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The Cost of Legal Restrictions on Experience Rating

Levon Barseghyan, Francesca Molinari, Darcy Steeg Morris, and Joshua C. Teitelbaum∗

Abstract

We investigate the cost of legal restrictions on experience rating in auto and home

insurance. The cost is an opportunity cost as experience rating can mitigate the prob-

lems associated with unobserved heterogeneity in claim risk, including mispriced cov-

erage and resulting demand distortions. We assess this cost through a counterfactual

analysis in which we explore how risk predictions, premiums, and demand in home

insurance and two lines of auto insurance would respond to unrestricted multiline ex-

perience rating. Using claims data from a large sample of households, we first estimate

the variance-covariance matrix of unobserved heterogeneity in claim risk. We then

show that conditioning on claims experience leads to material refinements of predicted

claim rates. Lastly, we assess how the households’ demand for coverage would respond

to multiline experience rating. We find that the demand response would be large.
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I. Introduction

In many insurance markets, there are variables that affect an insured’s claim risk but are not

observable by the insurer.1 In other words, there is unobserved heterogeneity in claim risk.

The problem with unobserved heterogeneity in claim risk is that it can lead to mispriced

insurance, which in turn can impair the efficient operation of insurance markets, including

by distorting the demand for insurance coverage.

In theory, an insurer can mitigate these problems through experience rating. The logic

is straightforward. Even if there is unobserved heterogeneity in claim risk at the time the

insurer underwrites and rates an insured’s policy, the insurer subsequently receives signals

about the insured’s latent risk type. In particular, the insurer observes the insured’s claims

experience. By conditioning on the insured’s claims experience, the insurer can refine its

initial prediction about the insured’s claim risk, which is based solely on observables. The

insurer can then use its refined prediction to adjust—or experience rate—the insured’s pre-

mium to better reflect her true claim risk.2

In practice, however, U.S. law frequently imposes restrictions on an insurer’s ability

to engage in experience rating.3 An example from federal law is the Affordable Care Act’s

community rating provisions, which forbid experience rating of premiums for heath insurance

coverage offered in the individual or small group market.4 A state law example is New York’s

Insurance Law, which forbids experience rating of premiums for auto comprehensive or home

1Alternatively, there may be variables that are observable by the insurer but that the insurer is prohibited
from using when it underwrites or rates the insured’s policy (Salani 1997; Avraham et al. 2014).

2Experience rating is not to be confused with classification rating. Under classification rating, an insured’s
premium is based on the collective loss experience of all insureds in the insured’s risk class. Under experience
rating, by contrast, an insured’s premium is adjusted based on her individual loss experience.

3Advocates for legal restrictions on experience rating (and other forms of risk classification) generally rely
on arguments from equity (distributional and deontological) (e.g., Abraham 1985; Avraham et al. 2014). For
instance, they argue that such restrictions promote access to insurance for high-risk, low-income insureds
(e.g., Meier 1991; Thiery & Van Schoubroeck 2006; Thomas 2007; Dionne & Rothschild 2014). That said,
many consider efficiency questions as well (e.g., Abraham 1985; Avraham et al. 2014; Dionne & Rothschild
2014; Abraham & Chiappori 2015).

4See Patient Protection and Affordable Care Act § 2701, 42 U.S.C. § 300gg (2018).
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insurance coverage and also prohibits using auto comprehensive claims to experience rate

premiums in any other line of insurance coverage.5

In this paper, we empirically investigate the cost of legal restrictions on experience rat-

ing in the context of auto and home insurance. The cost is an opportunity cost. As noted

above, experience rating has the potential to mitigate the problems associated with unob-

served heterogeneity in claim risk. When the law imposes restrictions on experience rating,

insurers lose the opportunity to fully utilize their insureds’ claims experience to refine their

risk predictions and adjust their premiums to better reflect the true risks. We assess this

opportunity cost through a counterfactual analysis in which we explore how risk predictions,

premiums, and demand in two lines of auto coverage and one line of home coverage would

respond to unrestricted experience rating within and across the three lines of coverage.

Our data comprise an unbalanced panel of 62,425 households who purchased auto and

home policies from a single insurance company between 1998 and 2006. Among other things,

the data record the number of claims filed by each household in three lines of coverage: auto

collision, auto comprehensive, and home all perils. In addition, the data contain detailed

information about the households and their auto and home policies.

Our analysis proceeds in three steps. First, we use the data to estimate the variance-

covariance matrix Σ of unobserved heterogeneity in claim risk and to generate the house-

holds’ predicted claim rates based on observables. We model households’ claim counts using

a Poisson mixture model with correlated random effects. To estimate the model, we take

a moments-based approach that uses generalized estimating equations based on marginal

moments (Morris 2012). Unlike the standard approach—maximum likelihood estimation of

a parametric mixture of Poisson distributions—our estimation approach is semiparametric

and unconstrained with respect to the parameters of the mixing distribution (Pinquet 2013).

Among other things, the estimates reveal that unobserved heterogeneity in claim risk is

positively correlated across lines of coverage.

5See N.Y. Ins. Law § 2334 (2018); N.Y. Comp. Codes R. & Regis. tit. 11, §§ 161.8 & 169.1 (2018).
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Next, we demonstrate the value of the information contained in Σ̂—and, by implica-

tion, the value of the signals provided by the households’ claims histories—by showing that

conditioning on claims experience leads to material refinements of the households’ predicted

claim rates. For instance, we find that (i) among households with downward revisions, their

predicted claim rates decrease on average by 7 percent in auto collision, 13 percent in auto

comprehensive, and 14 percent in home and (ii) among households with upward revisions,

their predicted claim rates increase on average by 10 percent in auto collision, 23 percent in

auto comprehensive, and 28 percent in home. We also demonstrate the incremental value of

conditioning across lines of coverage (in addition to conditioning within lines of coverage).

Finally, we investigate the extent to which the households’ demand for coverage, as cap-

tured by their deductible choices, would respond to experience rating within and across lines

of coverage (i.e., uniline and multiline experience rating). In so doing, we obtain a lower

bound on the potential for unpriced heterogeneity in claim risk to distort demand. Our

experience rating scheme is a simple bonus-malus system under which changes in premiums

are proportional to changes in predicted claim risk. We model households’ deductible choices

according to standard expected utility theory. After calibrating the model with the risk aver-

sion estimate reported by Barseghyan et al. (2013), we use the model to generate deductible

choices for the households in our data assuming first that premiums are not experience rated

and then that they are experience rated. We find that there would be large responses to

experience rating. In particular, we find that the fraction of households that would change

deductibles if premiums were experience rated is 7 percent in auto collision, 21 percent in

auto comprehensive, and 15 percent in home, resulting in average changes in coverage of

$247, $178, and $347, respectively, among policies with a change.

The paper proceeds as follows. Section II discusses the related literature. Section III

describes our data. Section IV presents the model and explains our estimation approach.

Sections V-VII contain the three steps of our analysis. Section VIII offers concluding remarks.
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II. Related Literature

The paper contributes to two literatures. The first is the literature on experience rating

in insurance markets. For surveys, see, e.g., Pinquet (2000, 2013) and Antonio & Valdez

(2012).6 Most closely related are the handful of papers on multiline experience rating,

beginning with Jewell (1974). For example, Pinquet (1998) studies experience rating across

auto claims at fault and not at fault; Desjardins et al. (2001) and Angers et al. (2006) study

experience rating for fleets of vehicles; Frees (2003) studies experience rating across multiple

lines within auto insurance; Englund et al. (2008) and Englund et al. (2009) study experience

rating across various types of commercial coverage; Frees et al. (2010) study experience rating

across multiple perils within home insurance; and Antonio et al. (2011) study experience

rating across multiple auto insurance policies. There are two main differences between these

papers and ours. First, we study experience rating across home insurance (all perils) and

two lines of auto insurance (collision and comprehensive).7 Second, and more importantly,

we also study the effects of multiline experience rating on the demand for coverage. This

underscores a key difference in focus. Whereas these studies focus on the actuarial science

of experience rating, we focus on the economics of legal restrictions on experience rating.

The second related literature is the empirical literature on the regulation of insurance

markets, and in particular the strand that seeks to quantify the economic effects of legal

restrictions on risk classification by insurers. For example, Buchmueller & DiNardo (2002),

Simon (2005), and Bundorf & Simon (2006) study the effects of community rating in U.S.

health insurance markets; Finkelstein et al. (2009) study the effects of a ban on gender-based

pricing in the U.K. annuity market; and Bundorf et al. (2012) and Geruso (2017) study the

effects of uniform contribution requirements in the U.S. employer-provided health insurance

market.8 Again, there are the two main differences between these papers and ours. First,

6For textbook treatments, see Lemaire (1995), Bhlmann & Gisler (2005), and Denuit et al. (2007).
7Thuring (2011) and Thuring et al. (2012) study auto and home insurance but with a focus on cross-selling.
8Though it is not their focus, Einav et al. (2010) also consider the effects of legal restrictions on risk

classification in the U.S. employer provided health insurance market. There also is a rich theoretical literature
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we study the regulation of the U.S. auto and home insurance markets. Second, whereas

these papers study the effects of restrictions on ex ante risk classification (i.e., classification

rating), we study the effects of restrictions on ex post risk classification (i.e., experience

rating).

