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Abstract. In the classical principal-agent problem, a principal hires an agent to
perform a task. The principal cares about the task’s output but has no control over
it. The agent can perform the task at different effort intensities, and that choice af-
fects the task’s output. To provide an incentive to the agent to work hard and since
his effort intensity cannot be observed, the principal ties the agent’s compensa-
tion to the task’s output. If both the principal and the agent are risk-neutral and
no further constraints are imposed, it is well-known that the outcome of the game
maximizes social welfare. In this paper we quantify the potential social-welfare
loss due to the existence of limited liability, which takes the form of a minimum
wage constraint. To do so we rely on the worst-case welfare loss—commonly re-
ferred to as the Price of Anarchy—which quantifies the (in)efficiency of a system
when its players act selfishly (i.e., they play a Nash equilibrium) versus choosing
a socially-optimal solution. Our main result establishes that under the monotone
likelihood-ratio property and limited liability constraints, the worst-case welfare
loss in the principal-agent model is exactly equal to the number of efforts available.

1 Introduction

In this paper we analyze the classical principal-agent problem as put forward by Gross-
man and Hart [4]. The problem entails the following contracting situation: a principal
hires an agent to perform a task. The principal cares about the task’s output but cannot
control it directly. Instead, the output is influenced by the agent’s choice of effort inten-
sity. The principal would like to induce the agent to choose the (in his view) optimal
effort intensity but since the agent incurs a cost when making effort, the principal has to
compensate the agent. Because the principal cannot observe the effort intensity chosen
by the agent—this is the prevailing assumption in this type of models and leads to moral
hazard—the principal can only tie the agent’s compensation to the task’s output, used
as a proxy of effort. This compensation scheme entails a loss since the task’s output is a
random variable whose distribution depends on the effort chosen by the agent. Hence,
the output is not completely determined by the agent’s effort intensity. If the two were
perfectly correlated, the principal could infer the effort by observing the outcome.

This class of principal-agent problems has been the workhorse to understand many
interesting economic phenomena such as, to name a few, the theory of insurance under
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moral hazard [12], the theory of managerial firms [1, 8], optimal sharecropping con-
tracts between landowners and tenants [13], the efficiency wage theory [11], financial
contracting [6], and job design and multi-tasking [5].

When both the principal and the agent are risk-neutral, the provision of a limited
liability clause that restricts the exposure of the agent gives rise to an agency problem.
If the principal wants to provide an incentive to the agent to work hard, he has to com-
pensate the agent better when the realization of the task’s output suggests that the effort
intensity chosen by the agent was high. This imposes a gap between the marginal cost
of the effort intensity experienced by the principal and the social marginal cost. Thus,
the equilibrium contract will not maximize social welfare, meaning that a first-best out-
come cannot be attained; instead, the constrained contract will be second-best.

In order to quantify the maximum social-welfare loss due to the existence of moral
hazard and limited liability in a principal-agent setting, we rely on the concept of worst-
case welfare loss, which quantifies the efficiency of a system when its players act self-
ishly (i.e., they play a Nash equilibrium) versus choosing a socially-optimal solution.
The idea of using worst-case analysis to study non-cooperative games was introduced
by Koutsoupias and Papadimitriou [7], and it is commonly referred to as the Price of
Anarchy [9]. In our setting, the worst-case welfare loss is defined as the largest possible
ratio between the social welfare of a socially-optimal solution—the sum of the prin-
cipal’s and agent’s payoffs when the first-best effort intensity is chosen—and that of
the sub-game perfect equilibrium. The worst ratio is with respect to the parameters that
define an instance of the problem.

In the principal-agent setting, Babaioff, Feldman, and Nisan [2, 3] introduced a com-
binatorial agency problem with multiple agents performing two-effort-two-outcome
tasks. The authors studied the combinatorial structure of dependencies between agents’
actions, and analyzed the worst-case welfare loss for a number of different classes of ac-
tion dependencies. Our model, instead, deals with a single agent and its complexity lies
in handling more sophisticated tasks, rather than the interaction between agents. The
goal of this article is to evaluate the worst-case welfare loss with respect to the outcome
vector, the vector of agent’s costs of effort, and the probability distribution of outcomes
for each level of effort. The main result, shown in Theorem 1, establishes that under
the monotone likelihood-ratio property and when the principal and an agent protected
by limited liability are risk-neutral, the worst-case welfare loss is exactly equal to the
number of efforts available. In other words, for any instance of the problem the worst-
case welfare loss cannot exceed the number of efforts available and there are instances
where that loss is achieved.

