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ABSTRACT

Polar magnetospheric gaps consume a fraction of the electric potential that develops across open field lines. This effect modifies significantly
the structure of the axisymmetric pulsar magnetosphere. We present numerical steady-state solutions for various values of the gap potential.
We show that a charge starved magnetosphere contains significantly less electric current than one with freely available electric charges. As
a result, electromagnetic neutron star braking becomes inefficient. We argue that the magnetosphere may spontaneously rearrange itself to
a lower energy configuration through a dramatic release of electromagnetic field energy and magnetic flux. Our results might be relevant in
understanding the recent December 27, 2004 burst observed in SGR 1806-20.
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1. Introduction

The magnetosphere of a rotating neutron star with polar mag-
netic field B∗, mass M∗ ∼ M�, radius r∗ ∼ 10 km, magnetic
dipole moment µ = r3∗B∗/2, and angular velocityΩ is expected
to radiate electromagnetic energy at a rate

Lem ∼ αB2∗Ω4r6∗
c3

· (1)

α is a factor of order unity (Beskin 1997)1. The source of the
radiation is the neutron star rotational kinetic energy which is
lost at a rate

Lkinetic ∼ 2
5

M∗r2
∗ΩΩ̇. (2)

It is usual to equate Eqs. (1) and (2) and thus obtain an estimate
of the stellar magnetic field B∗. In general, however, the two do
not have to be equal. As we shall see below, in the case of
axisymmetry, electromagnetic torques need to be significantly
revised.

In the context of ideal axisymmetric MHD, electric charges
are available in copious amounts and move freely along mag-
netic field lines, shorting out any component of the electric field

� Present address: Research Center for Astronomy & Applied
Mathematics, Academy of Athens.

1 α = 1
6 sin2 θ for a misaligned dipole rotating in vacuum. In

that scenario, an aligned magnetic rotator (θ ≈ 0) does not radi-
ate. However, when the neutron star is not surrounded by vacuum,
one needs to consider the structure of its rotating charged relativis-
tic Goldreich-Julian-type magnetosphere (Goldreich & Julian 1969).
In that case, the electric currents that flow through the magneto-
sphere lead to electromagnetic energy losses comparable to the ones
for a misaligned magnetic rotator. See the Appendix for a general
calculation.

that might arise along the magnetic field. As a result, magnetic
flux surfaces become equipotentials, and an electric field E de-
velops across magnetic field lines (E · B = 0) with magnitude

E =
rΩF

c
Bp, (3)

where,ΩF , a constant along magnetic flux surfaces (see below),
can be thought of as the angular velocity of rotation of mag-
netic field lines (r is the cylindrical radius; Bp is the poloidal
component of the magnetic field). The source of the electric
potential across magnetic field lines is obviously the rotating
magnetized conducting surface of the neutron star which acts
as a unipolar inductor. For the sake of simplicity, most stud-
ies of the axisymmetric pulsar magnetosphere have assumed
that the full potential drop induced across field lines along the
surface of the star continues to manifest itself all along those
field lines, i.e. ΩF = Ω. It has been pointed out, however, (e.g.
Ruderman & Sutherland 1975) that “open magnetic field lines
play a role analogous to that of conducting wires in ordinary
circuits. If the wire is broken near the pulsar surface, a po-
tential drop develops across the gap”. The presence of such
gaps obviously reduces the electric potential available across
open field lines, and thus the electromagnetic energy power ra-
diated at large distances. Models of particle acceleration and
pair creation above the polar cap of rotation-powered pulsars
yield potential drops near the surface of the star of the order
of 1012 Volts (e.g. Hibschman & Arons 2001; Arons, personal
communication), and therefore, in general, ΩF < Ω.

