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Jose Beltrán Jiménez1, Lavinia Heisenberg2,7 and Tomi
Koivisto3,4,5,6

1 Departamento de F́ısica Fundamental and IUFFyM, Universidad de Salamanca,

E-37008 Salamanca, Spain
2 Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093,

Zurich, Switzerland
3 Laboratory of Theoretical Physics, Institute of Physics, University of Tartu, W.

Ostwaldi 1, 50411 Tartu, Estonia
4 National Institute of Chemical Physics and Biophysics, Rävala pst. 10, 10143
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Abstract

The geometrical formulation of gravity is not unique and can be set up in a

variety of spacetimes. Even though the gravitational sector enjoys this freedom

of different geometrical interpretations, consistent matter couplings have to be

assured for a steady foundation of gravity. In generalised geometries, further

ambiguities arise in the matter couplings unless the minimal coupling principle

(MCP) is adopted that is compatible with the principles of relativity, universal-

ity and inertia. In this work, MCP is applied to all standard model gauge �elds

and matter �elds in a completely general (linear) af�ne geometry. This is also

discussed from an effective �eld theory perspective. It is found that the pres-

ence of torsion generically leads to theoretical problems. However, symmetric

teleparallelism, wherein the af�ne geometry is integrable and torsion-free, is

consistent with MCP. The generalised Bianchi identity is derived and shown to

determine the dynamics of the connection in a uni�ed fashion. Also, the parallel

transport with respect to a teleparallel connection is shown to be free of second

clock effects.
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1. Introduction

Reference frames in special relativity are symmetric under the global ISO(1,3) transforma-

tions and standard particles live in representations of that group. The gravitational interaction

of general relativity is switched on by localising the symmetry, as was realised in Kibble’s

construction of Poincaré gauge theory of gravity [1]. In this process, the actions I of the stan-

dard model �elds φ are made locally invariant by promoting the metric of the inertial frame to

the dynamical spacetime metric η → g and replacing the partial derivatives with the covariant

ones ∂ →∇. This is

The minimal coupling principle : I(η,φ, ∂φ) → I(g,φ,∇φ) (MCP)

concerning any relevant collection of �elds φ but restricted to the unique inner product η given
by the symmetry group G of the connection∇, and which should be distinguished from

The metrical coupling principle : I(η,φ, ∂φ) → I(g,φ,Dφ) (mCP)

where D = D(g, ∂g) is the unique torsion-free connection compatible with g, and which is

just one of the in�nite number of possible well-de�ned but non-minimal prescriptions unless

D = ∇.

The issue of minimal coupling is of paramount importance in the current discussions of

alternative (gauge) theories of gravity. In particular, the G= ISO(1,3)= SO(1,3)⋊R4 symme-

try can be extended to the inhomogeneousgeneral linear symmetry G= IGL=GL(4,R)⋊R4 if

φ includes in�nite-dimensionalmatrices [2] or simply the homogeneousgeneral linear symme-

try G=GL(4,C) that accommodates standard spinors [3]. In such contexts, one often classi�es

af�ne connections according to whether they are �at, torsion-free and metric-compatible. In 7

of the resulting 8 distinct classes of geometries, it is possible to construct gravitational actions

that reproduce the dynamics of general relativity, giving rise to for example the geometrical

trinity [4] (see also [5]), and the recently introduced generalisation of teleparallel geometries

[6]—alternative formulations for the equivalent classical dynamics abound, the question arises

whether the geometry of spacetime can be decided by experiments, or whether it is merely a

matter of convention. Whilst the latter may be the case for the gravity action in vacuum8, con-

trasting it with matter may give a unique answer if MCP is adopted [9]. This is the motivation

of this paper.