Our result suggests that the worst equilibrium that may arise in the finite principal-
agent problem with limited liability for the agent depends on the complexity of the
delegated task, as measured by the number of available efforts. When the delegated
task requires the choice between two different effort intensities (e.g., shirk or work)
the worst-case welfare loss is 2, while when the delegated task demands the choice
of one effort intensity among E possibilities, the worst-case welfare loss is E. Thus,
the worst-case welfare loss increases with the complexity of the delegated task. Our
result suggests that the principal-agent paradigm that studies the consequences of moral
hazard for the efficiency of contracting and organizational design is sound. The potential



The Cost of Moral Hazard and Limited Liability in the Principal-Agent Problem 65

consequence of not dealing with a moral-hazard problem may have a non-negligible
impact in the welfare of the system. For another interpretation, our results also quantify
the impact of limited-liability in the utility of the principal, which is a way of measuring
the inefficiency introduced by protecting the agent from carrying all the burden of the
risk in the task’s output.

Because the complexity of a principal-agent relationship is usually related to the
number of tasks or projects rather than to the number of efforts or actions, we also
study the worst-case welfare loss in an extension where there are multiple tasks. Here,
the agent has to choose between working and shirking in each of several independent
tasks. Surprisingly, we find that the worst-case welfare loss again equals 2, the number
of efforts in each task, independently of how many tasks the agent has to work on.
This confirms that, in terms of the potential welfare loss, the complexity of an agency
relationship is better captured by the number of actions or efforts available rather than
the number of tasks. Furthermore, it suggests that the incentive problem created by
moral hazard is a natural source of economies of scope; that is, it is better to have one
agent working in several different tasks than several agents working in one task each.

Most of our results arise from a characterization of the optimal wages that we pro-
vide. Working with the geometry of both the primal and the dual linear programs, we
uncover the structure of the ‘important’ efforts, which we call relevant, and use them to
bound the welfare of the solution to the principal-agent model with that arising when
the agent chooses the socially-optimal effort.

The rest of the paper is organized as follows. In Sect. 2, we introduce the model with
its main assumptions. Section 3 presents the main technical results. We start with the
study of the two-effort-two-outcome case for an illustration of our techniques, continue
with the general case, and present an example that shows that the lower bound is at-
tained. We conclude with extensions in several directions in Sect. 4. For the missing
proofs and details on the extensions, we refer the reader to the full version of the paper.

2 The Principal-Agent Model

In this section we describe the basic principal-agent model with E ≥ 2 effort levels
and S ≥ 2 outcomes [4]. (Later on, in Sect. 4, we relax some of the assumptions
presented below.) The agent chooses an effort e ∈ E � {1, . . . , E}, incurring a personal
nonnegative cost of ce. Efforts are sorted in increasing order with respect to costs; that
is, ce ≤ cf if and only if e ≤ f . Thus, a higher effort demands more work from the
agent. The task’s outcome depends on a random state of nature s ∈ S � {1, . . . , S}
whose distribution in turn depends on the effort level chosen by the agent. Each state
has an associated nonnegative dollar amount that represents the principal’s revenue. We
denote the vector of outcomes indexed by state by y = {y1, . . . , yS}. Without loss of
generality, the outcomes are sorted in increasing order: ys ≤ yt if and only if s ≤ t;
hence, the principal’s revenues are higher under states with a larger index. Finally, we
let πs

e be the common-knowledge probability of state s ∈ S when the agent chooses
effort e ∈ E . The probability mass function of the outcome under effort e is given by
πe =

{
π1

e , . . . , πS
e

}
.