III. Description of the Data

The source of the data is a large U.S. property and casualty insurance company. The

company offers auto and home insurance. The full data set includes annual information

on more than 400,000 households who purchased auto or home policies from the company

between 1998 and 2006. All of the policies in the data are governed by New York law.9 The

data contain all the information in the company’s records regarding the households and their

policies. In addition, the data record the number of claims that each household filed with

the company under each of its policies during the period of observation.

We focus our attention on three lines of coverage: auto collision, auto comprehensive,

and home all perils. Auto collision coverage pays for damage to the insured vehicle caused

by a collision with another vehicle or object, without regard to fault. Auto comprehensive

coverage pays for damage to the insured vehicle from all other causes (e.g., theft, fire, flood,

windstorm, glass breakage, vandalism, hitting or being hit by an animal or by falling or flying

objects), without regard to fault. Home all perils coverage pays for damage to the insured

home from all causes (e.g., fire, windstorm, hail, tornadoes, vandalism, or smoke damage),

except those that are specifically excluded (e.g., flood, earthquake, or war). For simplicity,

we often refer to home all perils merely as home.

on insurance regulation and the social welfare implications of legal restrictions on risk classification (e.g.,
Hoy 1982; Crocker & Snow 1986; Hoy 2006; Thomas 2008; Crocker & Snow 2011; Rothschild 2011).

9As noted above, New York forbids experience rating of premiums for auto comprehensive or home
insurance coverage and also prohibits using auto comprehensive claims to experience rate premiums in any
other line of insurance coverage. See N.Y. Ins. Law § 2334 (2018); N.Y. Comp. Codes R. & Regis. tit. 11,
§§ 161.8 & 169.1 (2018).
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In most of the analysis, we consider an unbalanced panel of 62,425 households who

purchased all three coverages (auto collision, auto comprehensive, and home) in one or more

years between 1998 and 2006. In all, this tricoverage sample comprises 294,917 household-

years. Table A1 in the Appendix provides descriptive statistics for the tricoverage sample.

Tables A2, A3, and A4 in the Appendix summarize the claims, premiums, and deductibles

in the tricoverage sample. The mean number of claims per household-year is 0.107 in auto

collision, 0.032 in auto comprehensive, and 0.079 in home.10 On average, households paid

annual premiums of $200 in auto collision, $127 in auto comprehensive, and $548 in home.

The mean deductibles per household-year are $396, $273, and $350 in auto collision, auto

comprehensive, and home, respectively. The modal deductibles are $500 in auto collision,

$200 in auto comprehensive, and $250 in home.

IV. Model and Estimation Approach

A standard regression model for longitudinal univariate count data is the Poisson random

effects model. We extend this model to multivariate count data—here, claim counts under

three types of insurance coverage—by allowing for correlated random effects.11

Let yitk denote the number of claims for household i in year t under coverage k, where

i = 1, ..., N , t = 1, ..., Ti, and k ∈ {c,m, h}. In the set of coverages, c denotes auto collision,

m denotes auto comprehensive, and h denotes home. Similarly, let xitk denote a vector of

observables (plus a constant) for household i in year t under coverage k.12 Let λitk denote

10In the data, we observe the frequency of claims but not their severity. Hence, we focus on and define
claim risk in terms of claim frequency. In our model of deductible choice, we assume that the loss associated
with every claim exceeds the maximum deductible option; see Section VII.

11By allowing for random effects, our model accounts for overdispersion, including due to excess zeros, in
a similar way as the (pooled) negative binomial model (see, e.g., Wooldridge 2002, ch. 19). An alternative
approach would be a zero-inflated model. However, Vuong (1989) and likelihood ratio tests select the negative
binomial model over the zero-inflated model, suggesting that adjustment for excess zeros is not necessary
once we allow for random effects.

12The variables that comprise xitk are listed in Tables A5 (auto) and A6 (home) in the Appendix. In
auto, they include the age, gender, and insurance score (which is based on information contained in credit
reports) of the primary driver, the age and gender of each additional driver, and the age, use, location, and
safety features of each vehicle. In home, they include the insurance score of the primary owner, the age,
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household i’s baseline claim rate in year t under coverage k, and let ǫik denote a time-constant

random effect for household i under coverage k. Both λitk and ǫik are unobserved.

We assume that claims for household i in year t under coverage k follow a Poisson arrival

process with rate λitkǫik. Specifically, we assume

yitk|xitk ∼ Poisson (λitkǫik) ,

where

λitk = exp (x′

itkβk)

and ǫi ≡ [ǫic ǫim ǫih]
′ is iid with E(ǫi) = [1 1 1]′ and V (ǫi) = Σ.

The parameters to be estimated are

β ≡




βc

βm

βh




and Σ ≡




σ2
c ρmcσmσc ρhcσhσc

ρcmσcσm σ2
m ρhmσhσm

ρchσcσh ρmhσmσh σ2
h



.

Of principal interest is the variance-covariance matrix, Σ, which captures both the within-

coverage variance of unobserved heterogeneity in claim risk, σ2 ≡ (σ2
c , σ

2
m, σ

2
h), and its cross-

coverage correlation structure, ρ ≡ (ρcm, ρch, ρmh).

The likelihood function may be written as

Li =

∫

ǫih

∫

ǫim

∫

ǫic

{
∏

k

∏

t

exp (−λitkǫik)
(λitkǫik)

yitk

yitk!

}
f(ǫic, ǫim, ǫih)dǫicdǫimdǫih,

where f(ǫic, ǫim, ǫih) is the trivariate density of ǫi. A standard parametric approach is to

specify f and estimate the model by maximum likelihood. Typical specifications of f include

the lognormal distribution and the gamma distribution (in which case Li reduces to the

product of negative binomial densities). In our case, however, the standard approach is

value, use, location, type of construction, and safety features of the dwelling, whether the dwelling is owner
occupied, and the number of families that occupy the dwelling.
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computationally intractable. The likelihood function not only involves a multidimensional

integral, but, depending on f , it also may not have a closed-form expression.

We adopt a semiparametric, moments-based approach, which provides a computationally

tractable method for consistent estimation of β and Σ for all possible densities f . Under

this approach, estimation is via generalized estimating equations (GEE) based on marginal

moments.13 Given the assumptions of our model, we can derive the first and second marginal

moments and use them to construct estimating equations for β and Σ. More specifically, we

use the first marginal moment to define a quasi-score equation, where the associated esti-

mating equation for β is based on a weighted least squares estimator with the weight matrix

defined by the covariance structure derived from the second marginal moment. The estimat-

ing equation for Σ is based on the relation between the empirical variance estimate and the

model defined covariance structure. The two estimating equations are solved iteratively to

obtain β̂ and Σ̂. For further details about the estimation approach, see the Appendix.14

V. Estimation Results

A. Regression Estimates

Table 1 presents the estimates of the association parameters, σ2 and ρ, implied by Σ̂. The

estimates reveal that the variance of unobserved heterogeneity is lowest in auto collision

(σ̂2
c = 0.11) and is roughly four times higher in auto comprehensive (σ̂2

m = 0.40) and home

(σ̂2
h = 0.41). More importantly, the estimates also reveal that unobserved heterogeneity

is correlated across coverages—each pairwise correlation is positive and statistically signifi-

13GEE were introduced by Liang and Zeger and co-authors in the 1980s (see, e.g., Liang & Zeger 1986;
Zeger & Liang 1986; Zeger et al. 1988). For a textbook treatment of GEE, see, e.g., Ziegler (2011).

14See also Morris (2012) and Pinquet (2013). This approach is an extension of quasi-generalized pseudo
maximum likelihood (QGPML) estimators developed by Gouriroux et al. (1984a,b) and the extended GEE
approach developed by Prentice (1988). The QGPML method can be characterized as first order GEE with
a specific association structure. Prentice introduced an extension of first order GEE that utilizes a second
set of estimating equations to jointly estimate the association parameters. QGPML can be embedded in the
GEE framework resulting in commonly studied consistency and asymptotic results for simultaneous inference
on both the regression parameters and the association parameters.
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cant. Perhaps not surprisingly, the strongest correlation is between auto collision and auto

comprehensive (ρ̂cm = 0.66). There is also a fairly strong correlation between auto compre-

hensive and home (ρ̂mh = 0.56). The weakest correlation is between auto collision and home

(ρ̂ch = 0.29). Even this correlation, however, is economically significant, as we demonstrate

in Sections VI and VII.

Our primary interest in these correlations is their instrumental value in terms of predicting

claim risk and experience rating, which we explore in Sections VI and VII. However, they

are also interesting in their own right, because they suggest that, even after controlling for

observable characteristics, there exists a latent, domain-general component to risk type. We

elaborate on this point in our concluding discussion in Section VIII.

