has not failed) first performs

some local computation, and then does either a send or receive operation (but not both). We also say that the

node is in a sending state or a receiving state in that round, respectively. Our results are insensitive to whether

collisions are possible, but to make everything concrete, we still adopt and stick to the following commonly-

used collision model. By doing a send, a node (locally) broadcasts one message to all its neighbors in G. By

doing a receive, the node receives the message sent by one of its neighbors j iff node j is the only sending

node among all node i’s neighbors. If multiple neighbors of i send in the same round, a collision occurs and

node i does not receive anything. All our results hold regardless of whether node i can distinguish silence

from collision.

Failure model. The root never fails. Any other node in G may experience crash failures (but not byzantine

4



failure), and the total number of failures can be up to N −1. See Section 8 for more discussion on the number

of failures. To model worst-case behavior, we have an adversary determine which nodes fail at what time.

The adversary can be adaptive to the behavior of the protocol (including the coin flips) so far, but it cannot

predict future coin flip results.

The SUM problem. Here each node i in G has a binary value wi, which is initially unknown to any other

node. Let s2 =
∑N

i=1 wi, and let s1 be the sum of wj’s where by the end of the protocol’s execution, node j
has not failed or been disconnected from the root due to other nodes’ failures. Following the same definitions

from [5], a zero-error result of SUM is any s where s1 ≤ s ≤ s2, and an (ǫ, δ)-approximate result of SUM is

any ŝ such that for some zero-error result s, Pr[|ŝ − s| ≥ ǫs] ≤ δ.

Time complexity of SUM protocols. We will consider only public-coin randomized protocols. By default, a

“randomized protocol” in this paper is a public-coin randomized protocol. For a randomized SUM protocol

and with respect to a topology G, we define the protocol’s time complexity under G to be the number of

rounds needed for the protocol to terminate, under the worst-case values of the nodes in G, the worst-case

failures (for fault-tolerant cases), and the worst-case random coin flips in the protocol. The topology G has a

large impact on time complexity, and we use the notion of aggregation rounds to isolate such impact. We will

describe the time complexity in terms of aggregation rounds. This is analogous to describing it as a multiple

of, for example, the diameter of G.

In failure-free settings, an aggregation round in G consists of Λ(G) rounds, where Λ(G) is a function

of the connected graph G. We will define Λ(G) precisely later in Section 3, which describes a simple deter-

ministic tree-aggregation protocol and then defines Λ(G) as the number of rounds needed for that protocol

to finish on G. When failures are possible, the network topology may change during execution. Let G be

the set of all topologies that have ever appeared during the given execution. Note that a G′ ∈ G may or

may not be connected. For any such G′ that is not connected, we define Λ(G′) to be Λ(G′′) where G′′ is the

connected component of G′ that contains the root. To allow a fair comparison between NFT and FT com-

munication complexity, we define an aggregation round in an execution with failures to be maxG′∈G Λ(G′)
rounds. This implies that an aggregation round for an FT protocol is either the same or longer than that for

an NFT protocol, which makes our gap results stronger.

NFT and FT communication complexity of SUM protocols. Classic multi-party communication complex-

ity problems [24] usually consider the total number of bits sent by all players, since they usually use the

whiteboard model where the whiteboard is the bottleneck. In our distributed computing setting with a topol-

ogy G, as in other problems in such a setting, it is more natural to consider the number of bits sent by the

bottleneck player. Given a randomized SUM protocol, a topology G, a value assignment to the nodes in G,

and a failure adversary (if failures are considered), define ai to be the expected (with the expectation taken

over coin flips in the protocol) number of bits that node i sends. The protocol’s average-case communication

complexity under G is defined as the largest ai, across all value assignments of the nodes in G, all failure

adversaries (if failures are considered), and all i’s (1 ≤ i ≤ N ). The protocol’s worst-case communication

complexity under G is similarly defined by considering worst-case coin flips instead of taking the expectation

over the coin flips.

We define Rsyn
0 (SUM, G, b) (Rsyn

ǫ,δ (SUM, G, b), respectively) to be the smallest average-case (worst-

case, respectively) communication complexity under G across all randomized SUM protocols that can gen-

erate, in a failure-free setting, a zero-error result ((ǫ, δ)-approximate result, respectively) on G within a time

complexity of at most b aggregation rounds. Here note that i) the length of an aggregation round depends

on G, and ii) using the worst-case communication complexity for defining Rsyn
ǫ,δ is standard practice [4, 24].

With respect to any topology G, we similarly define Rsyn,ft
0 (SUM, G, b) and Rsyn,ft

ǫ,δ (SUM, G, b) across all

fault-tolerant randomized SUM protocols.

For any given integer N , we define SUM’s NFT communication complexity Rsyn
0 (SUMN , b) and

Rsyn
ǫ,δ (SUMN , b) to be the maximum Rsyn

0 (SUM, G, b) and Rsyn
ǫ,δ (SUM, G, b), respectively, across all topol-
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ogy G’s where G is connected and has exactly N nodes. Similarly define SUM’s FT communication com-

plexity Rsyn,ft
0 (SUMN , b) and Rsyn,ft

ǫ,δ (SUMN , b).

Communication complexity of two-party problems. Our proofs will also need to reason about the NFT

communication complexity of some two-party problems. In such a problem Π, Alice and Bob each have an

input X and Y respectively, and the goal is to compute the function Π(X,Y ). For all two-party problems

in this paper, we only require Alice to learn the final result. We will often use n to denote the size of Π,

as compared to N which describes the number of nodes in G. The communication complexity of a random-

ized protocol for computing Π is defined to be either the average-case or worst-case (over random coin flips)

number of bits sent by Alice and Bob combined. In the classic setting without synchronous rounds [24],

similar as earlier, we define R0(Π) (Rǫ,δ(Π), respectively) to be the smallest average-case (worst-case, re-

spectively) communication complexity across all randomized protocols that can generate a zero-error result

((ǫ, δ)-approximate result, respectively) for Π. We will also need to consider a second setting with syn-

chronous rounds3, adapted from [19]. Here Alice and Bob proceed in synchronous rounds, where in each

round Alice and Bob may simultaneously send a message to the other party. Alice, or Bob, or both may also

choose not to send a message in a round. The time complexity of a randomized protocol for computing Π
is defined to be the number of rounds needed for the protocol to terminate, over the worst-case input and

the worst-case coin flips. We define Rsyn
0 (Π, t) (Rsyn

ǫ,δ (Π, t), respectively) to be the smallest average-case

(worst-case, respectively) communication complexity across all randomized protocols for Π that can generate

a zero-error result ((ǫ, δ)-approximate result, respectively) within a time complexity of at most t rounds.

3 Upper Bounds on NFT Communication Complexity of SUM

This section describes the NFT upper bounds on SUM, which are from well-known tree-aggregation protocols

coupled with some standard tricks. These are not our main contribution — instead, they serve to show the

exponential gap from our FT lower bounds.

Tree-aggregation protocol and defining Λ(G). Since the topology G is known, every node can locally and

deterministically construct a breadth-first spanning tree (with the root of G being the tree root) as the aggre-

gation tree. With this tree in place, a node becomes ready when it receives one aggregation message from

each of its children. Each aggregation message encodes the partial sum of all the values in the corresponding

subtree. Leaf nodes are ready from the beginning. A ready node will combine all these aggregation messages,

together with its own value, and then send a single aggregation message to its parent. With the known topol-

ogy, the protocol easily avoids collision via the following simple deterministic scheduling: Out of all ready

nodes, the protocol greedily and deterministically chooses a maximal set of nodes to send messages without

incurring collision. A message does not need to include the sender’s id — since everything is deterministic,

the receiver can locally determine the sender. The function Λ(G) is formally defined to be the number of

rounds needed for the above deterministic protocol to finish on G. Thus by definition, the above protocol has

a time complexity of one aggregation round.

NFT upper bounds. If each aggregation message uses O(log N) bits to encode the exact partial sum, then

the above protocol is a deterministic protocol for SUM with O(log N) communication complexity and one

aggregation round time complexity. For (ǫ, δ)-approximate results, it is possible to reduce the size of the

aggregation message to O(log 1
ǫ + log log N) bits, using a simple private-coin protocol with similar tricks as

in AMS synopsis [1] (see Appendix B). One can further reduce the communication complexity if the time

complexity is b aggregation rounds with b > 1, since we can now spend b rounds in sending all the bits

previously sent in one round. It is known [19] that an a-bit message sent in one round can be encoded using

3These synchronous rounds are different from interaction rounds, which correspond to message exchanges. A protocol using x

synchronous rounds incurs x or fewer interaction rounds since a synchronous round may or may not have any message.
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a/ log b
a bits sent over b rounds, for b ≥ 2a. To do so, one bit is sent every b

a · log b
a rounds. Leveraging the

round number during which the bit is sent, each such bit can encode log( b
a ·log b

a) ≥ log b
a bits of information.

Combining all the above leads to:

Theorem 1 For any b ≥ 1, we have:

Rsyn
0 (SUMN , b) = O(a/ log(

b

a
+ 2)), where a = log N

Rsyn
ǫ, 1

3

(SUMN , b) = O(a/ log(
b

a
+ 2)), where a = log

1

ǫ
+ log log N

4 Lower Bounds on FT Communication Complexity of SUM for b ≤ 2 − c

The UNIONSIZE problem. As discussed in Section 1, one possible approach to achieve fault tolerance

when computing SUM is for the nodes to simultaneously propagate their values along multiple directions.

But doing so will lead to duplicates which must be addressed. Thus it is natural to consider a potential

reduction from the two-party communication complexity problem UNIONSIZE, which was used for obtaining

the optimal Ω( 1
ǫ2

) lower bound on the space complexity of one-pass distinct element counting [30]. In

the two-party problem UNIONSIZEn , Alice and Bob have length-n binary strings X and Y , respectively.

Let Xi (Yi) denote the ith bit of X (Y ). Alice aims to determine |{i | Xi 6= 0 or Yi 6= 0}|. If X and

Y are the characteristic vectors of two sets, then this is the size of the union of the two sets. Trivially

combining a few recent results [9, 19, 30] tells us that Rsyn
0 (UNIONSIZEn, O(poly(n))) = Ω( n

log n) and

Rsyn
ǫ, 1

3

(UNIONSIZEn, O(poly(n))) = Ω( 1
ǫ2 log n

) for ǫ = Ω( 1√
n
) (see Corollary 10 in Appendix A).

Overview of our reduction and its novelty. While the well-known reduction [30] from UNIONSIZE to the

(centralized) one-pass distinct element counting problem is almost trivial, we seek a reduction from UNION-

SIZE to SUM, which is less obvious. In particular, it is not immediately clear what a role failures can play.

Our simple yet interesting reduction here will answer this question, which prepares for our trickier reduction

in Section 5. Our reduction is based on a certain topology G. Given inputs X and Y to UNIONSIZE, each

node in G has some value so that their sum is exactly UNIONSIZE(X,Y ). The values of some of the nodes

are uniquely determined by X, and thus are known by Alice from her local knowledge of X. If the value

of a node τ cannot be uniquely determined by X, then τ is spoiled (rigorously defined in Appendix C.2) for

Alice, in the sense that Alice cannot simulate τ . As the simulation proceeds, a spoiled node τ may causally

affect its neighbor node τ ′, rendering Alice unable to simulate τ ′ and thus making τ ′ spoiled as well. Since

the SUM protocol may have internal state, if Alice cannot simulate a node for some round, then Alice cannot

simulate the node for later rounds either. In this sense, a spoiled node can never get “unspoiled” later. For

each round, Alice will simply simulate the (shrinking) group of all those nodes that have not been spoiled for

Alice. Bob similarly simulates all unspoiled nodes for Bob. Alice’s group and Bob’s may intersect.

We want the root of G to remain unspoiled for Alice when the SUM protocol ends, so that it provides

the SUM result to Alice for her to determine UNIONSIZE(X,Y ). To achieve this, in the reduction, Alice

and Bob will need to strategically simulate the failures of certain nodes, to block the spreading of spoiled

nodes. This showcases the fundamental role of failures in our reduction. At the same time, we need to avoid

failing/disconnecting nodes with a value of 1 — failing/disconnecting them would enable the SUM protocol

to ignore their values and potentially return a result that cannot be used to determine UNIONSIZE(X,Y ).
(Recall from Section 2 that a zero-error result for SUM can be any value between s1 and s2.) In fact, if we

were not concerned with this, then simply failing all nodes except the root would keep the root unspoiled

forever. Finally, it is also necessary to enlist help from Bob, who can simulate certain nodes that are spoiled

for Alice. By forwarding to Alice messages sent by those nodes, Bob can further hinder the shrinking of

Alice’s group. The communication (between Alice and Bob) spent in doing so will be the communication

7
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complexity incurred for solving UNIONSIZE. Simulating a shrinking group of nodes and properly using

failures to hinder such shrinking is the main novelty in our simple reduction.

Reducing from UNIONSIZE to SUM. For better understanding, the topology (Figure 2) we describe here

works for b ≤ 10
9 . See Appendix C for the topology for b ≤ 2 − c, with the c there being any positive

constant. Given UNIONSIZEn with n being a power of 2, the topology here has n parallel chains of nodes.

Each chain has 6 log n + 1 nodes. We use γα
i , τi, and γβ

i to denote the first, middle, and last node on the ith
chain, respectively. Next we construct a perfect binary tree with all the γα

i ’s being the leaves, and let node α

denote the tree root. Similarly construct a second perfect binary tree whose leaves are all the γβ
i ’s, and let β

be the tree root. Finally, we connect α and β with a single edge, and let α be the root of the topology. This

topology has total N = Θ(n log n) nodes.

The inputs X and Y to UNIONSIZEn will determine the values of the τi’s, which are called valued nodes.

Specifically, τi has a binary value of 1 iff Xi 6= 0 or Yi 6= 0 (Figure 3). All other nodes (i.e. non-valued

nodes) have values of 0. X and Y also determine the failure times of the γα
i ’s and γβ

i ’s, which are called

flaky nodes. If Xi = 0, then γα
i fails at the beginning of round t0 = 3 log n + 1. Otherwise it never fails.

Intuitively, t0 is the very first round where τi may causally affect γα
i . Similarly, γβ

i fails at the beginning of

round t0 iff Yi = 0 (Figure 3). Non-flaky nodes never fail. It is worth noting that this failure adversary i) is

oblivious to the SUM protocol, and ii) fails only a vanishingly small fraction (i.e., o(N)) of all the nodes in

G.

As a key property in the above construction (and later constructions), a τi whose value is 1 is never

disconnected from the root. This is because if τi’s value is 1, then it must be unspoiled (by our construction)

for either Alice or Bob, and thus can remain connected to α or β (and thus to the root). This in turn ensures

that a zero-error result of SUM is always exactly UNIONSIZE(X,Y ).
Alice will simulate the shrinking group of all the unspoiled nodes for Alice, which always contains node

α. Bob similarly simulates the unspoiled nodes for Bob, including node β. (These two groups are made

precise in Appendix C.) Whenever α in the SUM protocol sends a message (whose intended recipient may or

may not be β) Alice always forwards that message to Bob. Bob does the same whenever β sends a message.

Alice and Bob do not exchange any additional messages. Thus the number of bits sent by Alice and Bob for

solving UNIONSIZE is exactly the same as the number of the bits sent by α and β in the SUM protocol.

To obtain some intuition, let us consider some i where Xi = 0 and Yi = 1. This makes τi spoiled for

Alice, since Alice cannot determine τi’s value based on Xi. To prevent τi from causally affecting α and thus

spoiling α, Alice simulates the failure of γα
i before this can happen. Interestingly, since based on Yi Bob

cannot determine whether γα
i fails, γα

i becomes spoiled for Bob when it fails. Once the failure of γα
i can

causally affect β (at round 10 log n + 1), Bob can no longer simulate β. The simulation must end before this

happens, which is guaranteed under b ≤ 10
9 since an aggregation round here has no more than 8 log n + 1

rounds.
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We obtain the following theorem by formalizing the above arguments, using an improved topology as in

Appendix C, and then trivially extending to those N values that currently do not map to any integer n for

UNIONSIZEn . The proof is in Appendix C.

Theorem 2 For any b ∈ [1, 2 − c] where c is any positive constant, we have:

Rsyn,ft
0 (SUMN , b) = Ω

(

N

log2 N

)

Rsyn,ft
ǫ, 1

3

(SUMN , b) = Ω

(

1

ǫ2 log N

)

, for ǫ = Ω

(√
log N√

N

)

5 Lower Bounds on FT Communication Complexity of SUM for b ≤ N0.25−c

or 1/ǫ0.5−c

Why the previous construction cannot be extended. The FT lower bounds in the previous section no longer

hold for larger b since the failure of γα
i (as simulated by Alice) makes γα

i spoiled for Bob, which will in turn

spoil β under larger b. A natural attempt to fix this is to inject new failures to prevent such propagation of

spoiled nodes, as in Figure 4. Here when Yi = 1, Bob simulates a new failure to the left of τi, to prevent

the propagation of spoiled nodes due to γα
i . This new failure cannot be to the right of τi because otherwise

when Xi = 0 (implying the failure of γα
i ) and Yi = 1, τi has a value of 1 and is disconnected from the root.

As explained in Section 4, this prevents us from using the SUM result to determine UNIONSIZE. Similarly,

Alice needs to simulate a new failure on the right side of τi, when Xi = 1. This eventually implies that when

Xi = Yi = 1, both of these two new failures will be introduced, again disconnecting τi. One could avoid

this problem by adding a promise and disallowing Xi and Yi to simultaneously be 1. Unfortunately, such a

naive promise decreases the communication complexity of UNIONSIZEn to O(log n), making the final results

trivial.

The UNIONSIZECP problem. To overcome the above problem, we will introduce and reduce from a new

two-party communication complexity problem called UNIONSIZECP. UNIONSIZECP is intuitively UNION-

SIZE extended with a novel promise which we call the cycle promise. This promise is not constructed ad

hoc — rather, we will later see that it can be derived. In UNIONSIZECPn,q where q ≥ 2, Alice and Bob

respectively have length-n strings X and Y . The characters in the strings are integers in [0, q − 1]. Let Xi

and Yi denote the ith character of X and Y , respectively. X and Y satisfy the following cycle promise where

for all i: If Xi = 0, then Yi must be 0 or 1; if Xi = q − 1, then Yi must be q − 2 or q − 1; if 0 < Xi < q − 1,

then Yi must be Xi − 1 or Xi + 1. This promise is illustrated in Figure 5 as a bipartite promise graph, where

values for Xi and Yi are vertices and two values are connected by an edge if they satisfy the promise. Note
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that this promise graph is actually a cycle. Same as in UNIONSIZE, the goal in UNIONSIZECP is for Alice

to determine |{i | Xi 6= 0 or Yi 6= 0}|. When q = 2, UNIONSIZECP degrades to UNIONSIZE. Later we will

show that different from the earlier naive promise, the cycle promise does not make the communication com-

plexity of UNIONSIZECP trivial. In our reduction to SUM, the cycle promise will enable us to continuously

introduce new failures to block the spreading of spoiled nodes caused by old failures, without disconnecting

any node in G with a value of 1. Those newly failed nodes then become spoiled themselves, requiring further

failures to be injected, until the end of the simulation.

Reducing from UNIONSIZECP to SUM. Figure 6 illustrates the topology used in our reduction from

UNIONSIZECPn,q , which has n parallel chains of nodes, with each chain having 2n + 3 nodes. We con-

nect the first node of each chain directly to a node α, and the last node of each chain directly to a node β.4

Finally, we connect α and β with a single edge, and let α be the root of the topology. This topology has total

N = Θ(n2) nodes. As before, Alice (Bob) will simulate a continuously shrinking group of nodes including

α (β). As illustrated in Figure 7, the middle node τi of the ith chain is a valued node whose value is 1 iff

Xi 6= 0 or Yi 6= 0. There are 4 flaky nodes on the chain from left to right: the first node of the chain, the

two neighbors of τi, and the last node of the chain. We use γα
i , σβ

i , σα
i , and γβ

i to denote these 4 nodes,

respectively. Let tj = (j + 1)n + 1 for all 0 ≤ j ≤ q − 1. The flaky node γα
i fails at the beginning of round

tXi
iff Xi is even, while σα

i fails at the beginning of round tXi
iff Xi is odd (Figure 7). Similarly, γβ

i (σβ
i )

fails at the beginning of round tYi
iff Yi is even (odd). Again, the failure adversary here is oblivious to the

SUM protocol, and fails only a vanishingly small fraction (i.e., o(N)) of all the nodes in G.

To gain some intuition, consider the example in Figure 8. We say that a node is an epicenter for Alice’s

input X if it is a valued node (or a flaky node) whose value (or failure time) is not uniquely determined by

X. Similarly define epicenters for Bob’s input Y . Essentially, an epicenter is the source of the spreading of

spoiled nodes. When Xi = 0, τi is an epicenter for Alice and thus Alice simulates the failure of γα
i at t0 to

block the influence of such τi (i.e., the top/middle scenario in Figure 8). Next since the failure of γα
i depends

on Xi and is not uniquely determined by Y , the node γα
i itself now becomes an epicenter for Bob. With the

cycle promise and since Xi = 0, Yi must be 0 or 1. If Yi = 0, then Bob does not need to be concerned,

since Bob has already simulated the failure of γβ
i at t0 and thus blocked the potential influence of γα

i (i.e., the

top scenario). If Yi = 1 however, Bob needs to simulate the failure of σβ
i at t1 (i.e., the middle scenario) to

block the influence of γα
i . Now σβ

i again, becomes an epicenter for Alice (i.e., the middle/bottom scenario).

Given the cycle promise and since Yi = 1, we must have Xi = 0 or Xi = 2. If Xi = 0, then Alice has

already simulated the failure of γα
i at t0 and has already blocked the potential influence of σβ

i (i.e., the middle

4Using binary trees will not work here. Consequently, here an aggregation round will contain more rounds than in Section 4, and

in turn each chain needs to have more nodes.
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scenario). If Xi = 2 however, Alice needs to simulate a new failure of γα
i at t2 (i.e., the bottom scenario).

