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Summary. The effect of attenuation on the coupling of nearly resonant
multiplets in the Earth’s free oscillation spectrum is investigated and
numerical results are presented for several of the most strongly coupled low
frequency multiplet pairs. The coupling influences considered are those of the
Coriolis forces due to rotation and of the Earth’s hydrostatic ellipticity of
figure. It is found that the effects of attenuation (in particular the difference
in Q7! for the two multiplets) can significantly change the splitting diagrams
and the degree to which coupling takes place. The Q values for the coupled
singlets are, in general, all different and lie between the two Q values of the
uncoupled multiplet pair. In addition it is shown that the diagonal sum rule
may be readily extended to sets of coupled multiplets.

Introduction

Dahlen (1969) and Luh (1973, 1974) have drawn attention to the strong coupling which can
exist between modes of free oscillation of the Earth whose eigenfrequencies are very close to
one another. Coupling between such nearly resonant modes is induced by a slight asphericity
of the model, such as rotation, ellipticity or lateral heterogeneity in mechanical properties.
Strong coupling may exist between multiplets when the difference between their un-
perturbed, degenerate eigenfrequencies is comparable to the frequency splitting predicted
for the modes by ordinary degenerate perturbation theory for the given kind of asphericity
(Dahlen 1968; Woodhouse & Dahlen 1978). As a result degenerate perturbation theory is
inapplicable to these multiplets and quasi-degenerate perturbation theory must be employed
(Dahlen 1969; Luh 1973, 1974). The eigenfunctions of the perturbed, slightly aspherical
earth model are not even approximately eigenfunctions of the unperturbed model, but will
be, to zero order in small quantities, linear combinations of the unperturbed eigenfunctions
of all the singlets within the multiplets which are coupled.

While it is a necessary condition for coupling that the modes have nearly equal eigen-
frequencies this may not be sufficient; the Coriolis forces due to rotation, for instance,
couple either a pair of multiplets of different type (one spheroidal, the other toroidal)
whose angular orders (/) differ by unity, or a pair of spheroidal multiplets belonging to the
same angular order. Ellipticity also couples multiplets of the above kinds and, in addition,
couples modes of the same type whose angular orders differ by two.

220z 1snbny |z uo 3senb Aq 08001.9/1.92/2/19/aI0me/ /W00 dno-olwepese)/:sdyy Woly papeojumoq



262 J. H. Woodhouse

If attenuation is introduced the eigenfrequencies may be thought of as possessing an
imaginary part iw/2Q where w is the unperturbed eigenfrequency and Q is the quality factor
of the mode. If the quality factors, Q;, Q,, say, of two interacting multiplets were very
different one would expect the modes to be less strongly coupled than they would be for
a perfectly elastic earth model since, viewed in the complex plane, their frequencies would
not be so nearly equal. It is the purpose of the present paper to investigate this effect. It
will be shown that the introduction of attenuation can produce large changes in the splitting
diagram of the coupled multiplets and that, even though we shall consider only spherically
symmetric distributions of the material attenuation parameters Q,,, Q,, the quality factors
for the singlets in the perturbed spectrum will, in general, all be different. This is in contrast
to the result in degenerate perturbation theory, where spherically symmetric distributions
of @,,, @, lead to the same value of @ for all members of a given multiplet.

For the low frequency multiplets considered by Luh (1974) the dominant coupling
influences were shown to be rotation and ellipticity, and in this study of the effect of
attenuation on quasi-degenerate multiplets we shall confine our attention to these
asphericities alone. In the Appendix, however, we give the completely general matrix
element, correcting the part pertaining to ellipticity (Dziewonski & Sailor 1976; Dahlen
1976; Woodhouse & Dahlen 1978) and also correcting some minor misprints in Luh’s (1974)
result. This matrix element, given here for reference, has rather wider applications than those
considered in the present paper; it is needed, for example, in determining the first order
corrections to the eigenfunctions in degenerate perturbation theory and also in calculating
the second and higher order corrections to the eigenfrequencies (Dahlen 1968; Dahlen &
Sailor 1979).

In Section 1 of the present paper notation is introduced and the necessary perturbation
theory reviewed. It is also shown that the diagonal sum rule (Gilbert 1971) can be
generalized to include the case of quasi-degenerate multiplets. In Section 2 the necessary
formulae are derived for the particular application which is the subject of this paper and the
results for some strongly coupled multiplets are discussed.