Beskin & Malyshkin 1998 took the above well known ef-
fect into account in their calculation of the modified magneto-
spheric structure inside the light cylinder. In the present paper
we obtain the first global solution of this problem. In Sect. 2 we
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formulate the problem and the numerical method that we
implement for its solution. In Sect. 3 we obtain the structure
of the magnetosphere for various values of ΩF in the range
[0,Ω] and argue that the magnetosphere may switch between
solutions, releasing energy in the process. In Sect. 4 we dis-
cuss the relevance of our results in understanding the recent
December 27, 2004 SGR-1806-20 burst. Our conclusions are
summarized in Sect. 5.

2. The differentially rotating magnetosphere

We will work in cylindrical spatial coordinates r, φ, z, and will
consider only the axisymmetric case where the magnetic dipole
axis is aligned with the axis of rotation. This simplification al-
lows us to introduce the magnetic flux function ψ (ψ/r is the
φ-component of the magnetic vector potential), the poloidal
electric current function A = A(ψ) (the poloidal electric current
contained within the magnetic flux surface ψ is equal to Ac/2;
Bφ = A/r), and the magnetic field line “rotational velocity”
ΩF = ΩF(ψ). The various magnetospheric physical quantities
are obtained as follows:

B =
1
r

(−ψz, A, ψr) , (4)

E = −ΩF

c
∇ψ = −ΩF

c
(ψr, 0, ψz) , (5)

J =
c

4π
∇ × B = − c

4πr

(
A′ψz, ψrr − ψr

r
+ ψzz,−A′ψr

)
, (6)

ρe =
1

4π
∇ · E = −ΩF

4πc

(
ψrr +

ψr

r
+ ψzz

)
− Ω

′
F

4πc
(∇ψ)2. (7)

Here, and in what follows, ψx ≡ ∂ψ/∂x. Also, (. . .)′ ≡
d(. . .)/dψ. When we neglect inertia, force balance requires that

1
c

J × B + ρeE = 0. (8)

Following Gruzinov (2005), we take

c = µ = Ω = 1, (9)

and thus Eq. (8) becomes

(1−r2Ω2
F)

(
ψrr +

ψr

r
+ ψzz

)
− 2ψr

r
=−AA′ + r2ΩFΩ

′
F(∇ψ)2.(10)

This is a more general form of the pulsar equation than the one
considered in Contopoulos, Kazanas & Fendt (hereafter CKF)
where ΩF ≡ Ω = 1 everywhere.
ΩF is related to the magnetospheric potential drop VF be-

tween the axis and any magnetic flux surface ψ (Eq. (5)),
namely

VF (ψ) =
1
c

∫ ψ

0
ΩFdψ (11)

(in units B∗r3∗Ω2/2c2). This is in general different from the stel-
lar potential drop between the pole and the footpoint on the
surface of the star of the magnetic flux surface ψ, namely

V∗(ψ) = ψ/c. (12)

The difference

V(ψ) ≡ V∗ − VF =
1
c

∫ ψ

0
(1 −ΩF)dψ (13)

is just the particle acceleration gap potential which devolops
along the magnetic field near the footpoint of the magnetic flux
surface (e.g. Beskin 1997). In the region of closed field lines
(hereafter the “dead zone”), there is no particle flow, and there-
fore there is no need for the formation of particle acceleration
gaps. We can thus express

ΩF(ψ) =

{
ΩFo ≤ 1 along open field lines ψ ≤ ψopen

1 in the “dead zone”
(14)

ΩFo(ψ) is determined by the particle acceleration gap mi-
crophysics and by the supply of charge carriers at the base
of the magnetosphere (see discussion in Sect. 4). In our
present discussion, ΩFo(ψ) is essentially a free function.
For the sake of simplicity, we take ΩFo = const., as in
Beskin & Malyshkin (1998). The magnetospheric gap poten-
tial is, therefore, given by

V(ψ) =

{
(1 − ΩFo)ψ along open field lines ψ ≤ ψopen

0 in the “dead zone”
(15)

V is minimal at the center of the polar cap and increases ∝r2 as
we move away from the axis.