Extending such reasoning can show that by continuously injecting new failures, we can always manage to

block the spreading of spoiled nodes.

Finally, note that the simulation still cannot continue forever. Under the cycle promise, it is possible for

Xi = Yi = q−1. Thus we need the SUM protocol to stop by round tq−1−1, since otherwise at the beginning

of round tq−1, Alice and Bob would simulate failures such that τi (with a value of 1) would be disconnected.

This means that q needs to be chosen based on the SUM protocol’s time complexity b: A larger q is needed

when b is larger. Since the communication complexity of UNIONSIZECP depends on q (as shown next), as

expected, our lower bounds here will be a function of b. We obtain the following theorem via formalizing the

above reduction, using our lower bound later (Theorem 4) from UNIONSIZECP, and then trivially extending

to all N values. See Appendix D for the proof.

Theorem 3 For any b ≥ 1, we have:

Rsyn,ft
0 (SUMN , b) = Ω

( √
N

b2 log N

)

Rsyn,ft
ǫ, 1

5

(SUMN , b) = Ω

(

1

ǫb2 log N

)

, for ǫ = Ω

(

1
4
√

N

)

Communication complexity of UNIONSIZECP. Since UNIONSIZECP has never been studied, there are no

existing results on its communication complexity. Proving these results is thus also a contribution of our work,

which may be of independent interest. On the surface, it may appear that the complexity of UNIONSIZECP

should not be very different from that of UNIONSIZE. This first thought turns out to be incorrect. For q ≤ n,

Appendix E presents an O(n
q ) upper bound protocol for Rsyn

0 (UNIONSIZECPn,q, poly(n)), implying that its

communication complexity drops at least linearly with 1
q . In this protocol, Alice finds the integer j with the

smallest occurrence count in X, and sends Bob j and the set {i |Xi = j}. This takes O(n
q log n) bits in one

round, or O(n
q ) bits in poly(n) rounds [19]. Now we only need to worry about indices not in the set. For those

indices, the promise graph (Figure 5) degrades to a chain, since two edges are removed from the cycle. This

makes the UNIONSIZECP problem easy to solve after we apply a mapping trick (see Appendix E). To lower

bound UNIONSIZECP’s communication complexity, we find that the cycle promise makes it challenging to

apply classic arguments based on rectangles [24].5 But we also find that UNIONSIZECP is rather amenable

to information theoretical arguments [4], which lead to the following theorem whose proof is in Appendix E:

5Leveraging some strong results on the sperner capacity of the cyclic q-gon [6], we managed to obtain some results on

R0(UNIONSIZECP), but not on Rǫ,δ(UNIONSIZECP).
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Theorem 4 We have:

Rsyn
0 (UNIONSIZECPn,q, O(poly(n))) = Ω

(

n

q2 log n

)

Rsyn
ǫ, 1

5

(UNIONSIZECPn,q, O(poly(n))) = Ω

(

1

ǫq2 log n

)

, for ǫ = Ω

(

1√
n

)

6 The Fundamental Roles of Cycle Promise and UNIONSIZECP

Our reduction from UNIONSIZECP so far has led to the exponential gap result for SUM, when b ≤ N0.25−c

or 1
ǫ0.5−c for any positive constant c < 0.25. This restriction on b comes from the 1

q2 term in the lower

bound of the communication complexity of UNIONSIZECP. Our upper bound on UNIONSIZECP indicates

that such a polynomial dependency on 1
q is unavoidable because of the cycle promise. It is thus natural to ask:

Can we reduce from problems without promises? Or can we reduce from problems with a different promise,

to weaken the polynomial dependency on 1
q to log 1

q ? For any possible oblivious reduction (defined next)

from any two-party communication complexity problem Π to SUM, this section answers these questions

in the negative. Specifically, we prove the completeness of UNIONSIZECP in the sense that such a Π can

always be reduced to UNIONSIZECP and must have a communication complexity no larger than that of

UNIONSIZECP
N,⌊

√
b/3⌋. Thus any FT lower bound on SUM, obtained in such a way via Π, must contain

some polynomial term of 1
b . Overcoming this polynomial term in the lower bound might still be possible, but

one would have to resort to methods other than oblivious reductions from two-party problems. Our proof also

(implicitly) shows that the cycle promise can be derived and that the promise likely plays a fundamental role

in reasoning about many functions beyond SUM.

Reductions and oblivious reductions. Consider any two-party communication complexity problem Π,

where Alice aims to learn Π(X,Y ). In a (general) reduction from Π to SUM, Alice and Bob are given some

black-box oracle fault-tolerant protocol for SUM, and they are supposed to use this oracle to solve Π with any

given input pair (X,Y ). Since the (global) oracle protocol is distributed, it will be convenient to imagine that

each node in the topology has its own oracle protocol, and invoking these protocols in a “consistent” fashion

will enable the root to produce a meaningful result.

In an oblivious reduction to SUM, there is some fixed topology G and for each (X,Y ) pair, there exists

some reference setting specifying the value and failure time of each node in G. The reference settings are

oblivious to the oracle. As explained in Section 4, a reference setting here should not fail or disconnect nodes

with a value of 1. The zero-error SUM result in the reference setting should be the same as Π(X,Y ), so we

can directly use it for solving Π. The reduction protocol is required to be oblivious as well. Specifically,

Alice and Bob first pick a (public) random string. Next before invoking the oracle and purely based on X
(Y ), Alice (Bob) decides for each node in G, exactly up to which round she (he) will invoke the oracle. Note

that to invoke the oracle for a certain round, Alice/Bob needs to invoke the oracle for all previous rounds as

well. Alice (Bob) also decides the (initial) value of each node for which she (he) will invoke the oracle for at

least one round. Requiring Alice and Bob to make these decisions beforehand is the most important aspect

of oblivious reductions. We define the reference execution for (X,Y ) to be the (global) oracle’s execution

under the reference setting for (X,Y ) and under the chosen random string. To enable the root to generate

a meaningful result, we require that the initial value, incoming messages, and coin flips fed by Alice/Bob

into the oracle protocol on a node be the same as those fed into that node’s oracle in the reference execution

for (X,Y ). Furthermore, after a node has failed in the reference execution, Alice/Bob must not invoke that

node’s oracle any more (since that node can no longer help out). Finally, there are two special nodes α and β
in G, such that Alice and Bob will always invoke the oracle on α and β (respectively) until the root generates

a result. Here α must be the root of G,6 while β can be any other node. During the reduction, Alice (Bob)

6This is largely for clarity, and can be relaxed if desired.
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labels indicated have a label of 1.

may only send to the other party all those messages sent by the oracle invocation on node α (β). This allows

the establishment of a simple factor-2 relation between the communication complexity of Π and SUM.

Our previous reductions from UNIONSIZE and UNIONSIZECP to SUM are both oblivious reductions.

Besides those two specific instances, the broad class of oblivious reductions further captures reductions from

any two-party problem Π with any promise, using any topology G with any proper reference settings. We

now present a strong result on the completeness of UNIONSIZECP:

Theorem 5 Consider any two-party communication complexity problem Π that can be obliviously reduced

to SUM for some topology G with N nodes, with the SUM oracle protocol having a time complexity of up to

b aggregation rounds where b ≥ 12. For all t ≥ 1, we have:

Rsyn
0 (Π, t) ≤ Rsyn

0 (UNIONSIZECP
N,⌊

√
b/3⌋, t)

Rsyn
ǫ,δ (Π, t) ≤ Rsyn

ǫ,δ (UNIONSIZECP
N,⌊

√
b/3⌋, t)

The full proof is in Appendix F, and we provide some intuition here. Let X be Alice’s input domain in Π,

and Y be Bob’s. Let L ⊆ X × Y be the set of all valid input pairs, given the promise in Π. If Π has no

promise, then L = X × Y . Given (X,Y ) ∈ L, an oblivious reduction has a reference setting specifying the

value of each node in G. For any node τ where τ 6= α and τ 6= β, we define τ ’s (value) assignment graph to

be the bipartite graph where X ∪ Y are vertices and an edge (X,Y ) exists iff (X,Y ) ∈ L. In addition, each

edge (X,Y ) has a binary label which is the value of τ in the reference setting for (X,Y ). We prove that it is

always possible to partition the vertices in τ ’s assignment graph into 2b′ (where b′ = ⌊
√

b/3⌋ ≥ 2) disjoint

subsets with strong properties as illustrated in Figure 9. Intuitively, this is because otherwise the reference

setting for some input pair would need to have so many failures in G such that τ (with a value of 1) would be

disconnected from the root. Those failures are needed to ensure that Alice (Bob) can invoke the oracle on α
(β) throughout the execution.

At this point, we already have something close to the cycle promise — if we view each subset as a super

vertex, then all the 2b′ super vertices form a subgraph of a length-2b′ cycle. It is now possible to reduce Π to

UNIONSIZECPN,b′ , by mapping an input X for Π to an input X ′ for UNIONSIZECP as following: Each τ in

G corresponds to a unique i (1 ≤ i ≤ N − 2), and X ′
i is set to be the index of the subset in τ ’s assignment

graph to which X belongs. Finally, X ′
N−1 is set to be the (initial) value of α in the given oblivious reduction,

which can be obtained purely based on X. X ′
N is set to be 0. The conversion from Y to Y ′ is similar, with

Y ′
N−1 = 0 and Y ′

N being the value of β.
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7 Lower Bounds on FT Communication Complexity of SUM for All b

Our previous FT lower bounds become trivial when b > N0.25 or 1
ǫ0.5 . This section uses a different ap-

proach to obtain logarithmic FT lower bounds for such b, which is more than exponentially far away from

the corresponding O(1) NFT upper bounds for such b. We first provide some intuition under a strong gossip

assumption. Later we will remove this key assumption, which is the key technical challenge addressed by our

proof.

Under the gossip assumption, the root computes the sum by explicitly collecting from each node a gossip

containing its value. We will show that to do so, some node will need to send Ω(log N) messages, and hence

Ω(log N) bits even if the gossips can be fully aggregated/compressed. Here the lower bound topology will

be an N -node clique with one of nodes being the root (Figure 10). Imagine for now that the adversary can

fail edges in this topology, and further there is never more than one node sending messages in a round. These

assumptions can be easily removed later once we insert some dummy nodes into each edge. Our adaptive

adversary waits until exactly N−1
2 non-root nodes have sent a message (e.g., nodes 1 and 2 in Figure 10). Call

these N−1
2 nodes as marked nodes. The adversary then fails enough edges so that each unmarked non-root

node (e.g., node 3) is paired up with a marked node (e.g., node 1) and the marked node is the only gateway

for the unmarked node to reach the root. Now each marked nodes has already sent a message, and yet it has

one new gossip (from the corresponding unmarked node) to forward to the root. Next apply this procedure

recursively on these N−1
2 marked nodes, and inject a second batch of edge failures when exactly N−1

4 of them

(e.g., node 2) have sent a second message. Continuing this argument can easily show that for all the gossips

to reach the root, some node needs to send at least log(N − 1) + 1 messages.

The gossip assumption is rather strong. For example, a protocol may be such that if a node’s value is 0,

then the root does not need to collect a gossip from that node and simply uses 0 as the default value. It is also

possible that node i sends a message to node j iff node i’s value is 1, and then node j conceptually relays i’s
value to the root, by sending a message to the root iff this value is 0. Here the root never collects a gossip

from node i. A key challenge in our proof is to properly capture all such possibilities. To do so, we explore

a single-player probing game, and prove a strong connection between SUM protocols and strategies in this

game. We then prove a lower bound on the probing game, which eventually leads to the following FT lower

bounds on SUM. See Appendix G for the proof of the following theorem:

Theorem 6 For any b ≥ 1, we have:

Rsyn,ft
0 (SUMN , b) = Ω(log N)

Rsyn,ft
ǫ, 1

3

(SUMN , b) = Ω(log
1

ǫ
), for ǫ = Ω(

1

N
)

8 Discussions and Extensions

Putting together the NFT upper bounds (Theorem 1) and FT lower bounds (Theorem 2, 3, and 6) will directly

give us the exponential gaps, as summarized in Figure 1 from Section 1. Specifically, one only needs to apply
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Theorem 2 for 1 ≤ b ≤ 2− c, Theorem 3 for 2− c < b ≤ N0.25−c or 1
ǫ0.5−c , and Theorem 6 for b > N0.25−c

or 1
ǫ0.5−c , with c being any positive constant below 0.25. It is worth noting that such exponential gap results

apply as well to the following extensions of the model defined in Section 2.

Total number of failures. Section 2 allowed the total number of failures to be up to N − 1. In all the

executions (of the SUM protocol) considered in our FT lower bound proofs, the failure adversary actually

injects only o(N) failures in G. Thus our lower bounds apply, without any modification, as long as the total

number of failures is allowed to be up to any constant fraction of N . Our proofs carry over to even smaller

number of failures, without disrupting the exponential gap, if we lower the degree of our polynomial lower

bounds.

Private-coin and deterministic protocols. Section 2 only considered public-coin protocols. Private-coin

protocols and deterministic protocols are also fully but implicitly covered by all our theorems. This is simply

because the NFT upper bound protocol with zero-error in Theorem 1 is actually deterministic, while the one

with (ǫ, δ)-error uses only private coins.

Allowing integer values for each node. In practice, each node in the network may have some integer value

instead of a binary value. Our FT lower bounds obviously carry over to integer values. Our NFT upper

bounds continue to apply as long as the integer value has a domain no larger than some polynomial of N .

Other network models. Because of the paramount practical importance of communication complexity in

wireless networks, Section 2 chose to define a system model capturing wireless networks. All our theorems

continue to apply regardless of whether collision is considered (i.e., whether a node can receive messages

simultaneously from multiple neighbors in a round) and regardless of whether the communication is point-

to-point or (local) broadcast. Note that in settings without collisions, Λ(G) is simply the eccentricity of the

root in G.

Letting all nodes know the result. We required only the root to learn the final result. To let all nodes know

the result, the root in our upper bound protocol in Theorem 1 can simply broadcast the result to all nodes

along some spanning tree.

Unknown topology. Assuming a known topology, as in Section 2, strengthens our FT lower bounds. For the

upper bounds obtained via tree-aggregation, with unknown topologies, it suffices to simply add a distributed

pre-processing phase for building a spanning tree.

Defining time complexity over average coin flips. Section 2 defined the time complexity of a protocol to

be the number of rounds needed under the worst-case coin flips. Considering worst-case coin flips there was

largely for clarity, as in the standard practice [4, 24] of using worst-case coin flips for defining randomized

non-zero-error communication complexity. Appendix H.2 shows that defining time complexity using average-

case coin flips only affects our results slightly, and our exponential gap continues to hold.

Excluding the communication complexity of the root. Section 2 defined the communication complexity of

a SUM protocol to be the number of bits sent by the bottleneck node. Here it is possible for the bottleneck

node to be the root. In some scenarios, one may want to exclude the root in this definition. For example,

we may be concerned with communication complexity due to the power consumption of the nodes, while the

root node (e.g., a base station) may not be operating on battery power. Appendix H.1 shows that doing so

does not affect any of our theorems.

9 Conclusions and Future Work

Tolerating crash failures has been a key focus of distributed computing research from the very beginning.

Adding this fault tolerance requirement to multi-party communication complexity leads to the following

natural question: “If we want to compute a function in a fault-tolerant way, what will the communication

complexity be?” This paper reveals that the impact of failures on communication complexity can be large, at
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least for the SUM aggregation function in networks with general topologies. Specifically, we show that there

exists (at least) an exponential gap between the NFT and FT communication complexity of SUM.

This result attests that FT communication complexity needs to be studied separately from traditional NFT

communication complexity. Since this paper is only the first step along this new direction of FT communica-

tion complexity, as one would imagine, the topic is rife with interesting open questions such as:

• Our lower bound topologies for SUM are carefully constructed. We are currently investigating to what

extent our lower bounds can generalize to other topologies.

• We have mainly focused on the exponential gap for SUM, and have been less concerned about specific

degrees of the polynomials in the FT lower bounds. Can we further strengthen these lower bounds?

Note that even our lower bound on the communication complexity of UNIONSIZECP is not tight (i.e.,

roughly 1
q factor from the upper bound), and thus improvement might be possible even there. Similarly,

our completeness result for UNIONSIZECP is for q = Θ(
√

b), while our reduction actually uses a

weaker q = Θ(b).

• Our lower bounds show that the bottleneck node in G will incur a large communication complexity.

How many nodes in G will incur asymptotically similar communication complexity as that node?

Putting it another way, how many hot spots are there?

• We have defined the FT communication complexity of SUM across all protocols that can tolerate a

certain number of failures. Similar to the idea of early stopping distributed consensus protocols, among

this class of protocols, it would be interesting to investigate to what extent a protocol can incur a smaller

communication complexity when the number of failures that actually happen (denoted as f ) is small.

Repeatedly invoking tree-aggregation incurs a communication complexity of O(f log N) — can we do

better? We are currently investigating both upper bounds and lower bounds on this.

• Our results extend to some other functions such as SELECTION, via trivial reductions to and from

SUM. But clearly there are also many interesting functions whose FT communication complexity is

still unknown. In particular, can we characterize the set of functions having exponential gaps?

For answering these questions, we believe that some of the insights developed in this paper (e.g., on the role

of failures in the reduction and on the cycle promise) can be valuable.
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A Some Useful Known Results

This section describes some known results that this paper uses. (This is the only such section in this paper.)

These results and their proofs are not our contribution. We include the details and sometime the proofs here

only for completeness, because some of them were folklore results, or were not formally stated, or were not

stated to cover FT communication complexity, or were proved under slightly different models in a restricted

form. In the next, the notations R0,δ, Rsyn
0,δ , and Rsyn,ft

0,δ simply mean Rǫ,δ, Rsyn
ǫ,δ , and Rsyn,ft

ǫ,δ with ǫ = 0,

respectively.

Folklore fault-tolerant protocol for computing MAX. The following sketches a simple folklore fault-

tolerant protocol for efficiently computing MAX. This protocol is a simplified version of some more complex

protocols in the literature (e.g., the protocol from [31] which tolerates byzantine failures). Same as for SUM,

each node here has an integer value whose domain is no larger than some polynomial of N , where N is

the total number of nodes in the network. This protocol does a simple binary search on the entire value

domain. At each step of the binary search, the protocol conceptually asks whether any node in the system has

a value that is no smaller than some specific value. Clearly, we only need to ask O(log N) such questions to

determine MAX. For each such question, a node floods a single bit of “1” (without including its id) as the

reply if its value is no smaller than the specified value. Other nodes in the system will relay/forward only

the very first reply they see for that question (this is a simplified version of the keyed predicate test protocol

in [31] which tolerates byzantine failures). One can easily show that this process is fault-tolerant, and each

question only requires each node to send O(1) bits. Furthermore, at the end of the flooding, each node in the

system will know the answer to this question, and thus can infer what the next question will be. Thus posing

the questions does not incur any extra communication. The total number of bits each node needs to send in

this fault-tolerant protocol for MAX is O(log N).

Known relation between R0, Rsyn,ft
0 and R0,δ, Rsyn,ft

0,δ . Note that we do not necessarily have R0 ≥ R0,δ,

since R0 is the average-case (over random coin flips in the protocol) communication complexity, while R0,δ

is the worst-case (over random-coin flips in the protocol) communication complexity. Nevertheless, the fol-

lowing relation in Lemma 7 is well-known [24]. This relation trivially applies to fault-tolerant communication

complexity as well.

Lemma 7 (Adapted from [24].) For any communication complexity problem Π and δ > 0, R0(Π) ≥
δR0,δ(Π). Similarly for any b ≥ 1 and δ > 0, Rsyn,ft

0 (SUMN , b) ≥ δRsyn,ft
0,δ (SUMN , b).

Proof: Consider the optimal zero-error randomized protocol for Π, which generates a zero-error result while

incurring an expected (over the random coin flips in the protocol) communication complexity of R0(Π) bits.

By Markov’s inequality, the protocol’s communication complexity exceeds R0(Π)/δ bits with probability at

most δ. We can thus construct a new protocol which behaves the same as the original one except that a node

stops once it has sent R0(Π)/δ bits. Obviously, this protocol outputs correct results with probability at least

1 − δ, and incurs a worst-case communication complexity of R0(Π)/δ bits, implying R0,δ(Π) ≤ R0(Π)/δ.

A similar proof can show Rsyn,ft
0,δ (SUMN , b) ≤ Rsyn,ft

0 (SUMN , b)/δ. 2

Known relation between R0, Rǫ,δ and Rsyn
0 , Rsyn

ǫ,δ . The following lemma is a slightly extended version of

the corresponding theorem from [19], which draws a connection between NFT communication complexity

with synchronized rounds and NFT communication complexity without synchronized rounds. Since our

synchronous round model is slightly different from [19], we provide a proof sketch below for the sake of

completeness. This proof is not our contribution.

Lemma 8 (Adapted from [19].) For any two-party communication complexity problem Π and any t ≥ 2, we

have R0(Π) = Rsyn
0 (Π, t) · O(log t) and Rǫ,δ(Π) = Rsyn

ǫ,δ (Π, t) · O(log t).
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Proof: Consider any given protocol P (with PA being Alice’s part of the protocol and PB being Bob’s part),

that can solve Π under the synchronous round setting with a bits (either on expectation or worst-case) of

communication, while always terminating within t synchronous rounds. We construct a protocol Q (with QA

and QB similarly defined) that can solve the problem with O(a log t) bits (either on expectation or worst-case,

respectively) of communication complexity in the classic setting without synchronous rounds.