1 Perturbation theory
1.1 NOTATION

The normal mode eigenvalue problem for a spherically symmetric, non-rotating, elastic
isotropic (SNRETI) earth model may be written symbolically

(Ho — pow?)s=0 )

where H, is a self-adjoint integro-differential operator, also thought of as incorporating the
appropriate boundary conditions; p, is the spherically symmetric density distribution of the
model and the eigenvalue w? is the squared angular frequency of a mode of free oscillation.
The vector field s is the elastic displacement eigenfunction, which takes the form:

s=lnglm)=,UR) Y0, ))F + VEOVLYTH(0, 9) — WP EX V, YT (6, 0). 2

In equation (2) (7, 8, ) are spherical polar coordinates and £, 9, ¢ will denote unit vectors
in the coordinate directions. The operator V; is 83, + cosec 03, and Y7 (6, ¢) are scalar
spherical harmonics, as defined by Edmonds (1960), which are normalized so that

f [¥7 6, &1*Y/"(0, 6) AR = Sy S1r @

* Note that some geophysical applications (e.g. Gilbert & Dziewonski 1975) use a definition which differs
from this by a factor (— 1) for m < 0 (¢f. Schiff 1968).
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Coupling and attenuation of free oscillations 263

where [d) denotes integration over the unit sphere and * denotes complex conjugation. The
parameters n, [, m are respectively, the radial order, angular order and azimuthal order of
the eigenfunction and ¢ takes the values T or S, signifying an eigenfunction of toroidal or
spheroidal type; thus if g = T then ,U? = ,V#=0and ifg = S, ,Wf = 0. For brevity we shall
use the symbol k to denote the triplet n, g, [ which defines a multiplet and write the un-
perturbed eigenvalues and eigenfunctions simply as wy, |k m). Thus equation (1) becomes:

Holk m) = wi polk m). 4)

For any tensor operator @ which associates a vector field Qu with a given vector field u,
and for any two eigenfunctions s = [k m), s’ = |[k'm") we shall write for the ‘matrix element’:

(km|Olk'm')= j s . 0s' dv, )
v

where V is the volume of the SNREI earth model. The eigenfunctions will be normalized
in such a way that

(kmlpo|k’m,)=6kk'5mm' (6)
where, of course, 8z’ =1 if n=n',g=q',1=1" and is zero otherwise. In view of equations
(2) and (3) this requires, using an obvious notation:

a
8,,'J po[UU' +1(1+ 1) (VV' + WW")r? dr = 8,8 4q' 811’ )
Q

where ¢ is the radius of the earth model. If all eigenfunctions are included (not omitting the
toroidal modes of the inner core or the internal wave modes of the fluid outer core) the
vector fields |k m) form a complete set, thus for any vector field u we may write

u= 3, \km)(km|polu) ®
km

so that symbolically the identity tensor operator I may be written

1= lkm)(km]p,. )
km

12 THE PERTURBED EIGENVALUE PROBLEM

When the SNREI earth model is perturbed by the influences of rotation, ellipticity and
asphericity we obtain the perturbed eigenvalue equation

Ho + eHy — (po+€p1)0*lu=0 (10)

where ¢® is an eigenvalue of the perturbed system and u the corresponding eigenfunction.
The perturbation in density is €p; and eH, is a perturbing operator. The small parameter e
has been introduced to identify small quantities in the equations; € will later be set to unity,
and the small factor incorporated into p;, ;. Expressing u in the form (8) and making use
of the unperturbed eigenvalue equation (4) we find

2 ey~ p10®) — (0 — F)pol 1K' m') (k' m' | pglu) = 0. an
km
Taking the scalar product with |k" m")* and integrating over ¥ we may also write

L K" m"|[e(Hy — p10%) — (0 — wf)po] IK' m") (k' m' [ polu) = 0 (12)
Em'

which may be regarded as an (infinite dimensional) algebraic eigenvalue problem for ¢2.
Now let us seek an eigenvalue ¢ in the neighbourhood of some chosen frequency wg and
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264 J. H Woodhouse

let X denote a set of multiplets with unperturbed frequencies close to cwq, i.e.

wi — wi=0(e) fork €K (13)

Each multiplet k = (n g !) contains 2/ + 1 singlets so that the number of singlets in X is

N= Y @i+1). (14)
kEK

Writing o®= w§+en we find that the zeroth order terms of equation (12) give, using
equation (6)

Y (b — W)y k" 8m m (k' m 1 polu) =0
KEX

m

and consequently, for k' not in K

(k' m' | pol)=0 (15)
to zero order in €. The first order terms of equation (12) give

Y (" m"|eZIk'm") — (wh — Wk + en)dy k" 8m' m” | (' m' | polu) =0 (16)
Kex

It

where Z = H; — w3p;.
Thus en is an eigenvalue of the square matrix of dimension N (equation (14)) whose
elements are:*

A irm = K" m"eZ k' m') — (W3 — W)k " 0m'm”, k" k' EK. a7
The eigenvalues n of equation (16) will be denoted by r;, i=1, 2,...,N and the

components of the corresponding eigenvector by (k' m'|poly;). Using equations (8) and
(15), the corresponding displacement eigenfunction of the perturbed system is given by

up= Y. lkm)(kmlpoluy) (18)
k€K

to zero order in e. The parameter e will now be set to unity, incorporating the small factor
into Hla pl;-Zs n.

1.3 THE DIAGONAL SUM RULE

For a purely aspherical perturbation and to first order in ordinary degenerate perturbation
theory, Gilbert (1971) has shown that the average squared eigenfrequency of a split
multiplet is the corresponding squared eigenfrequency of the SNREI starting model. That
is to say that to this order of approximation the average squared eigenfrequency of a split
multiplet is an eigenfrequency of the ‘terrestrial monopole’ — the spherically averaged
earth. This result fails for quasi-degenerate multiplets since, as is clear from the above
analysis, it is no longer possible to associate a singlet of the aspherical model with a single
multiplet of the SNREI starting model, but only with the sets of coupled multiplets K. A
simple generalization of Gilbert’s result is possible, however, as we now show.

