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The Coupled Cluster Method 

R a y m o n d  F. Bishop  

Depar tment  of Physics, UMIST, 

(University of Manchester Inst i tute of Science and Technology), 
Manchester M60 1QD, United Kingdom 

A b s t r a c t .  The coupled cluster method (CCM) is nowadays widely recognised as 
providing one of the most powerful, most universally applicable, and numerically 

most accurate at  at tainable levels of implementation, of all available ab initio meth- 

ods of microscopic quantum many-body theory. The number of successful applica- 
tions of the method to a wide range of physical and chemical systems is impressively 

large. In almost all such cases the numerical results are either the best  or among 
the best  available. A typical example is the electron gas, where the CCM results 
for the correlation energy agree over the entire metallic density range to within 
less than one millihartree per electron (or < 1%) with the essentially exact Green's 

function Monte Carlo results. 
Wha t  has since become known as the normal (NCCM) version of the method 

was invented some forty years ago to calculate the ground-state energies of closed- 

shell atomic nuclei. Extensions of the CCM have since been developed to calculate 
excited states, energies of open-shell systems, density matrices and hence other 

properties,  stun rules, and the sub-sum-rules that  follow from embedding linear 

response theory within the NCCM. Further extensions deal with the general dy- 
namics of quantum many-body systems, and with their mixed states appropriate,  

for example, to their behaviour at nonzero temperatures.  More recently, a so-called 
extended (ECCM) version of the method has been introduced. It has the same abil- 
ity as the NCCM to describe accurately the local properties of quantum many-body 
systems, but  it  also has the potential  to describe such global phenomena as phase 

transitions, spontaneous symmetry breaking, states of topological excitation, and 

nonequilibrium behaviour. 
The role of the CCM within modern quantum many-body theory is first sur- 

veyed, by a comparison with, and discussion of, the alternative microscopic formu- 

lations. We then discuss the method and each of its individual components in con- 
siderable detail. Our overall aim is to stress the broad applicabili ty of the method. 

To tha t  end we introduce and exploit a very general theoretical framework in which 
to formulate the key ideas and to develop the theory. We end with a brief review 

of the applications of the method to date. 

1 I n t r o d u c t i o n  

1.1  M a n y - B o d y  S y s t e m s  

M a n y - b o d y  physics  or  q u a n t u m  m a n y - b o d y  t h e o r y  ( Q M B T )  is not  the  r a the r  

spec ia l i sed  subfield of  physics  t h a t  i t  is somet imes  bel ieved to  be. O n  the  con- 

t r a ry ,  we are  nea r ly  a lways faced wi th  many -pa r t i c l e  s i tua t ions  at  the  fun- 

d a m e n t a l  level. Thus ,  we are especia l ly  in te res ted  in formula t ions  of Q M B T  
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at the fully microscopic or ab initio level, which are powerful enough to 

treat, both in principle and in practice, the full range of many-body and 

field-theoretic systems. Since these comprise nearly all of the physical world 

around us, according to our present degree of understanding, the topic of 

QMBT occupies a key position in modern theoretical physics. 

Examples of quantum many-body systems abound. Thus, it is clear that 

in fields like molecular, solid-state, and nuclear physics most of the funda- 

mental objects of discourse are interacting many-body systems. But even in 

elementary particle physics one is usually dealing with more than one par- 

ticle. For example, at some level of reality a nucleon is made up of three 

quarks interacting via gluons and surrounded by a cloud of mesons, which 

are themselves composed of quark-antiquark pairs. Even more fundamentally, 

even the "physical vacuum" of any quantum field theory is endowed with an 

enormously complex infinite many-body structure due to the virtual excita- 

tion of the particles allowed by the theory under discussion. Table 1 gives an 

incomplete but illustrative set of examples of quantum many-body systems. 

It is a primary aim of modern QMBT to derive and explore methodologies 

which are broad enough to be able to be applied to all such systems, and pow- 

erful enough to describe their key emergent macroscopic properties from a 

knowledge only of the underlying microscopic interactions. The coupled clus- 
ter method (CCM) under discussion here now plays a central role in modern 

QMBT since, as we shall explore in detail, it has the potential to fulfill these 

key criteria amply. 

1.2 M a n y - B o d y  M e t h o d s  

From our discussion above it should be clear that although techniques to deal 

with interacting many-body systems are likely to have separately arisen from 

specific physical contexts, they may also be of more general applicability and 

interest. The CCM and its birth some 40 years ago within nuclear physics [1,2] 

is just one example. Nevertheless, if we limit ourselves to comparisons with 

other fundamental and "universal" tools, the number of available methods is 

surprisingly small. Before we enumerate them, however, we emphasise that 

there exist also many other macroscopic or phenomenological or approximate 

or empirical descriptions and techniques, which have proven to be successful 

in one or other context. They are, nevertheless, excluded from our present 

considerations because, by their very nature, they are "specialist" tools which 

are tailor-made for a particular system or application, and because our em- 

phasis here is on techniques that have a more universal appeal. 
The main microscopic techniques fall essentially into seven main classes: 

- Q u a n t u m  M o n t e  Carlo (QMC)  Methods :  These come in several 

varieties, e.g., Green's function Monte Carlo, diffusion Monte Carlo, path- 

integral Monte Carlo. Each aims to solve the N-body Schr6dinger equa- 
tion by stochastic simulation, typically for N ~ 1000, with extrapolation 
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T a b l e  1. Examples of quantum many-body systems. 

System Particles Interaction Infinite Limit 

Molecular 

clusters 

Rare gas atom 

clusters 

Metallic atom 

clusters 

Atoms and 

molecules 

Quantum spin 

clusters 

Electron 

clusters 

~Nuclei 

(A = 2Z) 

e.g., CO2 

molecules 

e.g., He or Ar 

atoms 

e.g., Na or Ag 

atoms 

Electrons and 

nuclei 

ISpins on a 

spatial lattice 

I Electrons 

~(and holes) 

on a regular 

spatial lattice 

(i) a-particles 

(ii) Nucleons 

(iii) Baryons 

and mesons 

(iv) Quarks 

and gluons 

Elementary particles (models 

from quantum field theory) 

(i) Leptons and exchange 

bosons 

(ii) Quarks and gluons 

van der Waals type 

(i.e., repulsive core + 

attractive tail) 

Interatomic potentials 

(e.g., van der Waals type) 

Interatomic potentials 

Mainly Coulombic 

(+ relativistic/QED 

effects) 

le.g., Heisenberg 

interaction 

le.g., Hubbard model, 

t - J  model 

2-body phenomenological 

potentials (repulsive core 

+ attractive tail); also 

3-body potentials needed 

for accurate fits to 

experimental data  

Field-theoretic interaction 

(sometimes replaced by 

boson-exchange potentials) 

(Hints from) QCD 

Electroweak interaction 

(Weinberg-Salam theory) 

(Hints from) QCD 

:Gases; fluids; 

molecular crystals 

Rare gas; liquid; 

Icrystal 

Metallic crystal 

Infinite Thomas -  

Fermi a tom 

Magnetic phases 

(e.g., antiferromagnets) 

Strongly interacting 

electron-lattice systems 

(e~g., high-To 

superconductors) 

Alpha matter  

"Standard" 

nuclear mat ter  

Nuclear matter  as 

"baryon-meson soup" 

Quark-gluon plasma 

Already there! 

(-  even for the 

physical vacuum ) 
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to the thermodynamic limit, N --* ce, using finite-size scaling or other 
techniques. The QMC methods typically require either that the many- 
body wave function is everywhere non-negative (as for bosonic ground 
states) or that its nodal surface structure is known or well approximated. 

The latter requirement leads to the infamous "fermion minus sign prob- 
lem", which still exists as a serious limitation on the practical usefulness 
of QMC techniques. 

- T i m e - I n d e p e n d e n t  P e r t u r b a t i o n  Theory  (TIPT) :  This method 
basically provides an expansion in powers of the interaction coupling 
constant. It finds a diagrammatic representation in terms of so-called 
Goldstone diagrams. Its main drawback is that one needs in numerical 
implementations to neglect all terms which are, somehow, deemed to 
be unimportant or which, more usually, simply cannot be handled in 
practice. 

- Green ' s  Funct ion  (GF) or P ropaga to r  Methods :  These meth- 
ods are basically a reformulation of time-dependent perturbation theory 

and, as such, can be given a diagrammatic representation in terms of 
so-called Feynman diagrams. They suffer similar drawbacks to those al- 
luded to above in the case of TIPT. GF methods are formulated as 
time-dependent (i.e., dynamic) equations for matrix elements (or prop- 
agators) which describe the propagation of clusters of particles in the 

many-body medium. 

- Varia t ional  Methods :  The aim of all variational calculations is to 
compute the energy expectation value, (H), with a trial correlated many- 
body wave function, typical forms of which are the Jastrow or Jastrow- 
Feenberg varieties. Since {H) cannot usually be calculated in closed form, 
various techniques are used. Some typical ones are Monte Carlo evaluation 
of the implicit multi-dimensional integrals, various cluster expansions, 
and various partially re-summed cluster sub-series (e.g., the hypernetted 

chain approximation). 

- Corre la ted  Basis Funct ion  (CBF) Method :  Variational calculations 
suffer from the main drawback that even if (H / is calculated exactly for a 
given trial wave function, one has only an upper bound on the exact en- 
ergy and an approximation to the exact many-body wave function. CBF 
techniques aim to remove this restriction by providing a scheme in which 
to improve systematically on a trial wave function (typically of Jastrow or 
similar form) by introducing a complete set of correlated basis functions. 
CBF techniques typically enable the short-range correlations which are 
important for many physical applications to be efficiently incorporated 

from the outset. 

- Conf igura t ion- In te rac t ion  M e t h o d  (CIM) (or generalised many- 
body shell model): This method typically aims to diagonalise the Hamil- 
tonian in a finite subspace of the full many-body Hilbert (or Fock) space. 
Despite its underlying simplicity, it suffers from the severe drawback for 
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many-body applications of not satisfying the important requirements of 
size-extensivity and size-consistenc): 

- Coupled  Clus ter  M e t h o d  (CCM):  By utilising an exponentially 
correlated form of the wave function, the CCM cures the size-extensivity 
problem inherent in the previous CIM. The CCM has the nice feature 
that if its basic equations are iterated one regains TIPT and the associ- 
ated Goldstone diagrams. Nevertheless, one need not, and usually does 
not, solve the equations this way, thereby circumventing the main draw- 
back of TIPT methods. The characteristic exponential form of the CCM 

wave functions correctly counts independent clusters excitations from a 
suitably chosen model or reference state, which itself can take a variety of 
forms depending on the system and on its particular phase under study. 

The QMC, variational, and CBF methods are all extensively discussed by 
other contributors to this volume. It is nevertheless worthwhile to spend a 
little while in discussing the salient features of all of the methods (apart from 
QMC techniques), in order to put them properly in context before turning 

to a detailed discussion of the CCM. 

Both the TIPT and GF methods are perturbative in origin. In almost all 
cases of interest various infinite partial resummations are performed out of 
necessity, either because the series diverges badly or is otherwise ill-defined 
from the outset. Well-known examples include the ladder-diagram summa- 
tion (for hard-core or other strongly repulsive short-range potentials) which 
leads to the Bethe-Brueckner-Goldstone G-matrix expansion or the hole- 
line expansion (and see, e.g., Refs. [3-5]); and the bubble- or ring-diagram 
summation of the random phase approximation (RPA) [6,7] (for long-range 
potentials of the Coulomb type). For accurate numerical calculations of most 
realistic many-body systems it is usually found to be necessary to incorporate 
at least the self-consistent sum of all ring and ladder diagrams. 

Even in such rearranged or partially resummed examples, one is still ulti- 
mately forced in practice to neglect infinite classes of terms that are presumed 
to be unimportant or that cannot easily be incorporated into a higher ap- 
proximation. Furthermore, it is usually difficult in realistic applications to 
justify the retention of certain terms at the expense of neglecting others. 
The history of microscopic nuclear theory, for example, is littered with in- 
correct or misleading calculations which amply illustrate the danger of the 
blind inclusion of extra diagrams, as has been forcefully pointed out many 
times by Kiimmel and his collaborators [8,9]. In quantum chemistry, the 
TIPT techniques provide the usual means of doing many-body perturbation 
theory (MBPT), or what has increasingly become known in chemistry as 
M¢ller-Plesset perturbation theory. In chemical applications it is usual to 
include all terms through some given finite order in the electron interactions. 
Full fourth-order, MBPT(4), calculations are now commonplace, for example 
[10]. 
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Various propagator or GF techniques are also still widely used in quantum 
chemistry (and see, e.g., Refs. [11,12]), where they are particularly used for 
molecular spectroscopic properties, as well as in other areas. Nevertheless, on 
the wider front, GF methods suffer from many of the same drawbacks as the 
TIPT techniques discussed above. Thus, with one important potential caveat, 
neither TIPT nor GF methods are nowadays generally considered within 
quantum many-body theory to be sufficiently accurate or sufficiently versatile 
to be candidates for the position of a universal, high-precision method. The 
only real exception to this viewpoint is provided by the so-cMled parquet 
diagram, or planar theory, approach within the broader GF scheme. 

The ideas behind parquet theory were introduced [13] at around the same 
time that Coester first introduced the CCM. The specific context for their 
introduction was certain problems in particle physics. Similar equations were 
later used to study X-ray absorption and emission in metals [14]. However, 
it was not until 1979 that the potential of parquet theory for the study of 
strongly interacting condensed Bose systems was noted by Ripka [15]. He 
called attention to the fact that the hypernetted chain (HNC) equations of the 
Jastrow variational approach shared several very desirable features with the 
parquet equations. At the time the HNC approximation to the variational 
approach, which is discussed in detail in the contribution to this volume 
by Fantoni and Fabrocini, was meeting with considerable success in dealing 

with such extended bosonic systems as liquid 4He. Ripka noted that just as 
the HNC equations of variational theory treated both the long- and short- 
range correlations simultaneously and consistently, so too would the parquet 
equations of perturbation theory, if only they could be solved. 

This astute observation of Ripka provided the stimulus for the 1982 study 
of Jackson, Lande, and Smith [16] which examined the parquet equations 
for bosons in great detail. They also showed how these otherwise rather 
formidable equations could be rendered tractable, and hence solved numeri- 
cally, by the introduction of simple localising approximations. 

The basic concepts of parquet theory are both simple and appealing. The 
method first focusses on the effective two-body interaction, which it then 
expresses in terms of a large and physically interesting class of Feynman dia- 
grams. These so-called parquet diagrams are a particular self-consistent sum 
of ring, ladder, and vertex correction terms for the two-body Green's func- 
tion. Most important physically is the fact that the two-body (i.e., particle- 
particle and hole-hole) ladder diagrams and the particle-hole ring diagrams 
are iterated together in a maximal fashion. Although the full two-body par- 
quet equations are highly complex, their local counterparts were applied to 
such model bosonic systems as liquid 4He using the Lennard-Jones poten- 
tial, and neutron matter treated as a Bose system interacting via the Reid 
soft-core tS0 interaction. Not surprisingly in view of Ripka's comments, good 
agreement was found with the corresponding optimised Jastrow HNC results. 



The Coupled Cluster Method 7 

At the formal level it was later demonstrated [17] that  a similar, but 
nonetheless distinct, local form of the full two-body parquet equations is 
identical to optimised Jastrow HNC theory. This result was particularly im- 
portant since it provided a bridge between the otherwise very disjoint pertur- 
bative approaches of TIPT and GF theory on the one hand, and variational 
approaches on the other. Later formal developments have included a possible 
extension to fermionic systems [18,19], the inclusion of three-body terms [20], 
and parquet perturbation theory [21] for bosons, as an expansion in the dif- 

ference between the exact and approximate propagators, in order to improve 
systematically upon the local parquet equations. Interesting connections be- 
tween parquet theory and Baym-Kadanoff  theory [22] have also been made 
[23]. This latter approach is noteworthy in that  it uses an initial approxima- 
tion for the two-body vertex to construct from it a conserving vertex, namely 
one which conserves particle number, momentum, and energy. Despite what 
is now a fairly large corpus of formal developments, the parquet method has 
not yet been widely applied and tested. Nevertheless, it clearly deserves to 
be, and it must be considered as a potential candidate for the position of a 
universal tool in quantum many-body theory. We have stressed it here for 

just these reasons. 

We turn next to the use of variational methods in quantum many-body 
theory. Perhaps the simplest of these approaches is based on a trial wave 
function of the (Bijl-Dingle-)Jastrow type [24]. The early calculations of this 
sort relied on various cluster expansions of the ensuing approximate matrix 
elements [24-26]. Later on it was realised that  the variational approaches 
may themselves be formulated diagrammatically [15,27,28]. This feature has 
been of considerable help in constructing such powerful approximations as 
the Percus-Yevick and HNC summations (which have their origins in the 
classical theory of liquids) and their variants, both for bosons and fermions 
[15,29-31]. Various articles and reviews concerning the use of variational 
methods in quantum many-body theory exist (and see, e.g., Refs. [15,32- 
35]). The 1979 article by Clark [32] is particularly recommended as what is 
perhaps still the standard review of the variational theory of extended nuclear 
matter. Similar reviews (and see, e.g., Ref. [36]) also exist for applications 
to few-body systems. Finally, Fantoni and other contributors to this volume 
describe the variational techniques and their applications in some depth, from 
both a modern perspective and a pedagogical point of view. 

The variational approaches sketched above suffer from two fundamental 
flaws. In the first place the various partial summations of the graphs con- 
sidered by such approximation schemes as HNC give methods which lose 
one of the most attractive features of variational formulations, namely that  
they yield estimates for the energy which are upper bounds to the exact 
ground-state energy. Secondly, even a complete summation of graphs (or a 
variational Monte Carlo evaluation of the corresponding expectation values) 
for a given trial wave function, say of the Jastrow type, gives only the exact 
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variational result and not the true ground state. This second deficiency may 
be removed in principle by including more general state-dependent correla- 
tions and higher-order correlation functions of the Feenberg type [37]. Alter- 
natively, and more generally, one may extend the Jastrow wave function to 
a complete set of correlated basis functions (CBF). The CBF method was 
introduced nearly forty years ago by Feenberg and his collaborators [29,38], 
and has since been developed largely by Clark and his co-workers [32,39- 
45]. A very brief and qualitative survey of the method, which contains many 
more citations of the original CBF literature, has also been given by the 
present author [461 . Despite the fact that the method and its applications 
are also extensively discussed in the present volume by Fantoni, Fabrocini, 

and Krotscheck, it is useful for us also to review the key features of the 
method for purposes of later comparison with the CCM. 