The estimates of the regression parameters, β, are reported in Tables A5 (auto) and A6

(home) in the Appendix. Because β is not the object of primary interest, we relegate our

comments about the regression parameter estimates to the Appendix as well.

B. Robustness Checks

1. Alternative Samples

As a check of the sensitivity of the association parameter estimates to our sample restric-

tions, we re-estimate the model on two alternative samples of the data: (A) a balanced panel

of 8,731 households (78,579 household-years) who purchased all three coverages (auto colli-

sion, auto comprehensive, and home); and (B) an unbalanced panel of 203,731 households

(1,019,170 household-years) who purchased both auto coverages (collision and comprehen-

sive). The association parameter estimates for both alternative samples are reported in Table

A7 in the Appendix.15 They are largely consistent with the estimates for the tricoverage

sample. If anything, they suggest that our baseline estimates are conservative.

15To ease the computational burden of the re-estimations, we obtain estimates of the regression parameters
from a generalized linear model (GLM) assuming the random effects follow a lognormal distribution. In the
tricoverage sample, the semiparametric and GLM estimates for β are nearly identical (R2 = 0.9998). Thus,
we are confident that using the GLM estimates for β does not corrupt the semiparametric estimates of the
association parameters in the re-estimations.
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2. Moral Hazard

Our approach implicitly assumes that a household’s claim risk is not a function of its choice

of deductible. That is, we assume households do not suffer from moral hazard. In particular,

we assume there is neither ex ante moral hazard (deductible choice does not influence the

frequency of claimable events) nor ex post moral hazard (deductible choice does not influ-

ence the decision to file a claim). The empirical evidence on moral hazard in auto insurance

markets is mixed (Cohen & Siegelman 2010), and we are not aware of any empirical evi-

dence on moral hazard in home insurance markets. Because deductibles are small relative

to the overall level of coverage, it seems reasonable to assume there is no ex ante moral

hazard. However, because the damage from a claimable event may occasionally be less than

the chosen deductible (at least for ”high deductible” households), it may be less reasonable

to assume there is no ex post moral hazard. As a check of the sensitivity of the associ-

ation parameter estimates to our assumption on moral hazard, we re-estimate the model

separately for ”low deductible” and ”high deductible” households. We define a household

as ”low deductible” if none of its deductibles is greater than $250. Conversely, we define a

household as ”high deductible” if at least one of its deductibles is greater than $250. Table

A8 in the Appendix reports the association parameter estimates for low and high deductible

households.16 They are largely consistent with each other and with the estimates for the

tricoverage sample, suggesting that moral hazard is not an issue.17

VI. Signaling Value of Claims Experience

In this section, we demonstrate the value of the information contained in the estimated

variance-covariance matrix Σ̂—and, by implication, the signaling value of the households’

16As before, the re-estimations use GLM estimates of the regression parameters assuming the random
effects follow a lognormal distribution.

17Our test of moral hazard is also a test of adverse selection, as adverse selection also implies a correlation
between deductible choice and claim frequency (Chiappori & Salanié 2000). Accordingly, the results reported
in Table A8 in the Appendix also suggest that our estimates are robust to the possibility of adverse selection.
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claims histories—by showing that conditioning on claims experience leads to material re-

finements of the predicted claim rates in the tricoverage sample. We also demonstrate the

incremental value of utilizing the information on the cross-coverage correlation structure of

unobserved heterogeneity (ρ), as opposed to utilizing only the information on the within-

coverage variance of unobserved heterogeneity (σ2), by showing that conditioning across

lines of coverage (in addition to conditioning within lines of coverage) leads to material

incremental refinements of the predicted claim rates.

Throughout this section and beyond, we distinguish among three types of predicted claim

rates. The first are prior claim rates, λ̂itk ≡ exp(x′

itkβ̂k). These are a priori predicted claim

rates based on ex ante observables. The second are uniline posterior claim rates, ϑ̂itk ≡

λ̂itkE
UL(ǫik|yik) for each coverage k = c,m, h, where yik ≡ (yi1k, ..., yiTik) and EUL(ǫik|yik) is

calculated assuming ǫik
iid
∼ lognormal with E(ǫik) = 1 and V (ǫik) = σ̂2

k. These are a posteriori

predicted claim rates conditional on within-coverage ex post claims experience. The third

are multiline posterior claim rates, θ̂itk ≡ λ̂itkE
ML(ǫik|yi), where yi ≡ (yic,yim,yih) and

EML(ǫik|yi) is calculated assuming ǫi ≡ [ǫic ǫim ǫih]
′

iid
∼ lognormal with E(ǫi) = [1 1 1]′

and V (ǫi) = Σ̂. These are a posteriori predicted claim rates conditional on ex post claims

experience both within and across lines of coverages. The derivations of EUL(ǫik|yik) and

EML(ǫik|yi) are set forth in the Appendix.

Our approach to updating the prior claim rates accords with standard Bayesian credibility

theory. In actuarial parlance, credibility refers to statistical methods that combine individual

and class estimates of the risk premium (i.e., the expected number of claims). Bayesian cred-

ibility refers to credibility approaches that utilize Bayes’ theorem. The Bayesian credibility

premium is the a priori predicted claim rate (the class estimate) multiplied by an a posteriori

correction—also known as a bonus-malus coefficient—that reflects idiosyncratic claim risk

(the individual estimate). In particular, ϑ̂itk ≡ λ̂itkE
UL(ǫik|yik) corresponds to the textbook

Bayesian credibility premium—where EUL(ǫik|yik) is the bonus-malus coefficient—for the

single-line Poisson-lognormal credibility model, and θ̂itk ≡ λ̂itkE
ML(ǫik|yi) is the extension to

11



the multiple-line case. A noteworthy property of the Bayesian credibility approach is that it

is balanced: E
(
EUL(ǫik|yik)

)
= 1 and E

(
EML(ǫik|yi))

)
= 1 for each coverage k ∈ {c,m, h},

so the bonus-malus corrections average to unity. For more on Bayesian credibility theory,

see generally, e.g., Denuit et al. (2007, ch. 3).

To demonstrate that conditioning on claims experience leads to material refinements of

the predicted claim rates, we compare the empirical distribution of the prior claim rates,

λ̂itk, with that of the multiline posterior claim rates, θ̂itk. Figure 1 plots, for each coverage

k, the kernel density of ηitk ≡ (θ̂itk − λ̂itk)/λ̂itk. Further details are set forth in Table 2. For

households with negative values of ηitk, the mean value of ηitk is −7 percent in auto collision,

−13 percent in auto comprehensive, and −14 percent in home. For a quarter of these

households, ηitk is less than−9 percent in auto collision, −19 percent in auto comprehensive,

and −20 percent in home. For a tenth, ηitk is less than −12 percent in auto collision and

−24 percent in both auto comprehensive and home. The numbers are even more striking

for households with positive values of ηitk. For these households, the mean value of ηitk is

+10 percent in auto collision, +23 percent in auto comprehensive, and +28 percent in home.

For a quarter of these households, ηitk exceeds +14 percent in auto collision, +31 percent

in auto comprehensive, and +37 percent in home. For a tenth, ηitk exceeds +23 percent in

auto collision, +53 percent in auto comprehensive, and +65 percent in home. The numbers

are similar for households with low, medium, and high prior claim rates,18 suggesting that

the value of the information in Σ̂ is robust to differences in baseline claim risk.

To show the incremental value of conditioning across lines of coverage, we compare the

empirical distribution of the multiline posterior claim rates, θ̂itk, with that of the uniline

posterior claim rates, ϑ̂itk. Figure 2 plots, for each coverage k, the kernel density of ζitk ≡

(θ̂itk − ϑ̂itk)/ϑ̂itk. Further details are set forth in Table 3. For households with negative

values of ζitk, the mean value of ζitk is −3 percent in auto collision, −10 percent in auto

18A prior claim rate is ”low” if it is in the bottom quartile and ”high” if it is in the top quartile. It is
”medium” otherwise. In the tricoverage sample, the respective low and high cutoffs are 0.078 and 0.127 in
auto collision, 0.016 and 0.044 in auto comprehensive, and 0.054 and 0.096 in home.
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comprehensive, and −4 percent in home, and for a tenth ζitk is less than −6 percent in auto

collision, −17 percent in auto comprehensive, and −8 percent in home. Again, the numbers

are more striking for households with positive values of ηitk. For these households, the mean

value of ζitk is +7 percent in auto collision, +16 percent in auto comprehensive, and +9

percent in home, and for a tenth ζitk exceeds +15 percent in auto collision, +36 percent

in auto comprehensive, and +21 percent in home. As before, the numbers are similar for

households with low, medium, and high prior claim rates, suggesting that the incremental

value of the information in ρ̂ is robust to differences in baseline claim risk.

VII. Experience Rating and Deductible Choices

The previous section demonstrates the signaling value of the households’ claims experience.

In this section, we investigate the extent to which the households’ demand for insurance

coverage, as captured by their deductible choices, would respond to experience rating. As

noted above, this yields a lower bound on the potential for unpriced heterogeneity to distort

their demand for insurance coverage, which in turn sheds light on the potential for experience

rating to reduce market inefficiency due to unobserved heterogeneity in claim risk.