First we note that, since Z is a tensor operator, the Wigner—Eckart theorem (Edmonds
1960) tells us that the matrix element (k' m'|Z |k m) may be written in the form

,’ O A L | A"
km\Zkm)y= Y (-1)™™ Vo ow )(k IZz®m9 k) (19)
I"m" —m m m

*The rows of A are labelled by the pair (X" m”), the columns by (k' m'); k", k'€K; - 1" <m" <",
“I'sm'<1',
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Coupling and attenuation of free oscillations 265

where the reduced matrix element (k'||Z a,m" lk), itself defined by equation (19), is
independent of m, m' and where the 34 symbol is that defined by Edmonds (1960). The
term on the right hand side with /"= 0 characterizes the spherical part of the perturbation
and thus is identically zero if the SNREI starting model is chosen to represent the terrestrial
monopole. From the property of the 3+ symbol that

11"
Y (=17 ( R ) =0 ("#0) (20)
- —-m m m
it follows that
Y (km|Zlkm)=0. 2D

Now the sum of the eigenvalues n; of equation (16) is equal to the trace of the matrix
A,ie.

N
Z n= Z Agmim (22)
i=1 kEK

m
so that making use of equations (17) and (21) we obtain simply
N
2 m= Y («f—wp) (23)
i=1 k€K

m
80
S @ity T wh=s T (14 ed (24)
— 2 (Wotm)=— ) wip=—= W
N5 Y NykEk Nygek

m

Thus, since w3+ n;, i=1, 2,...,N are squared eigenfrequencies of the aspherical model,

we have shown that the average squared eigenfrequency for all the coupled singlets in X,
calculated for the aspherical model, is equal to the same average calculated for the terrestrial
monopole.

When K contains only a single multiplet the above results reduce to those of ordinary
degenerate perturbation theory and equation (24) represents the diagonal sum rule of
Gilbert (1971); equation (24) gives the extension of this rule to a set of nearly resonant
multiplets. Just as Gilbert’s result can be used to obtain data about the terrestrial monopole
from the average eigenfrequency of a split multiplet, the generalized result equation (24)
shows that if, for instance, two multiplets are strongly coupled, then the average squared
eigenfrequency of all their singlets is equal to the average (weighted according to the number
of singlets within each multiplet) of the corresponding squared eigenfrequencies of the
terrestrial monopole. Thus, while it is not possible in this case to identify individually the
two unperturbed eigenfrequencies, it is possible to determine the average, which may then
be used as a datum in an inversion for the spherically averaged earth.

2 Coupling by rotation and ellipticity
2.1 DERIVATION

We shall restrict our attention to the coupling influences of rotation and ellipticity in an
earth model possessing spherically symmetric distributions of the intrinsic attenuation
parameters Qy, Q. If a coordinate system is chosen in which the axis, 8 = 0, coincides with
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266 J. H. Woodhouse

the axis of steady rotation the matrix elements (k' m'|Z |k m) are different from zero only
if m' =m (equation (A17)), so that only singlets of the same azimuthal order are coupled.
An examination of equation (A17) shows that only matrix elements of the following six
kinds are different from zero:

a
Y2 S1+2mSt+1m f EMy? ar
0

(n'Sit2ml|ZinSIim)= (25)

a
Y2 8y mSi— 1,4 EMy2 gy
0

{7]
% St+2mSt41m f E®y2 gy
0

W' Tit2m|Z|nTim)= (26)

a
'72 SlmSIvlmJ E(+)72 dr
0

a a
iSr+1m [2&)09‘[ poCr2 ar +3mf E(")rzdr]
0 0

'S I T )= 127

a a
iSym [ZwOQJ poCCr2 dr + 3mf E()? dr]
0 0

a a
iSie1m [2woﬂf 00CW2 dr + 3mf E(=)2 dr]
0 0

(W' Ti+1m|Z|nSIm)= (28)
a a
iSym [2wosz f poCC2 dr +3m f EG)y? dr]
0 0
) 2wg a -
W TIm| ZInTIm)= m Qmb,, + Ty, f EC2 gr + W8,y (10 1-d) (29)
0

a a
(n'SIlelnslm)=“'/3S22[6nn»—l(l+1)f poC(+)r2dr]+2wOme poCHr2 ar
[ 0

a
+ Ty f E% dr + 68,y (0™ - d) (30)
0

where the notation is that of the Appendix. The kernels E®), C®) are those given by
equations (A18) to (A33) and it is understood that they should be evaluated using the scalar
eigenfunctions (U, V, W, ¢,), (U', V', W', ¢}) of the multiplets appearing in the right and
left brackets, respectively, of the matrix elements on the left hand sides of the equations.
The parameters Q! in equations (29) and (30) are the quality factors of the multiplets in
the absence of asphericity, defined by

wiQ = f * QP (WK + uQ wo)M' 1% dr 31)
0
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where
K'=(U+F)* 32)
M =BQU-F)?+r 21+ D) [PV — V+ UP + W — W)?]