Observational manifestation of the differential magneto-
spheric rotation is thought to be found in the sub-pulse slow
drifts across the pulse profile in almost aligned pulsars (e.g.
Rankin & Wright 2003). Interpretation of such drifts remains
still rather sketchy. We speculate that the sub-pulses are asso-
ciated with the above mentioned magnetospheric gaps present
around the separatrix between open and closed field lines where
the need for electric charge carriers is the greatest (as we
discuss below, this is where closes the electric circuit of the
poloidal electric current that flows through the polar cap). In
most cases with observed sub-pulse drifts (∼1 s period pul-
sars) ΩFo is expected to be much smaller than Ω. These gaps
are probably carried around the axis of rotation by the “fric-
tion” between the differentially rotating open and closed line
regions, and thus their observed angular velocity is found to be
close to Ω.

As we mentioned before, solutions of the pulsar equation
exist only for the simplest case ΩF = 1 and Ω′F = 0. Even
in that case, though, a strong mathematical singularity, the so
called “light cylinder”

rlc = 1, (16)

makes the problem non-trivial. Note that this is just the force-
free Alfven surface, and only very recently has a numerical
method been presented which allowed us to obtain a “smooth”
solution that fills all space (CKF). The main features of that
numerical solution (further refined in Gruzinov 2005) are:

1. The region of open field lines, the so called “polar cap”, is
slightly larger than the region of static dipolar field lines
which cross the equator beyond the distance r = 1, namely

ψopen = 1.23 (17)
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(present calculation2). We remind the reader that ψopen = 1
for a static dipole, and therefore we see that rotation “pulls”
dipolar magnetic field lines out.

2. The distribution of poloidal electric current along the open
field lines is very close to the one in the Michel (1974) rel-
ativistic split monopole solution, namely

ACKF �


AMichel ≡ −ψ
(
2 − ψ

ψopen

)
along open field lines

0 in the “dead zone”.
(18)

The electric current distribution deviates slightly from the
above near ψ ∼ ψopen where field lines follow the singular
shape of the separatrix between the open and closed line
regions (see Fig. 6 below).

3. The return current of the above current distribution,
A(ψopen) ∼ ψopen, flows along the separatrix. This implies
the presence of magnetic and electric field discontinuities
across the separatrix.

4. In general, the equatorial extent rc of the “dead zone” may
be taken as a free parameter (see Sect. 5, Appendix). It
is very natural, however, to assume that the “dead zone”
extends all the way to the light cylinder3.

5. Open field lines become monopole-like around and beyond
the light cylinder.

6. |B| > |E| everywhere4.

We are now ready to address the physically more interesting
case Ω′F � 0, in the simplest possible case where ΩF = ΩFo =

const. < 1 in the open field line region, and ΩF = 1 in the dead
zone (Eq. (14)). When ψ ≤ ψopen, we can rewrite Eq. (10) in
the new spatial coordinates x ≡ ΩFor and y ≡ ΩFoz,

(1 − x2)
(
ψxx +

ψx

x
+ ψyy

)
− 2ψx

x
= −AA′

Ω2
Fo

· (19)

Equation (19) is the same as our original equation in CKF. We
thus expect that solutions of Eq. (10) will be very similar to the
ones obtained in CKF. We would like to emphasize the follow-
ing interesting features:

1. As in CKF, it is natural to assume that the corotating “dead
zone” extends all the way to the light cylinder distance, i.e.
rc = rlc = 1. The real mathematical singularity, however,

2 In CKF, with a much lower numerical resolution, we obtained a
value of 1.36. Gruzinov 2005 obtained a value of 1.27 with a numer-
ical resolution comparable to our present one.

3 Gruzinov (2005) shows that this solution requires infinite mag-
netic fields at the point r = 1, z = 0 (in the limit of infinitesimal grid
size). Uzdensky (2003) and Lyubarskii (1990) argue against infinite
fields and thus conclude that the dead zone should end at some finite
distance inside the light cylinder.