A. Experience Rating

In each coverage, the company uses the same basic procedure to generate a household’s pric-

ing menu of premium-deductible combinations. The company first determines a household’s

base price p̄ according to a coverage-specific rating function, which takes into account the

household’s coverage-relevant characteristics and any applicable discounts. Using the base

price, the company then generates the household’s pricing menu M = {(p(d), d) : d ∈ D},

which associates a premium p(d) with each deductible d in the coverage-specific set of de-

ductible options D, according to a coverage-specific multiplication rule, p(d) = (g(d) · p̄)+ δ,

where g (·) is a decreasing positive function and δ > 0. The multiplicative factors {g(d) : d ∈
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D} are known as the deductible factors and δ is a small markup known as the expense fee.

The deductible factors and the expense fee are coverage specific but household invariant.

We assume that the company’s experience rating scheme is a simple bonus-malus system

under which base prices are adjusted in proportion to changes in predicted claim risk. Let pUL
ik

denote household i’s experience rated base price in coverage k in the case of uniline experience

rating (i.e., when premiums are experience rated only within coverages), and let pML
ik denote

household i’s experience rated base price in coverage k in the case of multiline experience

rating (i.e., when premiums are experience rated both within and across coverages). We

assume that

pUL
ik =

ϑ̂ik

λ̂ik

× pik and pML
ik =

θ̂ik

λ̂ik

× pik,

where λ̂ik, ϑ̂ik, and θ̂ik denote household i’s prior claim rate, uniline posterior claim rate, and

multiline posterior claim rate, respectively, in coverage k. Recall that ϑ̂ik = λ̂ikE
UL(ǫik|yik)

and θ̂ik = λ̂ikE
ML(ǫik|yi). Hence,

pUL
ik = EUL(ǫik|yik)× pik and pML

ik = EML(ǫik|yi)× pik,

where EUL(ǫik|yik) and EML(ǫik|yi) are the bonus-malus coefficients in the single-line and

multiple-line Poisson-lognormal credibility models, respectively (see, e.g., Denuit et al. 2007,

ch. 3; Pinquet 2013). Table 4 summarizes the uniline and multiline bonus-malus coefficients.

Note that the uniline and multiline experience rating schemes are balanced in that the bonus-

malus coefficients average to unity in each coverage.

B. Deductible Choices

We proceed in two steps to investigate how households’ deductible choices would respond

to experience rating. First, we assume that households make deductible choices according

14



to standard expected utility theory. Second, we investigate how deductible choices would

change when we move from prior premiums to uniline premiums and multiline premiums.19

1. A Model of Deductible Choice

A household i faces a menu of premium-deductible pairs {(pi(d), d) : d ∈ D}. The household

experiences at most one claim during the policy period, and it believes the probability of

experiencing a claim is µi. In the event of a claim, the loss exceeds the maximum deductible

option and payment of the deductible is the only cost associated with the claim. Under these

assumptions, the household’s choice of deductible involves a choice among lotteries of the

form Li(d) ≡ (−pi(d), 1− µi;−pi(d)− d, µi) .

Under the standard expected utility model, the utility of lottery Li(d) is given by

Ui(Li(d)) = (1− µi) ui (wi − pi(d)) + µiui (wi − pi(d)− d) , (1)

where ui (·) is the household’s Bernoulli utility function and wi is its wealth. We assume

that household i chooses a deductible d ∈ D to maximize Ui(Li(d)).

We assume that every household has the same utility function: ui (·) = u(·) for all i.20

For u(·), we consider a second-order Taylor expansion. Also, because u(·) is unique only up

to an affine transformation, we normalize the scale of utility by dividing by u′(·). With this

specification, equation (1) becomes

Ui(Li(d)) = − [pi(d) + µid]−
r

2

[
(1− µi) (pi(d))

2 + µi (pi(d) + d)2
]
, (2)

where r = −u′′(·)/u′(·) is the coefficient of absolute risk aversion.

19In the Appendix, we also consider a generalization of the expected utility model that allows for probability
distortions.

20Despite the simplistic assumption of homogeneous preferences, the model fits the data reasonably well.
It correctly predicts 53 percent of the deductible choices in home, 37 percent in auto collision, and 27 percent
in auto comprehensive.
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We calibrate the model with the estimate for r reported by Barseghyan et al. (2013)

[hereafter, BMOT]. BMOT estimate equation (2) using a cross section of 4,170 households in

the tricoverage sample. They arrive at their estimation sample by imposing two restrictions.

First, they restrict attention to households who first purchased their auto and home policies

in the same year, in either 2005 or 2006. This is meant to avoid temporal issues, such as

changes in household characteristics and in the economic environment. Second, they consider

only the initial deductible choices of each household. This is meant to increase confidence

that they are working with active choices; one might be concerned that some households

renew their policies without actively reassessing their deductible choices. To account for

observationally equivalent households choosing different deductibles, BMOT assume random

utility with additively separable choice noise. Specifically, they assume that the utility from

deductible d ∈ D is U(d) ≡ U(Li(d)) + εi,d, where εi,d follows a type 1 extreme value

distribution with scale parameter σ. In addition, they assume that µi = 1 − exp(−ϑ̂i).

Estimating the model by maximum likelihood, they report r̂ = 0.0129.

C. Results

We use the calibrated model to investigate the extent to which the households’ deductible

choices would change if premiums were experience rated. In particular, we examine how

the distribution of model-predicted deductible choices changes when we counterfactually

move from prior premiums (i.e., premiums generated using non-experience rated base prices,

pik) to uniline premiums and multiline premiums (i.e., premiums generated using uniline

experienced rated base prices, pUL
ik , and multiline experienced rated base prices, pML

ik ). In

each case, we assume that households believe their claim probability is µi = 1− exp(−θ̂i).

Table 5 presents the results. In addition to displaying the distributions, the table reports

the percentage of policies in which the deductible choice changes when we move from prior

premiums to uniline and multiline premiums, as well as the resulting (absolute) changes

in coverage. The main takeaway is that the response of deductible choices to experience
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rating would be substantial. When we move from prior premiums to uniline premiums,

the deductible choice changes in 5 percent of auto collision policies, 12 percent of auto

comprehensive policies, and 14 percent of home policies, resulting in average changes in

coverage of $247, $164, and $343, respectively, among policies with a change, and of $13,

$20, and $47, respectively, among all policies. When we move from prior premiums to

multiline premiums, the deductible choice changes in 7 percent of auto collision policies, 21

percent of auto comprehensive policies, and 15 percent of home policies, resulting in average

changes in coverage of $247, $178, and $347, respectively, among policies with a change and

of $17, $38, and $51, respectively, among all policies.21

VIII. Conclusion

We examine the cost of legal restrictions on experience rating in auto and home insurance.

Using data on claims histories, we first estimate the variance-covariance matrix of unobserved

heterogeneity in claim risk. We find, inter alia, that unobserved heterogeneity in claim risk

is positively correlated across coverages. As noted above, this suggests that there is a latent,

domain-general component to risk type. This finding adds to a growing body of evidence

that riskiness is a trans-substantive characteristic of individuals (e.g., Barksy et al. 1997;

Dohmen et al. 2011; Golden et al. 2016). It also complements existing research suggesting

that risk aversion, though not completely stable across contexts (Barseghyan et al. 2011),

also has latent, domain-general component (e.g., Einav et al. 2012; Barseghyan et al. 2016).22

Next, we show that conditioning on claims experience leads to material refinements of

predicted claim rates, with the average downward revisions ranging from 7 percent to 14

percent and the average upward revisions ranging from 10 percent to 28 percent. Accord-

ingly, for the average household—who has prior predicted claim rates of 10.7 percent in auto

collision, 3.2 percent in auto comprehensive, and 7.9 percent in home—such conditioning

21The results for the model with probability distortions are reported in the Appendix. The main takeaway
is the same.

22But see Barseghyan et al. (2018).
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implies posterior predicted claim rates of 10.0 percent, 2.8 percent, and 6.8 percent, respec-

tively, in the case of downward revisions and of 11.8 percent, 3.9 percent, and 10.1 percent,

respectively, in the case of upward revisions.

Lastly, we assess how insureds’ demand for coverage would respond to experience rating

assuming that households make deductible choices according to standard expected utility

theory. We find that the demand response to experience rating would be large. Across

the three coverages, we find that anywhere from 7 percent to 21 percent of households

would change their deductible in response to multiline experience rating, resulting in average

changes in coverage ranging from $178 to $347 among policies with a change.