- DI+ ) +2) [P+ WP (33)
F=r'2U—-KI+1)V]. (34)

Similarly the parameters d in equations (29) and (30) characterize the frequency shifts of
the multiplets arising from the frequency dependent real parts of the elastic moduli (Liu,
Anderson & Kanamori 1976), defined to be —kd,(w), — ud,,(w).* Thus we have

i

wdd Jw [kd (we)K ' + udy(wo)M'}r? dr. (35

0
In the calculations which follow, however, these dispersive terms have been omitted. The
reason is that the calculations were performed for model 1066A (Gilbert & Dziewonski
1975) which was obtained without taking into account the dispersive consequences of
attenuation. The eigenfrequencies of 1066A, therefore, will be close to the eigenfrequencies
of the real terrestrial monopole, already modified by dispersion and it would be erroneous
to incorporate these dispersive effects a second time. We therefore set d equal to zero in
equations (29) and (30), although it would clearly be preferable to use a model which
correctly accounted for dispersion and to make use of equation (35).

We shall consider coupling between a pair of multiplets, so that K contains two multiplets
k=(n,q,D, k=@, q',1") say. Without loss of generality we assume /' < I. Since coupling
occurs ouly between multiplets of the same azimuthal order, those singlets (if any) of
multiplet k for which I' < |m| < I remain uncoupled and equation (16) gives simply

km|Zlkm) —(Wd+n—wi)=0 (' <|mi<]) (36)
so that the perturbed squared eigenfrequency is
Witn=wi+(km|Zlkm) (' '<Im|<]I) 37

and the corresponding eigenfunction is simply |k m), to zeroth order. This is, of course, the
same result as would be obtained from ordinary degenerate perturbation theory. For singlets
belonging to multiplets £, &' and having |m| < /' equation (16) reduces to the 2 x 2 eigen-
value equation

(Emiztem ek EmEEm ) (Emied) g (Emiedid) - o

(&' m|Z|km) (' m|Zk'm) + i) \(K' m|polu) (k' m|polu)
Writing

¥ = B(oh + ) + Bk m|Z Ik m) + B(E m|ZIk' m) (39)
v =%(wi — wi) + Bk mlZkm) —%E m|Zk' m) (40)
g= 0+ (km|ZIK' m) (K m|Z |k m)}V? “n

equation (38) gives the perturbed eigenfrequencies

Wi=witn=ytu (42)

*The complex elastic moduli of the spherical part of the perturbed model are thus «[1 —d, (w) + 0}
fw)l, ufl —dy(w) + iQ,_]1 (w)], where k, u are the elastic moduli of the SNREI starting model.

10
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268 J. H Woodhouse

and the corresponding zero order eigenfunctions

Uy =aslkm) +b.|k'm) (43)
where

as = (ry + 1) (r2)? exp [%i(8: — 6.)]

by = (rs +7)2(rs)"? exp [4i(— 0. +0.)]

and ry, 0., 0, are defined through

reexp () =viu (F:>0,—m<8.<7) 45)
reexp (0)=(k'ml|Zlkm) (ro>0,—m<6,<m).

The eigenfunctions (43) have been normalized so that

G

(uslpolus)=1
but it should be noted that they are not necessarily orthogonal. In fact we have
(-lpolus) = 2(rer)?(ry +r-)"" cos 16, — 6-) (46)

and it is readily shown that this vanishes only if (k m |Z |k m) — (k' m|Z|k' m) is real, which
occurs only when the Q values for the multiplets are identical.

2.2 RESULTS

For each of the N[=2(l +1' +1)] singlets belonging to the coupled multiplets the above
analysis enables complex eigenfrequencies w; (=1, 2,...,N) to be determined, whence
we may define real eigenfrequencies (1 + 0;)wo (i=1, 2,...,N) and Q7* values %(Qz" +

1000

x

"

A<1/Q> X 1000
(@)

Figure 1. (a) The splitting diagram (o; equation (47)) of ,S,,—,T;,- (b) The parameters ¢; (equation (47))
of ,S,,—,T,,. (¢) The parameters E; of ,S,,—,T,,.
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k, % in the absence of asphericities. Thus o;, g; are defined by

1
0;=— Re ((JJ,) -1
Wo

Coupling and attenuation of free oscillations
Q,;}) +q; (=1, 2,...,N) where Oy, Q' are the Q values belonging to the two multiplets

2 _
q; =— Im (w;) — %(Q%" + Qi).

o

269

“7)

We also define E; = |(k m|polu;) i where u; is the normalized eigenfunction corresponding
to the complex eigenfrequency w; and thus E; is simply |a.| =r./(r, + r-) (equations (43),

Act/0> X 1000
Fig. 1(b)

0.4 7 R S R —
— T T T T e ———
/ ——— T T T ——
/ /// N N
S S \
0.2 _4/ // . T T T
. - 7 T \
— //// // -
//’
- \\
T T T T T T —
-8 -6 -4 -2 o 2 & 8 i0

Actrza> x 1000
Fig. 1 (c)
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270 J. H. Woodhouse

(44)) where the upper or lower sign is taken according to whether «y; is w, or w_ given by
equation (42) for some value of m. Since the results are sensitive to the difference in 07*
between multiplets the results for o;, ¢;, E; (i=1, 2,...,N) have been calculated as a
function of

AQT =0 - g} (48)
which is the abscissa in Figs 1—-5.