4 This observation counteracts criticism that the assumptions
of ideal MHD may break down beyond the light cylinder
(Ogura & Kojima 2003; Spitkovsky 2004). We believe that the source
of the opposite result presented in Ogura & Kojima (2003) (their
Fig. 5) is due to their numerical boundary condition, Eq. (3.3) and
Fig. 1, namely that field lines become horizontal at large radial dis-
tances.

is not at the light cylinder, but at a certain distance outside,
the “open field light cylinder”

roflc = Ω
−1
Fo > 1. (20)

This is where we will apply the numerical iteration routine
developed in CKF.

2. We also expect ψopen ∼ 1 as in previous solutions.
3. As in CKF, we expect to encounter similar magnetic and

electric field discontinuities across the separatrix between
open and closed field lines.

4. The r.h.s. of Eq. (19) is obtained through a numerical it-
eration along the open field light cylinder that guarantees
smooth crossing of the singularity. Based on our experi-
ence, we expect this function to be very close to −AA′CKF.
Therefore, to a good approximation,

A � ΩFoACKF, (21)

i.e. A ∝ ΩFo. Obviously, as ΩFo → 0, A → 0. As we
will see, this result has very interesting implications for the
electromagnetic torques on the surface of the neutron star.

Equation (10) is elliptic with mixed boundary conditions inside
and outside the open field light cylinder r = roflc:

1. ψ = 0 along r = 0, and ψ = ψopen along the equator beyond
r = 1 (Dirichlet boundary conditions)5.

2. ψz = 0 (i.e. Br = 0) along the equator in the closed line
region r < 1 (Newman boundary condition).

3. ψr = AA′/(2ΩFo) along the open field light cylinder
r = roflc (Newman boundary condition).

4. Finally, as in CKF, boundary conditions at infinity are
irrelevant as long as we rescale our spatial coordinates
to new ones that map the full (r, z) = ([0,∞], [0,∞])
space to our finite grid size (rnew, znew) = ([0, 2], [0, 1]).
Note that this is not the case for other numerical schemes
where the integration is constrained within finite spa-
tial extent (Ogura & Kojima 2003; Goodwin et al. 2004;
Gruzinov 2005).

The above show that the problem is well defined inside and out-
side the open field light cylinder, and therefore one can obtain
solutions for a general current distribution A = A(ψ). The two
problems are, however, independent, and in general the solu-
tion will be discontinuous at the open field light cylinder, un-
less one chooses the one poloidal electric current distribution
A = A(ψ) that will guarantee ψ(r = r−oflc, z) = ψ(r = r+oflc, z).
Continuity will also result in the smoothness of the solution
(see above boundary condition # 3). A(ψ) is obtained as de-
scribed in CKF by iteratively correcting to a new function

AA′
(
ψ =

1
2

[
ψ(r = r−oflc, z) + ψ(r = r+oflc, z)

])
new

=

1
2

(
AA′(ψ(r = r−oflc, z))old + AA′(ψ(r = r+oflc, z))old

)
(22)

5 As is shown in the Appendix we are in general allowed to ar-
bitrarily choose the equatorial extent rc of the closed line region. In
that case, ψopen is obtained as a solution of Eq. (10) inside the open
field light cylinder, i.e. it is not an extra free parameter (see Goodwin
et al. 2004 for a different point of view).
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Fig. 1. ΩF = 1 everywhere (CKF; Gruzinov 2005). Thin lines cor-
respond to ψ intervals of 0.1. ψ = 0 along the axis. The dotted line
shows the separatrix ψ = ψopen = 1.23. The mathematical singularity
is at rlc ≡ roflc = 1.
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Fig. 2. ΩFo = 0.8 in the open line region. ψopen = 1.23. roflc = 1.25.

for all grid points along the open field light cylinder. In the
present work the relaxation inside each grid proceeds together
with the iteration along the open field light cylinder. This im-
provement over the CKF method allowed for a much greater
numerical resolution and a much faster speed of numerical
convergence! Our numerical scheme consists of an elliptic
solver with Chebyshev acceleration (Press et al. 1988) over
two 100 × 100 numerical grids joined along the open field light
cylinder. The discontinuities of A(ψ) andΩF(ψ) across the sep-
aratrix between the open and closed line regions are smoothed
out numerically over a distance δψ = 0.05 inside the dead zone.