The central ingredient of the CBF method is the direct incorporation of 
the most important interparticle correlations which are believed to charac- 
terise the system under consideration, into the approximate wave functions on 
which the microscopic description is based. At its simplest level the method 
considers only a single configuration and hence reduces to ordinary varia- 
tional theory. As we have seen above, the latter further simplifies to Jastrow 
theory if the simplest reasonable choice of correlation operator is made. 

At its most general level, the CBF method constructs for the N-body sys- 
tem a multiconfigurational correlated basis { IOi} } of normalised but generally 
nonorthogonal state vectors, 

FiZz) (1) 

I~> = (4 i iF t  FIcPi) ½ ' 

in terms of a correlation operator F applied to a complete orthonormal basis 
{l~hx)} of model states. The latter usually carry the correct quantum statis- 
tics and any essential symmetries of the system. They would hence provide 
an adequate lowest-order description of the system if it were not strongly 
interacting. For an application to molecules, for example, the states {l~bz)} 
would probably be chosen as a set of Slater determinants of some appropriate 
single-electron orbitals. 

The correlation operator F is thus symmetric in the complete sets of 
single-particle quantum numbers used to denote the N particles. Most im- 
portantly, F also possesses the cluster decomposition property, namely that 
upon separating one subgroup of particles (say 1,2,...,n) far from the rest 
(n + 1, n + 2, ..., N) in real space, the operator F(1, 2, ..., N) decomposes into 

a product, 

F(1, ..., N) --* F(n)(1, ..., n ) F ( N - n ) ( n  + 1, ..., N )  (2) 

It is this property which allows the natural definition of correlation operators 
F(n)(1, ...,n) for n-body subsystems with 1 _< n _< N, in terms of a given 
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N-body operator F - F (N) . It is also the key ingredient in allowing the 

derivation of linked cluster expansions for physical quantities. 
The simplest choice for F is the state-independent Jastrow form, F --* F j,  

specified in its usual coordinate-space form as follows, 

F j =  H f(r~j) , (3) 
l < i < j < N  

where rij is the relative coordinate for particles i and j. The more gen- 
eral Feenberg form, F ~ FF, is given in terms of higher-order correlation 

functions as, 

F F =  l-I  f2(riJ) H f3(r i j , r ik , r jk )""  (4) 
i<j  i< j<k  

Whatever choice for F is adopted, the CBF method devolves onto the com- 
putation of the matrix elements H~j and NIj  of the Hamiltonian H and the 

unit operator, respectively, 

HI j  =-- (q)IIFtHFI•j) ; NI j  =- (qbtlFtFIqbJ) • (5) 

One assumes that any exact stationary energy eigenstate [~), HI3  ) = EI~), 
may now be (approximately) expanded in the multiconfigurational basis, 

Iz )  =  cJl J/ • (6) 

J 

The SchrSdinger equation is then decomposed as usual into the coupled set 

of linear generalised eigenvalue equations, 

- E N . ) c j  = 0 , (7) 

J 

which have a nontrivial solution for the coefficients {c j }  if and only if E 

satisfies the secular equation, 

det(Hij  - ENr j )  = 0 . (8) 

Clearly, the accurate numerical evaluation of the matrix elements {HI j} 
and {N/j} is far from trivial. In this context various cluster-expansion tech- 
niques have been developed [26,47], which themselves also provided a basis 
for much of the later diagrammatic analysis of both diagonal elements (ex- 
pectation values) [27-31] and off-diagonal elements [40]. This latter work 

led to the definition of the CBF effective interaction, and to many illumi- 
nating connections with conventional diagrammatic MBPT. Exploration of 
these connections has allowed techniques from standard TIPT as developed 
for weakly-interacting systems to be taken over into their CBF counterparts 
for application to strongly-interacting systems (and see, e.g., Ref. [44]). 
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Finally, however the matrix elements {HIj} and {NIj} are derived, the 

remaining generalised eigenvalue problem of (7) and (8) must then be at- 

tacked in a systematic, approximate, or heuristic manner. Various such meth- 

ods have been developed within the general CBF framework. These include 

nonorthogonal perturbation theory [39]; straightforward CIM-type diagonali- 

sation in the space spanned by some subset of the full correlated basis [39,48]; 

and a correlated version of the usual RPA [6], which now performs a semi- 

classical t reatment  of small-amplitude oscillations about an equilibrium cor- 

related configuration [41,42,44,45]. There have even been at tempts to for- 

mulate a generalised version of coupled cluster theory in the CBF basis [49]. 

We turn finally to the CIM [50] and the CCM, wtmre the latter is our main 

concern. For present overview purposes we merely remind the reader that  the 

CIM is basically a straightforward diagonalisation of the Hamiltonian in some 

multiconfigurationM subspace of the full many-body Hilbert space. One of its 

main advantages is that  it is also easily and equivalently formulated varia- 

tionally, in a parametrisation that  preserves the manifest Hermitian adjoint 

relationship between corresponding bra and ket wave functions. In this way 

we see that  each of the set of approximate energy eigenvalues so obtained 

provides an upper bound to the corresponding member of the similar set 

of exact lowest eigenvalues. Furthermore, by the well-known interlacing (or 

Hylleraas-Undheim) theorem [51], an increase in the size of the multiconfig- 

urational CIM subspace is guaranteed to lead to improved estimates, i.e., to 

ones which are lower (or, in the worst case, unchanged) in energy. 

This advantage of the CIM (which is not shared by the CCM) is, how- 

ever, offset by the disadvantage that  the method is not size-extensive [52]. 
Thus, in diagrammatic language, the CIM contains terms which are not linked 

(connected).1 For extended systems this deficiency is fatal. In order to guaran- 

tee the size-extensitivity of the energy of the many-body system, it is clearly 

necessary that  the effective Hamiltonian is separable over the various possible 

subsystems which arise in the corresponding dissociation limits where they 
are asymptotically separated to large relative distances so that  the interac- 

tions between them become vanishingly small. This will certainly be the case 

if the wave operator is multiplicatively separable. The importance of exactly 

maintaining the separability of the wave function at any subsequent level of 
approximation has been stressed by Primas [53], although its importance for 
energy calculations was perhaps first realised by Brueckner [54] when using 

nondegenerate Rayleigh-SchrSdinger MBPT to calculate the ground-state 

energy of infinite nuclear matter.  An obvious method of ensuring that  the 

wave operator is multiplicatively separable is to write it as the exponential of 

the so-called cluster operator, which in turn is additively separable and hence 

In the present article we use the terms "linked" and "connected" as synonyms; 
the interested reader should beware, however, that in the context of open-shell 
versions of the CCM it is usual to distinguish between the two terms. 
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representable by a sum of connected diagrams. This is the central feature of 
the original CCM, as described more fully in Sect. 3. 

From our discussion to date it should be apparent that  the only existing 
formulations of quantum many-body theory which satisfy all of the desirable 
criteria of being: 

- fully microscopic; 

- widely applicable to a broad spectrum of both finite and extended systems 
of interest in physics (and quantum chemistry); 

- equally applicable to systems in a spatial continuum or on a discrete 
(regular) spatial lattice; 

- capable of systematic improvement via increasingly higher-order imple- 
mentations of some well-defined scheme of hierarchical approximations; 

- very accurate in practice, i.e., better than or comparable to the highest 
practicable precisions attainable by any alternative technique, however 
specialised to the system under discussion; and 

- very widely and deeply tested, 

and which can hence claim to be universal, high-precision tools, are the CBF 
and CCM formalisms. Parquet (or planar) theory may also potentially fall 
into this category, but it has not yet been sufficiently widely tested to be 
able to judge properly. Naturally, QMC methods also yield excellent results 
which, when the methods can be implemented, can often be viewed as exact 
benchmarks, as other contributions to this volume make clear. Neverthe- 
less, it is still often convenient to view QMC techniques as providing a third 
paradigm in physics, sitting between experiment and microscopic (analytic 
or semi-analytic) theory. 

We note that  the CBF method, and the variational techniques which it 
subsumes and extends, have been widely applied to systems as diverse as 
finite nuclei [41,45,48]; nuclear matter [32,55-57]; neutron stars [58]; bulk 
liquid 4He [55,59,60]; unpolarised [55,61] and polarised [44] bulk liquid 3He; 
the electron gas [61]; various species of electron-spin-aligned bulk atomic 
deuterium [43]; the lattice Hubbard model of strongly interacting electrons 
[62]; electronic correlations in atoms [63]; Ising spins in a transverse magnetic 
field [64]; and U(1)3 lattice gauge field theory in the pure gauge sector [65]. 
Other contributors to this volume discuss these and other applications in 
much more detail. 

The C C M  has been at least as widely and at least as successfully (and 
accurately) applied in both physics and chemistry as the CBF method, as we 
shall outline below in Sect. 4. 

1.3 R e l a t i o n s h i p s  B e t w e e n  M e t h o d s  

Before turning our attention to the CCM we end the present overview of 
many-body techniques by remarking that  the fact that  there exists only a 
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smM1 number of fundamental ab initio methods is not necessarily something 
to be regretted. Indeed, it is widely believed by quantum many-body theo- 
rists that what is much more important nowadays than the development of 
further techniques is the exploration of the interconnections between existing 
ones. This is clearly a reflection on the power and universality of the avail- 
able methods. In this regard we note that there have already been several 
important confrontations and proposed marriages between existing methods, 

and we conclude by mentioning some of them. 

In the first place, one of the earliest confrontations was provided by the 
so-called "crisis in nuclear matter theory" which occupied a central place in 
quantum many-body theory in the 1970s. Two fundamental issues were in- 
volved. Thus, there was a disagreement between the lowest-order Brueckner 
theory calculations of TIPT and various variational cMculations, when both 
were performed with the same internucleon potential. Furthermore, neither 
method gave good saturation properties when the best available potentials 
were used. That crisis has now been essentially resolved (and see, e.g., Ref. 
[37]) to the mutual advantage of both methods. In particular, the later devel- 
opment of Brueckner theory that was necessary for the resolution has greatly 
added to our understanding of many-body theory and many-body systems. 
Another very beneficial outcome of this early confrontation was that the 
power of the variational and the CBF techniques was thereafter much more 

widely appreciated. 

Secondly, we have already noted the important formal role played by 
parquet theory [17] in demonstrating the exact equivalence between the op- 
timised hypernetted chain (HNC) approximation to the variational Jastrow 
theory and a particular (approximate) localised form of itself. This result 
provided a real insight into the relationships between perturbative expan- 
sions on the one hand and variational cluster expansions on the other. It also 
provided a bridge between the two methods, as well as a common language 
in which to interpret both their features and the results obtained from them. 

Thirdly, the relationship of the CCM to TIPT as providing at given levels 
of truncation (e.g., in the SUBn scheme discussed in detail in Sect. 3) very so- 

phisticated and intricate resummations of various physically important and 
infinite classes of Goldstone diagrams is by now well known to the practi- 
tioners, and will be fully explored in Sect. 3. In particular, the very natural 
grouping together within the CCM of vast classes of Goldstone diagrams has 
shown graphically how cautious one must be when using perturbation theory 

in order "not to split small quantities into large pieces" [66]. 

A fourth result concerns the relationship of the CIM to the CCM. In par- 
ticular, the CIM together with the two main modern complete formulations 
of the CCM which we describe more fully in Sect. 3, and which are known re- 
spectively as the normal (NCCM) and emended (ECCM) versions [67], have 
been shown [68,69] to form a natural closed hierarchy of three increasingly 
sophisticated parametrisations in which the underlying amplitudes have in- 
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creasing degrees of connectedness. In the same spirit, as we discuss in Sect. 
3, each of these three independent cluster methods has also been completely 
reformulated [67-69] via a variational principle, thereby providing further 

bridges between perturbative and variational techniques. 

Fifthly, and at the level of possible marriages between various of the 
methods, we have already mentioned the "correlated coupled cluster theory" 
[49], which was motivated by a desire to combine the best features of both 
the CCM and CBF approaches. It is unfortunate that, to the best of our 
knowledge, this proposed marriage has not yet really been put to the test of 

a real application. 

More recently, however, two other such extensions of the CCM have been 
discussed. Thus, sixthly, in a recent series of papers [70-74] the CCM (and the 
CIM) have been the subjects of intense investigation in order to incorporate 
exactly the translational invariance property, which is vital for the accurate 
treatment of such light nuclei as the alpha-particle. As a consequence, the 
emphasis has been to formulate the CCM and the underlying correlations 
directly in coordinate space, rather than in the more usual multiconfigura- 
tional Fock-space representation discussed at length in Sects. 2 and 3 below. 
In this way contact has been made both with more traditional generalised 
(many-body) nuclear shell-model calculations of the CIM type, with the result 
that the number of independent configurations can be dramatically reduced 
[70,71], and also with variational approaches [72,73]. This work now holds 
out the possibility of combining some of the best elements of the CIM, CCM, 
and variational approaches. We also note in passing that similar functional 
forms of the CCM parametrisation of many-body wave functions, rather than 
the more standard Fock-space or operatorial forms, have also been used re- 
cently in the context of lattice field theory. To date, specific applications of 
the CCM have been made to both discrete and continuous lattice gauge field 
theories. The former includes the Z(2) case [75], while the latter include both 
the Abelian U(1) case [75-80] and the non-Abelian SU(2) case [77,81]. Very 
recent applications of the CCM have also been made to a latticised 0(4) non- 
linear sigma model of chiral meson field theory [82], wherein the operatorial 
and functional forms of the CCM have been compared in considerable depth. 

Finally, and as a seventh example, recent work [83,84] has been connected 
with the incorporation of Jastrow-type correlations into the higher-order clus- 

ter terms that are otherwise neglected entirely in the standard (e.g., SUBn) 
CCM truncation schemes discussed in Sect. 3. Indeed, much current effort 
is being expended in the general direction of inventing new approximation 
schemes for existing methods. One promising way to do this is by attempting 

to fuse the best features of different methods. 

All of the above various partiM mergers hold considerable promise for 
the future of quantum many-body theory. The interested reader is referred 
to Ref. [84] for a more detailed, yet still pedagogical, confrontation between 
the different microscopic techniques discussed above. This paper discusses in 
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some depth the various ways that  two-body correlations in quantum many- 

body systems are described within different microscopic theories. A particular 

application of each method is made to the exactly integrable (by the Bethe 

ansatz [85] method) Lieb model [86,87] of many bosons interacting in one 

dimension via repulsive pairwise delta-function potentials. 

In the remainder of this article we now focus our attention on the CCM. 

However, before describing the method in Sect. 3, we first discuss the general 

question of the choice of a suitable reference state (or "generalised vacuum" 

state) for a given quantum many-body system, with respect to which the 

dynamic (multiparticle) correlations may be quantitatively described. 

2 T h e  C o n s t r u c t i o n  o f  M a n y - B o d y  R e f e r e n c e  S t a t e s  

For many purposes it is extremely convenient to distinguish some model space, 
A4, which is a subspace of the full many-body Hilbert or Fock space, G, in 

which the quantum many-body or quantum field-theoretical problem under 

discussion is defined. Of particular interest is the case where the subspace 

is spanned by a suitably chosen set of (D + 1) normalised reference states 
{[~5~); i = 0, 1, 2 , . . . ,  D}, with (~5il45i) = 1. We define two operators, P and 

Q, as follows, 
D 

P -  ; Q _-- - P , (9 )  

i=O 

where ll is the identity operator in ~. If the reference states are orthonor- 

malised, 

(~,l~j)  = 5ij , (10) 

the operators P and Q are simply projection operators into and out of the 

model space, A/t, 

p 2 = p  ; Q 2 = Q  ; P Q ~ - Q P = O  , (11) 

and we can decompose an arbitrary state ]~) E ~ as, 

I~P) = pike) + QI~p) . (12) 

Although the above projection simply represents an expansion of a wave 

function in some (suitably chosen and suitably truncated) complete orthonor- 

mal set, if, in some sense to be defined below, the states {[45i); i = 0, 1 , - . - ,  D} 

are "zeroth-order" or "starting" or "reference" vectors, then it can be very 

useful to make this explicit. Fhrthermore, and more generally, in order to 

describe many-body correlations quantitatively, we always need some appro- 

priate state with respect to which the correlations are defined. Henceforth, 

we shall call the states {1~5it; i = 0, 1 , - - . ,  D} the reference states or model 
states, and the (D + 1)-dimensional space A4 spanned by them the reference 
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space or model space. Later, we shall see that  the case D = 0 is appropri- 

ate to the cases of nondegenerate perturbation theory and to the so-called 

single-reference version of the CCM, while the case D > 0 is more appro- 

priate to the cases of degenerate perturbation theory and to the so-called 

multi-reference version of the CCM. 
For the moment, we restrict ourselves to the case D -- 0 of a single model 

state IO0). For many purposes, and as we shall see specifically in Sect. 3 

for the CCM, it is very useful or even vital for the model state I~0) to be 

a generalised vacuum state, with respect to which all of the states in G can 

be expressed in terms of many-body, creation correlation operators acting on 

I~0}. Implicit in the above is the enormous simplification that  arises if the 

algebra of all operators in g and its adjoint space 6" is spanned by the two 

Abelian subalgebras of (many-body) multiconfigurational creation operators 

{C t ) and their Hermitian-adjoint counterparts, namely the multiconfigura- 
tional destruction operators {CI}. Both sets of operators are defined with 

respect to the given model state [4~0}. We note that  implicit in the compact 
notation is the fact that  the index I is in general a set-index, comprising 

a set of single-particle labels (in some suitable single-particle basis) which 

completely characterises a given many-body configuration in this basis. More 

specifically, the single-particle labels in the set-index I usually comprise only 

those needed to describe the states which differ from those occupied in the 

model state 14~0). For this reason it is convenient to introduce the notation, 

Cot -= = Co  . ( l a )  

In summary, we require from our sets {1~5o}; C~ } the following properties, 

[C~, C t] = 0 = [C1, Cj] , (14) 

C,l o> = 0 = ( olC  ; v 1  # 0 . (15) 

We further require that  the two subalgebras and the state Iqso) are cyclic in 

the following sense, 

l e )  = ; v i e )  e , 

I 

(~1 = Z~I(4~o lCl  ; Y(~f e g* , (16b) 
I 

in terms of some sets of c-number expansion coefficients {~I} and {~I}. The 

configuration-label space 2" - {I} must thus be complete (for a given gener- 

alised vacuum or model state I~0)) with respect to the many-body configura- 

tions. In general, the operators {C~ } will be products (or sums of products) of 

suitable single-particle operators. Although it is not vital, it is also convenient 

to impose the orthonormality condition, 

(¢0]CiC~jl~0> = 5t j  , (17) 
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on the operators, where ~IJ is a Kronecker delta symbol implying equality 

between the sets of single-particle (s.p.) labels I and J ,  i.e., equality under 

at  least one permutation. Henceforth we assume that  (17) holds, and hence 

we have the completeness relation in G, 

, t 
~--~C~l~o><~0rC , = ~ = I~o><~01 + ~ C , l ¢ o > < ~ o l C i  , (18) 

I I 

where, here and henceforth, a prime on a sum over configuration labels I 

excludes the term I = O. 
We note that  it is not, a priori, obvious that  sets {1¢0); C~} exist with the 

above properties (14)-(18). We show below, by specific examples to various 

broad classes of important  many-body systems, that  not only can such sets 

generally be found rather easily, but that  they are often non-unique in the 

sense that  several sets can be found for use with the same space G. 