6

-8 -6 -4 -2 ) 2 4 6 8 10
Aci/Q> X 1000
(@)

q, % 1000

T

-8 -6 -4 -2 0 2 4 6 8 10

Ac<t/s0> X 1000
(b)

Figure 2. (a) The splitting diagrams of S ;—,T;,. (b) The parameters g; (equation (47)) of 4S,:—,Tys.
(c) The parameters Ej of ;S,3—,T,,-
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Acirzad X 1000

Fig. 2(c)

-8 -6 -4 -2 0 2 4 6 8 10
Aciza> X tooo
(a)

Fuemte 3. (a) The splitting diagrams of 08190 Ta0s (b) The parameters q; (equation (47)) of ,S,,~,T,,

“53 The parameters E; of (S, ,—, Ty,
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Fig. 3(b)
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-8 -6 -4 -2 o] 2 4 6 8 10

AC1/0> X 1000

(2)

~8 -8 -4 -2 o] 2 4 6 8 10

A Ci/0> X 1000

(®)

Fg-e 4. (a) The splitting diagrams of ,S,,—,T;,. (b) The parameters q; (equation (47)) of ,S;,—,T;,.
< The parameters E; of ,S,,—,T,,.

220z 1snbny |z uo 3senb Aq 08001.9/1.92/2/19/aI0me/ /W00 dno-olwepese)/:sdyy Woly papeojumoq



274 J. H Woodhouse

Act/a> X 1000

Fig. 4(¢c)

¢
.
b [
@) g [ &
S 2
o . ——

x

T T T T ! T T '
6

-8 -6 —4 -2 [0} 2 4
Acizad X tooo
(2)

Figure 5. (a) The splitting diagrams of ,S,—,S,. The two uncoupled singlets ,S;2, ,S;® are beyond the
range of the diagram. (b) The parameters g; of ;S,—;S,. (¢) The parameters F; of ,S,—,S,.
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Fig.5(b)
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Fig. 5(0
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The calculations were performed for model 1066A of Gilbert & Dziewonski (1975)
using the catalogue of eigenfunctions calculated by Buland & Gilbert (1975). The parameters
05, G;, E; (i=1,2,...,N)are plotted in Figs 15 for the following five pairs of multiplets:

k=0Su, k' =T
k=081 k' =0T,
k=081, k' =oTas,
k=0Sz, k'=0oTs,
k=S, k'=.S,

Sailor & Dziewonski (1978) have given several models for the distributions of Q. (r), Qu(r)
consistent with normal mode observations and in each of Figs 1-5 is shown the band of
AQ ™! predicted by their five 9 models QMU, QDQ, QBS, QKB, QML.

Fig. 1(a) shows the splitting diagrams o; = 0;(AQ ™) for the strongly coupled multiplets
0511, oT12. Notable here is the clustering in frequency of many singlets. Twenty-one of the
48 singlets, including each azimuthal order |m|< 10 have —0.00282 < ¢; < —0.00267 at
AQ71=0, with some separation as |AQ™!| increases. The remaining singlets form (at AQ ™" =
0) pairs with azimuthal orders +m, —m, 1 < |m| < 12, and these pairs tend to separate as
|AQ ™Y} increases. It can be seen in Fig. 1(c) that there is strong clustering about E; =%,
corresponding to perturbed eigenfunctions in which the toroidal and spheroidal components
are of roughly equal magnitude. Correspondingly in Fig. 1(b) it can be seen that the values
of Q7! of the coupled singlets cluster about the mean Q7" of the initial uncoupled multi-
plets.

The diagrams for the pairs ¢S;0—¢T20, 0518—0T19, shown in Figs 2 and 3, are basically
similar, though in Figs 2(c) and 3(c) it can be seen that a distinct separation is maintained
between singlets predominantly of the toroidal and spheroidal types.

The diagrams for ¢S31—¢T3 (Fig. 4) show a very complicated pattern. Clearly seen here is
the decoupling effect for large values of AQ™!; the splitting diagram (Fig. 4(a)) tends to the
combined ordinary degenerate splitting diagram for the uncoupled multiplets and the para-
meters F; (Fig. 4(c)) tend asymptotically to 1 or 0, corresponding to purely toroidal or
purely spheroidal eigenfunctions. Correspondingly the Q! values for the singlets (Fig. 4(b))
tend asymptotically to the Q! values of the injtial multiplets. It will be seen, however, that
the differential Q! predicted for these multiplets by the Q models of Sailor & Dziewonsk*
(1978) are not large enough to effect this decoupling.