In Q, Alice and Bob each maintains a local counter initialized to 1. These two counters correspond to the

round number needed by P. Let the current counter value on Alice be rA. In QA, Alice first tries executing

PA for rounds rA, rA + 1, rA + 2, ..., while assuming that PB does not send any message in any of those

rounds. Alice then determines r′A (r′A ≥ rA), the first round during which PA sends a message in this trial

execution. Similarly Bob determines r′B . Alice and Bob then exchange r′A and r′B, taking 2 log t bits. Let

r′ = min(r′A, r′B). Alice next executes PA (for real) for rounds rA, rA + 1, ..., r′, and then sends a message

to Bob if r′A = r′. Similarly in QB , Bob executes PB for rounds rB , rB + 1, ..., r′, and then sends a message

to Alice if r′B = r′. Note that for round r′, P must incur at least one bit of communication. Thus for each bit

P incurs, Q incurs at most 2 log t + 1 = O(log t) bits. After the message exchange for round r′, Alice and

Bob set rA = r′ + 1 and rB = r′ + 1, and repeat the above process until P terminates. 2

Known results on UNIONSIZE’s communication complexity. Trivially combining several recent results [9,

19, 30] leads to the following known results:

Theorem 9 (Adapted from [9].) R0(UNIONSIZEn) = Ω(n) and Rǫ, 1
3

(UNIONSIZEn) = Ω( 1
ǫ2

) for ǫ =

Ω( 1√
n
).

Proof: We first prove the theorem for ǫ ≥ 1√
n

. This proof for Rǫ, 1
3

(UNIONSIZEn) = Ω( 1
ǫ2

) trivially plugs in

a recent strong result [9] on the GHD (Gap-Hamming-Distance) problem into an existing reduction [30] from

GHD to UNIONSIZE. Consider any given ǫ > 0. In GHD 2

5ǫ2
, Alice and Bob have binary strings X and Y as

inputs respectively, where each string has 2
5ǫ2

bits. Let ∆(X,Y ) denote the hamming distance between X and

Y . Alice and Bob are further given the promise that either ∆(X,Y ) > 1
5ǫ2

+ 1
ǫ or ∆(X,Y ) ≤ 1

5ǫ2
− 1

ǫ . They

should output 1 iff ∆(X,Y ) satisfies the first inequality. It is proved recently by Chakrabarti and Regev [9]

that R0, 1
3

(GHD 2

5ǫ2
) = Ω( 1

ǫ2
).

To reduce GHD to UNIONSIZE, given input string X for GHD 2

5ǫ2
, Alice locally generates an input X ′

for UNIONSIZEn by appending 0 to the length- 2
5ǫ2

binary string X until the length reaches n. Bob similarly

generates Y ′. Let |X ′| and |Y ′| denote the hamming weight of X ′ and Y ′, respectively. Thus we have

UNIONSIZE(X ′ , Y ′) = (|X ′|+ |Y ′|+ ∆(X ′, Y ′))/2 = (|X|+ |Y |+ ∆(X,Y ))/2. Leveraging the promise

on X and Y , we have:

• If ∆(X,Y ) > 1
5ǫ2

+ 1
ǫ , then UNIONSIZE(X ′ , Y ′) > (|X| + |Y | + 1

5ǫ2
+ 1

ǫ )/2.

• If ∆(X,Y ) ≤ 1
5ǫ2

− 1
ǫ , then UNIONSIZE(X ′ , Y ′) ≤ (|X| + |Y | + 1

5ǫ2
− 1

ǫ )/2.

One can easily verify that for all ǫ, we have (1+ ǫ)(|X|+ |Y |+ 1
5ǫ2

− 1
ǫ )/2 < (1− ǫ)(|X|+ |Y |+ 1

5ǫ2
+ 1

ǫ )/2.

Next Bob tells Alice the size of Y , using log |Y | = O(log 1
ǫ ) bits. Alice can now pick any value between the

above two values as the threshold. Alice outputs 1 iff the UNIONSIZE(X ′ , Y ′) execution returns a value above

the threshold. Finally, Alice informs Bob of the result, using a single bit. (This is needed since GHD requires

both Alice and Bob to know the result.) Since R0, 1
3

(GHD 2

5ǫ2
) = Ω( 1

ǫ2 ), we have Rǫ, 1
3

(UNIONSIZEn) =

Ω( 1
ǫ2

− log 1
ǫ − 1) = Ω( 1

ǫ2
). Now by Lemma 7, we have:

R0(UNIONSIZEn) ≥ 1

3
R0, 1

3

(UNIONSIZEn) ≥ 1

3
R 1√

n
, 1
3

(UNIONSIZEn) = Ω(n)

20



Finally, we still need to cover the case for ǫ = Ω( 1√
n
) but ǫ < 1√

n
. For such ǫ (which is necessarily

Θ( 1√
n
)), we have:

Rǫ, 1
3

(UNIONSIZEn) ≥ R 1√
n

, 1
3

(UNIONSIZEn) = Ω(n) = Ω(
1

ǫ2
)

2

Combining Theorem 9 and Lemma 8 gives:

Corollary 10 Let poly(n) be any polynomial of n with constant degree, we have Rsyn
0 (UNIONSIZEn,

O(poly(n))) = Ω( n
log n) and Rsyn

ǫ, 1
3

(UNIONSIZEn, O(poly(n))) = Ω( 1
ǫ2 log n) for ǫ = Ω( 1√

n
).

B Tree-Aggregation Protocol with O(log 1
ǫ + log log N) Aggregation Message

Size

This section provides the details of the tree-aggregation protocol with only O(log 1
ǫ + log log N) aggregation

message size, as mentioned in Section 3.

Protocol intuition. First, we should note that directly encoding each partial sum with O(log 1
ǫ + log log N)

bits using a floating-point-style representation will not actually work, due to underflow issues when sequen-

tially adding many small numbers to a large number. Thus instead, we will apply a similar trick as AMS

synopsis [1]. Intuitively in this protocol, each “1” value in the system is flagged with a certain probability.

The system then uses the simple tree-aggregation protocol from Section 3 to determine the exact total num-

ber (sum) of such flagged “1” values. By properly adjusting the flagging probability, we can always ensure

that this sum is no larger than 120/ǫ2, and thus the size of the aggregation message will be no larger than

log(120/ǫ2). Furthermore, it is possible to dynamically adjust such flagging probability in one pass of the

aggregation protocol, without any global coordination. Finally, the root estimates the final result for SUM

based on the sum of flagged “1” values and the associated flagging probability.

Algorithm 1 promote(msg)

1: msg.level + +;

2: Initialize tmp to 0;

3: for j = 1 to msg.sum do

4: Increase tmp by 1 with probability 1/2;

5: end for

6: msg.sum = tmp;

Algorithm 2 merge(msg1, msg2) // assuming msg1.level ≤ msg2.level

1: while msg1.level < msg2.level do

2: promote(msg1);
3: end while

4: msg3.level = msg2.level;
5: msg3.sum = msg1.sum + msg2.sum;

6: while msg3.sum > 120/ǫ2 do

7: promote(msg3);
8: end while

9: return msg3;
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Protocol description and pseudo-code. Specifically in this protocol, each aggregation message contains

an integer sum ∈ [0, 120/ǫ2] and an integer level ∈ [0, log N ]. Intuitively, these two integers mean that if

each “1” value in the subtree is flagged with probability 2−level, then the partial sum of the flagged values

is sum. A node with a value of 1 generates an aggregation message with sum = 1 and level = 0, for its

own value. Intermediate tree nodes will need to combine multiple aggregation messages into one. Without

loss of generality, we only need to explain how to combine two aggregation messages msg1 and msg2 into

one, where msg1.level ≤ msg2.level. We promote (Algorithm 1) an aggregation message msg1, by i)

increasing msg1.level by one, and ii) tossing msg1.sum fair coins and then updating msg1.sum to be the

total number of heads we observe. To merge msg1 and msg2 into msg3 (Algorithm 2), we first repeatedly

promote msg1, until msg1.level = msg2.level. We then set msg3.level = msg2.level, and msg3.sum =
msg1.sum+msg2.sum. If msg3.sum > 120/ǫ2, we will again repeatedly promote msg3 until the first time

that msg3.sum ≤ 120/ǫ2. Finally, imagine that the root has a virtual parent and let msg be the aggregation

message sent by the root to its virtual parent. The root will estimate the final sum to be msg.sum×2msg.level.

Formal properties. It is obvious that the number of bits sent by each node in this protocol is O(log 1
ǫ +

log log N). We next prove that the protocol does give us an (ǫ, 1/3)-approximate result:

Theorem 11 Consider any graph G with N nodes and any constant ǫ ∈ (0, 1]. If we denote s as the exact

sum of the values of all the N nodes and ŝ as the estimated sum output by the above protocol, then

Pr[(1 − ǫ)s ≤ ŝ ≤ (1 + ǫ)s] ≥ 2

3

Proof: Consider the sequence of random variables S0, S1, . . . , where S0 = s and Si+1 (for i ≥ 0) is the

number of heads observed when flipping a fair coin exactly Si times. Furthermore, for generating Si+1, the

random process uses the same coin flip results as the protocol uses in promoting all messages with level = i
(i.e., at Line 4 of Algorithm 1). Let random variable L be the smallest integer such that SL ≤ z where z = 120

ǫ2
.

Let msg be the aggregation message sent by the root to its virtual parent. We claim that msg.level = L and

msg.sum = SL. First, it is impossible for msg.level < L, since otherwise msg.sum will be above z and

thus the msg will be promoted by the root. Next if msg.level > L, it means that some node must have

observed a message msg′ whose level is L, and has further promoted msg′. But this is impossible since if

msg′.level = L, then msg′.sum ≤ SL ≤ z by our definition of L. Now given that msg.level = L, we have

msg.sum = SL.

Let l = ⌊log2
3s
4z ⌋, and we have 2l ∈ [ 3s

8z , 3s
4z ] and 2l+2 ∈ [ 3s

2z , 3s
z ]. Since for all i ≥ 0, Si is a binomial

random variable with parameter (s, 2−i), we have

E[Sl] = 2−ls ≥ 4

3
z and VAR[Sl] ≤

8

3
z

E[Sl+2] = 2−l−2s ≤ 2

3
z and VAR[Sl+2] ≤

2

3
z

We claim that with probability at most 1
4 , L /∈ [l + 1, l + 2], since by Chebyshev’s inequality:

Pr[L ≤ l] = Pr[Sl ≤ z] ≤ 24

z
≤ 1

5

Pr[L > l + 2] = Pr[Sl+2 > z] ≤ 6

z
≤ 1

20

Denote Ei as the event 2iSi /∈ [(1−ǫ)s, (1+ǫ)s], and we claim that for any i ≤ l+2, Pr[Ei] ≤ 1
40 . Since Si is

a binomial random variable with parameter (s, 2−i), We have E[2iSi] = s and VAR[2iSi] ≤ 22i2−is = 2is.

By Chebyshev’s inequality, we have Pr[Ei] = 1 − Pr[2iSi ∈ [(1 − ǫ)s, (1 + ǫ)s]] ≤ 2i

ǫ2s ≤ 3
zǫ2 = 1

40 . Next,
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Figure 11: FT lower bound topology for b ≤ 2 − c.

denote E as the event that ŝ /∈ [(1 − ǫ)s, (1 + ǫ)s], or equivalently 2LSL /∈ [(1 − ǫ)s, (1 + ǫ)s]. We have:

Pr[E ] =
∑

i

Pr[L = i] Pr[E|L = i]

=
∑

i∈[l+1,l+2]

Pr[L = i] Pr[E|L = i] +
∑

i/∈[l+1,l+2]

Pr[L = i] Pr[E|L = i]

≤ Pr[L = l + 1]Pr[El+1|L = l + 1] + Pr[L = l + 2]Pr[El+2|L = l + 2] +
∑

i/∈[l+1,l+2]

Pr[L = i]

≤ Pr[El+1 and L = l + 1] + Pr[El+2 and L = l + 2] +
1

4

≤ Pr[El+1] + Pr[El+2] +
1

4
≤ 1

20
+

1

4
<

1

3

2

C Omitted Details from Section 4

C.1 A Slightly Improved Construction

The topology in Section 4 (Figure 2) works for 1 ≤ b ≤ 10
9 . To obtain the desired FT lower bound for

1 ≤ b ≤ 2 − c (where c is any positive constant) in Theorem 2, we use the improved topology in Figure 11.

The n chains in the topology in Figure 2 are now replaced with n T-structures, where n is still a power of 2.

The ith T-structure has 3 sequences of 3
c log n nodes (total 9

c log n nodes) attached to a degree-3 node in the

middle. For the first sequence, the last node at the other end is a valued node τi. Let γα
i and γβ

i denote the

last node at the other end of each of the remaining two sequences, respectively. Both of them are flaky nodes.

Same as in Figure 2, we next construct a perfect binary tree with all the γα
i ’s being the leaves, and let node

α denote the tree root. Similarly construct a second perfect binary tree whose leaves are all the γβ
i ’s, and let

node β denote the tree root. Finally, we connect α with β using a single edge, and let α be the root of the

topology. It is easy to verify that there are N = 9
cn log n + 3n − 2 nodes in the topology. The valued node
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τi has a binary value of 1 iff Xi 6= 0 or Yi 6= 0. If Xi = 0, then the flaky node γα
i fails at the beginning of

round t0 = 6
c log n + 1. Otherwise it never fails. Similarly, γβ

i fails at the beginning of round t0 iff Yi = 0.

C.2 A Formal Framework for Reasoning about Reductions to SUM

To prepare for our formal reasoning next, we need to develop a simple formal framework. Since FT com-

munication complexity has not been formally studied before, many of the concepts in this framework need

to be defined from scratch. This formal framework will also be used later for the proofs in Appendix D and

Appendix F.3. For that reason, the framework developed here will be more general than what is needed for

proving the results in Section 4.

Rounds and failures. The execution of the SUM oracle protocol starts at round 1. We sometimes for conve-

nience also discuss round 0, during which the SUM protocol does nothing. Note that one can assume, without

loss of generality, that all failures happen at the beginning of various rounds:7 If a node v fails sometime

within round r, since v can (locally) broadcast at most one message in a round, the failure can be viewed

as happening at the beginning of round r + 1 if the failure occurs after v sends the message. Otherwise the

failure can be viewed as happening at the beginning of round r.8 Thus from now on, we will assume that all

failures happen at the beginning of various rounds. If a node fails at the beginning of round r, we say that the

failure time of that node is round r.

Simulating a node. To properly simulate a node (i.e., simulate the execution of the SUM oracle protocol on

that node) in a certain round, Alice (Bob) needs to feed all necessary parameters to the oracle protocol running

on that node. The execution of a randomized oracle protocol on a node in a given round is uniquely determined

by the (public) coin flips, the topology (since the topology is known), the id of the node, the (initial) value of

the node, the failure time of the node (i.e., a failed node should not send out messages and the oracle protocol

should not be invoked on such a node), and all the incoming messages to this node since round 1. Alice can

easily generate the coin flips, and she already knows the topology and node id. For some nodes, Alice can

uniquely determine their values and failure time based on Alice’s input X. Finally, the incoming messages

to a node v will have to be obtained via Alice’s simulation of v’s neighbors or directly from Bob if β is the

sender of that message. Recall that in a round, a node first performs some local computation, and then does

either a send or a receive. In particular, the potential message received by a node can only affect its behavior

starting from the next round, since the node does not do any further local computation in the current round

after the receive operation. Thus regardless of whether v does a send or receive in round r, to simulate v in

round r, we (only) need all the incoming messages to v from round 1 to round r − 1 (inclusive).

Epicenters and their occurrence time. The following concepts are always defined with respect to a given

input X of Alice’s. A node v in G is a value epicenter if v’s value is not uniquely determined by X. Namely

given X, there exists Bob’s inputs Y and Y ′ such that v’s value is different under the simulated execution of

the SUM oracle protocol (used in the reduction) for (X,Y ) and (X,Y ′). A node v is a failure epicenter if v
is not already a value epicenter and if v’s failure time is not uniquely determined by X. Value epicenters and

failure epicenter are all called epicenters.

The occurrence time of a value epicenter v is defined to be round 1. The occurrence time of a failure

epicenter v is defined to be v’s earliest failure time, across all valid Y ’s given the current X. To get some

intuition behind the occurrence time, consider a failure epicenter v. Suppose that given X, the only possible

inputs to Bob are Y and Y ′. Imagine that v fails at the beginning of round 3 if Bob’s input is Y , and fails at

the beginning of round 8 if Bob’s input is Y ′. Since Alice does not know Bob’s input, starting from round 3,

7In other words, by injecting failures only at the beginning of various rounds, our failure adversary in Section 4 has already fully

utilized the flexibility on failure time.
8For wired network settings with point-to-point communication, this assumption will no longer be without of loss of generality.

While all our final results will still hold without any modification, the formal framework needs to be slightly different.
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Alice no longer knows whether v is still alive and thus can no longer simulate v. This also explains why a

value epicenter v has an occurrence time of round 1 — Alice cannot simulate v even for round 1.

Spoil paths and spoiled nodes. All the following concepts are still with respect to a given input X of Alice’s.

If a node’s failure time r is uniquely determined by X, we say that the node fails stably at the beginning of

round r. We also call such a failure a stable failure. A spoil path from an epicenter u0 (occurring at round

r0) to a node v is a sequence of nodes u0, u1, u2, ..., uk, v where

• for 0 ≤ i ≤ k, ui 6= α and ui 6= β,

• v is uk’s neighbor and ui is ui−1’s neighbor for 1 ≤ i ≤ k,

• v has not failed stably before the beginning of round r0 + k + 2, and ui has not failed stably before the

beginning of round r0 + i+1 for 0 ≤ i ≤ k. Intuitively, this enables ui to potentially send a message to

ui+1 (and also ui+1 to receive this message) in round r0 + i+1. In turn, starting from round r0 + i+2,

ui+1’s behavior may potentially be affected by this message.

We define the length of a spoil path u0, u1, u2, ..., uk, v to be k +1. Intuitively, a spoil path is a potential path

for u0 to causally affect v, without going through α or β. Since Alice (Bob) will send to the other party all

messages sent by α (β), paths going through α (β) are already taken care of. We intentionally define spoil

paths in such a way that they can only be “blocked” by stable failures. This makes this definition consistent

with the following intuition: If a node on a spoil path fails and if that failure is not a stable failure, then that

node must be an epicenter itself and will already cause the spreading of spoiled nodes. Thus intuitively, such

a non-stable failure can never block the spreading of spoiled nodes. The spoil distance of a node v from an

epicenter u0 occurring at round r0 is simply the length of the shortest spoil path from u0 to v, or infinite if

there is no such spoil path. For any epicenter u0, we also define the spoil distance of u0 from itself to be

0. For any given round r, a node v is spoiled in round r with respect to Alice’s input X if v is within spoil

distance of r − r0 hops from some epicenter occurring at round r0 where r0 ≤ r. By such definition, an

epicenter with occurrence time of r becomes first spoiled in round r, which is consistent with the intuition.

We use SA,X(r) to denote the set of all spoiled nodes at round r with respect to Alice’s input X. We will

prove in the next section that in each round r, Alice with input X can simulate all unspoiled nodes (i.e., all

nodes in SA,X(r)).
We similarly define the notion of epicenters, spoil paths, spoiled nodes, and SB,Y (r) for Bob.

The simulatability lemma. Given the above formal framework, we can now prove the following simple but

useful lemma which we will repeatedly invoke later.

Lemma 12 Let X be Alice’s input and Y be Bob’s. Let R be any positive integer where α ∈ SA,X(R) and

β ∈ SB,Y (R). Assume that Alice (Bob) always forwards to the other party the message sent by α (β) in a

round whenever Alice (Bob) is able to simulate the execution of the SUM oracle protocol on α (β) for that

round. Then for all 0 ≤ r ≤ R, Alice can properly simulate the execution of the SUM oracle protocol on all

nodes in SA,X(r) for round r and Bob can properly simulate all nodes in SB,Y (r) for round r.

Proof: We do an induction on r. First, α ∈ SA,X(R) and β ∈ SB,Y (R) imply α ∈ SA,X(r) and β ∈ SB,Y (r)
for all 0 ≤ r ≤ R. SA,X(0) simply contains all nodes, since there are no epicenters occurring in round 0.

Clearly, Alice can simulate all nodes for round 0 since the SUM protocol does nothing in round 0 and no

failures happen in round 0. Similarly, for round 0 Bob can simulate all nodes in SB,Y (0).
Assume that the claim holds for round r, and consider any node v ∈ SA,X(r + 1). We distinguish two

cases:

• v is not an epicenter for Alice’s input X. Then Alice can uniquely determine both the (initial) value

and the failure time of v. If the failure time is round r + 1 or earlier, then Alice trivially simulates v in

round r + 1 by doing nothing and we are done. Otherwise Alice knows that v is alive in round r + 1.
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• v is an epicenter for Alice’s input X. We claim that it is impossible for the occurrence time of this

epicenter to be round r + 1 or earlier, since otherwise v would have been spoiled in round r + 1 and

thus would not be in SA,X(r + 1). Given that the occurrence time is round r + 2 or later, it means

that the occurrence time is not round 1. Thus v is not a value epicenter and Alice must know v’s initial

value. Furthermore, while Alice cannot determine v’s exact failure time, Alice knows for sure that the

failure time of v is round r + 2 or later, and that v is alive in round r + 1.

Now we only need to prove that Alice can simulate v in round r + 1, given that Alice knows v’s initial value

and that v is alive in round r + 1.

We trivially have v ∈ SA,X(r) and by inductive hypothesis, Alice can simulate v from round 1 to r
(inclusive). It thus suffices to prove that Alice can generate the potential message that v receives in round

r from some neighbor u, so that Alice can simulate v in round r + 1. We distinguish three cases for u.