2.1 F i e l d - T h e o r e t i c  ( N u m b e r - N o n c o n s e r v i n g )  B o s e  S y s t e m  

An obvious choice for 14~0> in this case is the bare vacuum state, 10>; and the 

multiconfigurational creation operators, C~, then become suitably normalised 

products of single-boson creation operators, b~, in some particular single- 

particle basis, 
la) = btal0) . (19) 

The single-boson creation and destruction operators, b~ and b~, respectively, 

obey the usual bosonic commutation relations, 

fb' . [bm, = . ( 20 )  [ b ~ , b ~ ] = 0 = t  ~,v21 , 

In the symmetric boson Fock space B we have the fundamental complete- 

ness relation, 

o~ 1 
= 10><01 + ~ ~, ~ b' . . . ,  b'~,.lO><OIb~,..., b., , (21a) 

n = l  {al} 

as a specific example of the relation (18). However, in (21a) any s.p. index 

in the products of operators may be repeated any number of times. Hence, 

it is often more convenient to re-label the s.p. indices as an ordered set {&i}, 
e.g., &l < ~2 < &3"" ", such that  all members of this set are distinct. The 

completeness relation (21a) may then be conveniently rewritten in the equiv- 

alent form, 

= 10><01 + E 

n=l {aO {rod 

x(b~i)mi...(b~k)mklO>(Ol(bf~k)mk...(b&l) TM , (21b) 
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k where ~ i = l  mi = n. Thus, in this example, the set-index I becomes the set 

of occupation numbers, 

I I z " m I = 0 , 1 , 2 , . . .  (22) 
, 

and the generic multiconfigurational creation operators C~ become 

where the superscript I in the occupation numbers, rn ( reminds us of the Oti ' 

particular configuration to which they refer. In the coordinate-space basis, 

Jr) = bi(r)[0), for example, we have 

I - - * ( r l , r 2 , . . - , r ~ )  ; n = 0 , 1 , 2 , . - .  , (24) 

and 

C ] ~ (n!)-} 121 bt(r~) , (25) 

i=1  

in terms of the creation field operator, b t (r). 
We note that  for the special case of s ingle-mode bosonic f ield theory, in 

which only one mode exists, with a corresponding creation operator b t, we 

have 
I ) n  ; n = 0 , 1 , 2 , . . .  , (26) 

and 
, (n ! ) -½(bt )"  

Such single-mode bosonic field theories are useful nontrivial examples of real 
quantum field theories in (d + 1) dimensions, where d is the number of spatial 
dimensions, for the limiting case d = 0. Clearly, such (0 + 1)-dimensional 
theories also map precisely onto one-body quantum mechanics through the 
usual mapping of the single-mode creation and destruction operators, b t and 
b, onto the usual position and momentum operators, ~ and ~, respectively, 

:~=2-½(b t + b )  ; t5=2-½i(b t - b )  . (28) 

2.2 Number-Conserving Bose System 

We now consider a system of N bosons in a box of volume f2, appropriate to 
a system such as liquid 4He. We shall usually be interested in such systems 
in the t h e r m o d y n a m i c  limit, where N -~ ec and 12 --* o0, such that  the 
density, p - N/Y2,  remains constant. In such cases an obvious candidate for 
the model state [~0) in the fixed-N symmetric boson Hilbert space BN is the 
B o s e  condensa te  IB) ,  in which all N particles condense into the lowest-energy 

s.p. state, b~010), 
I~o) , IB ) = (N!)-½(bto)Nlo}  . (29) 
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If we now specifically single out the condensate index 0 from the complete 
set of s.p. labels {c~} in Sect. 2.1, as follows, 

{O k ; condensate state (30) 
c~ = # 0 ; non-condensate states , 

we find that  the set-index I becomes 

I--* tim -I m/- . . . )  " m t- = 0 , 1 , 2 , . . .  Vi (31) 
k l  ' k2  ' ' k i  ~ ' 

in the notation of Sect. 2.1, and the multiconfigurational creation operators 
CI t can be written as follows, 

C~----* [ ( N N ,  n) ' ]  ½ 0 [ ( m / 0  -½ (b~,) m~' (b0)~] , (32) 

where ~ m I- k, = n, and n = 0, 1, 2, .. . .  Alternatively, in the coordinate-space 

basis, the set-index I is as given by (24), and the generic multiconfigurational 

creation operators C~ become 

C~ , [(N~,n)']½ fib'(ri)(bo)n (33) 

i = 1  

2.3 M a n y - F e r m i o n  S y s t e m  

We now consider a comparable system of N fermions, such as liquid 3He, 
finite nuclei, nuclear matter, the electron gas, etc. In this case an obvious 
(but not unique) candidate for the model state I~0) in the fixed-N anti- 
symmetric Hilbert space f in  is the filled Fermi sea, IF). This is an (N × N) 
Slater determinant of s.p. states formed from some complete s.p. basis {la~)}, 
usually from the N states of lowest energy. The single-fermion creation and 
destruction operators, a~ and am, respectively, obey the usual anticommuta- 

tion relations, 

{am, a~) = 0 = {ate, a~} ; {am, a~) = 6~;~II , (34) 

and the s.p. states are obtained from the vacuum state I0) as, 

Is> _= a~10 ) . (35) 

In terms of the s.p. creation operators we may write the antisymmetric 

state IF) in the second-quantised form, 

N 

]+0) , ]F) = H a ~ ] 0 )  , (36) 

/ = 1  

where we have adopted the standard notation, 
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vi ; i = 1, 2 , - . - ,  N "  if I~,> e IF) (37) 
O/i ---- 

pi ;  i 1,2,.  • , i f l a , )  e lF >  , 

which is the fermionic analogue of the bosonic relation (30). Thus, we sub- 

divide the s.p. states ]a~) into two classes with repect to the model state 

IF), viz., those states {]vi); i = 1, 2 , . . . ,  N} from which IF) is constructed, 

and the remaining states (IP~); i = 1, 2 , . . .} .  For reasons in connection with 

creating new states from IF>, the states Iv~) which are "occupied" in IF> are 

called hole states, and the states IP~) which are "unoccupied" in IF) are called 

particle states. By analogy with the notation introduced in Sect. 2.1, the sets 

of particle-state indices (p~} and hole-state indices (v~} may be written as 

ordered sets, {fi,; fil < fi2 < '" "} and {P,; Pl < P2 < "'" < PN} respectively. 
In ~'Ac we may now write the following equivalent completeness relations, 

1 
11-~ g~! E a~,-..a~NIO><Ola~,,, ...ao,, 

G~I ) '")0:  N 

= E a~,...a~NlO)(Olaa,...aa , 
CXl <&a<, . .<~lv  

N 

- -  E E E 
~ ' l=0  ,'01 <P2 < ' "  < j m  ~1 <~2  < ' "  <D,rt 

×a~,  . . . a ~ l a ~ , , ' " a p l  

N 
1 

m = O  PI F "  )Pro v t  )" ' ,Vm 

atp~ . .  .a?p,,a~,, . .  "av , , , IF) (FI  

×a~ i a . ,  . . . a v l  p , ,  . . . a p l  • (dS) 
Hence, we see that  with respect to the model state IF} the multiconfigu- 

rational creation operators C~ are products of particle-hole pair creation 

operators, a t  a~,~. More specifically the set-index I becomes 

n I I .  I , n ( - - . )  • n I n/- = 0 , 1  Y i ,  j (39) I > ( ~ 1 , " "  , n p N , n p l  p2, , p~, v~ , , 

and the multiconfigurational creation operators C~ become 

n/_. N n t  - 

> H ( 4 ) " H  (oo,) ; 
i j = l  

N 

uj n , n = O ,  1, , N  . 

i j = l  

In the thermodynamic limit ( N --* co, f2 --~ co, p =- N / f 2  fixed), if the sys- 

tem remains homogeneous (and this is an assumption), the resulting transla- 

tional invariance implies that  the s.p. states are (best chosen as) plane waves, 
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lot> ' " t k > ~ - I k ,  i }  , (41) 

where i = 1,.-- ,  u labels the internal quantum numbers (e.g., spin, isospin) 
and u is the associated degeneracy. In this case, 

Ip) , Ik, i> ; lkl > kr  

In) ~lk, i} ; I k l < k F  , (42) 

in terms of the Fermi wavenumber, kF. Using the particle number operator, 

]V = ~ a ~ k a k ,  , (43) 

k,i 

and (42), we easily prove that 

N .k~ (44) 
67r 2 

It is worth noting that there also exist alternative choices to IF/ for  the 
model state [~0/for fermion systems. A common alternative is just the stan- 
dard BCS state, IS/, introduced by Bardeen, Cooper, and Schrieffer [88] in 
the context of superconductivity. The BCS state IS) is simply another Slater 
determinant analagous to IF), i.e., formed from quasiparticle states compa- 
rable to those in (35), but which are created by quasiparticle creation oper- 
ators which are linear combinations of the previous particle and hole states. 
The corresponding Bogoliubov transformation is a canonical one, so that 
the quasiparticle creation and destruction operators obey the same fermion 

anticommutation relations (34). 

2.4 Single Spin in an I r reducible  Mul t ip le t ,  J 

It is important to realise that we can also handle, in the same broad general 
framework, systems of particles other than just bosons or fermions. Quantum- 
mechanical spins provide a good example. The simplest system of this type is 
just a single spin in an irreducible multiplet, d. In this case the Hilbert space 
?-/j is now finite-dimensional and is spanned by the set of (2J + 1) states, 
{I J, M j); M j  : - J ,  - J  + 1 , . . - ,  J) .  The fundamental underlying algebra, 
SU(2), is defined by the usual commutation relations between the operators, 
J± =-- J~: + iJ y, and j z ,  

[J~, J±) = ±J±  ; [J+, g-] -= 2J:  (45) 

We note that models of this category arise in various guises. One example 
is the well-known model many-body Hamiltonian of Lipkin, Meshkov, and 
Glick [89] (the LMG model), which was originally invented to simulate the 
collective monopole vibrations in spherical atomic nuclei. The original model 
comprises N identical fermions distributed between two energy levels, each of 
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which is N-fold degenerate, and interacting via a simple pairing interaction. 
The interest in the LMG model and its variants, centres on the fact that  

they exhibit a phase or shape transition at some critical value of the coupling 
strength. In nuclear physics, the transition from spherical to deformed shape 
which occurs in the regime of the rare-earth nuclei is believed to be due to a 
collective quadrupole excitation of this type, and the LMG model was first 
introduced as its simpler monopole analogue. 

A second reason for studying such anharmonic spin models is that  they 
provide a finite-dimensional Hilbert space analogue of the corresponding an- 
harmonic oscillator models which have infinite-dimensional Hilbert spaces, 
and whose mathematical properties can thereby be obscured. Thus, it is easy 

to verify that  if we define a new set of operators, 

J 0 - J Z ÷ J  ; J+  = ( 2 J ) - ½ J +  , (46) 

the commutation relations for large values of J between the operators J+ ,  J _ ,  
and J0 are the same as those between bosonic operators b t, b, and btb, re- 

spectively, except for terms of order O((b~b)/J). Hence, for example, in the 
limit that  J --* oc, the anharmonic spin Hamiltonian, H j ,  defined as 

1 j z  ~ , g y  = ~ + J + + l~)J (J+ + J - )4  (47) 

should, making use of (28), smoothly approach the anharmonic oscillator 
Hamiltonian, 

H = btb + ~ + (b t + b) 4 

1 ^2 1 ~2 = ~p + ~z + , ~ 4  , (48) 

in the well-defined sense that  any energy eigenvalue E (J) with fixed value of n 
should converge to the corresponding anharmonic oscillator energy eigenvalue 
En. Aalto et al. [90] have performed an ECCM analysis of both Hamiltonians 

(47) and (48). 
We now consider the various possible choices of model state 145o) from the 

(2J + 1) independent states spanning T/j. 

Lowes t  S t a t e ,  14~o) ---. IJ~ - J } :  From the basic commutation relations 

(45) one may easily prove that  

J + l J , - J + m ) = [ ( m + l ) ( 2 J - m ) ] ½ 1 J - J + m + l )  ; m = 0 , 1 , . . . , 2 J  • 
(49) 

Equation (49) gives immediately that,  in relation to the model state I~0} -~ 

] J , - J } ,  the generic operators C~ take the following form, 

'L  (2y)!m! j (j+),n , (50) 
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where the label I takes the values, 

I-----~m ; . (51) 

H i g h e s t  S t a t e ,  I~o) ---, I J ,  J ) :  In this case the role of the basic creation 

operator  is now taken by J -  ~_ (d+) ~, and otherwise everything now goes 

exactly as in the previous case, but with J +  --* d - .  

I n t e r m e d i a t e  S t a t e ,  14~o) ---* I J,  M ) ,  w i t h  M ~ + J :  In this case, al- 

though we can clearly construct all remaining states in ~ j  by letting either 

J +  or J -  act on Iq~0) a sufficient number of times, we cannot now construct 

two Abelian subalgebras from their necessarily simultaneous use to span 7~j, 

since [Y +, Y-] # 0. Nevertheless, it is important  to realise that  this does 

not imply tha t  such intermediate states cannot be chosen as model states. 

Rather,  we need to redefine our creation operators,  C~, accordingly. As a 

specific example of how this may be done more generally, let us consider the 

case J = 1, and a t t empt  to use ]~50 / = I1,0) as a model state. If  we now use 

the column vector notation for the angular momentum eigenstates, 

[ 1 , 1 )  - -  ; [ 1 ,0>  ~ ; ] 1 , - 1 )  ~ , 

we may  define two new operators as follows, 

U + -  | 0 0 0 |  ; D + -  0 , 

\ o o o /  1 
(53) 

whose mode of action on the model state is 

U+11 ,0)=11 ,1 )  ; D + [ 1 , 0 ) = I 1 , - 1 )  . (54) 

However, whereas their mode of action on I1,0) is thus identical to those of 

J +  and J - ,  respectively, the new operators now do commute,  [U +, D +] = 0. 

Thus,  we may  use 14~0) = ]1, 0) as a model state in terms of the set of mutual ly  

commuting creation operators, 

( c l }  , ÷} (55) 

2.5 Quantum Spin Lattices, e.g., Antiferromagnets 

In the case of several similar spins, we may simply take the tensor products  

of the operators  introduced in Sect. 2.4 for our multiconfigurational creation 

operators,  C~. Some examples are given below. 
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S p i n - H a l f  Pa r t i c l e s  on  a B i p a r t i t e  La t t i ce :  A bipartite lattice is one on 
which there are two completely equivalent sublattices A and B such that  all 
nearest neighbours of sites on sublattice A lie on sublattice B, and vice versa 
(e.g., a square lattice in two spatial dimensions, and a simple cubic lattice 
in three dimensions). On such lattices the classical ground state of many 
Hamiltonians is often the ideal N~el antiferromagnetic state in which all spins 
on sublattice A align along one direction (say, the negative z-direction) and 
all spins on sublattice B align along the opposite (i.e., positive z) direction. 
A simple example is provided by the Heisenberg Hamiltonian, 

H = J E s i - s j  , (56) 
<i,j) 

where the sum on (i, j) denotes a sum over all nearest-neighbour pairs, and 
si is the spin on site i, in the case where the exchange constant, J > 0. In 
the quantum-mechanical case the interest in such models is often concerned 
with whether the quantum fluctuations (or quantum correlations) will or 
will not completely destroy the perfect N~el long-range order of the classical 
antiferromagnet. 

In such cases, an appropriate choice of model state I~0) for spin-half 

particles is the N~el state IN), which is simply the tensor product, 

(N> T>j ; (57) 
lEA j E B  

1 1 of all "down" states, [ l) - 13,-~) ,  on sites i of sublattice A with all "up" 
states, [ T) --- [1, ½), on sites j of sublattice B. The configuration label (or 
set-index) I may now be taken as the set of sites, 

I , ( i l , ' " , i m ; j l , ' " , j n )  ; re, n = 0 , 1 , . . - ,  (ss) 

on which the spins are reversed with respect to the N~el state IN). The mu- 
tually commuting set of multiconfigurational creation operators with respect 

to IN) may thus be taken as, 

. . .s;,  (59) 

We note again that  the choice IN) for the model state [4~0) is not unique. 
In cases where the ground state of the quantum Hamiltonian is expected 
to be, for example, dimerised or trimerised, one may construct model states 
Iqs0) built from products of suitable (noninteracting) dimer or trimer states. 
The interested reader is referred to the literature [91,92] for further details of 
such states, which are particularly pertinent for a valence-bond description 

of quantum spin lattices. 