In metric teleparallel gravity, the coupling of spin- 1
2
�elds was some time ago an issue

of some controversy in the literature [10–13]. While it is generally agreed that the gravita-

tional coupling of spinors to the metric teleparallel connection (Weitzenböck mod pure gauge)

is inconsistent, the problem is avoided by invoking MCP. This is sometimes advocated as

the teleparallel coupling prescription9 mCP’, which has been stipulated for electromagnetic

8This might be compared with the well-known case of conformal frames in scalar-tensor theory [7], wherein the

dynamics can be equivalently described in terms of an arbitrarily rescaled metric, but only in the so called Jordan frame

that is distinguished by the minimal matter coupling, do those dynamics have their standard physical interpretation

(i.e. assuming that test particles follow geodesics, constants of nature do not vary, etc) [8].
9One may always de�ne the distortion X ≡ D −∇ (as will be clari�ed by (36)). In effect, the coupling prescription

amounts to the trivial rewriting of mCP as mCP’: I(η,φ, ∂φ)→ I(g,φ, (∇+ X)φ). The (metric) teleparallel theory

may offer a speci�c rationale for this non-minimal coupling prescription [14–16], but it can obviously be applied for

any X.
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�elds [14], scalars [17, 18] and spinors [11, 19]. MCP’ has been arrived at also in symmetric

teleparallelism [20] and was recently exploited with a generic ∇ [21]. Though the coupling

mCP’ is a mathematically well-de�ned prescription, we reiterate that there is no ambiguity of

the gauge principleMCP in the standard framework of Yang–Mills theory,where theφ consists

of sections to associated bundles, transformations of which are canonically determined in con-

junction with the transformation of the ∇ on the principal G-bundle. One may thus share the

sentiment of the footnote 2 of [22]. An important remark in this respect is that one is left with

a choice to make concerning the undetermined charge of the matter �elds10. In other words,

matter �elds sharing the same dynamics in the absence of gauge �elds can be differentiated by

their interactions with them. As we will discuss in more detail below, this issue also applies to

gravity. However, if we embrace the equivalence principle and stipulate the universal character

of gravity, it is possible to avoid this ambiguity and establish a unique MCP for gravity.

In symmetric teleparallel gravity [23], MCP is viable for all standard �elds, including

spinors [24]. The Hermitian Dirac action, minimally coupled to a symmetric teleparallel (coin-

cident mod pure gauge [24, 25]) connection lets spinors interact only with the metrical connec-

tion, and in the case of complex parameters, a phase gauge �eld [25]. In this note, we con�rm

and generalise these results.

It is crucial to note that MCP concerns the actions I (and not the �eld equations δI/δφ) in
order to establish the consistency of the coincident general relativity [24, 25]. In general, when

the two prescriptions are inequivalent, it is because the alternative toMCP could only be derived

from a non-Hermitian I, and resulted therefore in either a non-unitary or non-conservative

theory. It is also intuitively clear that the alternative does not lead to physical results, since it

would e.g. couple the massless Dirac theory to a scale connection, even though the theory is

conformally invariant. Since we are not aware of a proper justi�cation for the alternative, we

shall not discuss it further11.

In this paper we shall work out the implications of MCP with an arbitrary af�ne connection.

Wewill show in section 3 thatMCP is already problematic for bosonic �elds12 if the connection

has non-vanishing torsion. In section 4 we clarify the geometrical meaning of non-metricity.

The action I(g,φ,∇φ) for fermions, which was derived [25] using the Hermitian map on the

GL(2,C) ⊗ GL(2,C) bundle, is rederived in section 5.2 on the GL(4,C) bundle and yet pre-

sented in appendix B on its double-covering SU(2,2) bundle: all three realisations can yield

the same coupling of spinors to spacetime geometry. In section 6 we use a generalised Noether

identity from appendix A, derive the equations of motions for g, ∇ and φ, and clarify their

implications in the main cases of interest. Especially determinant to these implications is the

hypermomentum structure of the connection equations δI/δ∇. We conclude in section 7.