The principal can contract wages to the agent that depend on the outcome y but can-
not observe the agent’s chosen effort e. Indeed, the principal offers a take-it-or-leave-it
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contract to the agent that specifies a state-dependent wage schedule w = {w1, . . . , wS}.
The agent decides whether to accept or reject the offer, and if accepted, then he chooses
an effort level before learning the realized state. The rational agent should accept the
contract if the individual rationality (IR) and limited liability (LL) constraints are sat-
isfied. The former specifies that the contract must yield an expected utility to the agent
greater than or equal to that of choosing the outside option. The latter specifies that
the wage must be nonnegative in every state occurring with positive probability. After
accepting a contract specifying a wage schedule w, the risk-neutral agent has to choose
an effort e ∈ E . He does so by maximizing the expected payoff, which is given by
πew − ce, the difference between the expected wage and the cost incurred in the effort
chosen.

Putting it all together, the principal’s problem consists on choosing a wage schedule
w and an effort intensity e for the agent that solve the following problem:

uP � max
e∈E,w

πe(y − w) (1)

s.t. πew − ce ≥ 0 (IR) (2)

e ∈ arg max
f∈E

{πfw − cf} (IC) (3)

w ≥ 0 . (LL) (4)

The objective measures the difference between the principal’s expected revenue and
payment, hence computing his expected profit. Constraints (IR) and (LL) were de-
scribed earlier. The incentive compatibility (IC) constraints guarantee that the agent
will choose the principal’s desired effort since he does not find it profitable to deviate
from e.

Equivalently, one can formulate the principal’s problem as uP = maxe∈E {πey − ze}
= maxe∈E{uP

e}. Here, we have defined ze to be the minimum expected payment in-
curred by the principal so the agent accepts the contract and picks effort e. In addi-
tion, we denote by uP

e � πey − ze the principal’s maximum expected utility when
effort e is implemented, and by EP the set of optimal efforts for the principal, EP �
argmaxe∈E{uP

e}. Exploiting that the set of efforts is finite, we can write the IC con-
straint (3) explicitly to obtain the minimum payment linear program corresponding to
effort e, which we denote by MPLP(e):

ze = min
w∈RS

πew (5)

s.t. πew − ce ≥ 0 (6)

πew − ce ≥ πfw − cf ∀f ∈ E \ e (7)

w ≥ 0 . (8)

Notice that this problem is independent of the output y.
We say that the principal implements effort e ∈ E when the wage schedule w is con-

sistent with the agent choosing effort e. For a fixed effort e, (2), (3), and (4) characterize
the polyhedron of feasible wages that implement e. The principal will choose a wage
belonging to that set that achieves ze by minimizing the expected payment πew. We
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are only interested in efforts that are attainable under some wage schedule, which we
refer to as feasible efforts. An effort is feasible if the polyhedron corresponding to it is
nonempty.

2.1 The Monotone Likelihood-Ratio Property

We make the assumption that the probability distributions πe satisfy the well-known
monotone likelihood-ratio property (MLRP). That is, {πe}e∈E verifies πs

e/πs
f ≥ πt

e/πt
f

for all states s < t and efforts e < f . The assumption of MLRP is pervasive in the
literature of economics of information, and in particular in the principal-agent literature.
The intuition behind it is that the higher the observed level of output, the more likely it
is to come from a distribution associated with a higher effort level.

An important property of MLRP is that distributions that satisfy it also satisfy first or-
der stochastic dominance (FOSD). For instance, [10] proved that

∑s
s′=1 πs′

e ≥∑s
s′=1 πs′

f

for all states s and efforts e < f . A simple consequence of this that plays an important
role in our derivations is that probabilities for the highest outcome S are sorted in in-
creasing order with respect to efforts; i.e., πS

e ≤ πS
f for e ≤ f . Note that in the case of

two outcomes, MLRP and FOSD are equivalent.

2.2 Worst-Case Welfare Loss

The goal of a social planner is to choose the effort level e that maximizes the social
welfare, defined as uSW

e � πey − ce, the sum of the welfare of the principal and the
agent. The social planner is not concerned about wages, since risk neutrality ensures
that wages are a pure transfer of wealth between the principal and the agent. Thus, the
optimal social welfare is given by uSO � maxe∈E{uSW

e } . We denote the set of first-
best efficient efforts by ESO � argmaxe∈E{uSW

e }. For analytical tractability, we will
assume that the harder the agent works, the higher the social welfare in the system. In
the two-outcome case, this assumption can be relaxed. In the general case, we believe
that our results continue to hold without it.