24 Raymond F. Bishop 

S p i n - O n e  Pa r t i c l e s  on a B i p a r t i t e  La t t i ce :  In the case of spin-one par- 
ticles, the N~el state (57) is still a possible choice of model state I¢0), where 

I ~) -~ 11, -1) .  However, the multiconfigurational creation operators (59) now 
include the possibility that  a single-spin raising operator on a site i E A or 
a single-spin lowering operator on a site j E B may appear either once or 
twice on the same site, in order to include all three possible spin projections 
on each site. Similarly, the configuration label (or set-index) I given by (58) 
must be extended to allow any given site index to appear up to two times in 

the set. 
By extension of the discussion in Sect. 2.4 we may also consider an al- 

ternative planar model state 14~0) -~ IP), where ]P) is the state in which 
the spin on every site is in the state 10) = I1, 0) with zero projection along 
the quantisation z-axis. In this case a suitable set of mutually commuting 
multiconfigurational creation operators C~ is given by the tensor product of 
operators U + and D + given by (53) over a given subset of sites {k}. The 
set-index label I now comprises the subset {k}, together with a two-valued 
flag at  each member of the subset which indicates whether the operator U + 
or D + acts at each site. Once again, many other more complicated model 

states, [4~0}, can also be devised. 

3 B a s i c  S t r u c t u r e  o f  t h e  C C M  

After the discussion in Sect. 2 we are now in a position to explain the basic 
ingredients and the formal structure of the CCM at a very general level, 

without reference to specific many-body systems. 

3.1 E x p o n e n t i a l  S t r u c t u r e  of  M a n y - B o d y  W a v e  F u n c t i o n s  

Exponential structures arise frequently in physics, and often for similar under- 
lying fundamental reasons. For example, in statistical mechanics, the Ursell- 
Mayer cluster expansion for the thermodynamic partition function (from 
which all thermodynamic properties of a bulk system derive) has an under- 
lying e~Tonential form. This arises naturally from the basic compounding, 
with the correct statistical multiplicities, of all contributions to the partition 

function from the independent "atomic clusters" of a given size. 
We shall now show tha t  a comparable exponential form also underpins the 

natural parametrisation (i.e., the "correct" form) for a quantum-mechanical 
many-body wave function. Historically, this was probably first realised by 
Goldstone [93] and Hubbard [94] in the context of time-independent pertur- 
bation theory (TIPT), where it also takes the related form of the Goldstone 
linked cluster theorem. Similar ideas apply equally well to the well-known 
representation of eigenstates in quantum field theory provided by the Gell- 
Mann and Low theorem [95], although this seems not to have been properly 

or fully realised at that  time. 
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For pedagogical purposes let us consider a "closed-shell" N-fermion sys- 

tem, i.e., one which is reasonably approximated in zeroth order by a s.p. 

shell-model Slater determinant Iqs0) = IF/ of the sort discussed in Sect. 2.3, 

and which can be expressed in the second-quantised form (36). The choice 
of s.p. states from which to construct this filled Fermi sea is, at this stage, 

completely arbitrary. For example, one may choose harmonic oscillator states, 

self-consistent Hartree-Fock states, or any other basis. In this context an im- 

portant  theorem of Thouless [96] asserts that  the most general determinantal  

wave function 1~5~)) not orthogonal to a given Slater determinant 1~50) has the 

form 
l ~ )  = e s '  L~0) , (60) 

for some suitable choice of the one-body operator $1 which acts on IqS0) to 

produce a one-particle/one-hole ( l p - l h )  excitation. Thus, in the notation of 

Sect. 2.3, we may write 

S 1 : ~ Z(p lS l lV)a ipa~  . (61) 
p y 

The effect of allowing single particles to be independently elevated above 

the Fermi sea (which, as we shall see below, is what is encapsulated in the 

exponential operation in the relation (60)) is, thus, equivalent to changing 

the s.p. orbitals that  comprise the Slater determinant. 
Consider now the problem of obtaining the exact ground-state wave func- 

tion, I~o), and energy, E0, of the interacting system of fermions described by 

the many-body Hamiltonian, H, 

HI'P0) = E01~0) • (62) 

The dynamical correlations induced by the interactions contained in H will 

modify the model state ]qs0). We assume from the outset that  I~0) has a 

nonzero overlap with 1~5o), and we shall henceforth work in the intermediate 

normalisation scheme wherein 

(~ol~o) = (~01V0) =- 1 . (63) 

Now, the simplest correlation, other than a single l p - l h  excitation discussed 

above in the context of the Thouless theorem, is a single two-particle/two- 

hole (2p-2h) excitation of the form $2[~5o), where 

1 
$2 = (2!) 2 ~ ~ (p]_p21S21• l •2)Aat ,at=av=av,  , (64) 

p l , P 2  / / I ,  P'2 

and the suffix A on the matrix element (plP21S21VlV2)A denotes an antisym- 

metrised element (in the notation where IvlU2)A - lulv2) - lu2~l)). 
Now, it may also happen that  two independent pairs of particles also ex- 

cite out of 1~50) due to dynamic correlations. Clearly, this process is described 

by applying the operator $2 twice, but with the proviso that  we must include 
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a statistical weighting factor (or multiplicity) of ½ to avoid double count- 

ing. The resulting contribution to the correlated wave function is 1 2 ~S~l~o). 
This process of independent excitation of pairs out of the Fermi sea may be 

continued to obtain a contribution (1/m!)S~[q5o) from the excitation of m 

independent 2p-2h pairs. Hence, the total amplitude for the excitation of an 

arbitrary number (including zero) of independent 2p-2h excitations is 

9¢9 

Z = e =l o) , (65)  

m=O 

and we note, very importantly, that  the exponential structure arises very 

simply and fundamentally from a simple counting of independent events. This 

exponential structure lies at the very heart of the CCM. 

Next we consider processes involving the simultaneous excitation of three 

fermions from the Fermi sea. These may be described by a contribution $3 [¢0) 

to the exact wave function. Similarly to the case of pairs, there will be a con- 

tr ibution (1/n!)S'~l¢o) from the simultaneous excitation of n independent 

triplets. If we then take into account the possibility of the independent si- 

multaneous excitation of m pairs and n triplets from the Fermi sea, the cor- 

responding contribution to t~Po) is (1/m!n!)S~S~l¢o) .  It  is important  that  

we do not need to worry about the order of the operators $2 and $3 in this 

product  because they describe independent processes and hence commute, as 

one can also verify from their specific second-quantised forms. Summing over 

all possible values of m and n then leads to the contribution exp(S2 + $3)[~50) 

to I~Po). Proceeding in this way with the independent excitation of clusters 

of up to N particles we arrive at the CCM representation, 

N 

Ik~o) = eSlq~o) ; S = Z Sra , (66a) 
m = l  

1 

PI'"P,,* Pl ""~m 

(66b) 

3.2 T h e  C o n f i g u r a t i o n - I n t e r a c t i o n  M e t h o d  ( C I M )  

For the same N-fermion case considered above, a more naive and (seemingly) 

simpler parametrisation of [~v0) is that  used in the CIM, 

oc  

lifo> = (1 + F)l~o> ; F = Z Fm , (67) 
r n = l  

1 
F r o -  (m!) 2 

Pl ""Pro VI ""l'%rL 

(68) 
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Again, F ,  excites n particles and n holes from the filled Fermi sea 14~0} =- IF}, 

but in this case F ,  generally contains unlinked (or disconnected) pieces which 

arise from the products of noninteracting subclusters. A comparison of the 

first few terms in the expansions (65) and (67) yields, for example, 

F I = S 1  ; F 2 - - - $ 2 + ~ $ 2  ; F 3 - - S 3 + S 2 S I + ~ S a  ; 

1 2 1 2 . ,  • 15,4 , 
F4 = $4 + $3S1 + -~ $2 + -~ S 2 S  1 4. zzi e t c . ,  (69) 

with corresponding inverses, 

SI = FI " S2 = F2 - ~ F~ ; Sa = F3 - F2FI + I-F~ • 
' 3 ' 

34  = F4  - F 3 F 1  - ! F 2  4- F2F~ - 1 F 4  " e t c .  ( 7 0 )  
2 

More generally, by putt ing Fn ~ h~Fn and Sn -* A~Sn, and by equating 

powers of A in the two expansions (65) and (67), we find 

n l 

1 ST,...SF, . E i m i = n  (71) F- = E E - . . E  ~ 1 , . . . ~ , !  , , 
1~1 rnl  rnl i=1  

where the restriction on the sums over ml ,  " - •, mz is such tha t  one sums over 
l 

all sets of non-negative integers {mi >_ 0} such tha t  ~-~i=1 im~ = n. Since 

the number  of ways of arranging k identical objects into l < k classes is 

k [ / ( m l ! . . ,  mz!), where mi  objects are in class i, and ~ i  mi = k, we easily 

derive the alternative relation, 

F o =  v . , E . . E s o , - - . < ;  E n`=n,  (72) 
k = l  n l  nk i=1  

where the restriction on the sums over nl ,  • • •, nk is such tha t  one sums over all 
k 

sets of positive integers {n, > 0} such that  ~ i = t  i = n. The corresponding 

inverse relations are also readily found by using S = ln(1 + F ) .  The analogues 

to (71) and (72) are thus, 

E _ , & . . . .  y~.(-1)k-1 md  :: .m~! 
1=1 m l  ml  

and 

l l 

E i m i = n ,  E m i = k  , (73) 
i=1  /=1  

k 
k = l  n l  nk 

k 

; ~ , ~ ,  = ,~ . ( 7 4 )  

i =1  
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We note tha t  both the CCM and CIM parametrisations are exact and 

equivalent so long as no approximations (i.e., no truncations over the com- 

plete set of multiparticle configurations) are made. However, once we approx- 

imate the equivalence is lost. We note that  whereas, by construction, all of 

the matr ix elements of the operators Sn are linked, the matrix elements of 

the operators Fn mix linked with unlinked terms (e.g., F4 mixes the linked 
1 2 4p-4h term $4 with unlinked terms like 5S2 which corresponds to two un- 

linked 2p-2h pairs). Although the unlinked terms ultimately cancel out in 

any exact theory, this is not true in the CIM when truncations are made. 

By contrast, the cancellation of unlinked terms is automatic in the CCM, 

whatever approximations are made to the cluster correlation operator, S. 

In practice the CIM just amounts to truncating the number of possible 

many-body configurations excited out of Iq~0> to some number AY, and then 

diagonalising the Hamiltonian as an A / ×  AY matrix in this t runcated mul- 

ticonfigurational basis. The hope is then that  as AY is increased one obtains 

convergence. As we have explained in Sect. 1.2 the interlacing theorem [51] 

guarantees this (uniform) convergence in principle. However, for large num- 

bers of particles (N ~ oc) the matrix becomes ill-conditioned, and the CIM 

becomes fatally flawed due to the inexact cancellation of all unlinked terms. 

What  happens is that  for such extensive variables as the energy, Eo, the 

linked terms lead properly to contributions which scale (properly) linearly 

in the particle number, N. By contrast terms containing m unlinked pieces 
scale as N TM, and the (in principle) exact cancellation of contributions from 

terms with m > 2 rapidly becomes numerically unstable with increasing N, 

unless the exact cancellation is incorporated from the outset, as in the CCM. 
These ideas are expressed more quantitatively later, but are perhaps first best 

related to the so-cMled "size-extensivity problem" of the CIM [52], already 

alluded to in Sect. 1.2. 

3.3 S i z e - E x t e n s i v i t y  

Consider a system of N particles, whose ground-state wave function lCz0) is 

parametrised by operators {Fn} in the CIM and {S~) in the CCM. Suppose 

we now separate the system spatially into two subsystems A and B, with 

NA particles in A and NB particles in B. We assume that  as the spatial 

separation increases, rAB ---+ Cx), the two subsystems cease to interact with 

each other, so that  the Hamiltonian becomes, 

H ---* H A + H s , w i t h  [H A, H B] = 0 , ( 7 5 )  
"F A I:~ - - ~  O 0  

Hence, in this limit, the energy becomes additively separable, 

E0 + E0 , (76) 
7"A B ---~ O0 

while the wave function becomes multiplicatively separable, 
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le0> ~oo le0~> ® le£> (77) 

A system is said to be size-extensive when it obeys the above separability 
properties (76) and (77). 

We can now see immediately that  the exponential parametrisation of the 
wave function given by (65) in the CCM guarantees the separability rela- 
tion (77), no matter how the cluster correlation operator S is truncated. For 
example, a common truncation scheme in both the CCM and CIM is the 
so-called SUBn approximation scheme, wherein the m-body partitions of the 
operator S in (65) or of the operator F in (67) are truncated so that  one 
retains only the components with m J n, and sets the higher partitions with 
m > n to zero. Thus, in the CCM SUBn scheme we have, 

I~0> ~ exp(S1 + . . .  + S~)l~0 ) 

, exp(S~ A) + S~ ") + . . .  + S(~ ~) + S~('))l~o> 
~r A B ---) ¢:~ 

--- exp(S~ ~) + - - .  + s(£))1¢o ~> ® exp(S~ ") +""  + S(~'))l~'o) . (78) 

By contrast, in the CIM SUBn scheme, we have 

}~/'o) ~ (1 ÷ F1 + . - .  ÷ F.)j~/'o) 

--~ (1 + F~") + . . .  + F~'))l¢o ~> ® (1 + F~ ~ + . . .  + F~'))l¢o ~> . (79) 
• r A B -~ .oo  

In this case the separability of the wave function is not preserved since the 
separated parametrisation in the second line of (79) would require excitations 
of up to 2n particle/hole pairs which are not contained in a SUBn scheme. 

3.4 G e n e r a l  C u m u l a n t  (or C o n n e c t e d  M o m e n t )  E x p a n s i o n s  

The exponential parametrisation (65) of the CCM is intimately connected 
with similar exponential structures underpinning general cumulant expan- 

sions. Thus, in probability theory one considers the moment generating 

function, ¢(A), defined as 

oc )~n 
¢(~) -- <exp(lx)) : ~ -~.#n , 

n:O 

# n ~ < x ~ > ,  n = l , 2 , . . .  ; # 0 ~ 1  . (80) 

The function ¢(A) thereby generates all of the positive integral moments, 

#n =- (xn), of an arbitrary random variable, x, according to some probability 

distribution implied by the angular brackets. This average, (-..), can either 
be a "classical", e.g., thermal, average or a quantal expectation value, e.g., 
x --* H, and (.. .) --* (~01"" [¢0) gives the energy moments (qb0[Hn[4~0) in 
the state t~50>. In practice, the state I~0> is an arbitrary trial state, which 



30 Raymond F. Bishop 

is required only to have a nonzero overlap with the exact ground state I~P0), 

and which (thus usually) shares its principle symmetries. 

In principle, the moments contain all of the information about  the proba- 

bility distribution. For example, the energy moments, #n = (o0lg~l~0), n >_ 
1, contain all of the dynamical information about the system, and one might 

expect  to be able to construct all other quantities pertaining to the system 

from them. However, there are two important  points to note about  the mo- 

ments, #n ~ (x~), namely: 

- they contain essentially redundant information, and 
- the information is encapsulated in a very inefficient and obscure way. 

These problems lead in practice to the fact that  many naive inversion (or 

inversion-type) methods based on moments are badly ill-conditioned. This 

manifests itself in the problem that  as one at tempts to gain more information 

by using more moments, numerical rounding errors rapidly grow and frustrate 

these attempts,  no matter  what level of numerical precision is adopted. 

A standard way to improve this situation is to use, instead of the mo- 

ments themselves, the so-called cumulants (or, synonymously, the connected 
moments or semi-invariants) defined by [97], 

oo /X n 

ln(exp(Ax)) ~ E ~.t vr~ ' (81) 
n = l  

where vn - (Xn)c are the connected moments or cumulants. Such connected 

moments have many simple properties. Especially important  are: 

- tha t  they scale linearly with the size of the system (i.e., un e( N, Vn, as 

N ~ oc) or, equivalently, 
- tha t  the combined cumulants for two independent subsystems are the cor- 

responding sums of the two separate cumulants. 
This latter relation is trivial to prove. Thus, for two random variables x and 

y we have, in an obvious notation, 

ec /X n 

ln(exp[A(x + Y)I) ~- E --v(~+v) (82) 
n! 

n = l  

However, if x and y are independent we have 

(exp[A(x + y)]) = (exp(Ax))(exp(Ay)> , (83) 

and hence, 
v(~+v) : v(~) + v (v), Vn . (84) 

Similarly, for k independent variables (x~; i = 1 , . . . ,  k}, we have 

k 

V(nXl+'"+xk)---- E / j ( n x i ) '  V n 

i = 1  

and all cross-terms vanish. 
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By direct comparison of the coefficients of equal powers of A in both series 
(80) and (81), one readily checks that  the lowest n cumulants determine all 
moments up to order n, and vice versa. The explicit relationships between 
the first few are as follows, 

# 1 = u l  ; #2 = v2 + u~ ; #3 = v3 + 3u2u: + v~ ; 

~t4 = //4 -[- 4 / /3 / /1  -F 31222 -I- 6u2v 2 + u 4 ; etc. , (86) 

with corresponding inverses, 

u : = # :  ; v 2 = t t 2 - # ~  ; u 3 = t t 3 - 3 t ~ 2 t q + 2 / ~  3 ; 

u 4 = # 4 - 4 # 3 # : - 3 #  2 + 1 2 # 2 # ~ - 6 #  4 ; etc. , (87a) 

or, equivalently, 

(X)c  = (X) ; (X2)c  = (X 2) --  (X) 2 ; (X3)c  : (:r 3) - -  3(x2)(X) + 2(X) 3 ; 

(x4)c = (x4> - 4(xa)(x> - 3(x2> 2 + 12(x2)(x) 2 - 6(x> 4 ; etc. (87b) 

Clearly, by comparison of (67) and (65) with (80) and (81), respectively, 
we see that  there is a complete analogy with the CIM and CCM representa- 
tions, 

# n '  , n ! F n  ; u n '  , n [ S n  . (88) 

By comparison with the results derived in Sect. 3.2, we may easily prove the 

explicit general relationships, 

n 1 n! k 

E E E E #n = ~.. .. n : ! . . . n k ! U n l  "u,~ k , ni = n 
k:l " nl nk i=l 

n ' [ 1 (vi~ m'] 

= n ' E E ' " E I - I  ~ \~.] J 
/=1  rn: rnl i=1  

and the corresponding inverses, 

~-~ ( - - 1 ) k - 1 E . . .  E n! 
v,~ = k nl! " ' -nk! #nl 

k = l  n l  nk  

/=1  m l  

l 

E im~ = n  , (89) 
i=1  

k 

• #nk ; ~ / t i  n 

i = 1  

z [ 1 ( # ~ ' ~ ]  
1)! l-I j ; 

mt i=I 

l l 

E i m ~ = n ,  E m i = k  , 

i = l  i=1  

(90) 

and where the summation variables are integers such that  ni > 0 and m~ _> 0. 
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It is also not difficult to prove the recurrence relation, 

n n! 
~n+l----" E / r t ! ( n -  777.)! # n - rn / / r n + l  ; , 0  = I , (91) 

m.=0 

and its counterpart relating the CIM to the CCM correlation operators, 

F,~ = E mF'~-'~S'~ ; Fo = II . (92) 
n 

rn=l 

Relations (91) and (92) can be useful for numerical computations. 
Such cumulants (or, equivalently the linked cluster correlation operators 

{Sn} and their analogues) appear in many places in quantum many-body 
theory. They lie, for example, at the heart of the Goldstone linked clus- 
ter theorem [93], which we prove very easily below from within the CCM 
framework. More generally, they always lie at the heart of any classical or 
quantum-mechanical (diagrammatic or other) expansion which deals with the 
(physical) linked or connected quantities. In this very real sense the CCM 
parametrisation of ground-state wave functions is the quantal (i.e., operato- 
rial) analogue of the classical (i.e., c-number) Ursell-Mayer [98] expansion for 
the partition function of classical statistical mechanics. 