We have emphasised ourmain conclusions by presenting them as four brief ‘lemmas’.While

we do not claim any of these lemmas to be completely new, there are recurring misconceptions

10 In multi-�eld theories it might be necessary to require some non-trivial relations among the different charges even

before introducing the couplings to the gauge �elds. For instance, a theory with three scalar �elds φ1, φ2, φ3 with

an invariance under φn → eiqnαφn, with qn the corresponding charges and α the transformation parameter, permits an

interaction such as φ1φ2φ3 provided the charges satisfy the relation q1 + q2 + q3 = 0. However, only the coupling to

the U(1) gauge �eld will eventually determine the precise values of the individual charges qn.
11Nevertheless, it could be possible to meaningfully constrain the non-Hermitian coupling [26].
12At the risk of resulting pedantic, it may be worthwhile to clarify the terms bosonic and fermionic in a general

framework. These terms are traditionally borrowed from the transformation properties of �elds under the Lorentz

group depending on whether they belong to some tensor product of vector representations (bosons) or they live in

the universal (double) cover of SO(1,3). Extending these properties to a more general G group can be subtle and, as

a matter of fact, this is a source of complications for dealing with fermions in a general scenario as we will clarify

below.

3



Class. Quantum Grav. 37 (2020) 195013 J B Jiménez et al

in the literature about issues related with the lemmas 2 and 3, whose content thus seemed not

to have been generally well known.

2. On MCP from an EFT perspective

Before delving into the core of the main topic of our study, we will brie�y discuss the role of

MCP from a pure effective �eld theory (EFT) perspective as well as its physical necessity from

this viewpoint. MCP is usually advocated as the appropriate prescription to couple gauge �elds

to a matter sector that is charged under the corresponding group. It will then be instructive to

commence our discussion by brie�y reminding how this prescription comes about.

For the sake of simplicity, let us focus on the case of an Abelian U(1) gauge �eld Aμ that

transforms asA→ A+ dθwith θ some arbitrary 0-form.Themost important physical property

of this �eld is its masslessness which in turn represents the underlying reason for introducing

the gauge redundancy that guarantees the propagationof two polarisations. The standard proce-

dure to guarantee this gauge symmetry is by constructing its action in terms of its �eld strength

F = dA. If the gauge �eld is to couple to some matter sector, the interactions must respect

the gauge symmetry to avoid the appearance of undesired new polarisations. The important

question arises as how to introduce couplings to matter.

If the matter sector does not feature any conserved current, we are limited to derivative

couplings where the gauge �eld only enters through its �eld strength and the symmetry is

trivially realised by only transforming the gauge �eld. Examples of this type of couplings

are provided by e.g. a dilaton ϕ or an axion ϑ that couple to the electromagnetic �eld like

ϕFμνF
μν and ϑFμνF̃

μν respectively. For a fermion ψ we similarly have the Pauli interaction

ψ̄[γμ, γν]ψFμν that respects all the desired symmetries of the theory. In all these cases, the

interactions could have not been guessed nor constructed by resorting to the U(1) minimal

coupling prescription, but obviously there is nothing wrong with them and, in fact, they all are

present in the corresponding theories. Let us then see the relevance of the minimal coupling

prescription within an EFT approach.

If the matter sector does carry a conserved current, there is another class of interactions

that do not involve derivatives of the gauge �eld and where the realisation of the gauge sym-

metries involves transforming the matter sector along with the gauge �eld. These interactions

can be constructed iteratively as an expansion on a coupling constant and whose resumma-

tion precisely corresponds to the application of the minimal coupling prescription (see e.g. the

nice discussion in [27]). Of course, this is nothing but the localisation of the global symmetry

leading to the conserved current. To give an explicit, nearly trivial example, we can resort to

the well-known case of scalar electrodynamics where, starting from a complex scalar �eld Φ

with a global symmetry Φ→ eiqαΦ, it can be coupled via MCP that localises this global sym-

metry as part of the U(1) symmetry of the gauge �eld. This procedure leads to interactions

such as Φ∗Aμ∂μΦ and |Φ|2A2 with very speci�c coef�cients dictated by gauge symmetry. The

fact that these interactions are lower order in derivatives than those involving the �eld strength

makes it clear that the former will conform the relevant interactions at low energies. A direct

consequence of this is the 1/r asymptotic fall-off generated by the corresponding sources that

gives the long-range interaction expected for a massless �eld. Nothing prevents from adding

interactions such as |Φ|2F2 which are not generated via MCP, but these will be suppressed by

some energy scale that will make it perturbatively unimportant as compared to e.g. |Φ|2A2.