3. Steady-state magnetospheric solutions

The various types of solutions of Eq. (10) are shown in
Figs. 1−4 and B.1. Thin lines correspond to ψ intervals of 0.1.
ψ = 0 along the axis. The dotted line represents the sepa-
ratrix ψopen. Figure 1 shows the CKF case ΩF = 1. Here,
ψopen = 1.23 within the accuracy of our numerical simula-
tion. Figures 2 and 3 show intermediate cases with ΩFo = 0.8
and 0.6 in the open line region respectively. ψopen = 1.23
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Fig. 3.ΩFo = 0.6 in the open line region. Thin lines correspond toψ in-
tervals of 0.1. ψ = 0 along the axis. The dotted line shows the separa-
trix ψ = ψopen = 1.20. The mathematical singularity is at roflc = 1.67.
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Fig. 4. ΩFo = 0 in the open line region. ψopen = 1.20. roflc = ∞, i.e. the
mathematical singularity is absent in this limiting case.

and 1.20 respectively. Figure 4 shows the limiting case with
ΩFo = 0. In that case there is no light cylinder singularity
that would yield the poloidal electric current distribution A(ψ).
However, we showed previously that the poloidal electric cur-
rent disappears, since it is obtained as a limit of solutions with
ΩFo → 0 in the open line region. Here, ψopen = 1.20.

The various magnetospheres show a similar poloidal mag-
netic field distribution. This result is understood since Bz is
approximately ∝r−3 in the equatorial dipole-like closed line
region, and therefore an approximate estimate for ψopen is

ψopen ∼ 1
rc
= 1. (23)

However, they differ significantly in the amount of electric
charge and electric current they contain in the open field line
region, since ρe ∝ ΩFo and A ∝ ΩFo. As a result, they differ
in the amount of electromagnetic field energy they contain in
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Fig. 5. Summary of our numerical solutions applied in the case of
SGR 1806-20. We show here ψopen (continuous line), the acceler-
ating potential Vacc/(1012 statvolt) (dashed line), and the spindown
rate |ν̇|/10−11 Hz s−1 (short dashed line). On the plot are shown our
estimates for the magnetospheric configuration before and after the
December 27, 2004 burst.

the azimuthal component of the magnetic field Bφ and in the
electric field E, namely

∫
(B2

φ + E2)r2dr ∼
∫ (
ΩFrBp

c

)2

r2dr

∼ Ω2
FoB2

∗r
3
∗

(
r∗
rlc

)3 (
r

rlc

)
· (24)

Here, the integration distance r extends to distances�rlc. Any
evolution between the different solutions will require the re-
lease (or buildup) of the corresponding energy difference (see
discussion in the next section).

We discovered that, as ΩFo varies from Ω to 0, the open
field region decreases to a minimum value of about ψopen ∼ 1.2
(see Fig. 5). In the next section we will see that this numerical
result might have interesting physical implications in under-
standing the SGR phenomenon.

Figure 6 shows the corresponding rescaled electric cur-
rent distribution A/(ψopenΩFo), and the rescaled distribu-
tion AA′/(ψopenΩ

2
Fo), (obtained numerically) as functions of

the normalized magnetic flux ψ/ψopen. We see that indeed the
electric current distributions are very similar and proportional
to ΩFo. Let us now see how this result affects our estimation
of stellar magnetic fields B∗. As we mentioned in the introduc-
tion, it is customary to estimate B∗ by equating the observed
stellar spindown energy loss to the estimated electromagnetic
spindown torque. As we show in the Appendix,

Lem spindown = Ω

∫ ψopen

ψ=0
A(ψ)dψ ≈ 2

3
ΩFoψ

2
open

≈ B2∗Ω3ΩFor6∗
4c3

(
rlc

rc

)2

(25)