3.5 F o r m a l  E l e m e n t s  of  t he  S ing le -Refe rence  N o r m a l  C C M  

By making use of the ideas and powerful notation introduced in Sect. 2, we 
are now in a position to present the key ingredients of the normal CCM 
(NCCM) formalism at a very general level. We restrict ourselves in the first 
instance to the single-reference (or "closed shell" ) version of the method, and 
to its zero-temperature formulation in terms of pure states. 

K e t  G r o u n d  S ta te :  In terms of a general model state, 14~0), which plays the 
role of a cyclic vector with respect to a complete set of mutually commuting 
multiconfigurational creation operators, C/~, as discussed in detail in Sect. 
2, we now easily generalise the CCM parametrisation (66a, b) of a many- 
fermion ground state to the generic case. Thus, the exact many-body ket 
ground-state wave function (or, more generally, any exact ket eigenstate I~0> 

not orthogonal to 1~50>) is written as 
! 

I~Po) = eS]~o) ; S = E s lu t  ' (93) 
I 

where the prime on the sum excludes the term I = 0 (corresponding to the 

case Co t = ll), in order to preserve the intermediate normalisation scheme of 
(63). The operator S is a linked-cluster operator, by construction, and the 
quantities {s/} are a complete set of c-number cluster amplitudes. In general, 
1~50} will contain the important symmetries of the phase of the system under 
consideration, including the correct particle statistics, as appropriate. 
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G r o u n d - S t a t e  E n e r g y :  Insertion of the CCM parametrisation (93) into 

the ground-state Schr6dinger equation (62) leads to the typical CCM form, 

( e - S H e  S - Eo)l~o) = 0 , (94) 

in which the Hamiltonian appears in the similarity-transformed form which 

is a hallmark of the method. By taking the inner products of (94) with I~o) 

itself and with the remainder of the complete set of states {C~l(5o); I ~ 0} 

we are thus led respectively to an equation for Eo = Eo(Sl) ,  

Eo = ( ¢ o l e - S H e S l ~ o )  = (~0lHeSJ~0) , (95) 

and a set of formally exact, microscopic, coupled nonlinear equations for the 

cluster correlation coefficients {sl}, 

(~0lCze-SHeSl~0) = 0 ; VI  # 0 , (96) 

in which there appear no macroscopic quantities like the energy E0. Just as 
for the specific case of a many-fermion system discussed in Sect. 3.3, so in 

the general case the energy eigenvalue, Eo, is guaranteed to be an extensive 

quantity, no mat ter  how the formally exact sum over configurations {I} is 

truncated.  

We may now easily prove the important  Goldstone linked cluster theorem 

[93], namely that  no unlinked terms appear in the above equations (95) and 

(96). The proof relies on the elementary nested commutator  expansion, 

1 
e - S H e  s = H + [H,S] + ~ [ [ H , S ] , S ]  + . . .  , (97) 

and the fact tha t  all of the components of S commute with each other, by 

construction, so that  each element of S in the parametrisation (93) is linked 

directly to the Hamiltonian. The reason for this is that  the only non-vanishing 

contributions to each of the commutators in the series (97) arise from terms 

where one of the single-particle operators in the second-quantised form for 

the Hamiltonian H meets its Hermitian adjoint in one of the partitions of 

any one of the cluster operators S. Such non-vanishing components of the 

commutators  form the elementary links. Thus, we see that  the only links 

that  can arise are between H and an operator S; there are no links between 

different S operators, and hence every operator S in every nested commutator  
must be linked to the Hamiltonian. Thus, we have proven that  e - S H e  s is a 

fully linked operator. Unlinked or disconnected pieces simply cannot arise, 

even when approximations to S are made. This linkedness feature is often 

emphasised by writing 

e - S H e  s - {HeS}L , { H S n + I } f .  ~ [{HSn}£.,  S] ; n = 0, 1 , . . .  (98) 

Fhrthermore, we note that  if H contains only up to n-body operators (i.e., 

it comprises sums of products of no more than 2n single-particle operators), 
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the series (97) will exactly terminate with the term involving 2n cluster op- 
erators, S. For example, in the common ease where H = T + V comprises 
kinetic energy and pairwise potential terms only, the series (97) terminates 
at terms of fourth order in 5'. We note that  the fact that  the basic exact 
CCM equations are thus of finite order in the coefficients {si} ensures that  no 
further truncation of the CCM equations is needed after the operator S has 
itself been approximated. By contrast, were the energy E0 to be calculated, 

as in a standard variational theory treatment, as an expectation value, 

E o -  (~P°lH[~°) - (~°[eS'HeS[¢°) (99) 
(~o I~Vo) (~5o leS*eS 1~5o) ' 

the resulting expression is generally of infinite order in the correlation op- 
erator S and its adjoint S t, however S is truncated. Furthermore, although 
the cancellation of unlinked terms between the numerator and denominator 
of (99) may be proven [99,100], it is by no means transparent. 

B r a  ( ] r o u n d  S ta te :  Up to this point we have parametrised only the ket 
ground state, and we have made use of the Schr6dinger equation itself to 
extract the energy, E0, without the need to consider the bra state. However, 
in order to calculate other ground-state properties we cannot avoid the use of 
the bra state to form expectation values. It is precisely at this point that  the 
CCM formalism now divides into the normal (NCCM) and extended (ECCM) 
schemes [67]. The crucial feature of both schemes is that  corresponding 
ket and bra states are parametrised independently in a way that  does not 
explicitly preserve their Hermitian-adjoint relationship to one another, and 
which as a consequence actually breaks it at a general (e.g., SUBn) level of 
truncation. The underlying reasons for this have been given by Arponen and 
his co-workers [67,68,101], and are explained below. 

We introduce the notation {~0[ for the bra ground state, 

(1~0>) ~ <C01 (100) 
<~0i ~ <~01~0> ~ <~0i~0> ' 

and its corresponding NCCM parametrisation, 

! 

( ol = ( olSe - s  ; = 1 + . (101) 
I 

Equation (101) preserves the explicit normalisation, 

( olg>o) = (¢ol Vo) = ( ol o) = 1 ( l O 2 )  

Upon taking expectation values between (~0[ and [~P0) it also maintains intact 
the fundamental CCM similarity transformation, which, as we have seen, 
itself encodes the linked-cluster property. Although the operator S formally 

satisfies the condition, 
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(~°[eSteS (103) 
(~oIS= (~oleS,eSl4~o) , 

we maintain {SI, 8I} as a complete set of independent variables. If the mul- 
ticonfigurational label set {I} is truncated, exact Hermiticity will generally 
be violated. The full set of amplitudes {si, gl} provides a complete NCCM 
parametrisation of the ground state. For example, an arbitrary operator, 
A E g has a ground-state expectation value, 

A - (A) - (GiAI~o) 

= (~oISe-SAeS[~)o) = A(sl, g,) . (104) 

We note that  .~ is again fully linked (and hence scales properly with particle 

number, N), even though the operator S. itself contains unlinked pieces. 

The bra-state coefficients {sI } are obtained via the ground-state SchrSdinger 

equation written in the form, 

(~oIH = E0<~ol ~ <~olS(e-SHe s - Eo) = 0 . (105) 

Projection onto the states C~ 1¢5o) yields the equations, 

<45o[S(e-SHe S - Eo)C~l~o) = 0 ; VI  # 0 . (106a) 

Alternatively, we can eliminate Eo from (106a) by making use of the ket-state 

equation (94) projected with the state (~5olSC~, to yield the equations, 

(qSo[¢oe-S[H,C]]eSlqSo } = 0 ; VI  # 0 , (106b) 

where we have made use of (14) and (94) so that  [S, C]] = 0, VI. Equations 
(106a, b) are equivalent linear sets of equations for the NCCM coefficients 
{a,}, and use the {s,} coefficients as input. Formally, we may also solve (105) 
or, equivalently, (106a) or (106b), for the quantity (¢0[S. It is not difficult to 

prove the relation, 

(~0[S = <~0[ + (~o[e-SHeSQ(Eo - Q e - S H e S Q ) - l Q  , (107) 

where, as in (9), the operator Q =- 11 - 1~o)(4)o] is the projector out of our 
model space Ad, which is now spanned by the single state I~o). 
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H e l l m a n n - F e y n m a n  Theorem" We are now in a position to show that 
the NCCM bra-state parametrisation has the very important property that 
it is derivable from the HeUmann-Feynman theorem [102], in a sense which we 
will make clear below. The Hellmann-Feynman theorem, which is extremely 
simple to prove, states that if we perturb our Hamiltonian, H -~ H' = 
H + AA, where A is an (infinitesimally) small quantity, such that the ground- 
state energy changes as E0 --~ E~ = E0 + AdEo/dA + O(A2), then 

dE0/dA =_ f~ = (~oldg/dAl~o) (108) 

Now, instead of using the expectation value functional/~ to calculate Eo, 
let us use the functional 

2:H[S] ~ (~0le-SHeSl¢0) (109) 

Equations (95) and (96) show that Z/4[S] = E0 when S is calculated from 
the CCM equations (96). Let us now demand that the expectation value, .4, 
of the perturbing operator is calculated from Zt4 IS] by using the Hellmann- 

Feynman theorem. By making use of the relations IS, C~] = 0, and (~50[C~ = 
0, we readily prove that 

d s 
2 = ~<4~ole- (H + AA)eSl¢o) 

' - s 6 s I  (110) = <¢ole-SAeSImo> + <mole SHe CJl¢o> 
I 

Next, we calculate 6s1 from the perturbed CCM equations (96) in which 
H --* H + AA, S --* S + 6S. By retaining only O(A, 6S) terms, and using 

(96) to eliminate the unperturbed term, we readily find 

~'(q~olCi(Eo-e-SgeS)Ctjl¢o> 6~--~J = (4~o}Cie-SAeSl@o) ; VI  # 0  , 
J 

(111a) 
where we have also made use of (95). By making use of the closure relation 
(18), we readily find that (111a) may be written in the equivalent form, 

' t 5 s j  
CjImo) ' -  ~ = Q(Eo - Q e - S H e S q ) - l q e - S A e S l m o >  (llZb) 

J 

The use of (l l lb) in (110) then shows that A takes precisely the previously 
given form, A = (#olSe-SAeSl¢o) with the operator ,~ as specified in (107). 

Now, it is straightforward to show that each of equations (105) and (107) 
implies the other. Thus, from the above derivations we have shown that 
the use of the Hellmann-Feynman theorem with respect to the use of the 
functional 2-H IS] to calculate E0, and the use of the CCM equations (96) to 
calculate the linked-cluster correlation coefficients {sl}, implies the NCCM 
bra-state parametrisation (101). Conversely, we note that no other bra-state 
parametrisation is compatible with the Hellmann-Feynman theorem in this 
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way. In particular, using Hermiticity to relate (~'0l to I~0) will violate the 
theorem at anything less than an exact calculation. A different method of 
calculating ground-state expectation values A within the CCM by Kiimmel 

[103] also violates the theorem. 

Thouless [96] has pointed out that  the Hellmann-Feynman theorem im- 
mediately implies that  an expectation value A of an arbitrary operator A may 
be calculated diagrammatically from the same set of Goldstone diagrams as 
for the energy, H,  but in which each interaction potential is replaced in turn, 
one at a time, by the operator A. We shall see below that  not only is the 
CCM parametrisation {S, S} derivable from the Hellmann-Feynman theo- 
rem in the above sense, but all truncations are also consistent with it. Thus, 
if the CCM energy is calculated from H as defined in (104), then if the co- 
efficients {si, st} are truncated by retaining only some subset of them, and 
the resulting expression for/~r is expressed as the sum of some definite subset 
of Goldstone diagrams, then the average value A of an arbitrary operator, 
calculated by (104), corresponds to precisely the same subset of diagrams 

when each interaction is replaced in turn by the operator A. 

We note that  Monkhorst [104] was the first to formulate a CCM pre- 
scription for ground-state average values, A, which is compatible with the 
Hellmann-Feynman theorem, by employing techniques of linear and higher- 
order response theory. It is interesting to note, however, that  he never ex- 
plicitly introduced a functional form for ,~. Once supplemented [105] by the 
basis set effects that  are needed for the practical evaluation of energy deriva- 
tives within quantum chemistry, the scheme of Monkhorst was successfully 
applied [106] to the prediction of vibrational spectra and to the location of 

transition states for decomposition reactions. 

S t a t i c  Var i a t i ona l  Pr inc ip le :  When Arponen introduced the NCCM [67], 
it was basically a generalisation of the method of Monkhorst [104]. Impor- 
tantly, he showed that  the NCCM equations (96) and (106) for the coefficients 
{SI,  Sl} can also be derived by requiring that  the expectation value/~, defined 
as in (104), be stationary (i.e., 5/~ = 0) with respect to all variations in each of 
the independent variables {Sl, Sl}. We thus see very simply that  the require- 
ments 5/~r/5~ = 0 and 5[-I/Ssi = 0 immediately yield the former equations 
(96) and (106b), respectively. We also note that  at the stationary point, deter- 
mined by the solutions to these NCCM equations, /7 --~ /~[stat = E0 ,  where 
E0 is given by (95), since at this stationary point equations (96) are fulfilled. 
The reader should beware, however, that  although E0 is thus derived from a 
variational (or, better, a bivariational) principle, the estimate obtained for it 
using a truncated set of amplitudes {si, sl} does not yield an upper bound, 
due to the loss of the Hermitian-adjoint relationship between the ground bra 

and ket states. 
We may now also return to the Hellmann-Feynman theorem. If we perturb 

the Hamiltonian, H --* H r = H + ;~A, as above, so that  the new stationary 
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point o f / q '  is with NCCM parameters {si + as1, as + 5~z}, we readily see 

tha t  at the per turbed stationary point, 

0 
X " '  ~/t  ~H - - o 

/~1 ]stat 
I star 

Als ta  t n o w  denotes the value of A correct to first-order changes, and where - 0 

at the unperturbed stationary point. Hence, since 5[-I/6si = 0 = 6/~/5ar at 

the unperturbed stationary point, we immediately have that  

_ _  d E 0  = A 0 ( 1 1 3 )  d ( H  + )~A)lstat = Istat , 
dA dA 

which is just the Hellmann-Feynman theorem. We see that  the NCCM is thus 

fully consistent with (and derivable from) the Hellmann-Feynman theorem 

at any level of approximation by truncation to a subset of configurations {I}. 