The main takeaway from our analysis is that in the absence of experience rating there

would be considerable unpriced heterogeneity in claim risk that in turn would lead to sizable

distortions in households’ demand for insurance coverage. In other words, our analysis

suggests that the cost of legal restrictions on experience rating can be substantial. We

believe this is important for policymakers to keep in mind. As noted above, regulation of

experience rating is widespread in the United States. In auto and home insurance, New

York is just one of many states that limit insurers’ ability to engage in experience rating.23

For instance, California and Oklahoma prohibit increasing an insured’s premium for auto

collision insurance on the basis of an accident for which the insured was not at fault;24 Florida

and Pennsylvania prohibit increasing an insured’s premium for auto comprehensive insurance

on the basis of an accident whether or not the insured was at fault;25 and Oklahoma and

Texas prohibit increasing an insured’s premium for home insurance on the basis of a weather

related claim or the first non-weather related claim.26

23As noted above, New York forbids experience rating of premiums for auto comprehensive or home
insurance coverage and also prohibits using auto comprehensive claims to experience rate premiums in any
other line of insurance coverage. See N.Y. Ins. Law § 2334 (2018); N.Y. Comp. Codes R. & Regis. tit. 11,
§§ 161.8 & 169.1 (2018).

24See Cal. Ins. Code §§ 1861.02–.025 (2018); Cal. Code Regs. tit. 10, §§ 2632.12–13.1 (2018); Okla. Stat.
tit. 36, § 941 (2018).

25See Fla. Stat. ch. 626.9541(o)(10) (2018); 31 Pa. Code § 67.33(b)(3) (2018).
26See Okla. Stat. tit. 36, § 3691.1 (2018); Okla. Admin. Code § 365:15-7-26 (2018); 28 Tex. Admin.

Code § 21.1004 (2018).
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Of course, in order to determine whether any particular legal restriction on experience

rating is worth the cost, a policymaker would need to conduct a full-fledged welfare analysis

(assuming she takes a welfarist approach to policymaking). Although such an analysis is

beyond the scope of this paper, we can sketch out what it would entail. First and foremost,

one would have to specify a social welfare function, which presumably would take into

account the utility of both insureds and insurers. In addition, one would have to model

and predict not only the behavior of insureds on the intensive margin (as we do), but also

the behavior of insureds on the extensive margin and the behavior of insurers. This is because

legal restrictions on experience rating can have long-term market effects beyond the short-

term demand effects that we consider. For instance, they can lead to risk-based adverse

selection and higher insurance costs. Indeed, several studies of the auto insurance market

find that insurance costs are higher when rate regulation generates cross-subsidies from low-

to high-risk insureds (e.g., Weiss et al. 2010; Derrig & Tennyson 2011). Needless to say, one

would have to make difficult normative judgments in specifying the social welfare function.

Moreover, the positive analysis would be sensitive to the assumptions that one makes about

behavior. This is a topic that we hope to explore in future research.
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Appendix

A. Descriptive Statistics

Table A1 provides descriptive statistics for the tricoverage sample. Tables A2, A3, and A4

summarize the claims, premiums, and deductibles in the tricoverage sample.

B. Estimation Approach

Let yitk denote the number of claims for household i in year t under coverage k, where

i = 1, . . . , N , t = 1, . . . , Ti, and k ∈ {c,m, h}. Similarly, let xitk denote a vector of observables

(plus a constant) for household i in year t under coverage k. Let λitk denote household i’s
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baseline claim rate in year t under coverage k, and let ǫik denote a time-constant random

effect for household i under coverage k. Also, let yik ≡ (yi1k, ..., yiTik) and yi ≡ (yic,yim,yih),

and let λik ≡ (λi1k, ..., λiTik) and λi ≡ (λic,λim,λih).

The first two marginal moments for the class of models used in this research—longitudinal

multivariate count models with multiplicative correlated random effects—are

E(yitk|xitk) = exp (x′

itkβk) = λitk

and

Vi ≡ V ar(yi|xi) = diag(λ′

i) +Σ⊗ 1Ti
1′

Ti
◦ λiλ

′

i,

where ◦ is element-wise multiplication, ⊗ is the Kronecker product, and 1Ti
is a Ti-dimensional

vector of ones.

The moment-based approach for fitting this model relies on the moment conditions im-

plied by the marginal mean and variance along with the basic assumptions for multiplicative

correlated random effects models. The estimator (β̂, Σ̂) for β ≡ [βc βm βh]
′ and Σ is defined

as the solution to

∑

i

(
D′

i 0

0 E′

i

)(
Vi 0

0 I

)
−1(

yi − λi

R∗

i −V∗

i

)
= 0,

where

Di ≡
∂λi

∂β
= diag [x′

icλic x
′

imλim x′

ihλih]
′

,

Vi is the model based variance-covariance matrix as defined above,

Ei ≡
∂V∗

i

∂Σ∗
= diag

[
(λicλ

′

ic)
∗

(λimλ
′

im)
∗

(λihλ
′

ih)
∗

(λicλ
′

im)
∗

(λicλ
′

ih)
∗

(λimλ
′

ih)
∗
]
,

I is the identity matrix, and Ri is the cross product of residuals ritk ≡ yitk − λitk. Also,

let ∗ indicate a half-vectorization operator, such that R∗

i , V
∗

i , and Σ∗ are the vectors of the

upper triangular elements of the matrices Ri, Vi, and Σ, respectively. The roots of the set

of estimating equations are obtained via an iterative procedure, updated at each iteration

with the consistent estimator of β given Σ̂ and the consistent estimator of Σ given β̂, until

convergence. See Morris (2012) for more details on the estimation algorithm and asymptotic

results for joint inference.
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C. Regression Estimates

Tables A5 (auto) and A6 (home) report the estimates of the regression parameters, β. Al-

though β is not the object of principal interest, the estimates reveal several noteworthy

facts. First, auto claim rates (collision and comprehensive) are negatively related to insur-

ance score (which is based on information contained in credit reports) but positively related

to the age and number of vehicles. However, they are not correlated with vehicle safety

features (passive restraint, anti-theft, and anti-lock brakes). Second, collision claim rates are

negatively related to the age of the primary driver and are higher for households in which

the primary driver is female. Conversely, comprehensive claim rates are positively related

to the age of the primary driver and are lower for households in which the primary driver

is female. Third, collision claim rates are higher for households with three or more drivers.

Finally, home claim rates are negatively related to insurance score but positively related to

the age and insured value of the home. In addition, they are higher for homes that are used

for farming or business and for homes that are not the owner’s primary residence. Home

claim rates, however, are not correlated with home safety features (masonry construction,

distance to fire hydrant, and alarm or other protection).

D. Derivations of EUL(ǫik|yik) and EML(ǫik|yi)

Let yitk denote the number of claims for household i in year t under coverage k, where

i = 1, . . . , N , t = 1, . . . , Ti, and k ∈ {c,m, h}. Similarly, let xitk denote a vector of observables

(plus a constant) for household i in year t under coverage k. Let λitk denote household i’s

baseline claim rate in year t under coverage k, and let ǫik denote a time-constant random

effect for household i under coverage k. Also, let yik ≡ (yi1k, ..., yiTik) and yi ≡ (yic,yim,yih).

1. Derivation of EML(ǫik|yi)

We assume

yitk|xitk ∼ Poisson (λitkǫik) ,

where

λitk = exp (x′

itkβk)
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and ǫi ≡ [ǫic ǫim ǫih]
′
iid
∼ lognormal with E(ǫi) = [1 1 1]′ and V (ǫi) = Σ. This leads to the

following probability distribution functions:

f(yi|ǫi) =
∏

k

∏

t

Poisson(λitkǫik)

=
∏

k

∏

t

(ǫikλitk)
yitk

yitk!
e−ǫikλitk

=

(
∏

k

ǫ

∑

t

yitk

ik e
−ǫik

∑

t

λitk

)(
∏

k

∏

t

λyitk
itk

yitk!

)
,

f(ǫ̃i) = Normal(µ̃, Σ̃)

=
1

(2π)3/2
|Σ̃|−1/2e−

1

2
(ǫ̃i−µ̃)′Σ̃−1(ǫ̃i−µ̃),

where ǫ̃i ≡ ln(ǫi), µ̃ ≡ −diag(Σ̃)
2

, and Σ̃ ≡ ln (Σ+ 1), and

f(yi) =

∫

ǫ̃ic

∫

ǫ̃im

∫

ǫ̃ih

f(yi|ǫ̃i)f(ǫ̃i) dǫ̃ihdǫ̃imdǫ̃ic

=

∫

ǫ̃ic

∫

ǫ̃im

∫

ǫ̃ih

∏

k

∏

t

Poisson(λitke
ǫ̃ik) MVN(µ̃, Σ̃) dǫ̃ihdǫ̃imdǫ̃ic

=
1

(2π)3/2
|Σ̃|−1/2

(
∏

k

∏

t

λyitk
itk

yitk!