(in real units). In general, rc introduces one more free param-
eter in the problem (see Sect. 5). Let us here consider only
the natural case rc ∼ rlc and discuss the physical significance
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Fig. 6. The rescaled electric current distribution A/(ψopenΩFo) and the
rescaled distribution AA′/(ψopenΩ

2
Fo), as functions of the rescaled mag-

netic flux ψ/ψopen in the open line region, for ΩFo = 1, 0.8 and 0.6
(from the lower curves up respectively). The upper curves (dotted) are
the ones that correspond to the Michel split monopole expression.

of ΩFo. Equation (25) implies that stellar magnetic field es-
timates need to be revised upwards over the canonical value
obtained when one compares Eqs. (1) and (2). Note that when
ΩFo = 0, ρe = 0, J = 0, i.e. no currents flow through the
magnetosphere, and therefore the star will not spin down. In
most cases, ΩFo ∼ [80, 95]%Ω (Romani, personal communi-
cation), and therefore, the correction introduced in the stellar
magnetic field estimate is in most cases practically insignifi-
cant. The correction is significant and should be taken into se-
rious consideration for slow pulsars near the pulsar death-line,
where V∗(ψopen) ≈ 1012 Volts = V(ψopen) and VF(ψopen) ≈ 0
(Eq. (13)).

4. A “coughing” magnetosphere

The solutions presented in the previous section are all steady-
state solutions characterized by one parameter, ΩFo, which, as
we argued, is determined by the particle acceleration gap mi-
crophysics. Let us imagine first that charge carriers are freely
available at the base of the magnetosphere. In that case, the gap
is shorted out, and the magnetosphere is described by a steady-
state solution withΩFo ≈ Ω (CKF). Let us imagine next that the
supply of charge carriers is somehow suddenly depleted. The
gap will suddenly grow, and the magnetosphere will quickly
evolve towards a different steady-state solution with ΩFo � Ω.
We are now going to discuss how, in our opinion, the magne-
tosphere may evolve from the one steady-state solution to the
other. We will base our discussion on the particular example of
SGR 1806-20, and its December 27, 2004 burst.

We will argue that, when the particle acceleration gap at the
base of the magnetosphere suddenly grows, the magnetosphere
will spontaneously evolve from a configuration with a larger
open field line region and a larger poloidal electric current, to
one with a smaller open field line region and a smaller poloidal
electric current. One way to achieve this might be through
north-south reconnection at the distance of the light cylinder.
We expect a significant amount of magnetic flux (∼5% ψopen)
to “snap” and move equatorially outward similarly to a solar
coronal mass ejection (plasmoid). At the same time, the mag-
netosphere will release the excess energy contained in the
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Fig. 7. Schematic magnetospheric evolution characterized as “magne-
tospheric coughing” (clockwise from upper left corner). In the upper
left corner is shown a steady-state solution with ΩFo ∼ Ω. Conditions
at the base of the magnetosphere changed suddenly towards a different
steady-state solution with ΩFo � Ω, and a spherical electromagnetic
wave (shown with dotted line) sweeps through the open field line re-
gion at the speed of light. When the wave reaches the light cylinder
region, reconnection allows the expulsion of the amount of magnetic
flux required for the magnetosphere to evolve towards the new steady-
state solution that corresponds to the new value of ΩFo (upper right
corner). The detached magnetic flux forms a “plasmoid” that escapes
in the equatorial region (lower right corner). The system reaches a fi-
nal steady-state shown schematically in the lower left corner, and will
remain there for as long as the physical conditions that sustained the
new value of ΩFo at the base of the magnetosphere persist.

azimuthal component of the magnetic field Bφ and in the elec-
tric field E through a spherical electromagnetic wave sweeping
through the open field region at the speed of light6. As is shown
in Eq. (24), the energy contained in that wave would grow with
distance. We would like to characterize this dramatic evolution
as “magnetospheric coughing” (see Fig. 7 for a schematic
description).