For the pair ;S3—3S; only the six singlets |m| < 1 are coupled. The only contributing
coupling influence here is ellipticity and it can be seen that a significant degree of decoupling
is achieved for the most strongly coupled singlets (72 = 1) by introducing the differential
Q™! from the models of Sailor & Dziewonski (1978).
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Appendix: the general matrix element (k' m'|Z |k m)

The analysis given in Section 1 of this paper was purely formal and no attention was paid to
the form of the perturbing operator H, or to the boundary conditions. These aspects of the
problem have received detailed attention in a recent paper by Woodhouse & Dahlen (1978)
and we may take our initial expressions for the general matrix element (equation (19))
directly from that paper (equations (68)—(71)) which will be referred to hereinafter as L.
These expressions differ from the corresponding results used by Luh (1974) only in those
parts relating to perturbations in the locations of discontinuities; similarly our result for the
part relating to ellipticity will differ from that of Dahlen (1969). We shall omit here the
effects of anistropy and non-hydrostatic initial stress, so that our perturbation is specified
by the angular velocity € and the consequent centrifugal potential , the perturbation in
demsity 8p(r, 6, ¢) and the consequent perturbation in gravitational potential 8¢4(r, 6, 8),
the perturbations in bulk and shear moduli 6« (r, 8, ¢), Su(r, 8, ¢) and the normal displace-
ment h(f, ¢) characterizing the perturbation in the location of each of the discontinuity
sarfaces of the model. To incorporate the effects of attenuation §x, Su may possess
Imaginary parts k/Q,, u/Q, and to include the effects of dispersion they may be frequency
dependent. When applying the results to multiplets with eigenfrequencies close to wy,
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8k, 5u will be taken to be those evaluated at w = wy since variations within the band of
splitting lead to only second-order effects.
Writing s = [k m) = ln g lm),s' = |k'm')=|n" ¢’ I'm") and using the results of 1, we find
(k' m'|Z1km) =% f po[4ws-(IQx §)* +5-V('™ V) +s'*-V(s- V)
14
~ (VY (V-s'") = ('F- V) (V-9)]dV
+ J [6k(V-5) (V-8'%) +28uT: T"* +8po(s - Vor* + s*. Vo,
v
+40Gpgs, s, +goA — w3s-s'¥1dV
+ 1% f po[8-V(s'* -V8g) +5™ -V(s-V8,) — (s- Vo) (V-5
v
— (5" Vo) (V-9)]dV
- j B {%K(V-5) (V-s'* —28,5,%) + %K (V-s'%) (V-5 —20,s,)
b

+ T (T — 270,8 %) + uI"*: (T — 273,8) + pols - V1"

+5 % . Up, +81Gposys,™ +goA — w?s-s' 11 dZ
- JVz;h~[K(V-s)s'*+K(V's'*)s+2u(f‘-l‘-f‘)s'*
T

+2u( T'* - Ps]td= (A1)

where
4

A= %(s Vs ¥+ Vs, — 5, V.8 5 V.5 —— s,s;*) (A2)
r

and s,, s, denote the radial components of s, s'.

As in I we shall express the total perturbations 8po, 8¢, 8K, 3, h as a sum of the
perturbations 804, 8%, 5k°, 8u°, h° relating to the hydrostatic, isotropic, rotating, elliptical
mode! which has the same spherical average as the SNREI starting model, together with an
expansion of the remaining asphericities in terms of spherical harmonics, i.e.

500=005+ 2, sppr Y (A3)
ol

s¢=805+ L o9 Y[ (A4)
l"mll

Sk=5k°+ X sk ¥ (A5)
lllmll

Su=o6u°+ 3, 5;(75”Y;:'f" (A6)
zllmll

h=h+ Y B Y (A7)
"'m"
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where (Dahlen 1968)

805 = (4m[5)"2-Ysre(r)d,po Y3 (A8)
8u€ = (4n/5)V% . Yare(r)o,uY?y (A9)
3k% = (41/5)%  Ysre(r) 0,k Y3 (A10)
8¢° = (4n/5)V2 [Ysre(r)go — V3 Qr*] YY) (A11)
K = —(4n[5)2 Yre(r) Y] (A12)

and e(r) is the hydrostatic ellipticity, the solution of Clairaut’s equation (Jeffreys 1970).

The form used in the present paper for the eigenfunctions (equation (2)) and the
definition used for the scalar spherical harmonics were chosen to be concordant with I and
with many other papers on the Earth’s free oscillations; for the calculation of matrix
elements, however, the formalism developed by Burridge (1969) and Phinney & Burridge
(1973) is very advantageous so we point out here the connection between their notation and
our own. Following Phinney & Burridge (1973) we may define complex, spherical, contra-
variant components of s (and similarly s')

§=2"V2(%54 +isy), s°=s, (A13)

giving st =7, Q5(V £ iW) YF 1™, 5= 4, UY™ where v, = (4m) V221 + 1)V2, Q= [ +N)
{I—N+1)]¥? and Y™ (0, ¢) are the generalized spherical harmonics defiried by Phinney &
Burridge (1973).