If u is β and since β ∈ SB,Y (r), by inductive hypothesis, Bob can properly simulate β for round r. By

condition of the lemma, Bob must have forwarded the message from β to Alice. Similarly if u is α and since

α ∈ SA,X(r), Alice can properly simulate α for round r and generate the message herself. Finally, if u 6= α
and u 6= β, we first show that u must be in SA,X(r), via a contradiction. Since u sends a message in round r,

u must have not failed in round r or earlier. In turn, u must have not failed stably in round r or earlier. Thus

if u /∈ SA,X(r) (i.e., u is spoiled in round r), then v must be spoiled in round r + 1, which contradicts with

v ∈ SA,X(r + 1). Now given that u ∈ SA,X(r), by inductive hypothesis Alice can simulate u for round r
and generate u’s message locally. Thus Alice has all the information needed to simulate v for round r + 1.

Similar arguments apply to Bob. 2

C.3 Proof for Theorem 2 in Section 4

Leveraging the previous formal framework, we can now prove Theorem 2 in Section 4.

Lemma 13 Consider the topology, valued nodes (with their values), and flaky nodes (with their failure times),

as constructed in Appendix C.1. Under this construction and under R = 12
c log n + log n, for all possible

input X of Alice’s, we have α ∈ SA,X(R). Similarly, for all possible input Y of Bob’s, we have β ∈ SB,Y (R).

Proof: Without loss of generality, we prove α ∈ SA,X(R). With respect to X, there are only two kinds of

epicenters. The flaky node γβ
i (1 ≤ i ≤ n) is always a failure epicenter, occurring at round t0 = 6

c log n + 1.

One can easily verify that the spoil distance from γβ
i to α is at least 6

c log n + log n. If Xi = 0, then τi is

a value epicenter with respect to X. The spoil distance from τi to α is at least 12
c log n + log n, since the

shortest possible spoil path (of length 6
c log n + log n) is blocked by the stable failure of γα

i . 2

Lemma 14 Consider any positive constant c, any b ∈ [1, 2 − c], and any sufficiently large integer N . Let

n be the largest integer such that n is a power of 2 and 9
cn log n + 3n − 2 ≤ N . There exists a connected

topology G with N nodes, such that:

Rsyn,ft
0 (SUM, G, b) ≥ 1

2
Rsyn

0 (UNIONSIZEn, bN)

Rsyn,ft
ǫ, 1

3

(SUM, G, b) ≥ 1

2
Rsyn

ǫ, 1
3

(UNIONSIZEn, bN)

Proof: We first prove the lemma for N = 9
cn log n + 3n − 2. We construct G as in Figure 11, and let

R = 12
c log n + log n. Under the failure adversary constructed in Appendix C.1, let λ = maxG′∈G Λ(G′)

where G is the set of topologies that have ever appeared during the execution. We first prove that R ≥ (2−c)λ
for all n ≥ 2. Since in our construction all failures are injected at the same time, G actually only contains two

topologies: one before failures and one after failures. It is easy to verify that for either G′ ∈ G, Λ(G′) is at
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most 6
c log n+2 log n+1. Here the 2 log n term takes care of the need to avoid collision on the internal trees

nodes — otherwise it would be only log n rounds. We now have:

R

λ
≥

12
c log n + log n

6
c log n + 2 log n + 1

> 2 − c

Next we reduce the UNIONSIZEn problem (in the synchronous rounds setting) to SUM. Consider any

(black-box) oracle protocol for SUM. Given input X to Alice in UNIONSIZEn , Alice will simulate the exe-

cution of the oracle protocol on all nodes in SA,X(r) at round r for 0 ≤ r ≤ R. Similarly, given input Y to

Bob, Bob simulates all nodes in SB,Y (r). Furthermore, whenever α sends a message, Alice will forward that

message to Bob. The same applies to Bob and β. Note that it is possible for Alice and Bob to send each other

a message simultaneously in one round. By Lemma 13 and 12, such simulation is possible. When the oracle

protocol terminates, which must be no later than round (2− c)λ ≤ R, α and thus Alice will know the final re-

sult of the sum. By our construction, the zero-error result of the sum on G exactly equals UNIONSIZE(X,Y ),
and thus any (ǫ, δ)-approximate result of the sum is also an (ǫ, δ)-approximate result of UNIONSIZE(X,Y ).
The total amount of communication between Alice and Bob is exactly the total number of bits sent by α and

β combined in the above simulation. Thus either α or β must have sent at least half of the total number of

bits sent by Alice and Bob. Together with the trivial property that λ ≤ N , we now have:

Rsyn,ft
0 (SUM, G, b) ≥ 1

2
Rsyn

0 (UNIONSIZEn , bλ) ≥ 1

2
Rsyn

0 (UNIONSIZEn , bN)

Rsyn,ft
ǫ, 1

3

(SUM, G, b) ≥ 1

2
Rsyn

ǫ, 1
3

(UNIONSIZEn , bλ) ≥ 1

2
Rsyn

ǫ, 1
3

(UNIONSIZEn , bN)

We still need to prove the lemma for N > 9
c n log n + 3n − 2. Let N1 = 9

cn log n + 3n − 2. We first

construct a connected topology G1 with N1 nodes as in Figure 11. Next we add N2 = N −N1 = O(n log n)
extra nodes to G1 to obtain the topology G with N nodes. Those N2 nodes will always have a value of 0 and

will never fail. Since we want G to be connected, we need to attach those N2 nodes to some existing nodes

in G1. We want to do so carefully so that i) Lemma 13 continues to hold after adding those nodes, and ii)

the length of an aggregation round is not affected by adding those nodes. These two properties will allow our

earlier proof (for N = 9
c n log n + 3n − 2) to carry over without modification. Specifically, we partition the

N2 nodes into n equal-sized groups, with each group having O(log n) nodes. We then have each group form

a binary tree of height O(log log n). Finally, we attach the root of the ith binary tree to the middle node (i.e.,

the degree-3 node) of the ith T -structure in G1.

It is trivial to verify that Lemma 13 continues to hold after adding those N2 nodes in the above way. Next

to understand why the length of an aggregation round is never affected by those extra N2 nodes, consider a

given T -structure and the binary tree attached to the middle node of that T -structure. Recall that the length

of an aggregation round is the number of rounds needed for the deterministic tree-aggregation protocol in

Section 3 to terminate. When running that protocol, the root of the binary tree here will send an aggregation

message to the middle node of the T -structure in round O(log log n). On the other hand, under any G′

in G where G is the set of topologies that have ever appeared during the execution, that middle node will

never receive any other aggregation message before round 3
c log n − 1. Thus this extra binary tree i) is itself

not a bottleneck for the tree-aggregation protocol to terminate, and ii) never potentially collides with other

aggregation messages. In turn, this means that the length of an aggregation round in the execution under G is

the same as the length of an aggregation round in the execution under G1.
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With the above two properties in G, we now know that our earlier proof for N = 9
cn log n + 3n − 2

carries over to N > 9
c n log n + 3n − 2 without modification. 2

Proof for Theorem 2: For any sufficiently large N , consider the N -node connected topology G as con-

structed by Lemma 14. We trivially have:

Rsyn,ft
0 (SUMN , b) ≥ Rsyn,ft

0 (SUM, G, b) ≥ 1

2
Rsyn

0 (UNIONSIZEn , bN)

Rsyn,ft
ǫ, 1

3

(SUMN , b) ≥ Rsyn,ft
ǫ, 1

3

(SUM, G, b) ≥ 1

2
Rsyn

ǫ, 1
3

(UNIONSIZEn , bN)

By Lemma 14, the n in the above inequalities is the largest integer that is a power of 2 and satisfies 9
c n log n+

3n − 2 ≤ N . Thus we have N = Θ(n log n). Applying Corollary 10 gives:

Rsyn,ft
0 (SUMN , b) ≥ 1

2
Rsyn

0 (UNIONSIZEn, bN) ≥ 1

2
Rsyn

0 (UNIONSIZEn , (2 − c)N)

= Ω

(

n

log n

)

= Ω

(

N

log2 N

)

Rsyn,ft
ǫ, 1

3

(SUMN , b) ≥ 1

2
Rsyn

ǫ, 1
3

(UNIONSIZEn, bN) ≥ 1

2
Rsyn

ǫ, 1
3

(UNIONSIZEn , (2 − c)N)

= Ω

(

1

ǫ2 log n

)

= Ω

(

1

ǫ2 log N

)

, for ǫ = Ω

(√
log N√

N

)

2

D Proof for Theorem 3 in Section 5

The proofs in this section are based on the formal framework described in Appendix C.2.

Lemma 15 Consider the topology, valued nodes (with their values), and flaky nodes (with their failure times),

as constructed in Section 5. Under this construction and under R = qn, for all possible input X of Alice’s,

we have α ∈ SA,X(R). Similarly, for all possible input Y of Bob’s, we have β ∈ SB,Y (R).

Proof: Without loss of generality, we prove α ∈ SA,X(R). We exhaustively consider all the epicenters with

respect to Alice’s input X. First, if Xi = 0 (implying Yi must be 0 or 1), then τi, σβ
i , and γβ

i are the only

epicenters on the ith chain. The spoil distance from all these epicenters to α is infinite, since γα
i fails stably

at the beginning of round t0 and thus blocks the only possible spoil path.

Next if Xi = q−1, then Yi must be q−1 or q−2. If q−1 is even, then σβ
i (potentially occurring at round

tq−2) and γβ
i (potentially occurring at round tq−1) are the only epicenters on the ith chain. Again, γα

i fails

stably at the beginning of round tq−1 and thus blocks the only possible spoil path from those two epicenters to

α. If q − 1 is odd, then σβ
i (potentially occurring at round tq−1) and γβ

i (potentially occurring at round tq−2)

are the only epicenters on the ith chain. Since σα
i fails stably at the beginning of round tq−1, the only possible

spoil path from γβ
i to α is blocked. The epicenter of σβ

i has an occurrence time of tq−1 = qn + 1 > R. Thus

it can never cause α to be spoiled in round R.

Finally if Xi is even and 0 < Xi < q − 1, then Yi must be odd and thus σβ
i is the only epicenter on the

ith chain, with an occurrence time of round tXi−1. (Recall that the occurrence time is the earliest possible

failure time.) But since Xi is even, γα
i fails stably at the beginning of round tXi

. This failure blocks the only

possible spoil path from σβ
i to α. The case where Xi is odd and 0 < Xi < q − 1 is similar. 2

28



Lemma 16 Consider any b ≥ 1 and any sufficiently large integer N . Let n be the largest integer such that

2n2 + 3n + 2 ≤ N and let q = 5b. There exists a connected topology G with N nodes, such that:

Rsyn,ft
0 (SUM, G, b) ≥ 1

2
Rsyn

0 (UNIONSIZECPn,q , bN)

Rsyn,ft
ǫ, 1

5

(SUM, G, b) ≥ 1

2
Rsyn

ǫ, 1
5

(UNIONSIZECPn,q , bN)

Proof: We first prove the lemma for N = 2n2 +3n+2. We construct G as in Section 5. Let R = tq−1−1 =
qn = 5bn. Under our constructed failure adversary, let λ = maxG′∈G Λ(G′) where G is the set of topologies

that have ever appeared during the execution. We first prove that R ≥ bλ. It is easy to verify that even if

we pessimistically assume that all messages to α and β have to be sent sequentially one by one, we still have

λ ≤ (2n + 3) + (n + 1) + n = 4n + 4. Thus we have R = 5bn ≥ bλ for sufficiently large n.

Next we reduce the UNIONSIZECPn,q problem (in the synchronous rounds setting) to SUM, which will

prove the lemma for N = 2n2+3n+2. This part of the proof is exactly the same as in the proof of Lemma 14,

after substituting Lemma 13 with Lemma 15. Thus we do not repeat it here.

Finally, we still need to prove the lemma for N > 2n2 + 3n + 2. Let N1 = 2n2 + 3n + 2. We first

construct a connected topology G1 with N1 nodes as in Section 5. Next we add N2 = N −N1 = O(n) extra

nodes to G1 to obtain the topology G with N nodes. Those N2 nodes will always have a value of 0 and will

never fail. Same as in the proof of Lemma 14, We want to add those N2 nodes carefully so that i) Lemma 15

continues to hold, and ii) the length of an aggregation round is not affected. To do so, we partition the N2

nodes into n groups of size O(1). All nodes in the ith group have a degree of 1 and directly attach to the n
2 th

node (from left to right) on the ith chain in G1.

It is trivial to verify that Lemma 15 continues to hold after adding those N2 nodes in the above way. For

the length of an aggregation round, note that each group has only O(1) nodes and thus all nodes in the group

will finish sending their aggregation messages by round O(1). On the other hand, the n
2 th node on a chain

will not receive any other aggregation messages before round n
2 − 1, under any G′ in G where G is the set of

topologies that have ever appeared during the execution. Same as in the proof of Lemma 14, these properties

ensure that our earlier proof for N = 2n2 + 3n + 2 carries over to N > 2n2 + 3n + 2 without modification.

2

Proof for Theorem 3: Since the theorem trivially holds for b > N , we only need to prove the theorem

for b ≤ N . For any sufficiently large N , consider the N -node connected topology G as constructed by

Lemma 16. We trivially have:

Rsyn,ft
0 (SUMN , b) ≥ Rsyn,ft

0 (SUM, G, b) ≥ 1

2
Rsyn

0 (UNIONSIZECPn,q , bN)

Rsyn,ft
ǫ, 1

5

(SUMN , b) ≥ Rsyn,ft
ǫ, 1

5

(SUM, G, b) ≥ 1

2
Rsyn

ǫ, 1
5

(UNIONSIZECPn,q , bN)

By Lemma 16, in the above inequalities, q = 5b and n is the largest integer satisfying 2n2 + 3n + 2 ≤ N .

Thus we have N = Θ(
√

n). Applying Theorem 4 gives:

Rsyn,ft
0 (SUMN , b) ≥ 1

2
Rsyn

0 (UNIONSIZECPn,q , bN)

= Ω

(

n

q2 log n

)

= Ω

( √
N

b2 log N

)

Rsyn,ft
ǫ, 1

5

(SUMN , b) ≥ 1

2
Rsyn

ǫ, 1
5

(UNIONSIZECPn,q , bN)

= Ω

(

1

ǫq2 log n

)

= Ω

(

1

ǫb2 log N

)

, for ǫ = Ω

(

1
4
√

N

)
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Figure 12: The alternative form of the cycle promise for q = 4, used only in Appendix E.

2

E Communication Complexity of UNIONSIZECP

This section proves upper/lower bounds on the communication complexity of UNIONSIZECP. For discussion

in this section, it will be convenient to consider an alternative form of the cycle promise (Figure 12). Consider

any two length-n strings X and Y where the characters in the strings are integers in [0, q − 1]. X and

Y satisfy the alternative form of the cycle promise iff for all i’s where 1 ≤ i ≤ n, either Yi = Xi or

Yi = (Xi + 1) mod q.

Given X ′ and Y ′ satisfying the original cycle promise, Alice and Bob can always locally generate X
and Y , such that X and Y satisfy the alternative form of the cycle promise and UNIONSIZECP(X,Y ) =
UNIONSIZECP(X ′ , Y ′). Specially to do so, Alice sets Xi = X ′

i/2 for even X ′
i and Xi = q− (X ′

i + 1)/2 for

odd X ′
i . Bob sets Yi = (q−Y ′

i /2) mod q for even Y ′
i and Yi = (Y ′

i +1)/2 for odd Y ′
i . Clearly, we have Xi = 0

iff X ′
i = 0, and Yi = 0 iff Y ′

i = 0, which implies that UNIONSIZECP(X,Y ) = UNIONSIZECP(X ′ , Y ′). It is

easy to verify that X and Y satisfy the alternative form of the cycle promise. Finally, since the above mapping

from X ′ (Y ′) to X (Y ) is a bijection, one can also construct a reverse mapping from X (Y ) to X ′ (Y ′). Given

such mappings in both directions, we trivially know that the communication complexity of UNIONSIZECP

with the original cycle promise is exactly the same as the communication complexity of UNIONSIZECP with

the alternative form of the cycle promise.

Throughout this section, we will always consider UNIONSIZECP under this alternative form of the cycle

promise.

E.1 An O(n
q
) Upper Bound Protocol

We first present our O(n
q ) upper bound (when q ≤ n) protocol for Rsyn

0 (UNIONSIZECPn,q, poly(n)). Given

input X to Alice, let j (0 ≤ j ≤ q − 1) be the integer with the smallest occurrence count in X. (If

there are multiple such j’s, simply pick an arbitrary one.) Alice first sends Bob the value of j and the set

Z = {i |Xi = j}. This takes at most O(log q + n
q log n) bits in one round, or O( log q

log n + n
q ) bits in poly(n)

rounds [19]. For q ≤ n, this becomes O(n
q ). Bob will now know both Xi and Yi for all i ∈ Z . In particular,

if j = 0 or j = q − 1, then Bob can already determine {i |Xi = Yi = 0}, and can locally compute the final

result. If j 6= 0 and j 6= q − 1, then for any index i′ /∈ Z , Bob knows that Xi′ 6= j. Thus if Yi′ = j + 1, then

Xi′ must be j + 1 as well. This observation enables one to apply the following trick. Alice locally calculates

hA = |{i′ | i′ /∈ Z and j + 1 ≤ Xi′ ≤ q − 1}| and sends hA to Bob, using log n bits in one round, or O(1)
bits in poly(n) rounds [19]. Bob calculates hB = |{i′ | i′ /∈ Z and (j + 1 ≤ Yi′ ≤ q − 1 or Yi′ = 0)}|. Given

that Xi′ 6= j for i′ /∈ Z , one can easily verify from the cycle promise that hB −hA is exactly the total number

of indices i where Xi = Yi = 0. The result for UNIONSIZECP(X,Y ) is thus n − (hB − hA).
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E.2 Proof for Theorem 4 — Lower Bound via a Reduction from DISJOINTNESSCP

To lower bound the communication complexity of UNIONSIZECP, we will reduce from a new DISJOINT-

NESSCP problem, which is the natural extension of the standard DISJOINTNESS problem on binary strings [24].

In DISJOINTNESSCPn,q (q ≥ 2), again Alice and Bob each have a length-n string X and Y as input, where

the characters in the strings are integers in [0, q − 1]. X and Y here satisfy the alternative form of the cycle

promise as in UNIONSIZECP. Alice and Bob aim to determine whether there exists any i where Xi = 0
and Yi = 0, and they output 0 iff there exists such i. For convenience later, different from UNIONSIZECP,

for DISJOINTNESSCP we require both Alice and Bob to know the final result. Recall from Appendix A that

the notation R0,δ simply means Rǫ,δ with ǫ = 0. The next section will prove the following theorem on the

communication complexity of DISJOINTNESSCP, via an information theoretic approach [4]:

Theorem 17 R0(DISJOINTNESSCPn,q ) = Ω( n
q2 ) − O(log n) and R0, 1

5

(DISJOINTNESSCPn,q ) = Ω( n
q2 ) −

O(log n).

Using the above theorem, one can obtain a lower bound on the communication complexity of UNIONSIZECP,

under the setting without synchronized rounds, via a direct reduction:

Theorem 18 R0(UNIONSIZECPn,q) = Ω( n
q2 )−O(log n) and Rǫ, 1

5

(UNIONSIZECPn,q) = Ω( 1
ǫq2 )−O(log 1

ǫ )

for ǫ = Ω( 1√
n
).

Proof: We first prove the theorem for ǫ ≥ 1√
2n

. R0(UNIONSIZECPn,q) = Ω( n
q2 ) − O(log n) follows from

a reduction from DISJOINTNESSCPn,q . Consider any given protocol for UNIONSIZECPn,q . Given inputs X
and Y to DISJOINTNESSCPn,q , Alice and Bob directly invoke the protocol for UNIONSIZECPn,q , with X
and Y being the inputs. Alice outputs 1 iff UNIONSIZECPn,q returns n. Alice further sends Bob a single bit

to inform Bob of this result. We have:

R0(UNIONSIZECPn,q) ≥ R0(DISJOINTNESSCPn,q ) − 1 = Ω(
n

q2
) − O(log n).

Rǫ, 1
5

(UNIONSIZECPn,q) = Ω( 1
ǫq2 ) − O(log 1

ǫ ) follows from a reduction from DISJOINTNESSCP 1

2ǫ
,q.

Consider any given protocol for UNIONSIZECPn,q . Given a length- 1
2ǫ input X for DISJOINTNESSCP 1

2ǫ
,q,

Alice locally generates a length-n input X ′ by first replicating each character in X for 1
ǫ times, and then

appending 0 until the length of X ′ reaches n. This is always possible since 1
2ǫ2

≤ n. Bob generates Y ′ in a

similar way. We now have:

• If DISJOINTNESSCP 1

2ǫ
,q(X,Y ) = 1, then UNIONSIZECPn,q(X

′, Y ′) = 1
2ǫ2

.

• If DISJOINTNESSCP 1

2ǫ
,q(X,Y ) = 0, then UNIONSIZECPn,q(X

′, Y ′) ≤ 1
2ǫ2

− 1
ǫ .

One can easily verify that for all ǫ > 0, we have (1+ ǫ)( 1
2ǫ2

− 1
ǫ ) < (1− ǫ) 1

2ǫ2
. Alice can now pick any value

between (1 + ǫ)( 1
2ǫ2

− 1
ǫ ) and (1 − ǫ) 1

2ǫ2
as the threshold. Alice outputs 1 for DISJOINTNESSCP 1

2ǫ
,q(X,Y )

iff UNIONSIZECPn,q(X
′, Y ′) returns a value above that threshold. Finally, Alice sends Bob a single bit to

inform Bob of the result. We thus have:

Rǫ, 1
5

(UNIONSIZECPn,q) ≥ R0, 1
5

(DISJOINTNESSCP 1

2ǫ
,q) − 1 = Ω(

1

ǫq2
) − O(log

1

ǫ
).