)∫

ǫ̃ic

∫

ǫ̃im

∫

ǫ̃ih

gML(ǫ̃i) dǫ̃ihdǫ̃imdǫ̃ic,

where gML(ǫ̃i) ≡

(∏
k

e
ǫ̃ik

∑

t

yitk
e
−eǫ̃ik

∑

t

λitk

)
e−

1

2
(ǫ̃i−µ̃)′Σ̃−1(ǫ̃i−µ̃). Taken together, the posterior

distribution is defined as

f(ǫ̃i|yi) =
f(yi|ǫ̃i)f(ǫ̃i)

f(yi)

=
gML(ǫ̃i)∫

ǫ̃ic

∫
ǫ̃im

∫
ǫ̃ih

gML(ǫ̃i) dǫ̃ihdǫ̃imdǫ̃ic
,

and the expectation is

EML(ǫi|yi) =

∫

ǫ̃ic

∫

ǫ̃im

∫

ǫ̃ih




eǫ̃ic

eǫ̃im

eǫ̃ih


 f(ǫ̃i|yi) dǫ̃ihdǫ̃imdǫ̃ic.
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2. Derivation of EUL(ǫik|yik)

The univariate expectation, EUL(ǫik|yik), is a special case of the multivariate expectation,

EML(ǫi|yi). Replacing the conditional and marginal distribution functions with their uni-

variate counterparts, the univariate posterior distribution is

f(ǫ̃ik|yik) =
f(yik|ǫ̃ik)f(ǫ̃ik)

f(yik)

=
gUL(ǫ̃ik)∫

ǫ̃ik
gUL(ǫ̃i) dǫ̃ik

,

where gUL(ǫ̃ik) ≡

(
e
ǫ̃ik

∑

t

yitk
e
−eǫ̃ik

∑

t

λitk

)
e
−

1

2σ̃2

k

(ǫ̃ik−µ̃k)
′(ǫ̃ik−µ̃k)

and k ∈ {c,m, h}, and the uni-

variate expectation is

EUL(ǫik|yik) =

∫

ǫ̃ik

eǫ̃ikf(ǫ̃ik|yik) dǫ̃ik

for k ∈ {c,m, h}.

E. Robutness Checks

Table A7 reports the association parameter estimates for alternative samples A and B. Alter-

native sample A comprises a balanced panel of households who purchased all three coverages

(auto collision, auto comprehensive, and home). Alternative sample B comprises an unbal-

anced panel of households who purchased both auto coverages (collision and comprehensive).

Table A8 reports the association parameter estimates for low and high deductible house-

holds. A low deductible household is a household with no deductible greater than $250. A

high deductible household is a household with at least one deductible greater than $250.

F. Deductible Choices: Probability Distortion Model

In the main text, we investigate how households’ deductible choices would respond to ex-

perience rating under the assumption that households make deductible choice according to

standard expected utility theory. Here, we investigate how households’ deductible choices

would respond to experience rating under the assumption that households make deductible

choice according to a generalization of the expected utility model that allows for probability

distortions. We refer to this model as the probability distortion model.

As before, a household i faces a menu of premium-deductible pairs {(pi(d), d) : d ∈ D}.

The household experiences at most one claim during the policy period, and it believes the

probability of experiencing a claim is µi. In the event of a claim, the loss exceeds the
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maximum deductible option and payment of the deductible is the only cost associated with

the claim. Under these assumptions, the household’s choice of deductible involves a choice

among lotteries of the form Li(d) ≡ (−pi(d), 1− µi;−pi(d)− d, µi) .

Under the probability distortion model, the utility of lottery Li(d) is given by

Ui(Li(d)) = (1− Ωi(µi)) ui (wi − pi(d)) + Ωi(µi)ui (wi − pi(d)− d) , (A1)

where ui (·) is the household’s Bernoulli utility function, wi is its wealth, and Ωi (·) is its

probability distortion function. Given our setting, this model is quite general in that it

includes several others as special cases, including models of subjective beliefs, rank-dependent

probability weighting (Quiggin 1982; Tversky & Kahneman 1992), loss aversion (Kőszegi &

Rabin 2006, 2007), and disappointment aversion (Gul 1991). For further details about the

probability distortion model, see Barseghyan et al. (2013) [hereafter, BMOT].

We assume that every household has the same utility and probability distortion function:

ui (·) = u(·) and Ωi (·) = Ω (·) for all i.27 For u(·), we consider a second-order Taylor

expansion. Also, because u(·) is unique only up to an affine transformation, we normalize

the scale of utility by dividing by u′(·). With this specification, equation (A1) becomes

Ui(Li(d)) = − [pi(d) + Ω(µi)d]−
r

2

[
(1− Ω(µi)) (pi(d))

2 + Ω(µi) (pi(d) + d)2
]
, (A2)

where r = −u′′(·)/u′(·) is the coefficient of absolute risk aversion.

We calibrate the model with the estimates for r and Ω (·) reported by BMOT. They

estimate equation (A2) using a cross section of 4,170 households in the tricoverage sample.

They arrive at their estimation sample by imposing two restrictions. First, they restrict

attention to households who first purchased their auto and home policies in the same year,

in either 2005 or 2006. This is meant to avoid temporal issues, such as changes in household

characteristics and in the economic environment. Second, they consider only the initial

deductible choices of each household. This is meant to increase confidence that they are

working with active choices; one might be concerned that some households renew their

policies without actively reassessing their deductible choices. To account for observationally

equivalent households choosing different deductibles, BMOT assume random utility with

additively separable choice noise. Specifically, they assume that the utility from deductible

d ∈ D is U(d) ≡ U(Li(d)) + εi,d, where εi,d follows a type 1 extreme value distribution

with scale parameter σ. In addition, they assume that Ω(µi) = exp(δ0 + δ1µi + δ2µ
2
i ) and

27Despite the simplistic assumption of homogeneous preferences, the model fits the data reasonably well.
It correctly predicts 62 percent of deductible choices in home, 42 percent in auto collision, and 34 percent
in auto comprehensive.

29



µi = 1− exp(−ϑ̂i). Estimating the model by maximum likelihood, they report r̂ = 0.00064

and Ω̂(µi) = exp(−2.71 + 12.03µi − 35.15µ2
i ).

We use the calibrated model to investigate the extent to which the households’ deductible

choices would change if premiums were experience rated. In particular, we examine how

the distribution of model-predicted deductible choices changes when we counterfactually

move from prior premiums (i.e., premiums generated using non-experience rated base prices,

pik) to uniline premiums and multiline premiums (i.e., premiums generated using uniline

experienced rated base prices, pUL
ik , and multiline experienced rated base prices, pML

ik ). In

each case, we assume that households believe their claim probability is µi = 1− exp(−θ̂i).

Table A9 presents the results. In addition to displaying the distributions, the table reports

the percentage of policies in which the deductible choice changes when we move from prior

premiums to uniline and multiline premiums, as well as the resulting (absolute) changes in

coverage. The main takeaway here is the same as it is under the expected utility model—the

response of deductible choices to experience rating would be substantial. When we move

from prior premiums to uniline premiums, the deductible choice changes in 5 percent of auto

collision policies, 14 percent of auto comprehensive policies, and 12 percent of home policies,

resulting in average changes in coverage of $262, $144, and $336, respectively, among policies

with a change, and of $14, $21, and $39, respectively, among all policies. When we move

from prior premiums to multiline premiums, the deductible choice changes in 7 percent of

auto collision policies, 25 percent of auto comprehensive policies, and 13 percent of home

policies, resulting in average changes in coverage of $262, $149, and $337, respectively, among

policies with a change and of $18, $38, and $43, respectively, among all policies.
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Figure 1: Kernel density of ηitk.
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Figure 2: Kernel density of ζitk.
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Estimate

Variances:

Auto collision 0.107 0.065 0.149
Auto comprehensive 0.399 0.221 0.577
Home 0.405 0.383 0.428
Covariances:

Auto collision and auto comprehensive 0.137 0.101 0.173
Auto collision and home 0.061 0.022 0.099
Auto comprehensive and home 0.225 0.179 0.271
Correlations:

Auto collision and auto comprehensive 0.663 0.399 0.926
Auto collision and home 0.293 0.099 0.486
Auto comprehensive and home 0.559 0.389 0.729

95 percent 

confidence interval

Table 1: Association Parameter Estimates
Tricoverage Sample (294,917 household-years)



Prior

Coverage

claim 

rates Obs Mean

10th 

percentile

25th 

percentile Obs Mean

75th 

percentile

90th 

percentile

All 180,909 -0.066 -0.121 -0.093 114,008 0.101 0.140 0.227
Low 46,914 -0.055 -0.100 -0.080 26,815 0.094 0.129 0.213

Medium 89,988 -0.066 -0.120 -0.094 57,471 0.100 0.139 0.223
High 44,007 -0.078 -0.143 -0.110 29,722 0.110 0.152 0.249
All 188,792 -0.132 -0.236 -0.186 106,125 0.231 0.310 0.531

Low 47,384 -0.111 -0.198 -0.157 26,345 0.198 0.270 0.455
Medium 94,742 -0.131 -0.233 -0.186 52,717 0.231 0.307 0.533

High 46,666 -0.155 -0.273 -0.220 27,063 0.264 0.353 0.593
All 196,205 -0.142 -0.241 -0.198 98,712 0.280 0.367 0.646

Low 51,136 -0.120 -0.207 -0.166 22,593 0.273 0.350 0.630
Medium 97,208 -0.146 -0.238 -0.200 50,251 0.277 0.365 0.642

High 47,861 -0.159 -0.271 -0.227 25,868 0.292 0.390 0.663
Notes: A prior claim rate is "low" if it is in the bottom quartile and "high" if it is in the top quartile. It is "medium" otherwise. In 
the tricoverage sample, the respective low and high cutoffs are 0.078 and 0.127 in auto collision, 0.016 and 0.044 in auto 
comprehensive, and 0.054 and 0.096 in home.