As long as the depletion of charges persists, the magneto-
sphere will remain in the low ΩFo state. The magnetosphere
might return to a higherΩFo state where angular momentum is
removed more efficiently only if charge carriers become freely
available again at the base of the magnetosphere. We specu-
late that in such case, the magnetosphere will evolve through
differential rotation between the star and the light cylinder re-
gion, and therefore the evolution will be less dramatic than the
magnetospheric coughing described above.

In our example (see Fig. 5), let us choose the solution with
ΩFo = 0.8 as the pre-burst solution. Our numerical analysis
yielded

ΩFo pre−burst = 0.8, (26)

ψopen pre−burst = 1.23. (27)

6 In general, this will be a spherical Alfven wave moving outward
at the Alfven speed.

Based on our detailed axisymmetric ideal MHD model, and
given the observed pre-burst spindown rate −8.5 × 10−12 Hz/s,
we obtain

B∗ = 3 × 1015 G, (28)

and a corresponding accelerating potential in the magneto-
spheric gaps

Vpre−burst = 9 × 1013 Volts. (29)

We know that, after the burst, the spindown rate was 2.7 times
smaller (Woods et al. 2005). This allows us to take

ΩFo post−burst = 0.3, (30)

ψopen post−burst = 1.20. (31)

Vpost−burst = 3 × 1014 Volts. (32)

We see that both before and after the burst, the accelerating po-
tential is of the order of 1014 Volts. Indeed, the magnetosphere
is emitting pulsed radiation in both cases, only after the burst,
pulsed radiation is observed to be weaker. We attribute this dif-
ference to the smaller radiation cone (due to the smaller open
field line region) which might thus avoid our line of sight.

According to Eq. (24), the energy difference between the
two magnetospheres is of the order of

(Ω2
Fo pre−burst −Ω2

Fo post−burst)B
2
∗r

3
∗

(
r∗
rlc

)3 (
r

rlc

)
∼

1047

(
r∗
rlc

)3 (
r

rlc

)
erg. (33)

According to 33, the energy contained in the spherical blast
wave will be comparable to the apparent burst luminosi-
ties observed on earth (e.g. Yamazaki et al. 2005) at distances
r/rlc ∼ (rlc/r∗)3. We would like to defer a more detailed discus-
sion of the burst energetics to a future work.

5. Conclusions

In our present work we presented global numerical solutions
of the generalized pulsar equation that describe the steady-
state structure of axisymmetric rotating neutron star magneto-
spheres. We have introduced two new parameters besides the
neutron star angular velocity Ω,

– ΩFo, the angular velocity of rotation of open field lines.
This quantity is related to the particle acceleration gaps at
the base of the magnetosphere (the closer ΩFo is to Ω, the
smaller the gap), and is determined by gap microphysics
outside the context of our present ideal MHD formulation.

– rc, the maximum equatorial extent of the closed line region
(see Appendix). We speculate that rc might be determined
by inertial effects outside the context of our present ideal
MHD formulation.
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Note that, in our global solutions, ψopen (the amount of open
field lines) is determined self-consistently, and consequently it
is not a free parameter (see, however, Goodwin et al. 2004, for
a different point of view). Similarly to CKF, the poloidal elec-
tric current distribution that guarantees smoothness and conti-
nuity at the open field light cylinder is obtained iteratively, and
an approximate analytic expression is given. Our results gener-
alize the solution presented in CKF; Gruzinov (2005).

We also obtained a generalized expression for the steady-
state spindown magnetospheric energy losses (Eq. (25)), which
is different from the canonical one for a misalingned magnetic
rotator. Magnetospheres with different values of ΩFo and/or
rc contain different amounts of electric currents, and therefore
spin down differently. This changes slightly our estimates of
stellar magnetic fields B∗ (see also Harding et al. 1999, for a
relevant discussion in the case of magnetar magnetic field es-
timates). More importantly, however, this might have serious
implication in the calculation of the magnetic braking index
n ≡ ΩΩ̈/Ω̇2. One can easily check (Eq. (25)) that any func-
tional dependence of ΩF and ψopen different from the canonical
one ΩF ∝ Ω, and ψopen ∝ Ω will yield a braking index n � 3 as
obtained observationally (Contopoulos & Spitkovsky, in prepa-
ration).