Assumption 1. The sequence of prevailing social welfare under increasing efforts is
non-decreasing; i.e., uSW

e ≤ uSW
f for all efforts e ≤ f .

For a given instance of the problem, we quantify the inefficiency of an effort e using the
ratio of the social welfare under the socially-optimal effort to that under e. The main
goal of the paper is to compute the worst-case welfare loss for arbitrary instances of the
problem. This is defined as the smallest upper bound on the efficiency of a second-best
optimal effort, which is commonly referred to as the Price of Anarchy1 [9]. Therefore,
the worst-case welfare loss, denoted by ρ, is defined as

ρ = sup
π,y,c

uSO

mine∈EP uSW
e

, (9)

1 Actually, the price of anarchy for a maximization problem such as the one we work with in
this article is often defined as the inverse of the ratio in (9). We do it in this way so ratios and
welfare losses point in the same direction.
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where the supremum is taken over all valid instances as described at the beginning of
this section. Of course, the previous ratio for an arbitrary instance of the problem is
at least one because the social welfare of an optimal solution cannot be smaller than
that of an equilibrium, guaranteeing that ρ ≥ 1. Next, we state the main result of our
article that shows that under MLRP the worst-case welfare loss is bounded above by
the number of efforts, and that this bound is tight.

Theorem 1. Suppose that MLRP holds. Then, in the risk-neutral principal-agent prob-
lem with limited liability, the worst-case welfare loss ρ is exactly E.

2.3 Preliminaries

In this section, we consider the principal’s problem and reformulate it in a way that is
more amenable to understand its properties, which will be useful to prove our worst-
case bounds. The dual of MPLP(e), displayed in (5)-(8), is given by

max
p∈RE

∑

f �=e

(cf − ce)pf − cepe (10)

s.t.
∑

f �=e

(πs
f − πs

e)pf − πs
epe ≤ πs

e ∀s ∈ S, (11)

p ≤ 0 .

Here, pe is the dual variable for the IR constraint (6), while pf is the dual variable for
the IC constraint (7) for effort f �= e. Notice that the null vector 0 is dual-feasible, and
hence the dual problem is always feasible. Furthermore, since we only consider feasible
efforts the primal is also feasible and by strong duality we have that the solution to the
dual program is ze. Notice that summing constraints (11) over s ∈ S and using that∑

s∈S πs
f = 1 for all f ∈ E , we get that pe ≥ −1. We now state some useful results.

Lemma 1. The social welfare is at least the principal’s utility; i.e., uSW
e ≥ uP

e for all
efforts e ∈ E .

Proof. Notice that since ze solves MPLP(e), we have that ze ≥ ce for all e ∈ E . Thus,
πey − ze ≤ πey − ce. ��
The next result stresses the importance of the agent’s limited liability in the model.
It is a well-known result that we state for the sake of completeness. Without the LL
constraint (4), it is optimal for the principal to implement the socially-optimal effort
and he captures the full social surplus, leaving no utility to the agent. As a consequence,
the worst-case welfare loss is 1 meaning that, albeit unfair to the agent, the contract is
efficient.

Lemma 2. If the principal and the agent are risk-neutral and there is no limited li-
ability constraint, the minimum expected payment ze incurred by the principal when
inducing a feasible effort e is ce, that is, ce = minw∈RS{πew s.t. (6), (7)}.

Proof. Since the effort e is feasible there exists a vector w satisfying (6) and (7). As-
sume for a contradiction that (6) is not tight and consider w′ = w − 1ε, where 1 is
the all-ones vector. Clearly w′ still satisfies (7) so we can select ε so that the objective
function is smaller and (6) is still feasible. ��
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3 Bounding the Welfare Loss

3.1 The Case of Two Efforts and Two Outcomes

In this section we look at the case with 2 efforts (such as shirk and work) and 2 states
(such as fail and success), and show that the worst-case welfare loss is at most 2. This
simple case is a useful exercise to gain intuition and improve the understanding of
the general case. First, we provide a geometric characterization of the minimum-cost
wage schedule implementing a given effort level, and compute the associated expected
payments. Then, we proceed to bound the worst-case welfare loss.