Near the stationary point o f / I  we have, correct to terms of second order, 

[-I ~ Eo + ~5~' (5~IEIj6Sj + ~(~sIFIj~Jsj) , (114) 

I , J  

where 

E I J  - ~2~-I/~8l(~SJIstat  ~ ( E T ) j I  , 

& j  =- ~ / 4 / ~ s ~ s j i ~ , t  = F j ~  . ( 1 1 5 )  

We note tha t  there are no terms bilinear in the quantities {6~i} in (114), due 

to the linear way in which S enters the expectation value (104). We may 

conveniently express (114) in the equivalent block-matrix form, 

= Eo + ~ ( & ) r ~ a z  + O(&) a , I-2 (116) 
z 

where 
5sl - 7~ - = 

a x  - a a ,  ' \ E  o 
(11r) 

L i n e a r  R e s p o n s e  to  S t a t i c  P e r t u r b a t i o n s :  Many important  physical pa- 
rameters for real materials, such as polarisabilities and susceptibilities, can- 
not be calculated as ground-state expectation values of time-independent 

operators. An important  tool in such cases is often linear response theory. 
Let us first consider static linear response. As above we subject the system 

Hamiltonian, to a small perturbation, H -~ H '  = H + )~A, and measure 

the consequent first-order change to the ground-state expectation value of 

another operator B, 

~ B' --- B - -~RBA + O ( A  2) , ( 1 1 8 )  
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where, by definition, RBA is the associated static response function. Expand- 
ing about the stationary point of H, we have, correct to second order, 

# '  ~ H t.,., + 6~) + (6x , (119) 

where 5A/Sx is the column vector formed from elements ~A/~sI and 5fit/Sg! 
evaluated at the stationary point of/~r alone. The stationarity condition, 

5[I'/5x = 0, for the perturbed Hamiltonian, then gives 

(aA) (120) 5x = - A ~ - i  -~x ' 

by making use of (119). 
The average value of the operator B in the perturbed state is given by 

( a B ~  ax + o (x  2) . 
~ ( s i  + ,~sl, ~r + 6~i) = B(sr, ~ )  + k-~-z / (121) 

Comparison of (118) and (121), together with (120), yields the result, 

- T 

(122a) 

By making use of the fact that ~ is a symmetric matrix, (122a) implies the 
symmetry relation RBA = RAB. Equation (122a) may also more explicitly 

be written as 

RBA = ~ (E-1)IJ ~ s l - -  + - -  -[(E-1)TFE-1I 'J  ~sj 
l,J ~SJ 5Sl (~J I 

(122b) 
We note that the perturbation AA often destroys a possible symmetry 

of the Hamiltonian. An example is the calculation of the density-density re- 
sponse function for a translationally-invariant system. In such eases the op- 
erators {S, S} must be parametrised to allow for symmetry breaking. Thus, 
even though in the symmetric ground state the stationary values of those 
symmetry-breaking parameters will be zero, the second-order derivatives con- 
tained in T/of/~r with respect to those parameters will generally not be zero. 
We also note that if the matrix 7-I has an eigenvalue close to zero, the linear 
response to the perturbation A will be large. The approach of an eigenvalue 
to zero (i.e., a mode becoming soft), as some internal or external parameter 
is varied, often signifies the approach of a phase transition in the system, typ- 
ically to a state which differs profoundly from the (naive vacuum or) current 

model state, 1¢50). 
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D y n a m i c s  a n d  D y n a m i c  Var i a t iona l  P r inc ip le :  All of the above con- 
cepts relating to the stationary Schrhdinger equation and static response may 
now be generalised to the dynamic (i.e., time-dependent) case. We define an 

action-like functional, A, 

/? A = A [ l ~ ' ( t ) ) ;  ( ~ ( t ) l ]  - dt ( ~ ( t ) l ( i O / O t  - H ) l O ( t ) )  , (123 )  

The requirement tha t  .h be stationary, &A = 0, with respect to arbitrary 
changes in Ik~(t)/ and (~'(t)l independently is completely equivalent to the 

dynamic SchrSdinger equations, 

~fAl~(~l = 0 ~ i(O/Ot)l~v(t)} = Hl~V(t)) , (124a) 

5.4/51~P } = 0 ~ -i(O/Ot)(~'(t){ = (~ ( t ) lH  . (124b) 

The time-dependent states are now parametrised in the NCCM, by com- 
plete analogy with their static counterparts in (93) and (101), as follows, 

i t 
I~(t)} : ea(t)eS(t)l~50) ; S(t)  = E s l ( t ) C l  ' (125a) 

i 

(~(t) l  =e -k ( t ) (¢o iS ( t ) e -S ( ' )  ; S( t )  = l l+ E ' g t ( t ) C l  . (125b) 
t 

The c-number k(t)  is a necessary scale factor to describe the time-dependence 
of the amplitude of the wave functions, which remain manifestly normalised 

to each other at all times, however, 

(~(t)lq?(t)} = (~01~0} = 1 , Vt . (126) 

By making use of the relation (17) we may thus express A in the NCCM 

form, 

} A = dt i ~i~i - f I ( s l ,  5i) , (127) 

e,o I 

where ~I -~ d s l / d t ,  and where H(s i ,  gI) is as specified in (104). Stationarity 
of A with respect to the complete set of NCCM parameters {st, ~t} then 
re-expresses the dynamic variational principle, 6A = 0, in the form, 

~A 5H 
- -  = 0  ~ i~t = - -  , (128a) 
5gt ~gt 

5A = 0 ~ - i s t  6 f I  (128b) 

We note that  although the NCCM operators S and S have seemingly en- 
tered the parametrisations (93) and (101), or (125a, b), in a very asymmetric 
fashion, their fundamental dynamics is now revealed in (128a, b) to be that  
of a canonically conjugate pair. Thus, (sl, gl) are revealed to be canonically 
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conjugate to each other in the usual terminology of classical Hamiltonian 
mechanics, in terms of a (classical) Hamiltonian functional H = H(sI, 51). 

This conjugacy can be made absolutely precise by defining generalised multi- 

configurational fields, 41, and their canonically conjugate multiconfigurational 

momenta, TI, as follows 

in terms of which the NCCM equations of motion (128a, b) can be written in 

the equivalent form, 

which are precisely those of the classical Hamiltonian mechanics of a system 
described by a Hamiltonian H = H($I, TI). 

By considering the dynamics of wave functions we have thus uncovered 

the (hitherto hidden) deep and fascinating result that the NCCM parametri- 

sation represents an exact  mapping of the general quantum many-body or 

field theory, described in terms of the complete set {I@o); c!), onto the clas- 

sical mechanics of a set of multiconfigurational classical fields {sr, SI} in- 

teracting via the Hamiltonian, H(sI ,  SI) = ( G ~ J S ~ - ~ H ~ ~ I @ ~ ) .  This classical 

Hamiltonian structure is now explored further below by considering the time- 

evolution of the expectation value of an arbitrary operator A € G. 

Equat ion  of Mot ion  of a n  Arbitrary Expectat ion Value: We consider 

an arbitrary operator A with an expectation value, (A) = A = A(sI, 51; t),  

defined as in (104) but with the operators S = S(t) and 2 = S(t)  now 

timedependent. By making use of both the usual chain rule for partial dif- 

ferentiation and the equations of motion (128a,b), we readily prove that 

d(A)/dt = (aA/at) + {A, H) , (131) 

where the term (dA/at) arises only from any intrinsic time-dependence of 

A = A(t),  and where we define a generalised Poisson bracket, {A, B), as 

Thus, (131) represents the expected classical equation of motion in the canon- 

ical Hamiltonian formalism. We may complete the exploration of the classical 

Hamiltonian structure by considering the mapping of expectation values of 

commutators of operators in 6.  We show below how these map onto precisely 

the generalised Poisson brackets (132) introduced above. 
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E x p e c t a t i o n  Values  of  C o m m u t a t o r s :  The NCCM expectation value 
(104) of the product of two operators may be written in the following form, 

by making use of the completeness relation (18), 

<~o}ABl~/'o > - A B  = E(~oISe-SAeSC~]Oo><~olCze-SBeS]Oo> • (133) 
I 

By making use again of the definition (104) for expectation values, we readily 

prove the relations, 

5.4/5si = <~50)Se-S(AC~ - C~A)eS[qSo) ; VI  ~ 0 , (134a) 

Equations (134a, b) may be used to rewrite (133) as follows, 

(134b) 

, 5A 5B E(~o]~Cje_SAeS[¢)o>(~olCte_SBeS(¢o) (135) 
AB = E 5s---~ ~--~ + 

I 1 

By a judicious insertion of the completeness relation (18), we may rewrite 

(135) in the form 

~fA 5B 

I 1,3 

× (~o[C1e-SBeSl¢o } (136) 

We have rewritten the last term in (136) to show explicitly that  it is sym- 
metric under the interchange A ~ B, by making use of the commutation 
relation (14). Equation (136) thus yields the very important relation, 

(~01[A, B]I~P0 } - [A, B] = i{A, B} . (137) 

In particular, we see that  (131) and (137) are completely consistent with the 
usual quantum-mechanical Heisenberg equation of motion for an arbitrary 

operator A E g, 

dA OA ~ 
at - Ot + [A,H] . (138) 
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D y n a m i c  L i n e a r  Response :  Let us now consider perturbing the ground 
state of our stationary system by a weak time-dependent perturbation, H --~ 

H'( t )  = H + A(t)A, under which our ground-state NCCM correlation opera- 
tors are perturbed as S --* S '( t )  = S +S S ( t )  and S ~-* S'( t)  = S+SS( t ) .  Once 
again, we will work to leading order in )~ and the associated small changes. If 
we now thus expand the equations of motion (128a, b) about the unperturbed 
ground-state stationary point, at which 5[-I/Ssi = 0 = 5[-I/5~z, we readily 
find, in the same block-matrix notation introduced previously, 

i d { 5s~ 0 

FIJ Ik eSA/tSsI ' 
5gj ] + A(t) ) (139a) 

w h e r e  EIj and Fig are  as defined in (115). In terms of the block column 
matrix 5x and the block matrix H introduced in (117) above, we may rewrite 
(139a) in the equivalent form, 

i d  sx  ( 5 4 )  (139b) JT-t6z + ) , ( t ) J  ' 

where we have introduced the block matrix, J ,  

In the linear response approximation, (139b) is thus a simple first-order dif- 
ferential equation for the column matrix 5x = 5x(t). It is readily seen to have 
the following solution, 

5x = - i  dt' e-fft-~ )JnX(t  ) J  ~x  ' 
O 0  

where we have assumed )~(t) --~ 0 as t --~ -oo.  
As in the static case, to leading order, the change in expectation value/~ 

of any operator B, due to the perturbation )~(t)A, is as given by (121). The 

analogue of (118) for the dynamic case is now 

B ~ B'( t )  - B - at' RBA (t -- t'),~(t') + 0(,~ 2) , (142) 
(X)  

where RBA(t)  is the dynamic response function. A comparison of (141) and 

(142) gives the explicit solution, 

R s A ( t )  = i \ ] ' 

where O(x) is the usual unit-step function, equal to one if x > 0 and zero 
if x < 0. Equivalently, in the frequency domain, we may define the Fourier 

transform, 
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// RBA(W) = dtei~tRsA(t) . 

So long as the dynamic matriz, HD, 

(144) 

HD =--- JH , (145) 

has no eigenvalues with a positive imaginary part (and see below), we may 

insert into (144) a factor e - ~  (or, equivalently, let w -~ w + ie) with e > 0 

a positive infinitesimal, to ensure convergence as t --~ oo, and thereby obtain 

the result 

( ~ B ~ T ( J T - l - w - i e ) - I J ( ~ f t )  (146) 

A direct comparison of (122a) and (146) shows that  RSA(Ca = O) = 
RBA, viz., tha t  the static limit is regained, as expected, in the limit of zero 

frequency. One may also show from (146) that  RBA(W) = RAB(W), although 

it is not entirely trivial to do so. 

In view of the comment below (145), it is also interesting to note that  

the eigenvalues of the dynamic matrix HD come in pairs, +~,~, as we now 
show. Since HD is not Hermitian, we may solve either for the right or left 

eigenvectors, ~,~ or ~n, respectively, 

Ho(~ = w n ~  ; ~T HD = w,~T (147) 

By taking the transpose of the latter (left eigenvector) equation, and by 

premultiplying by the matrix J ,  we observe that  

- J n J ~ = ~ n J ~  ~ HD(J~n)=--w~(g~n) , (148) 

where we have used the relations, ~.~T = ~-~ and j T  = _ j .  Equation (148) 

thus shows that  J ~  is a right eigenfunction with eigenvalue -~v~ if ~T is 

a left eigenflmction with eigenvalue +w~. Our proof is thus complete. We 

note, furthermore, that  the stationary point o f / ~  is therefore stable only if 

the dynamic matrix HD has real eigenvalues. The appearance of complex 

eigenvalues as some internal or external parameter is varied through some 

critical value denotes the onset of an instability leading to a phase transition. 

We note that  such dynamic response functions, Rsm(t), are extremely 

important  in quantum many-body or quantum field theory. For example, for 

bosonic field theory, if A and B are single-particle field operators, RBA(t) 
becomes the retarded single-particle Green's function, from which one may 
also easily calculate the corresponding causal Green's function. 
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E x c i t e d  S t a t e s  as N o r m a l  M o d e s  of  HD: If we now consider the dynam- 
ics of the general system near its stationary ground state, 5/~ = 0, in the case 
where there is no external perturbation, small perturbations are described by 
(140) with A(t) - 0, 

d 
i -~hx = Huhx  • (149) 

Just as in classical mechanics, we now seek normal mode solutions, fix --+ 
~n(W,t) ~- ~n e-iw''t, where w,~ and ~,~ are given by the eigenvalue equation 

(147). In more explicit block-matrix form, (147) may be written as follows, 

Thus, the (positive) eigenvalues w,~, which correspond to the excitation en- 

ergies with respect to the ground-state energy, E0, may be expressed purely 
in terms of the linked-cluster amplitudes {hss}, 

522-I 5 s g  : w,~Sss (151) E ' 5 S I S S y  
J 

where we have made explicit use of the definition (115) of the matrix elements 
EI j .  Using the definition (104) for the NCCM average value, H,  in (151) 

yields 

~-~'<~olCse-S[H, Ct]eSlOo)hSg = wnhs, ; V I  # 0 . (152a) 

J 

By making use of the ground ket-state Schrhdinger equation, (152a) may 

readily be rewritten in the equivalent form, 

E'Q(e -SHe  s - Eo)hsjCtjl@o) = wn 'hssCtsl¢o) ; V I  # 0 , (1525) 

J I 

where, as before, Q - 11 - 14io)(Ool. Equation (152b) shows that  the excita- 
tion energies, wn, of the system are obtained by diagonalisation of the same 
matrix, Q ( e - S H e  s - E o ) Q ,  whose inverse is required in the formal construc- 
tion (107) of the NCCM bra-state operator S from its ket-state counterpart 

S. 

K e t  E x c i t e d  S ta tes :  An alternative, but (as we shall see) equivalent, way 
of discussing excited states is via the time-independent Schrhdinger equation, 

(153) 

The standard CCM description of excited states has been given, inter alia, by 
Emrich [107]. Strictly speaking, the NCCM parametrisation (93) describes 
not only the ground state of (62), but also any state with the same quantum 
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numbers as the ground state and with nonzero overlap with the model state 
14~0). The possibility of obtaining multiple solutions to the nonlinear ground- 
state NCCM equations (96) has been discussed in some detail for a particular 
model case in Ref. [108]. 

For excited states (or, more generally, for states with zero overlap with 
Iqh0)), we construct the respective ket wave functions {l~z>} in the NCCM in 
terms of a set of linear excitation operators {X(0} which act on the corre- 

sponding exact ground-state ket wave function I~0}, 

l e t )  = = x( )eSl o) (154) 

The operator X(0 is again decomposed wholly in terms of creation operators, 
{C/t; I ~ 0}, with respect to 14~0>, 

X(0 X--" x(0C t (155) ----/_.~ I / 
I 

Hence the operators Xq) and S commute; and the prime on the sum in (155) 
ensures that  (~501~Pl) = 0. For extended systems with more than one phase, 
for example, the so-called ground-state parametrisation (93) will generally 
yield only the lowest state of a given symmetry imposed implicitly by the 
particular choice of model state. Indeed, phase transitions may be detected 
within this CCM description by observing, for fixed model state Iqh0), the 
onset of "excited" states of negative excitation energy (or, hence, "de-excited" 
states) from the so-called excited-state parametrisation (154)-(155), as some 
internal or external parameter is varied through some critical value [109]. 

By combining the ground- and excited-state Schr6dinger equations (93) 

and (154), we readily find the NCCM eigenvalue equation, 

e-S[H, X(t)]eSl~bo) = wlX( t )]~o)  , (156a) 

or, equivalently, 

( e - S H e  s - E o ) X  (0 [~o} : wt X ( O l ~ o )  , (156b) 

for the excitation energy, wl - Ez - Eo, directly. By taking the inner products 
of (156b) with each member of the set {C/tiC0); I ~ 0} we obtain a coupled 
set of homogeneous linear eigenvalue equations for the excited ket-state con- 

figuration coefficients {x~l)}, which are identical to (152a). We note also 
that  the left-hand side of (156a) may be developed as a nested commutator 
expansion, analogous to (97). In this way, we note that  by making use of 
the commutativity relation, [X (0, S] = 0, the excited-state NCCM equations 
may, rather simply and very conveniently, be derived from their ground-state 
counterparts as follows. Thus, we replace each multinomial term in the coeffi- 
cients {si} arising from the expansion of the similarity transform in (94) with 
a corresponding set of terms in which each single coefficient s j  is replaced 
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one at a time in turn by the corresponding factor x(0; and we simply drop 
J 

the zeroth-order (inhomogeneous) term. 

We also note that by projecting (156b) with the state (~olS, and by 
making use of the bra-state Schrhdinger equation (105), we readily prove the 
following relation, 

 z< oD XI  1 o> = 0 . (157) 

Equation (157) immediately yields the required orthogonality relation, 

= 0 ,  u n l e s s  = 0 . (l S) 

Clearly, as wt --* 0, the corresponding mode becomes soft. This mode may 
thus be easily excited into macroscopic occupation, and the corresponding 
ground state can undergo a phase transition into a state of markedly different 
character. 

Hierarchical  Approx imat ion  Schemes: In order to implement any of the 
above elements of the single-reference version of the NCCM, we need only to 
choose an appropriate model state or cyclic vector [4~0), and then to approx- 
imate the corresponding sets of equations. The standard way to do this is to 
truncate the otherwise complete set of multiconfigurational set-indices {I} to 
some appropriate finite or infinite subset. There are many ways of doing this, 
and in general one must be guided by the physics. One also needs in practice 
to develop hierarchical approximation schemes, in which at each increasing 
level one systematically incorporates more many-body correlations. 

One of the simplest and intuitively most appealing such systematic hierar- 
chical approximation schemes is the SUBn scheme for the ground state, or the 
more general SUB(m, n) scheme for excited states in the time-independent 

formalism. In the latter case, all amplitudes {x~ l)} and {st} which describe 
clusters of more than m and n particles (or particle/hole pairs in the case 
of number-conserving Fermi systems) respectively, are set to zero. The re- 
maining equations, derived as described from (94) and (156) by taking their 

respective inner products with the wave functions C~ [4~0/ of the configura- 
tions retained, are then solved without further approximation (except those 
introduced by the computational algorithms). In the static SUB(m, n) ap- 
proximation the excitation energies {wz} are equivalently obtained by diag- 
onalisation of the operator Q ( e - S H e  s - E0)Q, where S is now the SUBn- 
approximated ground-state correlation operator, within some subspace of the 
multiconfigurational states defined by the truncation index m. 