We still need to cover the case for ǫ = Ω( 1√
n
) but ǫ < 1√

2n
. For such ǫ (which is necessarily Θ( 1√

n
)), we

have:

Rǫ, 1
5

(UNIONSIZECPn,q) ≥ R 1√
2n

, 1
5

(UNIONSIZECPn,q) = Ω(

√
n

q2
) − O(log n) = Ω(

1

ǫq2
) − O(log

1

ǫ
)
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2

Proof for Theorem 4: Directly combine Theorem 18 and Lemma 8. 2

E.3 Proving Theorem 17 via an Information Theoretic Approach

This section proves Theorem 17 for the DISJOINTNESSCP problem. For convenience in the proofs later, we

define DISJOINTNESSCP more formally as following:

Definition 19 (DISJOINTNESSCP) In the DISJOINTNESSCPn,q problem, Alice and Bob respectively hold X
and Y , which are two strings of length n satisfying (X,Y ) ∈ Ln

q where

Ln
q = {(X,Y ) | X ∈ Z

n
q and Y ∈ Z

n
q and (Y − X) ∈ {0, 1}n}.

The goal is to compute the function DISJOINTNESSCPn,q : Ln
q → {0, 1} defined as

DISJOINTNESSCPn,q (X,Y ) =

{

0 ∃i ∈ {1, 2, ..., n} such that Xi = Yi = 0

1 otherwise

Our proof for Theorem 17 will be almost entirely based on the information theoretic approach from [4]. In

this approach, the information complexity of a function is used to lower bound the communication complexity

of that function. Under certain conditions, it is further shown that the conditional information complexity of

a function is a lower bound on the function’s information complexity. Next, under certain conditions, the

approach establishes a direct-sum result between the conditional information complexity of a function (e.g.,

DISJOINTNESSCPn,q ) and the conditional information complexity of its constituent primitive function (e.g.,

DISJOINTNESSCP1,q ). Finally, the approach also provides some tools for reasoning about the conditional

information complexity of such constituent primitive functions. The final lower bound on communication

complexity obtained via this approach is for private-coin randomized protocols only. Since we will need

a lower bound for public-coin protocols, at the end of this section, we will apply the well-known result

from Newman [27] to convert this lower bound to a public-coin setting. Recall from Appendix A that the

notation R0,δ simply means Rǫ,δ with ǫ = 0. We define Rpri
0,δ (DISJOINTNESSCPn,q) to be the same as

R0,δ(DISJOINTNESSCPn,q), except that Rpri
0,δ is for private-coin protocols.

In the next, we first summarize the definitions and lemmas that we will use in this information theoretic

approach. All these definitions (Definition 20 to 24) and lemmas (Lemma 25 to 28) are directly adapted

from [4], and are not our contribution. See [4] for a more detailed discussion.

Definition 20 (Decomposable functions) (Adapted from [4]) If there are functions h : L1
q → {0, 1} and

g : {0, 1}n → {0, 1} such that DISJOINTNESSCPn,q(X,Y ) = g(h(X1, Y1), h(X2, Y2), ..., h(Xn, Yn)), then

we say that DISJOINTNESSCPn,q is g-decomposable with primitive h. When the context is clear, we simply

say that DISJOINTNESSCPn,q is decomposable with primitive h.

We construct g as g(x1, x2, ..., xn) = Πn
i=1xi. Then according to above definition, DISJOINTNESSCPn,q is

a decomposable function with primitive h = DISJOINTNESSCP1,q. For convenience, from now on in this

section, h stands for the function DISJOINTNESSCP1,q . Namely h(x, y) = 0 if x = y = 0, otherwise

h(x, y) = 1.

Definition 21 (Mixture of product distributions) (Adapted from [4]) For random variables Xi, Yi, and Ti

(1 ≤ i ≤ n), their joint distribution (Xi, Yi, Ti) is called a mixture of product distribution if conditioned on

Ti, Xi and Yi are independent.
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Let T = {0, 1} × {1, 2, .., q − 1}, and let Ti (1 ≤ i ≤ n) be a random variable drawn uniformly randomly

from T . Let Xi and Yi (1 ≤ i ≤ n) be two random variables depending on Ti where:

• If Ti = (0, j), then Xi = j and Yi is drawn uniformly randomly from {j, j + 1}.

• If Ti = (1, j), then Yi = j and Xi is drawn uniformly randomly from {j, j − 1}.

All additions and subtractions in the above are on Zq. Note that under this construction, it is impossible for

Xi = Yi = 0, which is intentional. Define ζ as the joint distribution of the above (Xi, Yi, Ti). Clearly,

conditioned on Ti, Xi and Yi are independent. Hence ζ is a mixture of product distribution for all i’s (1 ≤
i ≤ n).

Definition 22 (Collapsing distribution) (Adapted from [4]) A distribution on Ln
q is called a collapsing dis-

tribution for DISJOINTNESSCPn,q with respect to h, if DISJOINTNESSCPn,q is g-decomposable with primi-

tive h, and if for all (X,Y )’s in the support of that distribution, all j’s where 1 ≤ j ≤ n, and all (x, y) ∈ L1
q ,

the following holds:

g(h(X1, Y1), ..., h(Xj−1, Yj−1), h(x, y), h(Xj+1, Yj+1), ..., h(Xn, Yn)) = h(x, y)

Define η = ζn, and let (X,Y, T ) ∼ η. Consider the marginal distribution ηXY of (X,Y ) in η. Since

(Xi, Yi, Ti) ∼ ζ , Xi and Yi cannot simultaneously be 0, which means h(Xi, Yi) = 1. Hence for all (X,Y )’s
in the support of ηXY , we have h(Xi, Yi) = 1 for all i’s. This implies that g(..., h(x, y), ...) = h(x, y), and

thus ηXY is a collapsing distribution for DISJOINTNESSCPn,q.

Definition 23 (Conditional information cost) (Adapted from [4]) Let P be any two-party private-coin ran-

domized protocol for DISJOINTNESSCP1,q. Let (Xi, Yi, Ti) ∼ ζ , which is a mixture of product distributions

on L1
q × T . Given Xi and Yi as the input to P, the transmitted messages in P can be viewed as a random

variable P(Xi, Yi). The conditional information cost of P with respect to ζ (denoted as CICζ(P)) is the

mutual information between (Xi, Yi) and P(Xi, Yi) conditioned on Ti. Or formally:

CICζ(P) =
∑

t∈T
I({(Xi, Yi);P(Xi, Yi)}|Ti = t) Pr[Ti = t].

Here I stands for the standard notion of conditional mutual information [4].

Definition 24 (Conditional information complexity) (Adapted from [4]) Let P be any two-party private-

coin randomized protocol for DISJOINTNESSCP1,q, such that for any input (x, y), P can generate the correct

result with probability at least 1− δ. The δ-error conditional information complexity of DISJOINTNESSCP1,q

with respect to ζ , denoted as CICζ,δ(DISJOINTNESSCP1,q), is defined as the minimum conditional informa-

tion cost across all possible P’s satisfying the earlier property.

Lemma 25 (Adapted from [4]) Consider DISJOINTNESSCPn,q , and the distribution ζ , η, and ηXY as defined

earlier. We already know DISJOINTNESSCPn,q is a decomposable function with primitive DISJOINTNESSCP1,q,

ζ is a mixture of product distribution on L1
q×T , and ηXY is a collapsing distribution for DISJOINTNESSCPn,q

with respect to DISJOINTNESSCP1,q. We must have:

Rpri
0,δ (DISJOINTNESSCPn,q) ≥ n × CICζ,δ(DISJOINTNESSCP1,q).

Lemma 26 (Adapted from [4]) Let Z be a random variable uniformly randomly distributed on {z1, z2}, and

let Φ(z1) and Φ(z2) be two additional random variables. If Φ(z1) and Φ(z2) are both independent of Z , then

we have:

I(Z; Φ(Z)) ≥ H2(Φz1
,Φz2

).

Here Φzi
is the distribution of Φ(zi), and H is the Hellinger distance [4] between two distributions.
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Lemma 27 (Adapted from [4]) For any two-party private-coin randomized protocol P, let random variable

P(x, y) denote the transmitted message in P under input x and y. Let Px,y denote the distribution of P(x, y).
For all x, x′, y, and y′, we have:

2H2(Px,y,Px′,y′) ≥ H2(Px,y,Px′,y) + H2(Px,y′ ,Px′,y′).

Lemma 28 (Adapted from [4]) Let P be any private-coin randomized protocol for DISJOINTNESSCP1,q,

such that for any input (x, y), P can generate the correct result with probability at least 1 − δ. For any two

input pairs (x, y) ∈ L1
q and (x′, y′) ∈ L1

q where DISJOINTNESSCP1,q(x, y) 6= DISJOINTNESSCP1,q(x
′, y′),

we have:

H2(Px,y,Px′,y′) ≥ 1 − 2
√

δ.

Having introduced the definitions and lemmas needed for the information theoretic arguments, we are

now ready to prove Theorem 17.

Theorem 29 Rpri
0,δ (DISJOINTNESSCPn,q) = Ω( n

q2 ) for any positive constant δ ≤ 0.22.

Proof: Let P denote the optimal protocol with the minimum conditional information cost, across all possible

two-party private-coin randomized protocols for DISJOINTNESSCP1,q where for any input (x, y), the protocol

can always generate the correct result with probability at least 1 − δ.

By Lemma 25 and Definition 23 and 24, we have:

Rpri
0,δ (DISJOINTNESSCPn,q)

≥ n × CICζ,δ(DISJOINTNESSCP1,q)

= n × CICζ(P)

=
n

2(q − 1)

∑

t∈T
I({X1, Y1;P(X1, Y1)} | T1 = t)

=
n

2(q − 1)

q−1
∑

j=1

(I({X1, Y1;P(X1, Y1)} | T1 = (0, j)) + I({X1, Y1;P(X1, Y1)} | T1 = (1, j)))

Conditioned on T1 = (0, j), (X1, Y1) is uniformly distributed on {(j, j), (j, j + 1)}. Let z1 = (j, j),
z2 = (j, j + 1), and Z = (X1, Y1). Lemma 26 tells us:

I({X1, Y1;P(X1, Y1)} | T1 = (0, j)) ≥ H2(Pj,j ,Pj,j+1)

Similarly, we have:

I({X1, Y1;P(X1, Y1)} | T1 = (1, j)) ≥ H2(Pj,j ,Pj−1,j)

Apply Cauchy inequality and triangle inequality, and we have:

Rpri
0,δ (DISJOINTNESSCPn,q) ≥ n

2(q − 1)

q−1
∑

j=1

(H2(Pj,j ,Pj,j+1) + H2(Pj,j,Pj−1,j))

≥ n

4(q − 1)2





q−1
∑

j=1

(H(Pj,j,Pj,j+1) + H(Pj,j,Pj−1,j))





2

≥ n

4(q − 1)2





q−1
∑

j=1

H(Pj,j+1,Pj−1,j)





2

=
n

4(q − 1)2
(H(P1,2,P0,1) + H(P2,3,P1,2) + ... + H(Pq−1,0,Pq−2,q−1))

2

≥ n

4(q − 1)2
H2(Pq−1,0,P0,1)

34



Next apply Lemma 27, and we have:

Rpri
0,δ (DISJOINTNESSCPn,q) ≥ n

8(q − 1)2
H2(Pq−1,0,P0,0) +

n

8(q − 1)2
H2(Pq−1,1,P0,1)

≥ n

8(q − 1)2
H2(Pq−1,0,P0,0)

Finally, apply Lemma 28, and we have:

Rpri
0,δ (DISJOINTNESSCPn,q) ≥ n

8(q − 1)2
(1 − 2

√
δ) = Ω

(

n

q2

)

�

Proof for Theorem 17: According to Newman [27],9 we have:

Rpri
0,0.22(DISJOINTNESSCPn,q) ≤ R0,0.2(DISJOINTNESSCPn,q) + O(log n + log log q)

Apply Theorem 29 and we have:

R0,0.2(DISJOINTNESSCPn,q) = Ω

(

n

q2

)

− O (log n + log log q)

This lower bound is only non-trivial when q <
√

n
log n . Thus we can discard the log log q term for clarity:

R0,0.2(DISJOINTNESSCPn,q) = Ω

(

n

q2

)

− O (log n)

Finally, apply Lemma 7 and we have R0(DISJOINTNESSCPn,q) = Ω
(

n
q2

)

− O (log n) as well. 2

F Omitted Details from Section 6

This section proves the completeness theorem in Section 6. We will present the proof in a top-down fashion,

and elaborate the technical lemmas after describing the proof of the theorem. Following is a concise roadmap:

• Appendix F.1 proves Theorem 5 (i.e., the completeness theorem) in Section 6, while invoking Lemma 30.

• Appendix F.2 proves Lemma 30, while invoking Lemma 32.

• Appendix F.3 proves Lemma 32.

F.1 Proof for Theorem 5 in Section 6

Preparing for the proof. Recall the following formal notations from Section 6. Let X be Alice’s input

domain, and Y be Bob’s. Let L ⊆ X × Y be the set of all valid input pairs, given the promise in Π. If Π
has no promise, then L = X × Y . Given an input pair (X,Y ) ∈ L, an oblivious reduction has a reference

setting specifying the value of each node in G. For any node τ where τ 6= α and τ 6= β, we define τ ’s

(value) assignment graph to be the bipartite graph where X ∪ Y are vertices and an edge (X,Y ) exists iff

9Newman’s original result was only stated for functions, while here we are dealing with the partial functions of DISJOINTNESSCP.

Nevertheless, Newman’s original proof actually holds without modification to partial functions.
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(X,Y ) ∈ L. In addition, each edge (X,Y ) has a binary label which is the value of τ in the reference setting

for (X,Y ).
With these notations in mind, consider the assignment graph of any node τ where τ 6= α and τ 6= β.

Let b′ = ⌊
√

b/3⌋, which implies b′ ≥ 2 since b ≥ 12. We partition the vertices of τ ’s assignment graph

into 2b′ disjoint subsets of X (0), Y(0), . . . , X (b′ − 1), and Y(b′ − 1) in the following way. For all integer

i ∈ [0, b′ − 3], we recursively define:

X (0) = {X | τ(X,Y ) = 0 for some (X,Y ) ∈ L}
Y(0) = {Y | τ(X,Y ) = 0 for some (X,Y ) ∈ L}

X (i + 1) = (X \ ∪i
j=0X (j)) ∩ {X | τ(X,Y ) = 1 for some (X,Y ) ∈ L where Y ∈ Y(i)}

Y(i + 1) = (Y \ ∪i
j=0Y(j)) ∩ {Y | τ(X,Y ) = 1 for some (X,Y ) ∈ L where X ∈ X (i)}

X (b′ − 1) = X \ ∪b′−2
j=0 X (j)

Y(b′ − 1) = Y \ ∪b′−2
j=0 Y(j)

Figure 9 in Section 6 illustrates these sets for a given τ for b′ = 4. Intuitively, any vertex with some 0-labeled

incidental edge belongs to X (0) or Y(0). Thus an edge (X,Y ) always has a label of 1 if X /∈ X (0) or

Y /∈ Y(0). We say that there are edges between two sets X (i) and Y(j) iff there exists some edge (X,Y ) in

the assignment graph for some X ∈ X (i) and some Y ∈ Y(j). The next section will prove the following key

lemma regarding τ ’s assignment graph:

Lemma 30 In any oblivious reduction from Π to SUM, consider any node τ in G where τ 6= α and τ 6= β.

In τ ’s assignment graph, there must be no edges labeled 1 between X (0) and Y(0), and no edges between

X (i) and Y(i) for all 1 ≤ i ≤ b′ − 2.10

Note that it is still possible for edges to exist between X (b′ − 1) and Y(b′ − 1). Intuitively, this lemma holds

because if there existed an edge (X,Y ) satisfying the property described in the lemma, then the reference

setting for (X,Y ) would need to have so many failures in G such that τ would be disconnected from the

root. Those failures are needed to ensure that Alice (Bob) can invoke the oracle on α (β) throughout the

execution (i.e., to ensure that α and β remain unspoiled). On the other hand, τ must have a value of 1 in

the reference setting for such (X,Y ). This contradicts with the requirement on the reference settings in an

oblivious reduction, which disallows disconnecting nodes with a value of 1. Next we can use this lemma to

prove the completeness theorem:

Proof for Theorem 5: By the condition in the theorem, there exists some oblivious reduction P from Π to

SUM for some topology G. Let the N − 2 nodes other than α and β in G be τ1, τ2, . . . , τN−2. Consider any

input pair (X,Y ) ∈ L. Let τi(X,Y ), α(X,Y ), and β(X,Y ) be the values of τi, α, and β in P’s reference

setting for (X,Y ), respectively. Since the zero-error SUM result under the reference setting must be the same

as Π(X,Y ) and since the reference setting never fails or disconnects nodes with a value of 1, we have:

Π(X,Y ) = α(X,Y ) + β(X,Y ) +
N−2
∑

i=1

τi(X,Y )

We intend to reduce Π to UNIONSIZECPN,b′ . To do so, Alice converts her input X for Π to a correspond-

ing input X ′ of length N for UNIONSIZECP in the following way, using only local knowledge. Let X ′
i be the

ith character in the string X ′. Alice sets the last character X ′
N to be 0. Alice next leverages P to obtain the

value of α(X,Y ), without communicating with Bob. To do so, Alice invokes P using X and then stops once

10Note that the lemma trivially holds when b′ = 2.
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P needs to invoke the SUM oracle protocol (which Alice does not have). Doing so clearly does not incur any

communication. By definition of oblivious reductions, P at this point must have decided, based on X, the

(initial) value of node α. Furthermore, this value must be the same as α(X,Y ). Alice now obtains α(X,Y )
purely based on local knowledge. Alice sets X ′

N−1 to this value. Next Alice needs to determine X ′
i for

1 ≤ i ≤ N − 2. By definition of oblivious reductions, P needs to specify the reference setting corresponding

to each input pair (X,Y ) ∈ L. Using such information in P, Alice can determine the assignment graph of

τi for 1 ≤ i ≤ N − 2. In τi’s assignment graph, Alice’s current input X must belong to exactly one of the

subsets of vertices. Let X (j) be the subset to which X belongs. Alice then sets X ′
i = j.

Bob constructs input Y ′ of length N for UNIONSIZECP similarly, using only his local knowledge of

Y . Specifically, Bob sets Y ′
N−1 = 0 and Y ′

N = β(X,Y ). Same as earlier, Bob can obtain β(X,Y ) via P,

without communicating with Alice. Next for each i where 1 ≤ i ≤ N − 2, Bob sets Y ′
i to be j where Y(j) is

the subset to which Y belongs to, in τi’s assignment graph.

We next show that X ′ and Y ′ are strings satisfying the cycle promise with q = b′. First, for i = N − 1
or N , obviously X ′

i and Y ′
i satisfy the cycle promise. Next consider any i ∈ [1, N − 2] and τi’s assignment

graph. Clearly X ′
i and Y ′

i are integer in [0, b′ − 1] for all such i. By construction of the assignment graph, we

know that there are

• no edges between X (0) and Y(j) for all j ≥ 2,

• no edges between X (b′ − 1) and Y(j) for all j ≤ b′ − 3, and

• no edges between X (j1) and Y(j2) for all 1 ≤ j1 ≤ b′ − 2 and |j1 − j2| ≥ 2.

Furthermore, Lemma 30 shows that there are no edges between X (j) and Y(j) for all 1 ≤ j ≤ b′ − 2. Since

(X,Y ) ∈ L, there must exist an edge between X and Y in τi’s assignment graph. Thus X ′
i and Y ′

i must

satisfy the cycle promise.

Finally, consider any given protocol for UNIONSIZECPN,b′ . Alice and Bob invoke that protocol using

X ′ and Y ′ as inputs, respectively. We claim that UNIONSIZECP(X ′ , Y ′) can be used directly as the result of

Π(X,Y ), since:

UNIONSIZECP(X ′, Y ′)

= |{i | (1 ≤ i ≤ N) and (X ′
i 6= 0 or Y ′

i 6= 0})|
= α(X,Y ) + β(X,Y ) + |{i | (1 ≤ i ≤ N − 2) and (X /∈ X (0) for τi or Y /∈ Y(0) for τi)}|
= α(X,Y ) + β(X,Y ) + |{i | 1 ≤ i ≤ N − 2 and τi(X,Y ) = 1}|

(by construction of the assignment graph and Lemma 30)

= α(X,Y ) + β(X,Y ) +

N−2
∑

i=1

τi(X,Y ) = Π(X,Y )

In the above derivation, we have leveraged Lemma 30 which shows that there are no edges labeled 1 between

X (0) and Y(0). Together with the construction of the assignment graph, this means that τi(X,Y ) = 1 if and

only if in τi’s assignment graph, X /∈ X (0) or Y /∈ Y(0). 2

F.2 Proof for Lemma 30

Preparing for the proof. Consider any input pair (X,Y ) ∈ L and the corresponding reference setting in the

oblivious reduction from Π to SUM. Define Φ(X,Y ) to be the execution of the SUM oracle protocol under

the reference setting and the (public) random string chosen by Alice and Bob in the oblivious reduction. For

a given node τ in G where τ 6= α and τ 6= β, we say that τ is disconnected form the root in an execution

Φ(X,Y ), if either τ fails during Φ(X,Y ), or the root and τ are no longer in the same connected component

at the end of Φ(X,Y ). We have the following trivial lemma:
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Lemma 31 For any (X,Y ) ∈ L, if τ has a value of 1 under the reference setting for (X,Y ), then in Φ(X,Y ),
τ is never disconnected from the root.

Proof: Trivially follows from the requirement on the reference settings in oblivious reductions. 2

Proof for Lemma 30: The lemma trivially holds for b′ = 2, and thus we only need to consider b′ ≥ 3 (or

equivalently b ≥ 27). We prove this lemma via a contradiction and assume that the lemma does not hold.