Consider MPLP(2), corresponding to the agent working hard. The feasible set of
wages is defined by the IR, IC and LL constraints. The IC constraint (7) ensures that the
agent prefers effort 2 over 1, which can also be written as w2−w1 ≥ (c2−c1)/(π2

2−π2
1).

Notice that both the numerator and denominator are nonnegative. Hence, the boundary
of this constraint is given by a 45◦ line, as shown by Fig. 1 which plots the feasible
regions for the two efforts. The IC constraint for e = 1 is the same with the inequality
reversed. An implication of FOSD is that the IR constraint for effort 1 is steeper than
that for effort 2.

w1

w2

π
2w ≥ c

2

π
1 w ≥ c

1

π 2
w - c

2
 =  π 1

w - c
1

w1,2

(a) w1,2 in the first quadrant.

w1

w2

π
2w ≥ c

2

π
1 w ≥ c

1

π 2
w - c

2
 =  π 1

w - c
1

w1,2

(b) w1,2 in the second quadrant.

Fig. 1. Feasible regions of MPLP(e) for e ∈ {1, 2} (light and dark shade, respectively), according
to the location of w1,2. Optimal solutions are denoted with a bold point or segment, depending on
whether they are unique or not. Arrows indicate the negative gradient of the objective function.

It will be useful to introduce the point w1,2, defined as the intersection point between
the IC constraint and the IR constraints for both efforts. This point is given by

w1,2 =
(

c1π
2
2 − c2π

2
1

π2
2 − π2

1

,
c1π

2
2 − c2π

2
1

π2
2 − π2

1

+
c2 − c1

π2
2 − π2

1

)
.

The second component of this vector is nonnegative and larger than the first component
because c2 ≥ c1, π2

2 ≥ π2
1 , and π1

1 ≥ π1
2 .
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If w1,2 lies in the first quadrant, as in Fig. 1a, the situation is very similar to the case
without liability constraints discussed earlier. Indeed, the wages w1,2 are optimal be-
cause they satisfy all constraints and minimize the objective of MPLP. This implies that
the optimal expected payment is equal to the effort’s cost, and because of Assumption
1 the principal chooses e = 2 leaving the agent with zero surplus. The case of greater
interest is when w1,2 lies in the second quadrant, as in Fig. 1b. This occurs either when
the cost of working hard is too high, or the probability of a good outcome when work-
ing hard is too low. In this case, the incentive compatible wage schedule that induces
participation at the lowest cost for the principal does not satisfy the limited liability con-
straint. Thus, the optimal solution, attained at the intersection of the IC constraint and
the vertical axis, is w2 =

(
0, (c2 − c1)/(π2

2 − π2
1)

)
. The minimum expected payment

for effort 2 is z2 = π2
2(c2 − c1)/(π2

2 − π2
1), which is strictly larger than c2 because

the IR constraint is not binding, leaving the agent with a positive rent. The analysis for
effort 1 is simpler. Under the assumption of nonnegative costs, any point that is non-
negative and for which the IR constraint is binding is optimal and attains the value c1.
Thus, the minimum expected payment equals the effort’s cost, and the agent obtains
zero surplus.2

The previous analysis will enable us to bound the worst-case welfare loss. Under As-
sumption 1, effort 2 is socially-optimal: uSO = uSW

2 ≥ uSW
1 . If the second-best optimal

effort is 2, the worst-case welfare loss is 1. So we consider that it is second-best optimal
to induce effort 1; i.e, uP

1 ≥ uP
2. Since the principal prefers effort 1, it must be that

z2 > c2. Hence, w1,2 must lie in the second quadrant, and z2 = (c2− c1)π2
2/(π2

2 −π2
1).