Table 2: Descriptive Statistics for η=(θ-λ)/λ
Tricoverage Sample (294,917 household-years)

Auto collision

Auto 
Comprehensive

Home

η<0 η>0



Prior

Coverage

claim 

rates Obs Mean

10th 

percentile

25th 

percentile Obs Mean

75th 

percentile

90th 

percentile

All 198,557 -0.034 -0.059 -0.046 96,360 0.069 0.093 0.153
Low 51,883 -0.030 -0.052 -0.041 21,846 0.067 0.092 0.148

Medium 99,078 -0.034 -0.059 -0.047 48,381 0.069 0.093 0.153
High 47,596 -0.038 -0.065 -0.052 26,133 0.070 0.095 0.157
All 183,662 -0.098 -0.173 -0.139 111,255 0.157 0.217 0.357

Low 46,521 -0.095 -0.171 -0.135 27,208 0.163 0.224 0.370
Medium 91,981 -0.099 -0.175 -0.140 55,478 0.159 0.220 0.359

High 45,160 -0.098 -0.173 -0.139 28,569 0.149 0.207 0.334
All 202,137 -0.044 -0.079 -0.059 92,780 0.093 0.132 0.211

Low 51,610 -0.040 -0.074 -0.055 22,119 0.093 0.135 0.213
Medium 101,001 -0.046 -0.082 -0.062 46,458 0.095 0.134 0.214

High 49,526 -0.044 -0.080 -0.059 24,203 0.090 0.126 0.203
Notes: A prior claim rate is "low" if it is in the bottom quartile and "high" if it is in the top quartile. It is "medium" otherwise. In 
the tricoverage sample, the respective low and high cutoffs are 0.078 and 0.127 in auto collision, 0.016 and 0.044 in auto 
comprehensive, and 0.054 and 0.096 in home.

Home

Table 3: Descriptive Statistics for ζ=(θ-ϑ)/ϑ
Tricoverage Sample (294,917 household-years)

ζ<0 ζ>0

Auto collision

Auto 
Comprehensive



Coll Comp Home Coll Comp Home

Mean 1.00 1.00 1.00 1.00 1.00 1.00
Standard deviation 0.08 0.17 0.26 0.11 0.24 0.27
5th percentile 0.91 0.86 0.79 0.87 0.75 0.75
10th percentile 0.92 0.89 0.81 0.89 0.78 0.78
25th percentile 0.94 0.92 0.85 0.93 0.85 0.83
Median 0.97 0.96 0.91 0.97 0.93 0.91
75th percentile 1.04 0.98 1.08 1.05 1.08 1.08
90th percentile 1.11 1.23 1.29 1.14 1.28 1.32
95th percentile 1.16 1.32 1.50 1.20 1.45 1.53

Table 4: Summary of Bonus-Malus Coefficients
Tricoverage Sample (294,917 household-years)

Univariate Multivariate



Prior Uniline Multiline

Deductible choice premiums premiums premiums

$100 2,374 2,389 2,409
$200 0 0 0
$250 34,564 34,723 34,751
$500 24,004 23,872 23,808

$1,000 1,483 1,441 1,457
Policies with change in deductible (percent) - 5.3 6.8
Aggregate changes in coverage (dollars), gross (absolute value) - 820,750 1,046,450
Per policy change in coverage (dollars), policies with change - 246.99 246.86
Per policy change in coverage (dollars), all policies - 13.15 16.76

Prior Uniline Multiline

Deductible choice premiums premiums premiums

$50 7 4 4
$100 3,633 3,723 3,633
$200 10,444 10,643 10,822
$250 15,144 15,359 15,636
$500 27,979 27,530 27,276

$1,000 5,218 5,166 5,054
Policies with change in deductible (percent) - 12.4 20.9
Aggregate changes in coverage (dollars), gross - 1,276,800 2,348,350
Per policy change in coverage (dollars), policies with change - 164.47 179.91
Per policy change in coverage (dollars), all policies - 20.45 37.62

Prior Uniline Multiline

Deductible choice premiums premiums premiums

$100 85 69 70
$250 31,871 32,851 32,993
$500 18,440 17,972 17,847

$1,000 11,632 11,160 11,139
$2,500 318 304 303
$5,000 79 69 73

Policies with change in deductible (percent) - 13.5 14.7
Aggregate changes in coverage (dollars), gross - 2,902,500 3,187,200
Per policy change in coverage (dollars), policies with change - 343.45 347.45
Per policy change in coverage (dollars), all policies - 46.50 51.06

Panel C: Home

Table 5: Response of Deductible Choices to Experience Rating

Panel A: Auto collision

Panel B: Auto comprehensive

Tricoverage Sample (62,425 policies)



Mean Std Dev Min Max

Auto:

Driver 1 age (years) 56.10 14.70 19 99
Driver 1 female 0.33 0.47 0 1
Driver 1 single 0.22 0.41 0 1
Driver 1 married 0.63 0.48 0 1
Driver 1 insurance score 789.51 106.50 297 996
Driver 2 0.48 0.50 0 1
Driver 2 age (years) 50.28 12.93 16 94
Driver 2 female 0.91 0.28 0 1
Driver 3+ 0.04 0.21 0 1
Young driver 0.01 0.10 0 1
Vehicle 1 age (years) 4.43 3.59 -1 46
Vehicle 1 personal use 0.47 0.50 0 1
Vehicle 1 passive restraint 0.99 0.10 0 1
Vehicle 1 anti-theft 0.57 0.49 0 1
Vehicle 1 anti-lock brakes 0.79 0.41 0 1
Vehicle 2 0.53 0.50 0 1
Vehicle 2 age (years) 5.94 5.53 -1 83
Vehicle 2 personal use 0.55 0.50 0 1
Vehicle 2 passive restraint 0.94 0.24 0 1
Vehicle 2 anti-theft 0.46 0.50 0 1
Vehicle 2 anti-lock brakes 0.70 0.46 0 1
Vehicle 3+ 0.05 0.22 0 1
Home:

Home age (years) 45.05 27.20 0 206
Insured value (thousands of dollars) 153.31 75.63 1 3,250
Farm or business 0.02 0.15 0 1
Primary residence 1.00 0.04 0 1
Owner occupied 0.98 0.14 0 1
Number of families 1.16 1.89 1 99
Masonry construction 0.07 0.25 0 1
Distance to fire hydrant (feet) 401.83 514.82 0 30,000
Alarm or other protection 0.95 0.22 0 1

Tricoverage Sample (294,917 household-years)
Table A1: Descriptive Statistics

Note: Insurance score is based on information contained in credit reports.



Count Frequency Percent Frequency Percent Frequency Percent

0 265,692 90 285,923 97 273,984 93
1 27,186 9 8,495 3 18,886 6
2 1,890 1 467 0 1,872 1
3 140 0 30 0 159 0
4 6 - 0 - 12 -
5 3 - 2 - 2 -
6 2 -

Note: Dash indicates less than 0.01 percent.

Table A2: Claims
Tricoverage Sample (294,917 household-years)

Auto collision Auto comprehensive Home



Auto collision

Auto 

comprehensive Home

Mean 200 127 548
Standard deviation 104 70 309
Minimum 20 6 50
1st percentile 60 34 204
5th percentile 82 48 265
10th percentile 97 58 296
25th percentile 129 81 359
Median 178 113 466
75th percentile 243 157 638
90th percentile 327 210 891
95th percentile 393 250 1,110
99th percentile 560 358 1,683
Maximum 2,520 2,524 10,224
Note: Amounts in dollars.

Table A3: Premiums
Tricoverage Sample (294,917 household-years)



Deductible Frequency Percent Frequency Percent Frequency Percent

$50 - - 34,007 12 - -
$100 7,846 3 18,502 6 11,577 4
$200 65,672 22 128,599 44 - -
$250 51,644 18 31,556 11 197,100 67
$500 159,702 54 78,098 26 70,567 24

$1,000 10,053 3 4,155 1 14,537 5
$2,500 - - - - 1,044 0
$5,000 - - - - 92 0

Note: Dash indicates deductible option not available.