Finally, we argued that the magnetosphere may sponta-
neously evolve between steady-state configurations character-
ized by different values of ΩFo and/or rc. The evolution from
a high to low value of ΩFo and/or low to high value of rc will
result in the dramatic release of a significant amount of elec-
tromagnetic field energy and magnetic flux. The return to the
former configuration will be less dramatic, since it will require
the buildup of the corresponding electromagnetic field energy
difference. Our results might be relevant in understanding the
SGR burst phenomenon.
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Appendix A: Pulsar spindown estimates

When a neutron star is not surrounded by vacuum, the rotat-
ing charged relativistic Goldreich-Julian-type magnetosphere
is threaded by poloidal and toroidal electric currents. We will
consider only the axisymmetric case for simplicity. Two large
scale poloidal electric current circuits (north & south) are gen-
erated. These flow only along open field lines, and close along
the surface of the star at the two polar caps where they generate
electromagnetic torques antiparallel to the angular momentum
of the neutron star

1
c

rBJdS dr (A.1)
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Fig. B.1. A solution with 2.7 times more efficient spindown than the
solution shown in Fig. 2. The “dead zone” extends up to rc = 0.59.
ΩFo = 0.8. ψopen = 2.03.

through any stellar cross section dS threaded by poloidal elec-
tric current density J. One can easily check that the stellar
kinetic energy loss through the above torques is given by

Lem spindown = Ω

∫ ψopen

ψ=0
A(ψ)dψ � 2

3
ΩΩFoψ

2
open ≈ ΩFo (A.2)

(our expression accounts for the two hemispheres, north &
south). We made use of the numerical result ψopen ≈ 1.23. At
the same time, the magnetosphere radiates electromagnetic
energy
c

4π
rEpBφdS (A.3)

through any cross section dS in the region of open field lines.
One can easily check that the total electromagnetic energy loss
through the above Poynting flux is given by

Lem =

∫ ψopen

ψ=0
A(ψ)ΩF(ψ)dψ � 2

3
Ω2

Foψ
2
open ≈ Ω2

Fo. (A.4)

ΩF is in general smaller than Ω, and therefore, Lem is in gen-
eral less than Lem spindown. The difference between the two is
consumed in the particle acceleration gaps that develop along
open field lines, namely

Lparticles = Lem spindown − Lem =

∫ ψopen

ψ=0
A(ψ)(Ω −ΩF(ψ))dψ

� 2
3
ΩFo(1 −ΩFo)ψ2

open ≈ ΩFo(1 − ΩFo). (A.5)

The above expressions are normalized to the Goldreich-Julian
value

LGJ ≡ B2∗Ω4r6∗
4c3

· (A.6)

Appendix B: Alternative magnetospheric solutions

In solving Eq. (10), we have all along argued that nature will
choose the most natural solution, namely the one with the max-
imum extent of the “dead zone”. A competing to the above sce-
nario might be one where the extent of the “dead zone” is a
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free parameter rc (Goodwin et al. 2004). Since ΩF introduces
one more free parameter in the problem, we will consider only
one representative case with ΩFo = 0.8. Equation (10) can be
solved numerically as described before. In this scenario, solu-
tions with a smaller “dead zone” are also more efficient in re-
moving angular momentum from the spinning star (Eq. (A.2)).
As an example, we take rc ∼ 0.59 and obtain ψopen = 2.03
(Fig. B.1). This solution may evolve rapidly through recon-
nection towards the solution shown in Fig. 2 with rc ∼ 1,
ψopen = 1.23, and thus yield a spindown rate 2.7 times lower, re-
leasing at the same time a significant amount of magnetic field
energy. Note that the system is an efficient radiator through
particle acceleration processes both before and after the burst
(ΩFo < 1).
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