In general, there is no particular reason, at least, from within the static 
CCM formalism for ground and excited states, why the truncation indices m 
and n should not be chosen differently. Indeed, this freedom provides an 
additional degree of flexibility. Further work in this connection [110] has 
shown that by further embedding the theory of linear response within the 
CCM, each of the usual energy-weighted moment sum rules for the dynamic 
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(liquid) structure function may, in principle, be exactly decomposed into an 
infinite cluster hierarchy of sub-sum-rules. 

The above work [110] also provides a set of independent exact rules for the 
CCM cluster amplitudes, against which approximation schemes in both static 
ground- and excited-state formalisms can be tested for mutual compatibility. 
Furthermore, it provides a mechanism whereby any additional knowledge of 
the system (obtained either from experiment or from alternative theory or 
phenomenology) involving either the excitation spectrum or the ground-state 
correlations, may be used to extract information, from within the CCM, on 
the other. Finally, in this context, it is interesting to note that by making the 
simple approximation that the lowest members of the CCM sub-sum-rules are 
saturated by a single collective (or "giant resonance") state, we regain the 
important Bijl-Feynman relation [111] for the excitation spectrum in terms 

of the static structure function. 

We note that for an infinite homogeneous system, translational invariance 
implies that the plane-wave single-particle basis is exact, and the ensuing mo- 
mentum conservation then in turn implies that the one-body partition, $1, of 
the correlation operator S, is identically zero. In such cases the lowest non- 
trivia[ SUBn approximation is the SUB2 scheme. This is already an extremely 
rich approximation. Amongst other terms it includes all of the two-body lad- 
der diagrams and all of the two-body particle/hole ring diagrams [112]. 

We note that other CCM truncation schemes apart from the SUBn scheme 
have been used. In the case of pure hard-core potentials, for example, the 
SUBn scheme is not well defined, and for strongly repulsive (but not infinite 
hard-core) potentials the convergence is poor. A typical example of this case is 
the internucleon force in nuclear physics. The cure, however, is simple. It leads 
to the so-called (hard-core) HCSUBn scheme (otherwise known as the Xn- 
truncation or Bochum truncation scheme). Thus, at a fixed ordinary SUBn 
level, one first identifies that subset of terms which when iterated together 
lead only to diagrams which are still contained in this original particular 
SUBn class when each bare interaction V is replaced by a ladder-summed 
G-matrix, and where the relative time orderings of the remaining interac- 
tions are kept fixed. The resulting HCSUBn approximation scheme [8,9,67] 
is closely related to the hole-line expansion of Bethe within the framework of 

time-independent perturbation theory. 

For systems defined on a discrete spatial lattice, a localised approxima- 
tion scheme called the LSUBn scheme has also been used to considerable 
advantage. In this scheme all possible many-body cluster configurations I 
are retained which occur in all different spatial locales of n contiguous sites 
on the lattice. Thus, to enumerate the fundamentally distinct LSUBn config- 
urations, one must first evaluate the different lattice animals of size n which 
are inequivalent up to lattice symmetries (i.e., translations, rotations, and 
reflections) shared by the Hamiltonian. Then, on each such distinct lattice 
animal, one must consider all possible distinct sub-configurations (both con- 
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nected and disconnected). Such LSUBn schemes have very successfully been 
applied to both quantum spin-lattice models (particularly of antiferromag- 
netism) [113-118] and lattice gauge theories [75-81]. 

All of the above schemes share the feature that  the cluster amplitudes 
relating to configurations I not retained in the approximations are set to zero. 
For some purposes this may be too drastic an approximation. An alternative 
would be to attempt to approximate such amplitudes {sl, sI} belonging to 
configurations I outside the basic subset retained by a given approximation, 
in terms of those retained. The invention and investigation of such schemes 
is at the forefront of current progress in the CCM [84]. 

3.6 R e l a t i o n s h i p  of  t h e  C C M  to  T I P T  a n d  G o l d s t o n e  D i a g r a m s  

For the sake of the simplest comparison with time-independent perturbation 
theory (TIPT) we consider a many-body Hamiltonian, H = H0 + V, where H0 
is a one-body operator (e.g., kinetic energy) and V is a two-body interaction 
term. We also work in a single-particle basis, la) = c~10 ), in which H0 is 

diagonal, so that  in its second-quantised form, 

go = ~ ec, Ct~C,~ , (159) 
q2~ 

where {c~} are the generic single-particle creation operators (viz., the bosonic 
operators b~ or the fermionic operators a t  of Sect. 2). In the notation intro- 
duced in Sect. 2, we also work with a model state I¢0) and a complete set of 

many-body states C/t 14~0) which are constructed to be eigenstates of H0, 

Hole0) = gol~0) ; Y0C~Nh0) = (£0 + eI)C/t[~0) (160) 

Examples of such sets {1~50); C~} have been given in Sects. 2.1-2.3. 
We note that  since Ho is diagonal in the chosen basis, each term in (159) 

contains exactly one destruction operator with respect to 1¢50), since either 
one or other (but not both) of c~ or c~ will destroy Iqh0). Thus, the nested 
commutator expansion (97) for H --* Ho will terminate at the second term 

on the right-hand side, 

e-SHoe s = Ho + [Ho, S] . (161) 

By making use of (160) and (161), we readily prove the following relation, 

(qho[Cze- S HoeS[~po) = ~ o 5 i o  -.[- e i s  I , (162) 

where we have also made use of the properties (15) and (17) of the mul- 

ticonfigurational creation operators {ct}.  If we now insert (162) into the 

fundamental ket-state CCM equations (95) and (96), we find that  the exact 
ground-state energy Eo is given in terms of the unperturbed or model state 

energy E0 as 
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Eo - go = (~ote-SVeSt@o) , (163a) 

in which the required ket-state cluster coefficients { s i }  are given by the non- 

linear equations, 

1 
S z . . . .  (~5olCze-SVeSl4~o} ; V I  ~ 0 . (163b) 

et 

It is now very straightforward to develop a diagrammatic representation 
of (163a, b) by complete analogy with the standard development of Goldstone 
(time-ordered) diagrams for TIPT (and see, e.g., Ref. [119]). Indeed, if one 
uses the nested commutator expansion (97) with H --* V in (163b), and 
makes a straightforward iteration of the set of equations (163b) in powers of 
the potential V, one generates automatically the Goldstone diagrams for the 
linked-cluster amplitudes {sz}. If no truncation is made, one generates in 
principle this way the complete set of diagrams. Alternatively, if the cluster 
operator S is truncated along the lines indicated above, a partial subset of 
diagrams is generated. Substitution of the resulting amplitudes into (163a) 
gives the corresponding expression for the energy in terms of a set of fully 
linked and closed :(i.e., with no free ends) Goldstone diagrams. 

We may equivalently derive (163b) and its counterpart for the bra-state 

cluster amplitudes {sz} from the static variational principle, 

6/~ I 6V i 
- -  0 =~ sz - -  

6g~ ez 6~z ez 
(¢olCxe-SVeSlq~o> , (164a) 

6sz ex 6si el 

Equations (164a, b) are precisely the Dyson equations for the NCCM ampli- 
tudes {sz, sI}, in which the unperturbed (or model) cluster excitation ener- 
gies, ei, appear in the familiar guise of the energy denominators of Rayleigh- 
Schr6dinger perturbation theory. The iterative solutions of (164a, b) lead to 
a set of terms which can be put into one-to-one correspondence with classes 
of Goldstone diagrams. Whereas iteration of (164a) leads, as we have already 
discussed, automatically to a set of linked diagrams for the linked-cluster am- 
plitudes {Sl}, iteration of (164b) is easily seen to lead to unlinked diagrams 
for the amplitudes {~i}. Nevertheless, all expectation values ,4 = f l (S l ,  ~s) 

calculated by (104) for all such contributions from all diagrams for sz and Sl 

remain connected, as we have shown previously. 
In the usual (physicist's) convention, one draws Goldstone diagrams with 

"time" axis running upwards (i.e., where matrix elements such as those in 
(164a, b) are read from right to left, and drawn, correspondingly, from bottom 
to top). Furthermore, by convention, I~0) plays the role of vacuum, so that  
only particle and hole lines which are excited from the model state are explic- 
itly drawn. In this convention, the amplitude sr is thus a "bottom amplitude" 
containing no legs from below and a set of particle/hole legs emanating from 
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above corresponding to the configuration denoted by the set-index I. Cor- 
respondingly, ~i is a "top amplitude". 

Very related to the earlier discussion of the linked-cluster nature of the 

bottom amplitudes {sl} is the concept of generalised time ordering (GTO). 
This has traditionally been a rather useful formal device for classifying and 

combining certain classes of Goldstone diagrams [120]. It is based on a fac- 
torisation property of Goldstone diagrams containing disjoint (i.e., separately 
identifiable) sets I and J of particle/hole legs with unperturbed (or model) 

energies el, as given by (160). The simple identity 

1 1 1 
+ - , (165) 

e,(e, + ea) ca(e, + ca) e,ea 

may then be used to factorise the individual energy denominators as on the 
right-hand side of (165), after the diagrams corresponding to all permitted 
time orderings which preserve the nature of the subclusters (i.e., do not 
change particles into holes, or vice versa) are combined together. It tran- 

spires [67,68] that the linked nature of the bottom amplitudes {s,} implies 
that the NCCM automatically generates diagrams (for the energy, for exam- 
ple) with such a GTO property in the "downward" direction (i.e., backwards 
in time). Conversely, the fact that the top amplitudes {ai} are generally 
unlinked implies the absence of a GTO property in the "upward" direction. 

The upshot is that all of the diagrams for the energy obtained by iteration 
of the NCCM Dyson equations, as explained above, may thus be represented 
by what are termed nor~nal GTO tree diagrams or NCCM trees [67]. Roughly 
speaking these are diagrams which "branch out" in the downward direction 
only (- and hence which represent the root system of a real tree, rather than 
its visible branch structure). It has been rather fully explained elsewhere 
[67] how each branch (- or root) of such a generalised diagram corresponds 

to a set of particle/hole lines labelled by a member of the complete set {I}. 
If such a (downward) closed NCCM tree diagram for the energy is divided 
into two open portions by cutting a single branch I, the bottom part consti- 
tutes a diagram for Sl, and will always itself be linked; whereas the top part 

constitutes a diagram for sl, and may be unlinked. 
We note again that whereas the NCCM equations may be iterated to yield 

terms corresponding to classes of Goldstone diagrams, we essentially never 
actually solve the equations this way in practice. In essence, the CCM per- 
forms a massive automatic resummation (to infinite order) of many (infinite) 
sets of Goldstone diagrams, and this is one of the underlying strengths of the 
method. By solving the equations as they stand (i.e., without iteration) at 
any level of truncation for the set of amplitudes {sl, a,}, we anticipate (and 
usually find) much better convergence properties in the hierarchical trunca- 
tion scheme under consideration than the perturbation series. 

Clearly, once we have made a particular choice of model state and mul- 
ticonfigurational creation operators, and have chosen a particular truncation 
scheme, the practical implementation of the NCCM breaks into two tasks: (i) 
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the Mgebraic evaluation of NCCM expectation values (104) and their func- 
tional derivatives; and (ii) the numerical solution of the resulting equations, 
e.g., (164a, b), for the truncated set {ss, gI}, in terms of which all physical 
quantities may be evaluated. We note that the underlying similarity trans- 
formation and the (usually) finite number of terms in the resulting nested 
commutator expansions (97), which lie at the heart of the CCM, make the 
first task well suited to the use of computer-algebraic methods. The interested 
reader is referred to Ref. [118], for example, for a thorough discussion of how 
this may be implemented very efficiently in practice for lattice Hamiltonian 
systems. The second task, namely the numerical solution of the equations 
so derived, normally presents no great difficulties, since the CCM equations 
are well-conditioned (unlike their CIM counterparts), and are also found in 
practice to be extremely robust in almost all applications. 

3.7 The  Mul t i -Reference  Normal  C C M  

Physically, one might intuit that the single-reference version of the NCCM 
discussed above in Sects. 3.5 and 3.6 is most likely to be a good approach 
for "closed-shell" systems, for which a single model state 14~0) suffices for a 
reasonable zeroth-order description. Conversely, we turn now to "open-shell" 
systems for which, a priori, a multi-reference approach appears to provide 
a more reasonable calculational framework. We argue by analogy with the 
single-reference ground-state NCCM approach discussed in Sect. 3.5. Thus, 
it is clear that the single-reference ground-state scheme may be viewed at 
a rather shallow level as simply providing, in any particular approximation 
scheme, a corresponding (and, evidently, a very sophisticated and clever) 
partiM resummation of an infinite set of terms (or Goldstone diagrams) in 
the nondegenerate version of TIPT, as outlined in Sect. 3.6. As we have seen 
in Sect. 3.5, the basic CCM equations automatically embody the historically 
important linked cluster theorem of Goldstone [93] for the energy. 

In the same spirit, Brandow [120] first showed that in the intermediate 

normMisation scheme there exists a similar linked diagram expansion, namely 
the linked valence expansion, in the degenerate version of TIPT. This was 
the first such formulation which was both size-extensive and size-consistent, 
where size-extensivity [52] is the property that the leading term in the energy 
of an N-particle system scales linearly with N, and where size-consistency 
[121] implies that a many-body wave function dissociates correctly into non- 
interacting fragments under infinite separation of the fragments. Brandow 
showed, in particular, how it was necessary for his formulation to be given 
in terms of a so-called "complete model space." This is defined to be one in 
which the multi-reference model space contained all possible N-body config- 
urations (or Slater determinants for the usual number-conserving fermionic 
case to which the formalism is applied) that can be formed by distribut- 
ing the valence particles among a selected set of valence orbitals. Brandow 
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Fig. 1. A schematic representation of the essential elements of the multi-reference 
normal coupled cluster parametrisation of the ket-state energy eigenfunctions of a n  
open-shell system. 

further showed how his perturbative expansion could be expressed diagram- 
matically in terms of so-called ".folded d iagrams . "  Several authors have since 
described how to embody and extend this degenerate version of TIPT within 
the CCM framework, via a multi-reference approach. Perhaps the earliest 
within the physics (as opposed to chemistry) community were Kiimmel and 
his co-workers [122]. Many other variants exist, most of which have been es- 
pecially developed for use in quantum chemistry, but for present pedagogical 
purposes only this version is outlined below. Its essential ingredients are also 
indicated very schematically in Figure 1. 

Thus, as in Sect. 3.1, let us consider for illustrative purposes, a closed-shell 
N-fermion system, whose CCM single-reference model state is now indicated 
as [~og), and whose exact ground-state energy is E0 N. To this closed-shell 
system we imagine adding valence fermions (or holes) one at a time. In the 
notation of Sect. 2.3 we may now distinguish three sorts of single-fermion 
states lak) ,  namely: (i) orbitals occupied in I~0 N} (labelled a k  --* Uk); (ii) 
valence orbitals (labelled a k  --~ ik)  partially occupied by the valence particles 
outside the core (and/or valence holes inside the core); and (iii) the remaining 
"unoccupied" orbitals (labelled a k  --~ Pk) .  The multi-reference CCM ansatz 
for the exact (N + 1)-particle states is given as follows, 

I~ N+I) = ~ eS[1 + Ftl)Ia~I~N)c{ , (166) 
iEV 

where the correlation operator S is assumed known from the N-body "closed- 
shell" NCCM calculation, and where the sum on the index i runs over the set 
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)) of valence orbitals considered as actually degenerate or quasi-degenerate. 
Thus, the states Iatl~Y\; i E V} form a set of multi-reference (N + 1)-body t i l  0 /  
Slater determinants for the set of low-lying states (labelled A) which we are 

at tempting to construct. 
Whereas the coefficients {C~} determine the mixture of uncorrelated 

states in the multi-reference model space, the operator F (1) describes the 
dressing of the bare valence particle by its interaction with the core. Thus, 

we have the decomposition, 

N+I 

F(1)----- E F(1) ' (167) 

r~=l 

where, for example, F~ 1) describes the one-body (Hartree-Fock) part of the 

valence problem, 

F} ')= E E (p[y}')li}atai ' (168a) 
p iEV 

and F2 (1) describes the "core polarisation" terms which arise from the corre- 
lations between the valence particle and any one core particle, 

F2(1) 1 -: E E (168b) 
~h,~2 u iEV  

where the labels 77k denote any extra-core state (i.e., valence or "unoccu- 
pied"), and hence run over ik and Pk. We note that  the CCM ansatz (166) 
is completely general, provided only that, just as in its single-reference coun- 
terpart (66a), the states [~p~v+l) do not have zero inner product with all of 

the wave functions {a¢~ I~50N },. i E 12} which now comprise the model space A4. 
The corresponding ansatz for the two valence-particle ( N + 2)-fermion 

wave function is given as follows, 

N+2 [1+  + ~ :  : + F  (2) ] I~P; }= E es F(,) 1 F(,)~ a~a~2[qsN)c~i2, (169) 

i l , i2E]2 

where the factor of one-half in the quadratic F 0) term describing two "dressed" 
but uncorrelated valence particles is present, as usual, to avoid double-counting 
each excitation. We note that  this term is also normal-ordered so as to avoid 
contractions (or links) between the two F (1) operators, since these are more 
properly contained in the genuine two-valence-particle-plus-core correlation 

operator, F (2) , 
N+2 

F(2) = E F(2) (170) 

n~2 

If we proceed further in this fashion to add an arbitrary number of valence 
particles outside the core, we rapidly arrive at the normal-ordered exponen- 
tim ansatz (where the normal ordering is always performed with respect to 
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an appropriate closed-shell system or core) first written down explicitly by 
Lindgren [123], although the formulation of Ey [122] is completely equivalent. 