Intuitively, we will construct a path in τ ’s assignment graph (not a path in G) where vertices on the path are

individual inputs. Since it is a path in the assignment graph, by the definition of τ ’s assignment graph, any

two adjacent inputs on that path must form a valid input pair in L. The path will start from some vertex in

X (0) and end with some vertex in Y(0). Furthermore, all edges on the path have a label of 1, and the path

has no more than 2(b′ − 1) − 1 hops. These properties can be later used to find a contradiction.

We now present the formal proof. If the lemma does not hold, then in the assignment graph of τ , either

there is an edge labeled 1 between X (0) and Y(0), or there is an edge (which must have a label of 1) between

X (j) and Y(j) for some j ∈ [1, b′ − 2]. We claim that in either case, we can find in the assignment graph a

path X(0), Y (1), X(1), Y (2), ..., X(k), Y (k+1) for some k ∈ [0, b′ − 2], such that:

• X(i) ∈ X for 0 ≤ i ≤ k, and Y (i) ∈ Y for 1 ≤ i ≤ k + 1,

• X(0) ∈ X (0) and Y (k+1) ∈ Y(0), and

• all edges in the path have a label of 1.

If there is an edge labeled 1 between X (0) and Y(0), we simply set k = 0 and let X(0) and Y (1) be the

two endpoints of that edge, respectively. Our claim then trivially holds. If there is an edge (X,Y ) where

X ∈ X (j) and Y ∈ Y(j) for some j ∈ [1, b′ − 2], then we set k = j. First consider the case where k is

even. By the construction of the assignment graph, X must be connected with some vertex in Y(j − 1), and

that vertex must be connected to some vertex in X (j − 2), and so on. Since k is even, there must be some

path (with exactly k hops) in the assignment graph from X to some X(0) ∈ X (0). Similarly, there must be

some path (with exactly k hops) in the assignment graph from Y to some Y (k+1) ∈ Y(0). These two paths,

together with the edge between X and Y , exactly form the path needed by our claim. The case for odd k is

similar.

Given the above path X(0), Y (1), X(1), Y (2), ..., X(k), Y (k+1) (satisfying all the above properties), we

define I (where I ⊆ L) to be the set of input pairs (X,Y ) such that (X,Y ) is an edge in that path. We also

call I as the problematic input set. By construction of I , we know that τ has a value of 1 in the reference

setting for any (X,Y ) ∈ I . Lemma 32 next proves that for all (X,Y ) ∈ I , τ is disconnected from the root

by the end of the execution of Φ(X,Y ). This leads to a contradiction with Lemma 31. 2

Lemma 32 Suppose b ≥ 27. Consider the problematic input set I as constructed in the proof of Lemma 30.

For all (X,Y ) ∈ I , τ is disconnected from the root by the end of the execution of Φ(X,Y ).

F.3 Proving Lemma 32

Lemma 32 is non-trivial to prove, and we will need a lot of preparation work in this section before actually

proving that lemma.

F.3.1 Node α and β Must Remain Unspoiled

We first want to prove that node α (β) must remain unspoiled for Alice (Bob) in an oblivious reduction. To

do so, we inherit the formal framework developed in Appendix C.2. Since for each input pair (X,Y ) ∈ L,

there is a corresponding reference setting in the oblivious reduction, the notions of values and failure time
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of nodes in Appendix C.2 are still well-defined here. Namely, all we need to do is to replace the notion of

“simulated execution under (X,Y )” in Appendix C.2 by the notion of “reference setting for (X,Y )”.11 All

concepts defined in Appendix C.2 now carry over directly without modification. For example, a node v is a

value epicenter for Alice’s input X if its value in the reference setting is not uniquely determined by X.

Lemma 12 in Appendix C.3 proved that Alice can simulate all unspoiled nodes. In this section, we intend

to prove the reverse — namely, if a node is spoiled for Alice in a round r, then in an oblivious reduction,

Alice can never invoke the oracle protocol on that node for round r. Since in an oblivious reduction Alice

(Bob) is required to invoke the oracle on node α (β) throughout the execution, this in turn implies that α
(β) must remain unspoiled for Alice (Bob). Our proof will hinge upon the property of oblivious reductions,

which requires Alice (Bob) to decide, beforehand, exactly up to which rounds she (he) will invoke the oracle

on each node.

Lemma 33 Consider any oblivious reduction from Π to SUM. If a node v in G is spoiled for Alice’s input X
(Bob’s input Y ) in round r′ ≥ 0, then when Alice (Bob) has the input X (Y ), Alice (Bob) will not invoke the

oracle on v for round r′.

Proof: We only need to prove the part for Alice. Let r ∈ [1, r′] be the very first round during which v is

spoiled. It suffices to prove that Alice will not invoke the oracle on v for round r — since the oracle protocol

carries internal state from round to round, Alice can never invoke the oracle for round r′ without invoking the

oracle for earlier rounds.

If round r is the first round during which v is spoiled, there must exist some epicenter u0 with an occur-

rence time of r0 (r0 ≤ r) such that there exists a spoil path from u0 to v with exactly l = r − r0 hops. To

show that Alice will not invoke the oracle on v for round r, we use an induction on l.
If l = 0, v itself must be an epicenter occurring at round r. We consider two cases. If v is a value epicenter,

then the occurrence time is round 1 and r = 1. In an oblivious reduction, Alice needs to decide purely based

on X, the input value of each node for which she will invoke the oracle for at least one round. This means that

Alice must never invoke the oracle on v — otherwise she risks deviating from the corresponding execution

under the reference setting. Next if v is a failure epicenter, then round r (i.e., the occurrence time of the

epicenter) must be the earliest possible failure time. This means that there exists Bob’s inputs Y and Y ′, such

that v’s failure time is exactly round r in the reference setting for (X,Y ) and is after round r in the reference

setting for (X,Y ′). If Alice decides that she will invoke the oracle on v for round r, then again she risks

deviating from the execution under the reference setting since the reference setting could be (X,Y ).
For the inductive step, assume that the lemma holds for all values up to l and we consider l + 1. Again,

there exists some epicenter u0 with an occurrence time of r0 (r0 ≤ r) such that there exists a spoil path from

u0 to v with exactly l + 1 hops. Consider the node u immediately before v in this spoil path. Then the length

of the spoil path from u0 to u is exactly l hops, and u is spoiled in round r − 1, where r − 1 ≥ 1. By the

inductive hypothesis, Alice (with an input X) does not invoke the oracle on u for round r− 1. Next we prove

via a contradiction and assume that Alice still invokes the oracle on v for round r. Note that in an oblivious

reduction, the only way for Alice to obtain the potential message sent in round r − 1 by the oracle protocol

on u (u 6= β) is for Alice to invoke the oracle on u for round r − 1 herself. Thus for Alice to still invoke

the oracle on v for round r, u must have failed in round r − 1 or earlier in all the reference settings for all

possible input pairs (X,Y ) given the current X. We claim that it is impossible for u to fail exactly in round

r − 1 in all these reference settings, since otherwise this failure is a stable failure for X, and there would be

no spoil path from u0 to v via u. Thus there must exist some Y such that u fails before round r − 1. This in

turn, means that the occurrence time of the epicenter u is round r − 2 or earlier. Thus v is spoiled by u in

round r − 1 or earlier, which contradicts with the fact that r is the first round that v becomes spoiled. 2

11These two notions are actually exactly the same. In Appendix C.2 there was no need to introduce the more formal notion of

reference settings, so there we used the notion of simulated execution.
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Corollary 34 Consider any oblivious reduction from Π to SUM. For any input pair (X,Y ) ∈ L, α (β) must

remain unspoiled for Alice’s input X (Bob’s input Y ) throughout the execution of Φ(X,Y ).

Proof: Trivially follows from Lemma 33 and the fact that in an oblivious reduction, Alice (Bob) is required

to invoke the oracle on α (β) throughout the entire execution. 2

The above corollary is all we need for the proofs next — we no longer need Lemma 33.

F.3.2 Reasoning about Paths — Some Technical Lemmas

This section proves a series of technical lemmas, which we will later use to prove Lemma 32. Throughout

this section, we use I to denote the problematic input set as constructed in the proof of Lemma 30. We need

to also introduce a few new notations. For any input X of Alice’s, if node v has a stable failure, we use the

function FA(X, v) to denote v’s failure time. Otherwise FA(X, v) is undefined. Similarly define the function

FB(Y, v). Recall the definition of aggregation rounds from Section 2. We define λ(X,Y ) to be the number of

rounds in an aggregation round in Φ(X,Y ). In other words, λ(X,Y ) = maxG′∈G Λ(G′) where G is the set

of topologies that have ever appeared in the execution Φ(X,Y ). Since an oblivious reduction needs to work

for any arbitrary and black-box SUM oracle protocol whose time complexity is up to b aggregation rounds for

some given b, the oblivious reduction protocol needs to work even under the worst case where the execution

of Φ(X,Y ) takes as long as bλ(X,Y ) rounds.

Recall that Lemma 32 intends to claim that τ will be disconnected from the root in the execution of

Φ(X,Y ) for any (X,Y ) ∈ I . The main complexity in the proof comes from the fact that G can be arbitrary.

To show that τ will be disconnected from the root, we need to show that there does not exist any path for τ
to reach the root when the execution ends. A second challenge is that a failure in the reference setting may

or may not actually occur in Φ(X,Y ) — if the execution terminates before the failure time of a node v, then

node v does not actually fail in Φ(X,Y ). This is further complicated by the fact that the total number of

rounds in Φ(X,Y ) (i.e., bλ(X,Y )) depends on the value of λ(X,Y ), which is itself affected by failures.

Formal concepts for reasoning about paths in G. We next introduce some notations to reason about paths

in G. A path p in G is a sequence of nodes (v1, v2, ..., vk) such that k ≥ 2 and for all i ∈ [1, k − 1], vi+1

is a neighbor of vi in G. For any node v, v ∈ p simply means that v appears in p. A path p is a simple path

if no node appears more than once in the path. All paths we discuss will be simple paths. The length of a

path p (denoted as |p|) is defined as the number of nodes in p minus 1. Consider any node τ in G, where

τ 6= α and τ 6= β. With respect to τ , an α-path is a path from τ to α without passing β. Formally, it is a path

(v1, v2, ..., vk) satisfying v1 = τ , vk = α, and vi 6= β for all i ∈ [2, k − 1]. We similarly define β-paths with

respect to τ , as paths from τ to β without passing α. We will only discuss α-paths and β-paths with respect

to τ , and thus we will drop the phrase “with respect to τ”. As we will easily prove later, since α is the root,

any path p from τ to the root must contain an α-path or a β-path as a part.

For any α-path or β-path p, we say that p is cut in a certain round if some node (potentially τ ) in p fails

in or before that round. Given the problematic input set I , we say that an α-path or β-path p is dummy if for

all (X,Y ) ∈ I , p is cut by the end of the execution Φ(X,Y ). Otherwise p is non-dummy. A non-dummy

path p may still be cut in the execution of Φ(X,Y ) for some (X,Y ) ∈ I . Intuitively, a dummy path p can

be easily dismissed in our proofs later since we will be focusing on the input pairs in I and a dummy path

is always cut in the corresponding executions. So usually we will only need to focus on non-dummy paths.

We use P
α (Pβ) to denote the set of all non-dummy α-paths (β-paths). Note that the paths in P

α and P
β are

not necessarily edge-disjoint or vertex-disjoint. For any given non-dummy α-path or β-path p, we use P
α
<p to

denote the set of all paths in P
α whose lengths are smaller than the length of p. Similarly define P

β
<p.

For any path p and integer t, we use pA(X, t) to denote the existence of some node v ∈ p satisfying

FA(X, v) ≤ t|p|. Intuitively, this means that the path p will be cut in round t|p| or earlier if Alice’s input

is X and if the execution continues up to round t|p|. We similarly define pB(Y, t). We will often drop the
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subscripts in pA(X, t) and pB(Y, t) since they are usually obvious. We say that P
α
<p(X, t) holds if either P

α
<p

is empty or if p1(X, t) holds for all p1 ∈ P
α
<p. Similarly define P

α
<p(Y, t), P

β
<p(X, t), and P

β
<p(Y, t). Also

similarly define P
α(X, t), P

α(Y, t), P
β(X, t), and P

β(Y, t). We say that a non-dummy α-path or β-path p is

a focal path for an input pair (X,Y ) ∈ I iff both of the following two properties hold:

• P
α
<p(X, b), or P

α
<p(Y, b), or both hold.

• P
β
<p(X, b), or P

β
<p(Y, b), or both hold.

As we will easily prove later, a focal path p has the nice property that all α-paths and β-paths shorter than p
will by cut by the end of Φ(X,Y ). If τ remains connected to the root, then λ(X,Y ) will be at least as large as

the length of p (formally proved later). This is often a necessary precondition for us to reason about various

properties on p.

Some technical lemmas. In the next, we will prove a series of technical lemmas (Lemma 35 through 41),

which will be need for the proof of Lemma 32 later.

Lemma 35 Any path p from τ (τ 6= α and τ 6= β) to the root must contain an α-path or a β-path as a part.

Proof: Trivially follows from the fact that α is the root. In fact, it is possible to prove the following stronger

claim: p must either be an α-path itself or contains a β-path as a part. We chose to still state the lemma in its

current form since we want the lemma to be symmetric for α and β. 2

Lemma 36 Consider any focal path p for any input pair (X,Y ) ∈ I . We have |p| ≤ λ(X,Y ).

Proof: By the construction of I , we know that for any input pair (X,Y ) ∈ I , τ has a value of 1 in the

execution of Φ(X,Y ). Lemma 31 tells us that τ will not be disconnected from the root in Φ(X,Y ). Let

p1 denote the shortest path from τ to the root at the end of the execution Φ(X,Y ). By definition of an

aggregation round, we know that the number of round in an aggregation round is no smaller than the root’s

eccentricity in the graph, and thus we have |p1| ≤ λ(X,Y ). Next consider the set of all α-paths and β-paths.

We claim that any α-path or β-path that is shorter than p will no longer exist (i.e., been cut) by the end of the

execution Φ(X,Y ). If this claim does hold, then notice that by Lemma 35, p1 must contain an α-path or a

β-path. This means that |p| ≤ |p1| ≤ λ(X,Y ).
We prove the earlier claim via a contradiction, and assume that there exist some α-paths and/or β-paths

that are shorter than p and they still exist at the end of the execution Φ(X,Y ). Let p2 be the shortest one

of those paths (if there are multiple such p2’s, simply pick an arbitrary one). Note that p2 must be a non-

dummy path. Again since Lemma 35 tells us that p1 must contain an α-path or a β-path, we must have

|p2| ≤ |p1| ≤ λ(X,Y ). If p2 ∈ P
α, then p2 ∈ P

α
<p since |p2| < |p|. Since p is a focal path, we know that

either P
α
<p(X, b) or P

α
<p(Y, b) hold, implying that either p2(X, b) or p2(Y, b) hold. Since b|p2| ≤ bλ(X,Y ),

there will be a failure on p2 by the end of the execution of Φ(X,Y ). Contradiction. The case for p2 ∈ P
β is

similar. 2

Lemma 37 For any input pair (X,Y ) ∈ I , it is impossible for P
α(X, b) and P

β(Y, b) to both hold.

Proof: By Lemma 31, we know that τ will not be disconnected from the root in the execution of Φ(X,Y ).
This means there exists some path p1 from τ to the root at the end of the execution. Lemma 35 tells us that p1

must contain an α-path or a β-path. This means that at the end of the execution, there is at least one α-path

or β-path that has not been cut. Let p be the shortest α-path or β-path that has not been cut at the end of the

execution (if there are multiple such p’s, simply pick an arbitrary one). Clearly p must be a non-dummy path.

First consider the case where p is a non-dummy α-path. By how we pick p, we know that p is a focal path

for (X,Y ). Lemma 36 tells us that |p| ≤ λ(X,Y ). Now since p has not been cut at the end of the execution
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in round bλ(X,Y ), we know that p(X, b) must not hold. This means that P
α(X, b) does not hold.12 If p is a

non-dummy β-path, then one can similarly show that P
β(Y, b) does not hold. 2

Lemma 38 Consider any focal path p for any input pair (X,Y ) ∈ I . In the execution of Φ(X,Y ), for all

t ≤ b − 1:

• If some node in p is spoiled for Alice’s input X in round t|p| and if p(X, t + 1) does not hold, then all

nodes in p are spoiled for Alice’s input X in round (t + 1)|p|.

• If some node in p is spoiled for Bob’s input Y in round t|p| and if p(Y, t + 1) does not hold, then all

nodes in p are spoiled for Bob’s input Y in round (t + 1)|p|.

Proof: First, Lemma 36 tells us that |p| ≤ λ(X,Y ), and thus (t + 1)|p| ≤ bλ(X,Y ). The remainder of the

proof follows directly from the definition of spoil paths. In particular, by definition of spoil paths, only stable

failures can block spoil paths. 2

Lemma 39 Consider any focal path p for any input pair (X,Y ) ∈ I . In the execution of Φ(X,Y ), for all

t ≤ b − 1:

• If p(Y, t) holds and if p(X, t + 1) does not hold, then all nodes in p are spoiled for Alice’s input X in

round (t + 1)|p|.

• If p(X, t) holds and if p(Y, t + 1) does not hold, then all nodes in p are spoiled for Bob’s input Y in

round (t + 1)|p|.

Proof: First, Lemma 36 tells us that |p| ≤ λ(X,Y ), and thus (t + 1)|p| ≤ bλ(X,Y ). Without loss of

generality, we only prove the first part of the lemma. By definition of p(Y, t), we know that there exists some

node v ∈ p such that FB(Y, v) ≤ t|p| < (t + 1)|p| ≤ bλ(X,Y ). Since p(X, t + 1) does not hold, the failure

of v in round FB(Y, v) must not be a stable failure for Alice’s input X. But since v does fail in the reference

setting for (X,Y ) in round FB(Y, v), it means that v is an epicenter for Alice’s input X. (Note that v may

still be either a value epicenter or a failure epicenter.) The occurrence time of this epicenter is round FB(Y, v)
or earlier. This means that v must be spoiled in round FB(Y, v) ≤ t|p|. Apply Lemma 38 then finishes the

proof. 2

Lemma 40 Consider any focal path p for any input pair (X,Y ) ∈ I . For all t ≤ b − 1:

• If p ∈ P
α and if τ is spoiled for Alice’s input X in round t|p|, then p(X, t + 1) must hold.

• If p ∈ P
β and if τ is spoiled for Bob’s input Y in round t|p|, then p(Y, t + 1) must hold.

Proof: First, Lemma 36 tells us that |p| ≤ λ(X,Y ), and thus (t + 1)|p| ≤ bλ(X,Y ). Without loss of

generality, we only prove the first part, via a contradiction. By Lemma 38, if p(X, t + 1) does not hold,

then in the execution of Φ(X,Y ), all nodes in p are spoiled for Alice’s input X in round (t + 1)|p|. Since

(t + 1)|p| ≤ bλ(X,Y ), this means that α (which is in p) is spoiled by the end of the execution, which

contradicts with Corollary 34. 2

The next lemma’s proof is based on elementary induction and does not use any advanced techniques.

However, its proof is the most complex one in this section because while we are doing an induction on the

input pairs in the problematic input set I , we need to simultaneously reason about the multiple paths in G
and these two issues are entangled together. Later we will only need to use the second claim in the following

lemma — the first claim in the lemma is proved so that we can carry both claims in the induction, which is

critical for the proof to work.

12One can also simultaneously show that P
α(Y, b) does not hold, though we do not need that claim.
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Lemma 41 Suppose b ≥ 27. Let X(0), Y (1), X(1), Y (2), ..., X(k), Y (k+1) (where k + 1 ≤ ⌊
√

b/3⌋) be those

inputs in the proof of Lemma 30 that correspond to the problematic input set I . For any path p ∈ P
α, any

integer i ∈ [1, k + 1], and any integer ti ∈ [0, b − 2i2 − 2i], we have:

• If P
α
<p(X

(i−1), ti + 4i) and P
β
<p(Y

(i), ti) holds, then p(X(i−1), ti + 4i) holds.

• In particular, if P
α
<p = P

β
<p = ∅, then p(X(i−1), ti + 4i) holds.

Proof: First, note that i ≤ k + 1 ≤ ⌊
√

b/3⌋ and b ≥ 27 imply b − 2i2 − 2i ≥ 0. This means that the

range for ti is never empty. We only prove the first part of the lemma, since the second part is the special

case of the first part. We prove the first part via an induction on i. For i = 1, since t1 < t1 + 4 ≤ b, we

have P
α
<p(X

(0), b) and P
β
<p(Y

(1), b). This means that p is a focal path for the input pair (X(0), Y (1)). In the

execution of Φ(X(0), Y (1)), τ has a value of 1 and is spoiled for Alice’s input X(0) in round 1 ≤ |p|. Apply

Lemma 40 and we have p(X(0), 2), which implies p(X(0), t1 + 4) for all t1 ∈ [0, b − 4].
Now consider any i ≥ 2, while assuming that the lemma holds for i − 1. We are given the condition

P
α
<p(X

(i−1), ti + 4i) and P
β
<p(Y

(i), ti). We will prove p(X(i−1), ti + 4i) via a contradiction and assume that

it does not hold. The final contradiction will be obtained by sequentially proving the following claims:

• Claim 1: P
β
<p(X

(i−1), ti + 1) holds, which will be proved via the execution of Φ(X(i−1), Y (i)).

• Claim 2: P
β
<p(Y

(i−1), ti + 2) holds, which will be proved via the execution of Φ(X(i−1), Y (i−1)).

• Claim 3: P
α
<p(X

(i−2), ti + 4i − 2) holds, which will be proved via the inductive hypothesis and

implicitly via the execution of Φ(X(i−2), Y (i−1)).

• Claim 4: p(X(i−2), ti +4i−2) holds, which will be proved via the inductive hypothesis and implicitly

via the execution of Φ(X(i−2), Y (i−1)).