Then, we have that

uSW
1 ≥ uP

1 ≥ uP
2 = π2y − z2 = uSW

2 + c2 − π2
2

c2 − c1

π2
2 − π2

1

= uSW
2 + c1 − π2

1

c2 − c1

π2
2 − π2

1

≥ uSW
2 + c1 − π2

1

(π2 − π1)y
π2

2 − π2
1

≥ uSW
2 + c1 − π1y = uSW

2 − uSW
1 , (12)

where the inequalities follow, respectively, from Lemma 1, the principal’s choice of
e = 1, Assumption 1, and FOSD. Reshuffling terms, we have that uSW

2 ≤ 2uSW
1 from

where the optimal social welfare cannot be better than twice the social welfare under
the effort chosen by the principal. We conclude that the worst-case welfare loss is at
most the number of efforts.

3.2 The General Case

We now consider the general case of an arbitrary finite number of efforts and outcomes.
Here, we need to study the primal and the dual of the MPLP simultaneously. As in the
previous case, we first attempt to characterize the minimum expected payments for each
effort level, and then prove that the worst-case welfare loss is bounded by E.

We saw earlier that in the case of 2 efforts both of them play a role in the worst-
case bound. However, in the general case only some efforts will be relevant. There are
some other efforts, referred to as dominated, that although feasible will not participate

2 This might not be the case if the limited liability constraint requires w2 ≥ �, where � is large.
This is discussed in the full version of the paper.
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in the analysis. Relevant efforts are always preferred to dominated efforts and thus the
principal will choose just from among them. This is equivalent to discarding dominated
efforts from any instance and does not affect the utilities of other efforts and the effi-
ciency metric.

In Theorem 2, we characterize the relevant efforts. We do this by observing that
effort E is always relevant. From this first relevant effort, we obtain a sequence in-
ductively observing that for any relevant effort, in the optimal solution to MPLP only
the IC constraint of another relevant effort is binding. Afterwards, we prove that when
a dominated effort is chosen, the principal’s utility is always dominated by that of a
relevant effort (hence the name ‘relevant’). As before, we define the wage vector we,f

as the intersection of IC constraints (7) for efforts e and f with the S axis. Hence,
we,f =

(
0, . . . , 0, (ce − cf )/(πS

e − πS
f )

)
, which is a nonnegative vector.

Theorem 2. There exists a subsequence of relevant efforts, denoted by R = {er}R
r=1 ⊆

E with eR = E, such that the minimum expected payments for the principal are

ze1 = ce1 , and zer = πS
er

cer − cer−1

πS
er

− πS
er−1

≥ cer for r = 2, . . . , R.

Moreover, the optimal wage wer corresponding to effort er is wer ,er−1 if r > 1 and
(0, . . . , 0, ce1/πS

e1
) if r = 1.

For a dominated effort f /∈ R, let r(f) � min{e ∈ R : e > f} be the smallest
relevant effort greater than f . The next corollary shows that relevant efforts are sorted
with respect to ze − ce and that dominated efforts violate this order.

Corollary 1. Relevant efforts are sorted in non-decreasing order with respect to ze −
ce; that is, zer−cer ≤ zer+1−cer+1 for all 1 ≤ r < R. Moreover, zf−cf ≥ zr(f)−cr(f)

for any dominated effort f /∈ R.

Proof. For the first claim observe that zer − cer = πer wer − cer ≤ πer wer+1 − cer =
πer+1wer+1 − cer+1 = zer+1 − cer+1 , where the inequality follows from the fact that
wer+1 is feasible for MPLP(er) and that wer is the optimal solution. The second equal-
ity holds because the IC constraint between efforts er and er+1 is binding at wer+1 .

For the second claim, let f be a dominated effort. If f < er1 , the result is trivial
because zer1