[Note Y™ =y, YP™, 27V2(% dg +icosec 03,) Y™ = Qp¥; 1™ ]

The integrands in equation (A1) may then be readily expressed in terms of the contravariant
components of the various vectors and tensors which appear, and these in turn may be
written in terms of U, V, W, ¢,. The contravariant components of strain e = %(Vs +sV), for
example, are:

€T =y Qo Qb r T (V £ iW)Y; 2"

e® =y, UYPm

e~ = Yy, FYP™

%% =" 0= Yy, QY (X £ iZ) Y] (Al4)
where

F=rlQUu-I(+1)V), X=V+r Y\ (U-V), Z=W-r'Ww (A15)

and °° denotes differentiation with respect to #. It is then a simple matter to evaluate the
angular integrals in equation (A1) by making use of the formula

a0 (F T e
o ( 14 ) 1" I —(_ ) _N' N" N —m' m" m

=X o

which is obtainable from equation (4.6.2) of Edmonds (1960) when it is noted that
Y90, ) =2}, (6,0, 0) = d, (0) exp (ime)

{for notations D), d{Y, see Edmonds 1960).
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If the axis 6 = 0 of our spherical coordinate system is chosen to coincide with the angular
velocity vector Q the final result for the matrix element may be written:

1] 1 a
(k'm ]ZIkm)=5mm’{2wOQm6”'j 2oC P2 dr + 2iwo Sy mby 141
0

a a
+S1m5”'+1)f poCr2 dr+2/3926”f[6qq'8nn'—Lf poCHp? dr]
0 [s]

a
H(Tmbu + 2S1mSr + 1m0y 42 + 3/2Sl'mSl+1m5l'l+2)f EEy2 gy
0
a
+3im(Sy mOr 141 + Sim 81 z’+1)f E()y? dr}
0
~a " ” " "
N (T e
i

0

.o 1
+847 GIPYrt dr — 3 P2 (kK + wy +poR§~’1r)
d

. of 1
x 21+ DY22"+ V2" + DV (En) V(- )™ ( y ) (A17)
The notations used above are as follows:
1+m) (I —m) V2 I(1+1)—-3m?
= ]:_(_’nuj , m :¥ (Luh 1974) (Alg)
QI+ RI-1 QI-1)(21+3)

CH=vV'+ww' +Uv' +U'V
COO=B[L -~ LADU- L' +L-DVIW —%[L - L'+)U —L+L =) V'IW  (A19)
with

L=I(+1), L'=I'('+1), (A20)
BT =%e() [k R — (n+ DEO)+u@® — (n+ D) +p6 (R = (n+3)R )]

(A21)
B =%e() [~k (n+ DK O +u( ) —(n+ DI ) +ps R - (n+3RO),
n=n()=ré@)/ewr) (A22)
and

K® = (U+F) (U +%L —L+)r V') (U +FYU+ %L L' +2)r'V), (A23)
M = — QU - F)[2U' +%(L' ~ L+6) BV —4r W)+ X[%(L - L' +6)T’
~WLAL — 6V —B(L' —L+6)r 'LV’ 1 +r  [BL'(L' ~ L +6)
+3(L+L —O)WW+V'V) - %L +L —6)WZ' — V32U —F)[2U
+BEL L +6) BV —4r M+ X' [BUL —L+6) U %L +L -6V
~ WL L +6)r L' V]+r [BL(L - L'+ 6)+3(L' +L — 6)](WW'
+VVY %L +L - 6)WZ, (A24)
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RO = F(ré + 4nGporU' +goU) + %(L' — L+ 6)UV' (w3} — r'go) +3r g, UU'
+r7ig [B(L' +L —6)V — L'U) +F'(rp, + 4nGporU + g, U)
+%(L — L' +6)U' V(W —rlgg) +3r goU'U+r g, [K(L+L —6)V' —LU']

where (A25)
F=r'QU-LY), F'=r'QU'-L'V"),

X=V+r'i(U-v), X' =V+r iU -V", (A26)
Z=W-—r7tw, Z'=w —rw'.

g0=8o(r) is the gravitational acceleration in the SNREI starting model and G is the
gravitational constant.

KD =uU+F)(-U+F +(L' = L+6)r V) +%(U +F)(—U+F

+({L-L' +6)r v, (A27)
MO =2y + ww) (L' +L —8) (L' +L — 6) —2LL') + %(L' + L — 6)

X (XX'+2Z' - VX -WZ-VX' -WZ") - QU -F)

X (U +%F —(L' =L+ &)™ V') = 132U = F) (U + %F — (L — L' +6)r™V)
) o (A28)
R = V(L +L' —6) (2r 1V g, — RVV' — BAWW') + KU’ [24 + 81Gpo U — wilU

—(L =L +6)gor W]+%UL' +L —6) 2r 1Ve; — w3 V'V — Wi W'W)

+ B U[20] + 81GpoU' — iU’ — (L' — L +6)gor V'] (A29)
MO =W RV -U+3r U@ - L' +Dr W +r "W [TU =TV +5Lr 'V