• Claim 5: p(Y (i−1), ti + 4i − 1) holds, which will be proved via the execution Φ(X(i−2), Y (i−1)).

• Claim 6: p(X(i−1), ti + 4i) holds, which will be proved via the execution of Φ(X(i−1), Y (i−1)).

Figure 13 illustrates these 6 claims in an example topology.

Proving Claim 1. We prove P
β
<p(X

(i−1), ti + 1) via a contradiction and let p1 be any path in P
β
<p where

p1(X
(i−1), ti + 1) does not hold. We first show that p and p1 are both focal paths for the input pair

(X(i−1), Y (i)). For p, we have P
α
<p(X

(i−1), ti + 4i) and P
β
<p(Y

(i), ti). Since ti < ti + 4i < b, we know

that p is a focal path for (X(i−1), Y (i)). For p1, since P
α
<p1

⊂ P
α
<p and P

β
<p1

⊂ P
β
<p, by similar argument we

know that p1 is a focal path for (X(i−1), Y (i)) as well.

Next by the original condition, we have p1(Y
(i), ti). Invoke Lemma 39 for p1 and we know that all

nodes on p1 (including τ ) are spoiled for Alice’s input X(i−1) in the execution of Φ(X(i−1), Y (i)) in round

(ti + 1)|p1| < (ti + 1)|p|. We next invoke Lemma 40 for p and we know that p(X(i−1), ti + 2) must hold,

which implies p(X(i−1), ti + 4i). Contradiction.

Proving Claim 2. Consider any path p1 ∈ P
β
<p. We first show that p1 is a focal path for the input pair

(X(i−1), Y (i−1)). From the original condition of P
α
<p(X

(i−1), ti + 4i) and since P
α
<p1

⊂ P
α
<p, we have

P
α
<p1

(X(i−1), ti + 4i) which implies P
α
<p1

(X(i−1), b). Next Claim 1 tells us that P
β
<p(X

(i−1), ti + 1). By a

similar argument, we have P
β
<p1

(X(i−1), b). Thus p1 is a focal path for (X(i−1), Y (i−1)).

From Claim 1, we also have p1(X
(i−1), ti + 1). Now invoke Lemma 39 for p1. We will then have

p1(Y
(i−1), ti + 2), since otherwise all nodes in p1 (including β) are spoiled for Bob’s input Y (i−1) in the

execution of Φ(X(i−1), Y (i−1)) in round (ti + 2)|p1|.
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Figure 13: Illustration of the 6 claims proved in Lemma 41 in an example topology. For the given τ , this

example topology has 4 α-paths and 3 β-paths. Nodes other than α, β, and τ are not shown in the figure.

The α-path marked by p is the path p in the lemma. For clarity, we omit the labels for α, β, and τ when

illustrating the claims. For each of the claims, the figure indicates on the left the input (e.g., X(i−1)) to Alice,

and on the right the input to Bob. Solid arrows indicate those (stable) failures that we already know, given

the corresponding input to Alice or Bob. Dashed arrows indicate those (stable) failures whose existence is

proved in the corresponding claim.

Proving Claim 3. Prove by contradiction and assume that P
α
<p(X

(i−2), (ti + 2) + 4(i − 1)) does not hold.

Let p1 be the shortest path (if there are multiple such p1’s, simply pick an arbitrary one) in P
α
<p such that the

p1(X
(i−2), (ti + 2) + 4(i − 1)) does not hold. We next want to invoke the inductive hypothesis for i − 1 on

p1 ∈ P
α with ti−1 = ti + 2. Such invocation is possible since:

• ti−1 = ti + 2 ≤ b − 2i2 − 2i + 2 < b − 2i2 − 2i + 4i = b − 2(i − 1)2 − 2(i − 1).

• By definition of p1, we have that P
α
<p1

(X(i−2), (ti + 2) + 4(i − 1)) holds.

• We know from Claim 2 that P
β
<p(Y

(i−1), ti + 2) holds, implying that P
β
<p1

(Y (i−1), ti + 2) holds.

This invocation tells us that p1(X
(i−2), (ti + 2) + 4(i − 1)) holds, leading to a contradiction.

Proving Claim 4. We want to invoke the inductive hypothesis for i − 1 on p with ti−1 = ti + 2. Such

invocation is possible since:
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• ti−1 = ti + 2 ≤ b − 2i2 − 2i + 2 < b − 2i2 − 2i + 4i = b − 2(i − 1)2 − 2(i − 1).

• Claim 3 gives us P
α
<p(X

(i−2), (ti + 2) + 4(i − 1)).

• Claim 2 gives us P
β
<p(Y

(i−1), ti + 2).

This invocation tells us that p(X(i−2), (ti + 2) + 4(i − 1)) holds.

Proving Claim 5. We first show that p is a focal path for (X(i−2), Y (i−1)). We already have P
α
<p(X

(i−2), ti+

4i−2) from Claim 3 and P
β
<p(Y

(i−1), ti+2) from Claim 2. Since ti+2 ≤ ti+4i−2 ≤ b−2i2−2i+4i−2 <

b, we now know that p is a focal path for (X(i−2), Y (i−1)). We next prove p(Y (i−1), ti + 4i − 1) via a

contradiction.

We already have p(X(i−2), ti + 4i − 2) from Claim 4. Since p(Y (i−1), ti + 4i − 1) does not hold, we

can invoke Lemma 39 for p. That lemma tells us that in the execution of Φ(X(i−2), Y (i−1)), all nodes in p
(including τ ) become spoiled for Bob’s input Y (i−1) in round (ti + 4i − 1)|p|. This is a critical property

which we will use later.

Next consider the two properties P
α(X(i−2), ti +8i−4) and P

β(Y (i−1), ti +4i). By Lemma 37, it is im-

possible for both of them to hold, since otherwise they would imply that both P
α(X(i−2), b) and P

β(Y (i−1), b)
hold. Let p1 be the shortest path (if there are multiple such p1’s, simply pick an arbitrary one) in P

α ∪ P
β

where p1(X
(i−2), ti + 8i − 4) (if p1 ∈ P

α) or p1(Y
(i−1), ti + 4i) (if p1 ∈ P

β) does not hold.

We consider two cases. If p1 ∈ P
β, we will first show that p1 is a focal path. By definition of p1, we have

P
α
<p1

(X(i−2), ti+8i−4) and P
β
<p1

(Y (i−1), ti+4i) holds. Since ti+4i ≤ b−2i2−2i+4i < b, P
α
<p1

(X(i−2), b)

and P
β
<p1

(Y (i−1), b) holds. This means that p1 is a focal path for the input pair (X(i−2), Y (i−1)). We next want

to show that |p| ≤ |p1|. By how we chose p1, we know that p1(Y
(i−1), ti + 4i) does not hold. On the other

hand, Claim 2 tells us that P
β
<p(Y

(i−1), ti + 2) holds, implying that P
β
<p(Y

(i−1), ti + 4i) holds (since i ≥ 2).

Thus we must have p1 /∈ P
β
<p and |p1| ≥ |p|. Finally, as shown earlier, in the execution of Φ(X(i−2), Y (i−1)),

the node τ must be spoiled for Bob’s input Y (i−1) in round (ti + 4i− 1)|p| ≤ (ti + 4i− 1)|p1|. Now we can

invoke Lemma 40, which shows that p1(Y
(i−1), ti + 4i) holds and thus leads to a contradiction.

For the second case where p1 ∈ P
α, we want to invoke the inductive hypothesis for i − 1 on p1 with

ti−1 = ti + 4i. Such invocation is possible since:

• ti−1 = ti + 4i ≤ b − 2i2 − 2i + 4i = b − 2(i − 1)2 − 2(i − 1).

• By definition of p1, we have that P
α
<p1

(X(i−2), (ti + 4i) + 4(i − 1)) and P
β
<p1

(Y (i−1), ti + 4i) holds.

The invocation gives us p1(X
(i−2), (ti + 4i) + 4(i − 1)), leading to a contradiction.

Proving Claim 6. We first show that p is a focal path for (X(i−1), Y (i−1)). From the original condition, we

have P
α
<p(X

(i−1), ti + 4i), which implies P
α
<p(X

(i−1), b). By Claim 2, we have P
β
<p(Y

(i−1), ti + 2), which

implies P
β
<p(Y

(i−1), b). Thus p is a focal path for (X(i−1), Y (i−1)).

Claim 5 gives us p(Y (i−1), ti + 4i − 1). Now invoke Lemma 39 for p. That lemma tells us that

p(X(i−1), ti + 4i) must hold, since otherwise all nodes in p (including α) will be spoiled for Alice’s input

X(i−1) in round (ti + 4i)|p|. 2

F.3.3 Proof for Lemma 32

Using the technical lemmas proved in the previous section, we can now finally prove Lemma 32.

Proof for Lemma 32: By Lemma 35, a path from τ to the root must contain either an α-path or a β-path.

Thus to prove the lemma, it suffices to prove that all α-paths and β-paths are dummy. Prove by contradiction

and assume that some α-paths and/or β-paths are non-dummy. Let p be the shortest path among all such paths
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(if there are multiple such p’s, simply pick an arbitrary one). This means that there exists some (X,Y ) ∈ I
such that p is not cut by the end of the execution Φ(X,Y ). Also by how we chose p, we trivially have

P
α
<p = P

β
<p = ∅.

Next first consider the case where p is a non-dummy α-path. For all i where 1 ≤ i ≤ k + 1 ≤ ⌊
√

b/3⌋,

invoke the second claim in Lemma 41 with ti = 0 and we have p(X(i−1), 4i). Since 4i ≤ 4⌊
√

b/3⌋ < b

when b ≥ 27, this in turn implies p(X(i−1), b) for 1 ≤ i ≤ k + 1. Next since P
α
<p = P

β
<p = ∅, we trivially

know that p is a focal path for (X,Y ). Invoke Lemma 36 and we have |p| ≤ λ(X,Y ). Together with p(X, b),
we know that p will be cut by the end of the execution of Φ(X,Y ). Contradiction.

For the second case where p is a β-path, the proof is entirely symmetric. In particular, the only difference

between α and β is that α is the root while β is not. However, we only used the fact that α is the root in the

proof of Lemma 35. Lemma 35 itself is already symmetric for α and β. In other words, if we view the proof

for Lemma 35 as a black-box, then α and β are entirely symmetric throughout Appendix F.3. 2

G Omitted Details from Section 7

This section presents the omitted details from Section 7 for obtaining the FT lower bound of SUM under

unrestricted b, while removing the strong gossip assumption. We will first precisely describe the lower bound

topology and the adversary, while assuming that each node can take an integer value from some properly

defined domain (instead of only binary values). Next we formally define the probing game, and then prove a

strong connection from SUM protocols to strategies in the probing game. We then prove a lower bound on the

probing game, which in turn leads to a lower bound on the FT communication complexity of SUM. Finally,

we prove that this FT lower bound can be easily generalized to cases where each node can only have a binary

value instead of an integer value.

G.1 Topology and Adversary

Here we assume that each node can take an integer value in the domain of [0, 3n − 1] — this assumption

will be removed later. We construct our lower bound topology starting from a clique with n + 1 nodes, with

n being a power of 2. One of these nodes will be the root, while all other nodes are called worker nodes.

We next insert a degree-two dummy node in the middle of each edge in the previous clique, so that failing

the dummy node essentially fails the corresponding edge.13 The topology thus has total
(n+1)(n+2)

2 nodes.

Each worker node has an integer value in [0, 3n − 1]. All other nodes have value of 0. We use a vector

W = (w1, w2, ..., wn) to denote the input (to the system), where wi ∈ [0, 3n− 1] is the input value of worker

node i.
Our adversary is deterministic but adaptive. The adversary conceptually partitions the worker nodes into

groups, where each group has some group members and one group member is the group leader. Group

membership and leadership may change whenever the adversary inject failures. Initially each worker is in

its own group, with itself being the sole member (and thus the leader). The adversary keeps track of the set

L of current leaders. A leader in L is marked once it sends a message. Once the number of marked leaders

reaches
|L|
2 , the adversary pairs up each unmarked leader node j with a distinct marked leader node i. In cases

where multiple leaders send messages in the same round, the adversary will mark them sequentially (by their

ids), until the number of marked leaders becomes exactly
|L|
2 . Next for each such node j, at the beginning

of the next round, the adversary fails all dummy nodes connecting node j to the root or connecting node j
to other leader nodes, except the dummy node connecting node j to node i. (Note that the adversary does

13Under this construction, the total number of failures injected by our adversary later will reach Θ(N), where N is the graph size.

To obtain the same asymptotic FT lower bound while injecting only o(N) failures, one only needs to instead insert log n dummy

nodes on each edge and fail only one of them.
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not fail any dummy nodes connecting node j to non-leader nodes.) Next node i’s group and node j’s group

are conceptually merged into one new group, with node i being the new group leader. Finally, the adversary

updates L to be the set of those
|L|
2 leaders of the new groups, clears all the marks on those leaders, and

repeats the above process until |L| reaches 1 or the protocol terminates.

G.2 A Strong Connection between SUM and The Probing Game

We define the probing game as following. The probing game is played by a single player, against an input

W = (w1, w2, ..., wn) where wi is an integer in [0, 3n − 1]. W is initially not known to the player, but the

player knows n and the domain [0, 3n − 1]. The player proceeds in rounds. In each round, the player may

choose to sequentially do zero, one, or multiple probes, where each probe is in the form of a tuple (i, j).
The outcome of the probe (i, j) is a hit if wi = j. Otherwise it is a miss. For each probe, the player may

adaptively choose what probe to do (i.e., choose i and j), based on the probing outcomes in previous rounds

and also the probing outcomes so far in the current round. The goal of the player is to determine
∑n

i=1 wi

based on the outcomes of the probes, while minimizing the total number of hits. Note that the player is not

concerned with the total number of probes. For convenience later, we require that the player never does the

same probe multiple times. In addition, if there has been a hit (i, j), then the player does not further probe

(i, j′) for any j′ since the player has already learned wi precisely.

Theorem 42 below proves a strong connection from deterministic protocols for SUM to the probing game.

This theorem reveals that under our adversary, while a SUM protocol on the surface has a lot of flexibility to

apply various tricks, what the protocol fundamentally can do is no different from the system doing probes and

having some leader node send a message if the probe is a hit. As a result, the number of hits in the probing

game will be no larger than the total number of messages sent by the leaders.

Theorem 42 Assume that n is a power of 2. Given any deterministic SUM protocol P, there always exists an

(adaptive) probing strategy S for the player in the probing game that satisfies the following property. For any

input W , the player using S in the probing game against W always generates the same result as the result

generated by the SUM protocol P running against W under the topology and adversary in Appendix G.1.

Furthermore, if the total number of hits in the probing game when using S against W reaches n, then the

maximum number of bits sent by a node, across all nodes when running P against W under the topology and

adversary in Appendix G.1, is at least log n + 1.

Proof: We will construct S based on the given (black-box) deterministic protocol P. The constructed strategy

S will determine the sequence of probes that the player should do in each round r, so that the probing

outcomes will enable the player to fully simulate the execution of P. During the course of the probing game,

we say that a worker node i has been hit if there has been some probe (i, j) that is a hit. In any given round

r of P’s execution, we say that a group leader node i sends an influential message in round r if node i sends

(i.e., locally broadcasts) a message in round r and the adversary does not fail the dummy node connecting

node i with the root at the beginning of round r + 1. Note that since node i is a group leader in round r, it

is guaranteed (by design of our adversary) that the dummy node has not failed in round r or earlier. If the

adversary indeed fails that dummy node at the beginning of round r+1, then node i will no longer be a group

leader in round r + 1. Furthermore, node i (and node i’s group) will be merged with another group, with

another node being the new (merged) group’s leader.

We will prove that when the player uses our constructed probing strategy S , all the following properties

hold for all round r where 0 ≤ r ≤ R. Here R is the total number of rounds in P’s execution over W ,

which must be finite. Recall that round 1 is the first round where there can possibly be a message sent in P’s

execution.

Property 1 In round r of the probing game, if the player does a probe (i, j) and if this probe is a hit, then in

round r of P’s execution, nodes i’s group leader must send an influential message.
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Property 2 In P’s execution, if a group leader sends an influential message in round r, then all nodes in that

group have been hit by the player in the probing game by the end of round r.

Property 3 In P’s execution, immediately after the adversary injects potential failures at the beginning of

round r + 1, in each group there is at most one worker node that has not been hit by the player in the

probing game.14

Property 4 In round r, the player in the probing game can generate all influential messages sent by all group

leaders in round r of P’s execution.

Lemma 43 below proves that the above 4 properties indeed hold under a properly constructed probing

strategy S . Now by Property 4, since the influential messages from group leaders are the only messages

that can affect the root via the dummy nodes, the player will be able to simulate those dummy nodes and all

incoming messages to the root throughout the execution. Then the root will be able to produce a final result

in round R, and the player simply uses this result as the result to the probing game. Next if the total number

of hits in the probing game reaches n, then all nodes must have been hit since each node can only contribute

one hit. By Property 3, we know that in any round, each group can have at most one worker node that has not

been hit. Initially there are n groups, and thus there must exist at least n
2 groups where each group contributes

a hit. By Property 1, the n
2 leaders of these n

2 groups will each send an influential message. Once all these

influential messages are sent, our adversary will introduce failures so that there will be n
2 new groups, with

these n
2 nodes as new leaders. Since we still need to have n

2 more hits and since each group can contribute

at most one hit, among those n
2 groups, there must exist n

4 groups whose leaders will each send a second

influential message. Continuing such argument will show that in order for the total number of hits in the

probing game to reach n, some node in the SUM protocol P will have to send at least a influential messages,

where a is the total number of terms in the summation of n = n
2 + n

4 + ... + 2 + 1 + 1. Observing that

a = log2 n + 1 and that a messages translate to at least a bits completes the proof. 2

Lemma 43 Under the conditions of Theorem 42, there exists a probing strategy S such that the 4 properties

described in the proof of Theorem 42 hold for all round r where 0 ≤ r ≤ R. Here R is the total number of

rounds in P’s execution over W .

Proof: We prove via an induction on r. For r = 0, we construct S such that no probes are done in round 0.

The 4 properties trivially hold for round 0. Now consider any round r > 0, while assuming that they hold for

all rounds before r.

We first construct the set of probes that the player should do in round r. Consider any group g in round r
of P’s execution, after the adversary injects potential failures at the beginning of round r. (Note that failures

affect group membership, and thus we explicitly state that g is defined after the failures have been injected

in round r.) By inductive hypothesis on Property 3, there is at most one worker node miss(g) in g that has

not been hit. Thus the player knows the value of all other nodes in g. If miss(g) exists, then the player will

exhaustively enumerate all j’s such that there has not been a probe (miss(g), j). Intuitively, j has not been

ruled out as a possible value for miss(g). For each such j, the player tries simulating P’s execution on all

nodes in g, from round 0 to round r (inclusive). Doing so will enable the player to determine the message

(if any) sent in round r by g’s group leader. Such simulation is possible since the player has the values of all

the nodes in that group, and also because by inductive hypothesis on Property 4, the player can generate all

influential messages sent by other group leaders up to round r−1. In particular for a node i in g, all incoming

messages from nodes outside of g must be sent from those dummy nodes connecting node i with those group

leaders in round 1 through round r − 1. The reason is that in any round from 1 through r − 1, non-leader

14First, we explicitly mention “after failure injection” since group membership is affected by failures. Second, we consider the

beginning of round r + 1 instead of the beginning of round r to facilitate our later proof by induction.
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group members can only have neighboring dummy nodes connecting them to other nodes in their own groups

and not to node i. Furthermore, non-influential messages from a group leader can never affect either the root

or nodes in other groups (via the corresponding dummy nodes), since those dummy nodes will be failed right

after they receive those non-influential messages. Finally, we do not yet know what influential messages other

group leaders will send in round r, but those will not affect the potential message sent in round r by g’s group

leader.

We say that a (miss(g), j) combination is a candidate probe if miss(g) exists and by the above process,

the player has determined that there will be a message sent in round r by g’s group leader if j is the value

of node miss(g). (We do not yet know whether this message will be influential.) Next the player orders all

candidate probes, using g as the primary key and j as the secondary key. In round r, the player sequentially

issues the probes in this ordered list, subject to the following two constraints. First, if a certain (miss(g), j)
probe is a hit, then the player will skip all following probes in the form of (miss(g), j′) for all j′. Second,

if the number of hits so far is such that the adversary is ready to inject the next batch of failures, the player

skips all the remaining probes in the ordered list.

We next prove that the probing strategy constructed as above does satisfy the 4 properties. Property 1

clearly holds since a hit of (miss(g), j) means that node miss(g) indeed has a value of j. Given the trial

simulation and since everything is deterministic, miss(g)’s group leader will send a message in round r of P’s

execution. Furthermore, since the probes are done sequentially and since the player must have encountered

this hit before the adversary is ready to inject the next batch of failures, the adversary will not fail the dummy

node connecting miss(g)’s group leader to the root at the beginning of round r + 1.

For Property 2, we need to prove that if a group g’s group leader sends an influential message in round r,

then all nodes in g have been hit by the end of round r. If miss(g) does not exist, we already hit all nodes in g.

If miss(g) exists, let j be the value of the node miss(g). Clearly, there has never been a probe (miss(g), j).
By our construction of the probing strategy in round r, (miss(g), j) will be a candidate probe. If the player

indeed probes (miss(g), j) in round r, then miss(g) will be hit in round r and we are done. If the player

does not probe (miss(g), j) in round r, the only possibility is that the adversary is ready to inject the next

batch of failures at the beginning of round r + 1. In such a case, the adversary will fail the dummy node

connecting g’s group leader to the root, making the message (if any) sent by g’s group leader non-influential.