− cer1
= 0. So, suppose that er < f < er+1. Using the dual of MPLP, as

done previously, it is easy to observe that p = −Ierπ
S
f /(πS

f − πS
er

) is dual feasible for
effort f , and its objective value is (cf −cer)πS

f /(πS
f −πS

er
) = πS

f wS
er ,f , which by weak

duality is a lower bound on zf . Hence, zf ≥ πS
f wS

er ,f = πS
er

wS
er ,f + wS

er+1,f (πS
f −

πS
er+1

)+wS
er+1

(πS
er+1

−πS
er

). Rearranging the terms, the last expression equals zer+1 +
cf − cer+1 + πS

er
(wS

er ,f − wS
er+1

) ≥ zer+1 + cf − cer+1 , where the inequality follows
because wer ,f ≥ wer+1 . Indeed,

wS
er ,f =

cf − cer+1

πS
f − πS

er

+
cer+1 − cer

πS
f − πS

er

=wS
er+1,f

πS
f − πS

er+1

πS
f − πS

er

+wS
er+1

πS
er+1

− πS
er

πS
f − πS

er

≥wS
er+1

,

because wer+1,f ≤ wer+1 (this follows from Theorem 2) and πS
f − πS

er+1
≤ 0. ��
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Relevance is central to the analysis of the principal-agent problem. Under Assumption
1, a social planner chooses effort E, a relevant effort, to maximize the social welfare.
Furthermore, as a consequence of Corollary 1, there is always a relevant effort that is
optimal for the principal.

Proposition 1. There is always a relevant effort that is optimal for the principal; i.e.,
EP ∩R �= ∅.

Proof. We prove this claim by contradiction by supposing that no relevant effort is
optimal for the principal. Let f be an optimal dominated effort, and consider the first
next relevant effort r(f). Using Corollary 1,

0 < uP
f−uP

r(f) = (πf−πr(f))y+zr(f)−zf ≤ (πf−πr(f))y+cr(f)−cf = uSW
f −uSW

r(f),

which is a contradiction because Assumption 1 implies that f cannot have a larger social
welfare than r(f). ��
Notice that the previous proposition together with Theorem 2 imply that the equilibrium
of the principal-agent problem can be computed in O(E2+ES) time, instead of solving
E linear programs. The quadratic term comes from finding the relevant efforts while the
second term comes from evaluating the principal’s utilities for all relevant efforts.

We are now in position to prove the main result.

Theorem 3. Assume that MLRP and Assumption 1 hold. The worst-case welfare loss
for the risk-neutral principal-agent problem with limited liability is at most E.

Proof. Under Assumption 1, it is optimal for the system that the agent chooses effort
E, so uSO = uSW

E . Furthermore, by Proposition 1 the optimal strategy for the principal
is to implement a relevant effort e ∈ R. Note that if we remove all efforts lower than
e, a consequence of Theorem 2 is that uP

f does not change for any effort f > e and
uP

e may only increase. This is because after removing the lower efforts, ze is reduced
to ce if they were not already equal. Notice also that a dominated effort cannot become
relevant after removing the efforts lower than e. Therefore, this new instance has the
same the worst-case welfare loss. Thus, we do not lose any generality if we consider
that it is optimal for the principal to implement effort 1; i.e., uP

1 ≥ uP
e for all e ∈ E .

To lower bound the total welfare of the lowest effort, uSW
1 , we proceed as in (12),

working exclusively with relevant efforts. To simplify notation, in the remainder of this
proof we drop the r subscript and assume that all efforts are relevant. Lemma 1 and
Theorem 2 imply that for any effort e > 1,

uSW
1 ≥uP

1 ≥ uP
e =πey−ze = uSW

e +ce−πS
e

ce − ce−1

πS
e − πS

e−1

=uSW
e +ce−1−πS

e−1

ce − ce−1

πS
e − πS

e−1

.

Since uSW
e ≥ uSW

e−1 implies that ce−ce−1 ≤ πey−πe−1y, the last expression is bounded
by

uSW
e + ce−1 − πS

e−1

πS
e − πS

e−1

(πe − πe−1)y ≥ uSW
e + ce−1 − πe−1y = uSW

e − uSW
e−1 , (13)

where the inequality in (13) follows from MLRP because πe−1π
S
e ≥ πeπ

S
e−1. Summing

over e > 1 and rearranging terms we conclude that EuSW
1 ≥ uSW

E . ��
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This result shows that when the agent is covered against unfair situations in which he
has to pay money to the principal even after having invested the effort, the fact that the
principal induces the agent to implement the effort of his choice instead of a socially-
optimal one is costly for the system. Indeed, the welfare loss due to limited liability and
the impossibility of observing the effort exerted by the agent is bounded by the number
of efforts. If we are willing to accept the number of efforts as a metric of the complexity
of a principal-agent relationship, then the cost of coordination in the system is bigger
for more complex relationships.