By inserting the CCM parametrisations (166) and (169) into the respec- 
tive (N + 1)-body and (N + 2)-body Schrbdinger equations, and by premul- 
tiplying as usual by the factor e -S, it is straightforward to derive equations 
for the energy eigenvalues E N+I and E N+2 Suitable projections onto the - - ) [ ~  - 

model space ]v/ thus lead to secular equations for the coefficients C~ and 
C ~  2. These may be represented [8,9,122] as generalised eigenvalue equations 
for fully-linked one- and two-body effective Hamiltonians, respectively, which 
yield the folded diagrams of degenerate many-body perturbation theory. The 
corresponding eigenvalues are the respective excitation energies; for example, 
in the one-valence case, cA - E N+I - E N. Similarly, by projecting out of 
A4 onto "unoccupied" states, one derives the equations which determine the 
matrix elements of the operators F (1) and F (2). The interested reader is re- 
ferred to the literature cited above, and to the article in the present volume 

by Kaldor, for further details. 
In the original multi-reference formulation, the CCM and the associated 

linked diagrammatic expansions were restricted to complete model spaces and 
to the intermediate normalisation scheme. However, complete model spaces 
have prohibitively large dimensionalities, even when the number of active 
valence orbitMs is restricted to relatively few. Mukherjee [124] first showed 
that for general incomplete model spaces, the condition that both the CCM 
cluster operators and the effective Hamiltonians are connected is normally 
incompatible with our previous choice of intermediate normalisation. Con- 
versely, by abandoning this normalisation, these connectivity properties may 

be reinstated. A more detailed discussion of these points would, however, take 
us too far afield for present purposes, and the interested reader is referred to 

the literature [125]. 

3.8 Formal  Elements  of the  Ex t ended  C C M  

In the NCCM discussed so far, while all ground-state expectation values 
(104), .4 = ~t(sl, gI), are linked-cluster quantities, and while the bottom am- 
plitudes {si} are also fully linked, the top amplitudes {gl} contain unlinked 
terms. For some purposes we might wish all of our basic amplitudes to be 
linked, and this is the basic motivation for the development of the extended 
coupled cluster method. (ECCM). We note firstly that the relations (14), (93), 
and (104) immediately imply that the NCCM top amplitudes are simply the 
ground-state expectation values of the multiconfigurational creation opera- 

tots, 
= . ( 1 7 1 )  

If we now define the corresponding linked or connected quantities as 

O'I ~ (C~>linked ~ (C~>c , (172) 
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our earlier discussion in Sect. 3.4 on general cumulant expansions immediately 
yields the basic ECCM parametrisation, 

= eX ' ~ = E '  5 1 C I  . (173) 
I 

Although the cluster amplitudes {sl, 5i} are a complete set of ECCM 
linked quantities, it is very convenient to define a new set of bottom ECCM 
amplitudes, a t  = a i ( s j ,  ~rj), such that  the ECCM amplitudes (al,  5I) again 
form a canonically conjugate pair, by complete analogy with the canonical 
conjugacy of the NCCM pairs ( S l , S i )  expressed by (128a, b). This is very 
easy to achieve by writing the action-like functional (123) in the form, 

/? A = dt  ( ~ o l e ~ ( t ) e - S ( t ) ( i O / O t  - H ) e S ( t ) l ~ o )  
oo  

/ 2 [  ] = at  - i ( ~ o l ~ ( t ) e X ( t ) S ( t ) l ~ 5 o ?  - f I  , (174) 
oo  

where, in the second line of (174), we have integrated by parts. Insertion of 
a complete set (18) of multiconfigurational states into (174) then yields the 

ECCM form of the action-like functional, 

A = oo dt - i  ~rlai - B(a l ,81 )  

/ = dt  i 5 1 0 1 - f I ( a z , 5 1 )  , (175) 

where the new ECCM bottom operator i? is defined as 

~]qSo) - Q e £ S ] e o )  ; Z - E ' a l C I  , (176a) 
I 

in terms of Q -= ll - ]qs0) (4~0], and amplitudes {al} given as follows, 

a !  -- < 01C1e Sl40) ¢* s1 = < 01cw E[ 0> • (176b) 

It is evident from the definition (176b) that  the ECCM bottom ampli- 
tudes a i  are fully linked, since S is a linked-cluster operator. Furthermore, 
stationarity of A from (175) now shows that  the ECCM amplitudes {as, 51} 

form canonically conjugate pairs, 

5A 5H 

55z = 0  => ia l  =ff6-;i ' 

5A _ 0  ~ - l a ~ -  , 
5a t  5a l  

(177a) 

(177b) 
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in complete analogy with the canonical conjugacy of the NCCM pairs {si, s t}  
expressed via (128a, b). 

Although we shall not go through the details here, we note that many 
of the NCCM results of Sect. 3.5 may now be generalised to the ECCM 
[67,68,101,126]. Many of the key distinguishing features of the ECCM follow 
from its double exponential structure and hence also its double similarity 

transform structure, 

fit ~ (#olAl•o) = (q~ole~e-SAeSl~o) 

= (q~ole~e-SAeSe-~lq~o) 

= . ( 1 7 s )  

In turn, these features lead to a well-defined double linking property of the 
corresponding ECCM diagrams [67]. By contrast to the CIM and NCCM, 
all of the basic ECCM amplitudes {~I, al} that now completely characterise 

the many-body system are linked-cluster quantities. In turn, they all there- 
fore obey the important cluster property, namely that they approach zero 
asymptotically as any subset of the particles described by the configuration 
set-index I becomes far removed from the remainder. The entire system may 
thus be parametrised in terms of a complete set of ECCM multilocal, classi- 
cal (i.e., c-number) amplitudes. Just as we have shown above for the NCCM, 

we can also show [101] how the ECCM maps an arbitrary quantum many- 
body or field-theoretic system with underlying Schr6dinger dynamics onto a 

classical field theory. 
Extensions of the ECCM have been made [68,126] to consider both excited 

states and general dynamical behaviour. It has thus been demonstrated how 

the amplitudes {at, 0i} may also be viewed as 9eneralised (many-body) mean 
fields or quasilocal order parameters, by considering their small-amplitude os- 
cillations around a stationary equilibrium point, just as we did for the NCCM 
in Sect. 3.5. The overall structure of the ECCM is indicated very schemati- 
cally in Figure 2, and the interested reader is referred to the literature [67- 

69,90,101,126-132] for further details. 
We note that, to the best of our knowledge, the ECCM is unique as a 

formulation of quantum many-body/field theory in which every fundamental 
amplitude exactly obeys the cluster property at all levels of approximation. 
It is clear that only such formulations have the possibility to describe both 
the local properties of many-body systems and such global properties as their 
phase transitions, states of topological excitation or deformation, spontaneous 
symmetry breaking, general nonequilibrium behaviour, and nonlinear (large- 

amplitude) response. 

3.9 Other Aspects of Coupled Cluster Theory 

The range of individual components which are now contained under the gen- 
eral umbrella of coupled cluster theory or the CCM is large and varied, as 
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Fig. 2. A schematic representation of the hierarchical structure and the most gen- 
eral features of the ECCM. 

we have a t tempted  to describe above. In Figure 3 we have also a t t empted  

to make a very schematic overview of the hierarchical structure of the main 

elements of the CCM. We warn the reader tha t  the schema shown is neither 

unique in its decomposition nor wholly rigorous or complete in the imposi- 

tion of a logical structure on the resulting components. Nevertheless, we hope 

tha t  Fig. 3 will serve, at least, as an aide memoire in surveying the formal 

aspects of what  is, by now, a very wide-ranging formulation of microscopic 

quantum many-body theory. 

We have already described, at least in outline, most of the CCM elements 

displayed in Fig. 3. We complete this Section with a very brief discussion 

of some additional items of coupled cluster theory, which largely reflect the 

work of the last few years or are the topics of current research. 

C C M  P a r a m e t r i s a t i o n  o f  M i x e d  S t a t e s :  Our entire discussion of the 

CCM up until this point has involved the parametrisat ion of quantum- 

mechanical pure states and, hence, is of relevance strictly to many-body  sys- 

tems at zero temperature .  We note tha t  an extension of the CCM to ther- 

mal mixed states, of relevance to systems at nonzero temperatures ,  was first 

given some ten years ago by Kiimmel and his co-workers [133], in terms of 

the Bloch equation for the statistical density operator, ~ =- e-~H / Tr(e-~H), 
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Fig. 3. A schematic diagram of the main ingredients of the CCM and their hierar- 
chical structure. 

where fl --= (kBT) -1 and T is the temperature. More recently, Mukherjee 

and his co-workers [134] have given a very natural and direct extension of 

the CCM to mixed states. In particular, they have provided a thermal clus- 

ter cumulant method for the grand partition function, Z - Tr(e-~(H-~N)), 

where # is the chemical potential and/V is the number operator. Unlike the 

earlier approach of Kiimmel and his co-workers, the latter approach does not 

require a knowledge of the eigenspectrum of the many-body Hamiltonian H. 

For further details the reader is referred to the contribution by Mukherjee to 

the present volume. 

H e r r n i t i c i t y - P r e s e r v i n g  Versions of the  CCM:  As we have seen, both 

of the standard versions of coupled cluster theory (i.e., both NCCM and 

ECCM) are non-Hermitian by nature. The canonical coordinates, {si, sI} 
and {ai, 5i}, which are intrinsically complex-valued for arbitrary wave func- 

tions, bear no simple relation toone  another. In truncations to some subset 
of all available configurations {I} the Hermiticity may be badly broken. Very 
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recently, Arponen [135] has complemented both versions of the CCM by in- 
troducing the complex conjugates of the cluster amplitudes. The resulting 
extended phase spaces are complex manifolds of too large a dimensionality. 
Arponen has shown how a set of constraint ]unctions may be introduced so as 
to return to the physical submanifold (or reduced phase space, or constraint 
surface) which corresponds precisely to the original Hilbert or Fock space, 
G. He thereby eliminates the extra degrees of freedom, by the Dirac bracket 
method, leaving as independent coordinates a minimal set of (eventually real) 
multiconfigurational amplitudes. These intrinsically Hermitian versions of the 
NCCM and ECCM hold out the promise of making practicable Hermiticity- 

preserving truncations available for practical applications. 

Genera l  Fermionic  CCM: Most many-body Hamiltonians H contain only 
products of an even number of fermionic configuration operators multiplied 
by ordinary (complex) numbers. The same is true for the multiconfigurational 

creation operators {C t } considered up to this point. An example is provided 
by Sect. 2.3. However, for the purposes of calculating odd fermionic quantities 
such as Green's functions, correlation functions, or excited states, it is often 
convenient to break the fermionic parity of H, e.g., by the addition of source 
terms of the form ~ a ( ~ a ~  + a~#~). In such cases it is necessary to enlarge 
the commutation rules (14) to graded commutation rules, and to enlarge 

the corresponding set of CCM amplitudes, e.g., {sf, ~1} and {ai, ~I} from 
ordinary c-numbers to (complex) Grassmann numbers of both even and odd 
parity [119,136]. The procedure to do so is relatively straightforward, as has 

been demonstrated by Arponen [131]. 

Funct iona l  Form of the  CCM: As we have seen above, the standard CCM 

parametrisations are operatorial in nature, where the ground-state wave func- 
tions_, for example, are described in terms of correlation operators (S, S) or 
(5:, 5:). However, as we have already mentioned in Sect. 1, similar functional 
forms of the CCM have also been employed recently [75-80,82], in which the 
ground-state ket wave function, for example, is specified in the exponential 
form, ({r}l~0) = exp[S({r})], where I{r}) is some suitably chosen complete 
set of wave functions. At corresponding levels of truncation the functional 
and operatorial versions are not identical, as has been discussed in detail in 
Ref. [82], to which the interested reader is referred for further details. 

4 A p p l i c a t i o n s  o f  t h e  C C M  

Although our aim in the present article has been to review the generM aspects 
of the coupled cluster method itself, we close with a very brief summary of 
some of the more important applications of the method that have so far been 
made. For further details of each application we refer the interested reader 
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to the references cited in each case, as well as to other reviews of the CCM 

[8,9,66-69,76,101,110,112,118,126,131,132,135,137-142]. 

Without  any a t tempt  to be exhaustive, we note that  some of the most 

important  applications of the CCM have been to the following systems: 

- A t o m i c  Nucle i :  The NCCM has very successfully been applied to the 
ground and excited states of both closed-shell nuclei (e.g., 4He, 160, 4°Ca) 
and to the open-shell nuclei (e.g., lSN, 170, 14C, lSO, lSF) formed from 

the addition to the closed-shell nuclei of one or two valence particles or 

holes. Calculations have been performed [8,9,70-75,100,107,122,1431 for 

a variety of phenomenological two-body (and three-body) internucleon 

potentials, using the HCSUBn truncation scheme essentially up to the 

n = 4 level. Numerical convergence has been demonstrated at this level; 

and no other ab initio technique has ever bettered (or even equalled) 

these results, most of which are now about twenty years old. 
- N u c l e a r  M a t t e r :  Very similar calculations have also been performed 

[144] for nuclear matter,  with similarly converged results for the binding 

energy per nucleon and the saturation density, for a range of phenomeno- 

logical internucleonic forces. 
- A t o m s  a n d  Molecu le s :  The CCM has become the method of choice in 

quantum chemistry wherever high accuracy is required. A huge range of 

calculations on such quantities as electron affinities, excitation energies, 

and ionisation potentials has been performed (see, e.g., Refs. I10,52,99, 

105,106,123-125,137,I39,140]) for a wide variety of atoms and molecules 

with up to about 100 active electrons. Especially for the heavier atoms, 

calculations have been performed with relativistic and QED corrections 

incorporated. The interested reader is referred also to recent reviews [145], 

and to the article by Kaldor in the present volume. 2 
- T h e  E l e c t r o n  Gas :  The NCCM has been applied to the electron gas 

in the high-density (RPA) limit, in the metallic density range, and in the 

low-density (Wigner crystal) regime. Results [112,146,147] in the impor- 

tant  metallic density range for the correlation energy, for example, are 

accurate to better  than l m H  per electron (or < 1%) by comparison to 

the essentially exact GFMC results [148] of Ceperley and Alder. This ac- 

curacy has never been equalled in any other ab initio calculation of what 

is still one of the best studied of all quantum many-body systems. 
- C h a r g e d  I m p u r i t y  in a P o l a r i s a b l e  M e d i u m :  The technique of al- 

lowing low-energy positrons to annihilate inside metals, alloys, and other 
forms of condensed matter  has become an important  experimental tool. 

Such systems comprising a charged impurity in a polarisable medium are 

prototypes of field-theoretical one-body problems. By casting the polari- 

sation degrees of freedom as internal gauge fields, it has been shown [128] 

2 Issues 2-6 of Theoretica Chimica Acta 80 (1991) and a forthcoming issue of 
Molecular Physics (1998) are also wholly devoted to articles on coupled cluster 
theory and its applications. 
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how the ECCM can provide a powerful microscopic description of such 

systems. 

- Q u a n t u m  Fluid Mechanics:  By coupling to external gauge fields (viz., 
the U(1) scMar and vector potentials), which serve to set the system 
into its most general state of motion, it has been shown [127] how the 
ECCM can provide a very complete, microscopic description of the zero- 
temperature quantum hydrodynamics of a strongly-interacting condensed 

Bose fluid. 

- Q u a n t u m  Spin Lat t ice  Models:  Extensive and very successful ap- 
plication of the CCM have been made in recent years to a wide variety 
of quantum spin lattice models. Examples include the solid phases of 
3He I149]; the isotropic (Heisenberg) and anisotropic XXZ models in one 
dimension and on the two-dimensional square lattice, both for spin-hMf 
systems [113-115,150] and higher-spin systems [116,151]; the spin-one 
Heisenberg-biquadratic model [152]; and to such frustrated spin models as 
the spin-half J1-J2 model [92,153], and the two-dimensional (anisotropic) 
Heisenberg antiferromagnet on a triangular lattice [117,1181. The CCM 
has also been applied to the spin-one easy-plane ferromagnet [154]. 

- Elec t ron  Lat t ice  Models:  The CCM has been applied [155] to such 
lattice models of strongly interacting electrons as the Hubbard model, 
both precisely at half-filling and with the further removal of one or two 

electrons. 

- Anha rmon ic  Oscillators: Both the NCCM and ECCM have been in- 
tensively applied to anharmonic oscillator systems [69,90,108,130-132,156] 
as (0 + 1)-dimensional models of nonlinear quantum field theories. The 
structure of the NCCM and ECCM has been particularly explored by 

applications to this model of the powerful holomorphic (or Bargmann) 
representation. Analogous anharmonic spin models have also been stud- 

ied [90]. 

- C o n t i n u u m  Q u a n t u m  Field Theory:  Kiimmel and his co-workers 

have very successfully applied the NCCM to several continuum quan- 
tum field theories. These include: (i) ~4 field theory [1571 in 1 + 1 (and 
2 + 1) dimensions, in the vacuum (ground state) and one-particle (mass 
gap) sectors, and in the soliton sector; (ii) ~ 54 + ¢6 field theory [158] 
in 1 + 1 dimensions, in the vacuum, one- and two-particle sectors; (iii) 

the sine-Gordon model in 1 + 1 dimensions [159] in the vacuum, one- 
particle, and soliton sectors; and (iv) the vacuum, one-particle (physical 
nucleon mass), and two-particle (deuteron) sectors of a model (3 + 1)- 
dimensional field theory of pions and nucleons [160] interacting via the 
usual isospin-invariant pseudoscalar coupling. We also note that a pre- 
liminary application of the ECCM to quantum field theory has also been 

made [161], using the sine-Gordon model as an example. 

- Lat t ice  Q u a n t u m  Field Theory:  As discussed in Sect. 1, the NCCM 
has been widely applied to various lattice gauge field theories. These 
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include the discrete Z(2) model [75], and such continuous groups as the 

Abelian V(1) case [75-80] and the non-Abelian SU(2) case [81]. Both the 

operatorial and functional forms of the NCCM have also been applied 

very recently [82] to a latticised 0(4)  nonlinear sigma model of chiral 

meson field theory. 

- Q u a n t u m  Opt ics :  A very recent application of the NCCM has been 

made to one of the prototypical models of quantum optics, namely the 

Rabi Hamiltonian (or Jaynes-Cummings model without the rotating wave 

approximation) [162]. 

- S o l i d - S t a t e  O p t o e l e c t r o n i c s :  A similar application of the NCCM has 

been made to the linear E-e Jahn-Teller effect [163]. 

- O t h e r  M o d e l  P r o b l e m s :  Various other applications of the CCM have 

been made to such important  model problems as the Lipkin-Meshkov- 

Glick model referred to [89] in Sect. 2.4 [67,107,129,164]; and the one- 

dimensional Lieb model [86,87] of bosons interacting via repulsive delta- 

function potentials [84]. 
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