—L A+ -WRV' - U +3r7U - L' - L+Dr V']

—r YWU' =TV + 5LV — (L' +8)r U’} (A30)
RO =gor WU -WU-WU)Y+ W (DU —r ¢, —4nGp,U)

—2oQr YWU' — WU' — WU') — W(w3U' —r ¢y — 4nGpoU") (A31)
KO =p tW(U+F) —r ‘WU +F") (A32)
MO =2 (U - +%r ' WQRU-F)+ VW —r2VW' (L +L' —8)

— WU - VY= Yr ' WQU —F)y — V'W+r2V'Ww(L' + L - 8). (A33)
RO =W (BV—rT¢,) — WAV —r7'¢}) (A34)

The above definitions (A18) to (A34) specify completely the first five terms on the right
hand side of equation (A17) which represent the contributions to the matrix element arising
from the effects of the Coriolis forces, centrifugal forces and ellipticity. The first two terms
are the contribution from Coriolis forces and the fourth and fifth terms represent the
ontribution from ellipticity, together with the aspherical part of the centrifugal forces (the
aspherical part of ). These two terms result from a transformation similar to that outlined
i the Appendix to I, which enables the ellipticity contribution to be written in a form
which does not involve the radial derivatives u, x, po of the model parameters. The third
rm in equation (A17) is the contribution from the spherically averaged centrifugal forces.
E may be remarked that this term does not satisfy the diagonal sum rule as formulated in
Section 1.3 of the present paper but the reason for this is clear; if the ‘terrestrial monopole’
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is defined as the spherically averaged Earth then it should include a spherically symmetric
body force distribution, everywhere directed outwards along the radius vector, representing
the spherical average of the centrifugal force. Such a force has not been included, however,
in our SNREI starting model, and hence a term appears in equation (A17) which does not
satisfy the diagonal sum rule.

It is only these first five terms which are needed for the particular application which is
the subject of the present paper. For completeness, however, the contribution to the matrix
element from additional arbitrary asphericities has been included as the final summation in
equation (A17). To complete the specification of this contribution we now list the kernels
which appear. First we define the following coefficients:

! 12 ' "
B[S (s
The kernels may then be written as follows:

= (U +F') (U+F)BYY (A36)
My =r2(V'V + w'W)B,(?,?J rRVW - WVYBSAT + (XX +22)B
+(X'Z - X2")BST + QU - FY QU - F)BSY,; (A37)

RED = [V + W) 477 @1V 4 0,V") + Ygor™ UV + VOV B

+[—BA(V'W = W'V +r 710 W — 6, W') + Yogor ™ (U'W — WU)]iBSIT
+ [81GpoUU' + $U + 6, U’ — w3UU' — %ogo(dr™ UV’ + U'F + UF)IBSYT  (A38)
GSP = %hpor UV +r7 UV - UV’ —2FV")BLY)E
+%hoor UV UV - UV - 2F' VB
+ Boor L (UW' +7r 7 UW — UW' — 2FW") B,(}),
— Yoor WU WHrU'W - U'W — 2F'W)iB )7
+por 20U 1" + DB (A39)
G = hpor T UV'BIY + hpor TU'VB
+ Yopor TUW zB,(I;),u — Yopor U WzB,(,:),u_
— po(F'U+U'F)BSY (A40)
Ky =Ky — QUU' + U'F+ UF")BSY,

FrNU+F)Y (VB +iWBSY

+r7 YU+ F') (VB — iWBT (A41)
My =My — (VX + VX +W'Z+WZ)BEY

—(V'Z-VZ' + WX - XW)iBSYT

+QU-F) (- UBI((;')'I —IV'B(I):+r_1Wsz(1)1_
+%QU — F') (- UB( +r VB[ ) —r 7 WiBjp)7). (A42)

This completes the specification of the quantities appearing in equation (A17). If desired,
the kernels (A36)—(A42) may be reduced to expressions involving only 3-7 symbols of the
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form:
(’lx I, 13)
0 0 O

by making use of the identities:

B =@ +L - L")BSD (A43)
(2 " 1)—
B =@ +L-L"-2BYY; (A44)
BN = +L -L"—2) (L' +L — L") —2L'L]1 B} (A45)
- _,, [E+2)(Z+4) . PR
B =y {T EH1-WE+1-0Y @+ =20 B
) (A46)
wnere
L=l(+1), L'=0I'¢'+1), L'=1"¢"+1), T=I'"+1"+1 (A47)

Finally we note that, as in I, the perturbation in gravitational potential 6¢,~' may be
eliminated from the result (A17) by making use of the explicit representation of §¢/*
in terms of Bpln (Dahlen 1974, equation 11). The general matrix element is then obtained

purely in terms of the specified perturbations 8k;” 81" , 8oyt , k. This form may be
obtained from equation (A17) by performing the following subst1tut1ons whose combined

effect is to leave the result unchanged:

4nG "
RV -RP =R+ {r’ J r "+ 16 - 6P ar
2"+ 1 ,
—r_l” _IJ 1" +1 [lnG(Z) +rG(1)] dr}, (A48)
0
G -0, (A50)
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