Tricoverage Sample (294,917 household-years)
Table A4: Deductibles

Auto collision Auto comprehensive Home



Std Err Std Err

Intercept -0.998 * 0.135 -2.675 * 0.248
Driver 1 age (years) -0.011 * 0.004 0.039 * 0.008
Driver 1 age squared (hundreds of years) 0.013 * 0.003 -0.048 * 0.007
Driver 1 female 0.067 * 0.021 -0.084 * 0.041
Driver 1 married 0.048 0.025 0.125 * 0.046
Driver 1 separated, divorced, or widowed 0.000 0.023 0.058 0.045
Driver 1 insurance score (tens) -0.018 * 0.001 -0.013 * 0.001
Has 2 drivers 0.063 0.123 -0.135 0.214
Has 3+ drivers 0.529 * 0.158 0.058 0.255
Young driver 0.020 0.049 0.019 0.082
Driver 2 age (years) 0.012 * 0.005 0.006 0.009
Driver 2 age squared (hundreds of years) -0.013 * 0.005 -0.002 0.008
Driver 2 female 0.097 * 0.034 -0.064 0.060
Driver 2 married -0.207 * 0.047 -0.121 0.087
Driver 2 separated, divorced, or widowed 0.088 0.164 0.000 0.302
Vehicle 1 age (years) -0.012 0.005 -0.028 * 0.006
Vehicle 1 age squared (hundreds of years) -0.015 0.044 0.143 * 0.036
Vehicle 1 personal use -0.010 0.014 -0.034 0.025
Vehicle 1 passive restraint -0.078 0.062 -0.114 0.102
Vehicle 1 anti-theft 0.011 0.015 0.018 0.027
Vehicle 1 anti-lock brakes 0.026 0.016 0.039 0.030
Has 2 vehicles 0.281 * 0.056 0.689 * 0.095
Has 3+ vehicles 0.293 * 0.107 0.930 * 0.156
Vehicle 2 age (years) -0.023 * 0.003 -0.020 * 0.005
Vehicle 2 age squared (hundreds of years) 0.031 * 0.010 0.019 0.018
Vehicle 2 personal use -0.019 0.015 -0.035 0.027
Vehicle 2 passive restraint 0.075 0.039 -0.033 0.062
Vehicle 2 anti-theft 0.029 0.018 0.009 0.033
Vehicle 2 anti-lock brakes -0.003 0.019 -0.023 0.032
Year dummies
Territory codes

* Significant at the 5 percent level.

Estimate

Table A5: Regression Parameter Estimates - Auto
Tricoverage Sample (294,917 household-years)

Collision Comprehensive

Estimate

Yes
Notes: Insurance score is based on information contained in credit reports. Territory codes 
indicate rating territories, which are based on actuarial risk factors, such as traffic and weather 
patterns, population demographics, wildlife density, and the cost of goods and services.

Yes
Yes

Yes



Std Err

Intercept -1.968 * 0.250
Insurance score (tens) -0.018 * 0.001
Home age (years) 0.003 * 0.001
Home age squared (years) 0.000 0.000
Insured value (tens of thousands of dollars) 0.015 * 0.001
Farm or business 0.098 * 0.047
Primary residence 0.631 * 0.228
Owner occupied 0.121 0.077
Number of families -0.011 0.007
Masonry construction 0.048 0.029
Distance to fire hydrant (feet) 0.001 0.001
Alarm or other protection 0.019 0.036
Year dummies
Territory codes
Protection classes

* Significant at the 5 percent level.

Table A6: Regression Parameter Estimates - Home
Tricoverage Sample (294,917 household-years)

Estimate

Notes: Insurance score is based on information contained in credit 
reports. Territory codes indicate rating territories, which are based 
on actuarial risk factors, such as traffic and weather patterns, 
population demographics, wildlife density, and the cost of goods and 
services. Protection classes gauge the effectiveness of local fire 
protection and building codes.

Yes

Yes
Yes



Estimate Estimate Estimate

Variances:

Auto collision 0.107 0.065 0.149 0.114 0.049 0.180 0.093 0.070 0.116
Auto comprehensive 0.399 0.221 0.577 0.342 0.068 0.616 0.402 0.300 0.505
Home 0.405 0.383 0.428 0.401 0.260 0.541
Covariances:

Auto collision and auto comprehensive 0.137 0.101 0.173 0.123 0.064 0.182 0.131 0.112 0.151
Auto collision and home 0.061 0.022 0.099 0.121 0.081 0.161
Auto comprehensive and home 0.225 0.179 0.271 0.209 0.135 0.282
Correlations:

Auto collision and auto comprehensive 0.663 0.399 0.926 0.622 0.195 1.049 0.680 0.522 0.838
Auto collision and home 0.293 0.099 0.486 0.564 0.298 0.830
Auto comprehensive and home 0.559 0.389 0.729 0.563 0.247 0.880

Table A7: Association Parameter Estimates - Alternative Samples
Tricoverage sample Alternative sample A Alternative sample B

Notes: The tricoverage sample comprises an unbalanced panel of households who purchased all three coverages (auto collision, auto comprehensive, and 
home) in one or more years between 1998 and 2006. Alternative sample A comprises a balanced panel of households who purchased all three coverages 
(auto collision, auto comprehensive, and home). Alternative sample B comprises an unbalanced panel of households who purchased both auto coverages 
(collision and comprehensive).

 294,917 household-years) 78,579 household-years) 1,019,170 household-years)

95 percent 

confidence interval

95 percent 

confidence interval

95 percent 

confidence interval

(62,525 households; (8,731 households; (203,731 households;



Estimate Estimate Estimate

Variances:

Auto collision 0.107 0.065 0.149 0.094 0.038 0.150 0.108 0.051 0.166
Auto comprehensive 0.399 0.221 0.577 0.337 0.086 0.587 0.450 0.201 0.698
Home 0.405 0.383 0.428 0.388 0.281 0.496 0.246 0.038 0.454
Covariances:

Auto collision and auto comprehensive 0.137 0.101 0.173 0.138 0.085 0.192 0.129 0.081 0.178
Auto collision and home 0.061 0.022 0.099 0.088 0.055 0.120 0.058 0.021 0.094
Auto comprehensive and home 0.225 0.179 0.271 0.224 0.157 0.290 0.217 0.152 0.282
Correlations:

Auto collision and auto comprehensive 0.663 0.399 0.926 0.776 0.300 1.252 0.586 0.272 0.900
Auto collision and home 0.293 0.099 0.486 0.458 0.230 0.686 0.352 0.066 0.639
Auto comprehensive and home 0.559 0.389 0.729 0.619 0.312 0.926 0.652 0.270 1.034

95 percent 

confidence interval

95 percent 

confidence interval

95 percent 

confidence interval

Table A8: Association Parameter Estimates - Low and High Deductible Households
Tricoverage sample All deductibles ≤  $250 Any deductible > $250

120,213 household-years) 174,704 household-years)294,917 household-years)

(62,425 households; (22,072 households; (40,353 households;



Prior Uniline Multiline Prior Uniline Multiline

Deductible choice premiums premiums premiums premiums premiums premiums

$100 2,374 2,389 2,409 1,194 1,273 1,279
$200 0 0 0 0 0 0
$250 34,564 34,723 34,751 29,379 29,428 29,524
$500 24,004 23,872 23,808 30,194 30,018 29,925

$1,000 1,483 1,441 1,457 1,658 1,706 1,697
Policies with change in deductible (percent) - 5.3 6.8 - 5.3 6.8
Aggregate changes in coverage (dollars), gross (absolute value) - 820,750 1,046,450 - 864,850 1,111,950
Per policy change in coverage (dollars), policies with change - 246.99 246.86 - 262.47 261.64
Per policy change in coverage (dollars), all policies - 13.15 16.76 - 13.85 17.81

Prior Uniline Multiline Prior Uniline Multiline

Deductible choice premiums premiums premiums premiums premiums premiums

$50 7 4 4 20 19 21
$100 3,633 3,723 3,633 11,919 12,363 12,829
$200 10,444 10,643 10,822 16,976 16,949 16,862
$250 15,144 15,359 15,636 12,317 12,236 12,024
$500 27,979 27,530 27,276 19,910 19,565 19,371

$1,000 5,218 5,166 5,054 1,283 1,293 1,318
Policies with change in deductible (percent) - 12.4 20.9 - 14.4 25.3
Aggregate changes in coverage (dollars), gross - 1,276,800 2,348,350 - 1,295,500 2,351,000
Per policy change in coverage (dollars), policies with change - 164.47 179.91 - 143.70 148.69
Per policy change in coverage (dollars), all policies - 20.45 37.62 - 20.75 37.66

Prior Uniline Multiline Prior Uniline Multiline

Deductible choice premiums premiums premiums premiums premiums premiums

$100 85 69 70 91 100 98
$250 31,871 32,851 32,993 40,640 40,903 40,975
$500 18,440 17,972 17,847 14,529 14,201 14,122

$1,000 11,632 11,160 11,139 7,085 7,132 7,142
$2,500 318 304 303 64 72 69
$5,000 79 69 73 16 17 19

Policies with change in deductible (percent) - 13.5 14.7 - 11.6 12.8
Aggregate changes in coverage (dollars), gross - 2,902,500 3,187,200 - 2,437,850 2,692,850
Per policy change in coverage (dollars), policies with change - 343.45 347.45 - 335.56 337.49
Per policy change in coverage (dollars), all policies - 46.50 51.06 - 39.05 43.14

Panel C: Home

Expected utility model Probability distortion model

Tricoverage Sample (62,425 policies)
Table A9: Response of Deductible Choices to Experience Rating

Panel A: Auto collision

Expected utility model Probability distortion model

Panel B: Auto comprehensive

Expected utility model Probability distortion model
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