For Property 3, if the adversary does not inject failures at the beginning of round r + 1, then clearly the

property inherited from the beginning of round r continues to hold at the beginning of round r + 1. If the

adversary does inject failures at the beginning of round r + 1, then the group membership in round r and the

group membership in round r + 1 are different. Let g1, g2, ..., gl be the l groups in round r, immediately after

the adversary potentially inject failures at the beginning of round r. Without loss of generality, assume that

after the failures are injected, gi+l/2 is merged with gi (for 1 ≤ i ≤ l/2) to form a new group, with gi’s leader

being the leader of the new group. By inductive hypothesis on Property 3, immediately after the adversary

potentially injects failures at the beginning of round r, gi+l/2 (1 ≤ i ≤ l/2) has at most one node that has not

been hit. Given how the adversary injects failures, we know that the leader of gi (1 ≤ i ≤ l/2) must have

sent an (influential) message in round r or earlier and after group gi is formed. By Property 2 (both in round

r and in earlier rounds), we know that all nodes in group gi have been hit by the end of round r. This means

that after merging gi and gi+l/2, the new group still only has at most one node that has not been hit.

Finally for Property 4, consider any given group g whose leader sends an influential message in round r.

By Property 2, we know that all nodes in g have been hit by the end of round r, and thus the player knows

all their values. Same as in the earlier trial simulation, by inductive hypothesis on Property 4, the player can

generate all influential messages sent by other group leaders up to and including round r−1. This means that

the player can generate all incoming messages (up to and including round r − 1) that may affect nodes in g.

By same arguments as earlier, the player will be able to simulate P’s execution on all nodes in g from round

0 to round r (inclusive). Also note that the messages received in round r, which we do not know yet, will not

affect the messages sent by g’s group leader in round r. Thus the player can generate that influential message

49



sent by the group leader in round r. 2

G.3 Lower Bound on the Number of Hits in the Probing Game

With the strong connection between SUM and the probing game proved in the previous section, we now only

need to obtain a lower bound on the probing game. A simpler version of this probing game was analyzed

in [14] to reason about silence-based communication, in a failure-free setting. There the player is not allowed

to interleave probes on wi with probes on wi′ . Thus for our purpose, we prove the following lower bound

result on the probing game where the probes may be arbitrarily interleaved:

Lemma 44 Consider the set U of all the (3n)n possible inputs to the probing game (n ≥ 2) and any given

(adaptive) deterministic probing strategy that can give correct (zero-error) results for at least 2
3 fraction of

those inputs. There must exist an input such that using that strategy, the player encounters n hits under that

input.

Proof: We prove by contradiction, and assume that there exists a deterministic probing strategy S that gives

correct results for at least 2
3 fraction of inputs and has at most n − 1 hits for all inputs.

Consider any given input W = (w1, w2, ..., wn) ∈ U , which is initially unknown to the player. At any

point of time during the game, we define wi’s residual domain (denoted as Di) to be the set {j} if there has

been a probe (i, j) so far which is a hit. Otherwise wi’s residual domain Di is defined to be the set:

{0, 1, 2, ..., 3n − 1} \ {j | there has been a probe (i, j)}

Intuitively, wi’s residual domain is the possible domain of wi given the probe outcomes so far. When the

game ends under S , W has a unique residual domain vector D = (D1,D2, ...,Dn), where Di is the residual

domain of wi. We next prove a simple useful property on W ’s residual domain vector to facilitate later

reasoning. We claim that for any input Z = (z1, z2, ..., zn) where zi ∈ Di, the probes done by the player and

all the probe outcomes must be identical under input W and input Z . This in turn implies that Z will have

the same residual domain vector as well as the same final output as that of W . We prove this claim for the

kth probe, via a simple induction on k. The induction base for the zeroth probe clearly holds. Now consider

the kth probe. We already know that all previous probes and their outcomes are identical under W and under

Z . Since the player is deterministic, we know that the kth probe will be the same under W and Z . Let this

probe be (i, j). If (i, j) is a hit for W , then we must have Di = {j}. Since zi ∈ Di, we know that zi = j and

the probe (i, j) will be a hit for Z as well. If (i, j) is a miss for W , then we must have j /∈ Di. Since zi ∈ Di,

we know that zi 6= j and thus the probe will be a miss for Z as well. Thus the outcome of the kth probe will

be identical under input W and input Z .

We now leverage the above property to prove the following claim. Define U ′ to be that set of inputs such

that for each input W ∈ U ′, when the game ends, in W ’s residual domain vector D = (D1,D2, ...,Dn) there

exists some Di where |Di| ≥ 2. We claim that in order for the player to generate results correctly for at least
2
3 fraction of all the inputs, |U ′| must be no larger than 2

3 |U |.
We prove the above claim by contradiction and assume that |U ′| > 2

3 |U |. We partition U ′ into disjoint

subsets such that all inputs in the same subset have the same residual domain vector. Consider any such

subset U ′
D where all inputs in the set has the same D = (D1,D2, ...,Dn) as their residual domain vectors.

By the earlier property on residual domain vector, we know that U ′
D contains at least all those inputs Z where

zi ∈ Di for 1 ≤ i ≤ n, and all such inputs Z will result in the same output. Furthermore, if an input Z ′ is

such that z′i /∈ Di for some i, then it is impossible for Z ′ to be in U ′
D. In other words, U ′

D must be exactly the

set of those inputs Z where zi ∈ Di for 1 ≤ i ≤ n. Next without loss of generality, assume that |D1| ≥ 2.

Consider any given j2 ∈ D2, j3 ∈ D3, ..., jn ∈ Dn. For each j ∈ D1, Z = (j, j2, j3, ..., jn) must be in U ′
D,

and the player will produce the same output. Such output can be correct for at most one j. This in turn means
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that the player can generate a correct result for at most 1
2 fraction of the inputs in U ′

D. Therefore for all the

inputs in the set U ′, the player can generate correct results for at most 1
2 fraction as well. Thus the player can

generate a result correctly for at most 1
2 |U ′| + |U \ U ′| = 1

2 |U ′| + |U | − |U ′| = |U | − 1
2 |U ′| < 2

3 |U | inputs.

We have just proved that |U \ U ′| ≥ 1
3 |U |. We next use this result to prove that under some input in

U \U ′, the number of hits will be n. For every input W ∈ U \U ′, we know that W ’s residual domain vector

D = (D1,D2, ...,Dn) satisfies |Di| = 1 for all i. Essentially, the player has “pinpointed” the value of each

wi and knows W precisely, instead of only its sum. This means that in the probing game, the player actually

needs to learn the input precisely for at least 1
3 fraction of all the inputs. We next prove that for the player to

achieve such a goal, there will be n hits on at least one of the inputs in U \ U ′.
Given such a goal, consider any given point of time where the player decides to do a probe (i, j). (This

necessarily means that there has not been a hit on wi, and also means that j ∈ Di where Di is current residual

domain of wi.) Since the goal is to learn the input precisely, doing such a probe is no different from doing any

other probe (i, j′) as long as j′ ∈ Di. With such an observation, we can now make the following without loss

of generality assumption: For any given input W and any given i, consider all probes done by the player in

the form of (i, j0), (i, j1), (i, j2), . . . . Without loss of generality, we can assume that j0 = 0, j1 = 1, j2 = 2,

. . . . We know that under the probing strategy S , there are at most n − 1 hits under all inputs, including all

inputs W ∈ U \ U ′. Consider any given W ∈ U \ U ′ and let i be the index of the component that has not

been hit. Since |Di| = 1 and by our earlier without loss of generality assumption, we know that wi = 3n−1.

However, the number of such inputs is:

|{W | W ∈ U and ∃i such that wi = 3n − 1}| = (3n)n − (3n − 1)n <
1

3
(3n)n , for n ≥ 2.

This contradicts with |U \ U ′| ≥ 1
3 |U |. Thus under some W ∈ U \ U ′, there will be n hits. 2

G.4 Proof for Theorem 6 in Section 7

Now we are ready to prove Theorem 6 in Section 7. The following lemma is proved by first establishing a

connection between randomized complexity and distributional complexity via well-known techniques [24],

and then using Theorem 42 and Lemma 44 to obtain a lower bound on the distributional complexity. Recall

from Appendix A that the notation Rsyn,ft
0,δ simply means Rsyn,ft

ǫ,δ with ǫ = 0.

Lemma 45 Consider any b ≥ 1 and any integer N = (n+1)(n+2)
2 where n is a power of 2. If in the SUM

problem each node may take an integer value in {0, 1, ..., 3n − 1}, then there exists a connected topology G
with N nodes, such that:

Rsyn,ft
0, 1

3

(SUM, G, b) ≥ log n + 1

Proof: We let G be the topology constructed in Appendix G.1, and consider the deterministic and adaptive

adversary described there. It will be convenient to view this adversary as part of the SUM protocol. Namely,

given any randomized SUM protocol, we can consider a randomized “augmented protocol” which repeat-

edly executes one round of the randomized SUM protocol and then invokes the (deterministic) adversary to

potentially inject failures. We thus no longer need to discuss the adversary separately.

Now consider the optimal randomized augmented protocol that generates a zero-error result with proba-

bility at least 2
3 for all input W , while incurring a worst-case (over the coin flips) communication complexity

of Rsyn,ft
0, 1

3

(SUM, G, b). If we subject this protocol against an input chosen uniformly randomly out of all

possible inputs, then trivially the protocol still generates a zero-error result with probability at least 2
3 , where

the probability is taken over both the input distribution and the random coin flips. Now let us view this
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randomized augmented protocol as a distribution over deterministic augmented protocols. Then there must

exist at least one deterministic protocol P which can generate a zero-error result with probability at least 2
3

under this uniform input distribution, since otherwise the expectation taken over all deterministic augmented

protocols cannot reach 2
3 . Finally, let a denote the maximum number of bits sent by a node, across all nodes

when we run P against the worst-case input (that maximizes a). Since P is selected by the randomized algo-

rithm with positive probability and since Rsyn,ft
0, 1

3

(SUM, G, b) is defined over worst-case coin flips, we have

a ≤ Rsyn,ft
0, 1

3

(SUM, G, b).

On the other hand, Theorem 42 tells us that given such a P, there exists a corresponding probing strategy

S in the probing game so that using S , the player in the probing game can generate the same result as P. Since

P generates a zero-error result for at least 2
3 fraction of the inputs, we know that the player using S generates

a zero-error result for so many inputs as well. Next by Lemma 44, there exists some input W such that the

player encounters n hits. In turn, Theorem 42 now tells us that when running the SUM protocol P against this

input W , some node sends at least log n + 1 bits. Thus we have Rsyn,ft
0, 1

3

(SUM, G, b) ≥ a ≥ log n + 1. 2

The following corollary extends the above lemma to our standard setting where nodes only have binary

values.

Corollary 46 Consider any b ≥ 1 and any integer N ≥ 5. Let n be the largest integer that is a power of 2

and satisfies
(n+1)(n+2)

2 + n(3n − 1) ≤ N . There exists a connected topology G with N nodes, such that:

Rsyn,ft
0, 1

3

(SUM, G, b) ≥ log n + 1

Proof: Let N1 = (n+1)(n+2)
2 and we first construct a connected topology G1 with N1 nodes as described

in Appendix G.1. Next we attach (3n − 1) degree-1 follower nodes to each work node in G1, and attach

(N − N1 − n(3n − 1)) degree-1 nodes to the root of G1. All those degree-1 nodes attached to G1’s root

will always have value 0. Let G be the resulting N -node connected topology. One can trivially obtain a

reduction from the SUM problem on G1 (where each worker node has an integer value in {0, 1, ..., 3n − 1})

to the SUM problem on G (where each node has a binary value). In particular in the reduction, the root in G1

will simulate the root in G and also all the degree-1 neighbors of the root in G. Each worker node in G1 will

simulate the corresponding worker node and its (3n − 1) followers in G. If the worker node i in G1 has a

value of wi, then in G the first wi of the corresponding work node’s follower nodes will have value 1 and the

remaining (3n − 1 − wi) follower nodes will have value 0. Combining this reduction with the lower bound

on the SUM problem on G1 from Lemma 45, we have Rsyn,ft
0, 1

3

(SUM, G, b) ≥ log n + 1. 2

The next corollary extends the above corollary to Rsyn,ft
ǫ, 1

3

for ǫ ≥ 1
N .

Corollary 47 Consider any b ≥ 1, any integer N ≥ 15, and any ǫ ∈ [ 1
N , 1

15 ]. Let n be the largest integer

that is a power of 2 and satisfies
(n+1)(n+2)

2 + n(3n − 1) ≤ 1
3ǫ . There exists a connected topology G with N

nodes, such that:

Rsyn,ft
ǫ, 1

3

(SUM, G, b) ≥ log n + 1

Proof: Let N1 = 1
3ǫ and we first construct a connected topology G1 with N1 nodes such that

Rsyn,ft
0, 1

3

(SUM, G1, b1) ≥ log n + 1 for any b1. Corollary 46 ensures that such G1 exists. Next we attach

N2 = N − N1 nodes to the root of G1, and let the resulting topology be G. Those N2 nodes will always

have a value of 0 and will never fail. Note that the final sum on G can never be above 1
3ǫ . If we have at most

ǫ relative error on the final sum on G, then the absolute error is at most 1
3ǫ · ǫ = 1

3 . Since the exact sum must
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be an integer, to generate a result with ǫ relative error in G, the protocol intuitively needs to produce a zero-

error result. Putting it another way, if the output is not an integer, we can always output the closest integer

instead. Doing so will never cause an output that was previously within ǫ-error bound to exceed the ǫ-error

bound after the conversion. The above observation enables a trivial reduction from Rsyn,ft
0, 1

3

(SUM, G1, b1) to

Rsyn,ft
ǫ, 1

3

(SUM, G, b), which gives:

Rsyn,ft
ǫ, 1

3

(SUM, G, b) ≥ Rsyn,ft
0, 1

3

(SUM, G1, b1) ≥ log n + 1

2

Proof for Theorem 6: We first prove the lower bound on Rsyn,ft
0 (SUMN , b). For any N ≥ 5, consider the

N -node connected topology G as constructed by Corollary 46. Together with Lemma 7, we trivially have:

Rsyn,ft
0 (SUMN , b) ≥ 1

3
Rsyn,ft

0, 1
3

(SUMN , b) ≥ 1

3
Rsyn,ft

0, 1
3

(SUM, G, b) ≥ 1

3
(log n + 1)

By Corollary 46, here n is the largest integer that is a power of 2 and satisfies
(n+1)(n+2)

2 + n(3n − 1) ≤ N .

Thus we have n = Θ(
√

N), which implies Rsyn,ft
0 (SUMN , b) = Ω(log N).

We next prove the lower bound on Rsyn,ft
ǫ, 1

3

(SUMN , b) for ǫ ≥ 1
N . For any N ≥ 15, consider the N -node

connected topology G as constructed by Corollary 47. We trivially have:

Rsyn,ft
ǫ, 1

3

(SUMN , b) ≥ Rsyn,ft
ǫ, 1

3

(SUM, G, b) ≥ log n + 1

By Corollary 47, here n is the largest integer that is a power of 2 and satisfies
(n+1)(n+2)

2 + n(3n − 1) ≤ 1
3ǫ .

Thus we have n = Θ( 1√
ǫ
), which implies Rsyn,ft

ǫ, 1
3

(SUMN , b) = Ω(log 1
ǫ ).

Finally, for ǫ = Ω( 1
N ) but ǫ < 1

N (in which case ǫ is necessarily Θ( 1
N )), we have:

Rsyn,ft
ǫ, 1

3

(SUMN , b) ≥ Rsyn,ft
1

N
, 1
3

(SUMN , b) = Ω(log N) = Ω(log
1

ǫ
)

2

H Trivially Extending Our Results to Alternative Models

H.1 Excluding The Communication Complexity of The Root Node

Our model in Section 2 defined the communication complexity of a SUM protocol to be the number of bits

sent by the bottleneck node. Here it is possible for the bottleneck node to be the root. In some scenarios,

one may want to exclude the root in this definition. Excluding the root clearly makes the NFT upper bounds

easier to achieve, so all our upper bounds trivially carry over. This section further shows that excluding the

root does not affect any asymptotic FT lower bounds either. This is true for all FT lower bounds, and not just

for FT lower bounds obtained in this paper.

Let G1 be the topology for obtaining the FT lower bounds, when the root’s communication complexity

is included in the definition of communication complexity for the SUM protocol. We construct a new lower

bound topology G2 by attaching a new degree-1 node to G1’s root, and let this new node be G2’s root. The

following trivial reduction shows that the communication complexity (while excluding the root) on G2 is at
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least as large as the communication complexity (while including the root) on G1. Consider any SUM pro-

tocol P2 for G2 whose communication complexity is a, when excluding the communication complexity of

G2’s root. We construct a corresponding SUM protocol P1 for G1, which is the same as P2 except that G1’s

root additionally locally simulates the execution of P2 on G2’s root. Clearly, the communication complexity

incurred by G2’s root will not contribute to the communication complexity of P1. As a result, the com-

munication complexity of P1 is exactly a as well, when including the communication complexity of G1’s

root.

One still needs to take care of a minor technicality in the above reduction: An aggregation round in P2’s

execution over G2 actually has one more round than an aggregation round in P1’s execution over G1. While

the two executions in our above reduction take the exactly same number of rounds, they may take slightly

different numbers of aggregation rounds. However, since an aggregation round usually has ω(1) rounds with

respect to the size of G1 (e.g., in all our constructions), this will not make any real difference when the size

of G1 is sufficiently large.

H.2 Defining Time Complexity Using Average-Case Coin Flips

Our model in Section 2 defined the time complexity of a randomized protocol as the number of rounds needed

for the protocol to terminate, under the worst-case random coin flips in the protocol. This section shows that if

we define the time complexity using average-case random coin flips, our exponential gap claim will continue

to hold and our FT lower bounds on communication complexity will only be slightly affected. In particular,

the FT lower bounds for zero-error results will now be obtained indirectly via the FT lower bounds for (ǫ, δ)-
approximate results while taking the smallest ǫ possible. The quality of the FT lower bounds for zero-error

results obtained in such a way remains high because our results for the (ǫ, δ)-error case are strong enough.

The following provides a more detailed discussion.

Similar as in Section 2, we define Rsyn,ft,avg
0 (SUM, G, b) and Rsyn,ft,avg

ǫ,δ (SUM, G, b) to be the smallest

communication complexity of FT SUM protocols over the topology G, where the protocol terminates within

b aggregation rounds on expectation (with the expectation taken over the coin flips in the protocol). We

then define Rsyn,ft,avg
0 (SUMN , b) and Rsyn,ft,avg

ǫ,δ (SUMN , b) to be the maximum Rsyn,ft,avg
0 (SUM, G, b)

and Rsyn,ft,avg
ǫ,δ (SUM, G, b), respectively, across all topology G’s where G is connected and has exactly N

nodes. The notation Rsyn,ft,avg
0,δ simply means Rsyn,ft,avg

ǫ,δ with ǫ = 0. We also define the corresponding

NFT versions of these definitions.

All the NFT upper bounds from Section 3 trivially hold under this new definition of time complexity,

since the upper bound protocol is actually deterministic. The FT lower bounds of Ω(log N) and Ω(log 1
ǫ ) for

unrestricted b (Section 7) obviously continue to hold as well, since those FT lower bounds do not depend on

the time complexity of the protocol. We next show that for b ≤ N0.125−c or 1
ǫ0.5−c , similar lower bounds on

Rsyn,ft,avg
0 and Rsyn,ft,avg

ǫ,δ can be obtained as the lower bounds on Rsyn,ft
0 and Rsyn,ft

ǫ,δ in Section 5.

First consider Rsyn,ft,avg
ǫ,δ . Note that if the average time complexity of a protocol is b aggregation

rounds, then by Markov’s inequality, the time complexity of the protocol can be above b
δ′ aggregation rounds

with probability at most δ′ (for any positive δ′). Recall our reduction (in Section 5 and Appendix D) from

UNIONSIZECPn,q to SUM where the simulation can last qn rounds. In that reduction we set q = 5b so that

qn rounds are at least b aggregation rounds. Now for obtaining the lower bound on Rsyn,ft,avg
ǫ,δ , all we need

to do is to set q = 5b
δ′ instead, so that qn rounds are at least b

δ′ aggregation rounds. If the SUM oracle protocol

does not terminate within qn rounds, which happends with at most δ′ probability, Alice simply outputs an
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arbitrary answer. Take δ′ = 1
30 and we have:

Rsyn,ft,avg
ǫ, 1

6

(SUMN , b) ≥ 1

2
Rsyn

ǫ, 1
6
+ 1

30

(UNIONSIZECPn,q , qn)

≥ 1

2
Rsyn

ǫ, 1
5

(UNIONSIZECPn,q , 150bn)

= Ω

(

1

ǫb2 log N

)

, for ǫ = Ω

(

1
4
√

N

)

Essentially, this means that for b ≤ 1
ǫ0.5−c , the lower bound on Rsyn,ft,avg

ǫ, 1
6

is asymptotically the same as the

lower bound on Rsyn,ft
ǫ, 1

5

.

We next move on to the lower bound for Rsyn,ft,avg
0 when b ≤ N0.125−c. It is not possible to use the

above trick anymore since here the result has to be zero-error. However, by a similar argument as in Lemma 7,

we have for any b ≥ 1 and δ > 0:

Rsyn,ft,avg
0 (SUMN , b) ≥ δRsyn,ft,avg

0,δ (SUMN , b)

Thus we have:

Rsyn,ft,avg
0 (SUMN , b) ≥ 1

6
Rsyn,ft,avg

0, 1
6

(SUMN , b) ≥ 1

6
Rsyn,ft,avg

1

4√
N

, 1
6

(SUMN , b) = Ω

(

4
√

N

b2 log N

)

Compared to the lower bound on Rsyn,ft
0 , we have a weaker term of

4
√

N here instead of
√

N . Nevertheless,

the exponential gap continues to exist.
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