3.3 A Tight Instance

To wrap-up this section we construct a family of instances with 2 outcomes and E
efforts whose worst-case welfare loss is arbitrarily close to the bound of E.

Fixing 0 < ε < 1, we let the probabilities of the outcomes associated to each effort
be πe =

(
1 − εE−e, εE−e

)
for e ∈ E . Clearly, these distributions verify that π2

1 ≤
. . . ≤ π2

E , and thus they satisfy MLRP. (Recall that in the case of two outcomes MLRP
and FOSD are equivalent.)

Furthermore, we let cE = ε−E , and then set the remaining efforts so that ze − ce =
e − 1 for all e ∈ E . Since ze = (ce − ce−1)πS

e /(πS
e − πS

e−1), we obtain ce−1 = ceε −
(e − 1) (1 − ε) for e = 2, . . . , E. Notice that this implies that w2

e+1 − w2
e = 1/εE−e,

where we =
(
0, (ce − ce−1)/(π2

e −π2
e−1)

)
is the optimal solution to MPLP(e). Finally,

let the output be y = (0, w2
E + 1). One can prove inductively that the social utility is

uSW
e = e +

∑E−e
i=1 εi, and that principal’s utility is uP

e =
∑E−e

i=0 εi, for e ∈ E . Hence,
the instance fulfills Assumption 1 because uSW

1 ≤ . . . ≤ uSW
E and the principal’s utilities

satisfy uP
1 ≥ . . . ≥ uP

E , so it is optimal for the principal to implement effort 1.
The welfare loss corresponding to this instance is given by uSW

E /uSW
1 = E/(1 +

∑E−1
i=1 εi), which converges to E as ε → 0+. Therefore, Theorem 3 is tight because we

found a series of instances converging to a matching lower bound.

4 Generalizations of the Basic Model

The results we have provided hold true for generalizations of the basic problem in-
troduced in Sect. 2. First, the main result is valid when the agent can incur arbitrary
(potentially negative) costs for any effort, and when the utility for the outside option
is arbitrary (so far it was assumed to be zero). Second, more general limited liability
constraints and imposing a minimum output do not have an impact in the worst-case
bounds presented earlier. In this context, we can provide more accurate bounds that de-
pend on some other characteristics of the instance. Third, MRLP is not needed for the
case of two efforts. All results remain valid without it. Fourth, considering the problem
from the perspective of the principal, we can show how to adapt the worst-case bounds
provided earlier and express them with respect to the principal’s payoff. Fifth, in the
case with two outcomes we relax Assumption 1 by showing that the sequence of social
welfare utilities is unimodal, and that any effort violating that order is infeasible. Fi-
nally, when the principal hires an agent to perform multiple identical and independent
tasks that follow the two-effort-two-outcome model, we can show the the worst-case
welfare loss is independent of the number of tasks and equal to 2.
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[9] Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cam-
bridge University Press, Cambridge (2007)

[10] Rothschild, M., Stiglitz, J.E.: Increasing risk: I. a definition. Journal of Economic Theory
2(3), 225–243 (1970)

[11] Shapiro, C., Stiglitz, J.E.: Equilibrium unemployment as a worker discipline device. Amer-
ican Economic Review 74(3), 433–444 (1984)

[12] Spence, M., Zeckhauser, R.: Insurance, information, and individual action. American
Economic Review 61(2), 380–387 (1971)

[13] Stiglitz, J.E.: Incentives and risk sharing in sharecropping. Review of Economic Studies
41(2), 219–255 (1974)


	The Cost of Moral Hazard and Limited Liability in the Principal-Agent Problem
	Introduction
	The Principal-Agent Model
	The Monotone Likelihood-Ratio Property
	Worst-Case Welfare Loss
	Preliminaries

	Bounding the Welfare Loss
	The Case of Two Efforts and Two Outcomes
	The General Case
	A Tight Instance

	Generalizations of the Basic Model
	References