For instance, the �eld generated by a source would decay faster than 1/r. It is remarkable

that all these properties (gauge symmetry, conservation laws, minimal coupling. . . ) root in the

very masslessness of �elds and can be nicely derived from processes involving external soft

massless particles ([28]). Concerning massless spin-2 �elds, the universal character of gravity
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encoded in the equivalence principle can then be derived as a necessary property of the leading

order interactions.

Thus, it could be argued that MCP is the appropriate prescription to generate the most rel-

evant interactions at the lowest order in an energy expansion, i.e., within an EFT framework,

and this would sustain referring to this prescription as a principle. However, one should keep

in mind the underlying reason for invoking this coupling prescription and decide if one wants

to uplift it to the category of fundamental principle. Similarly, the universality of the coupling

to gravity is an accidental property of the leading order interactions from an EFT perspective.

Hence, imposing universality for the couplings to gravity signi�es to promote it to the category

of a more fundamental principle that steps outside the realm of EFTs.

As we will see in section 3, one important consequence of adopting the minimal coupling

prescription d→∇ is that a direct coupling of the torsion to the gauge �eld is generated so

that the very de�ning property of the gauge �eld as a massless �eld is lost13. After all, the

gauge invariance is invoked precisely to maintain the masslessness of the �elds. It may be

convenient to recall here that it is precisely the consistency of the lowest order interactions

between the massless spin-1 �elds what forces upon us the underlying gauge structure that

dictates how the different �elds must interact. It is this requirement what associates mass-

less �elds to connections in a principal bundle and, furthermore, tells us that the interactions

between connections must occur in compliance with some gauge structure. Thus, it would

seem natural to conclude that a direct, non-derivative coupling between a gauge �eld and

the torsion could only happen if they belonged to non-commutative sectors of some gauge

group.

Let us be a bit more explicit on this point by taking a speci�c examplewith a set ofNAbelian

gauge �elds Aaμ with their corresponding �eld strengths Fa = dAa. We will have in mind that

some of these �elds will eventually become the general linear connection, but for the moment

we shall not require anything. The free propagation of these �elds will be described by the

usual Lagrangian

Lfree = −1

4
MabF

a
μνF

bμν. (1)

with Mab some metric in the internal space of the �elds. If this metric has some isometries,

these will give rise to a set of on-shell conserved currents. Reversely, this internal metric can

be chosen as the Killing metric of the internal symmetry group that we may demand. The

next step is to introduce interactions among the different gauge �elds. At the lowest order,

we would seek to introduce non-derivative couplings, but, as it is well-known, keeping the

masslessness of all the gauge �elds comes hand-in-hand with strict restrictions on the allowed

interactions. For instance, one cannot have a cubic interactionwith only two gauge �elds, but at

least three are necessary. A systematic construction of the possible interactions can be carried

out as a perturbative series in the coupling constant and, at the end of the process, one �nds

that the global symmetry and the independentU(1) gauge symmetries combine to give a gauge

symmetry associated to some non-Abelian group and the interactions are precisely dictated

by the non-Abelian structure. The problems root in the gauge �elds belonging to the adjoint

representations so they transform as connections and this is at the heart of the very nature of

massless �elds with spin higher than zero.

In the precedent paragraphs we have not really entered into the quantum domain and

remained at the classical level. It is interesting to emphasise as well that MCP will be violated

13Therefore one may reconsider beginning the EFT construction in a contorted space, which would result in the

elimination of the direct coupling realising mCP’.
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via quantum effects, i.e., even if we stick to the interactions prescribed by MCP at the classical

level, new interactions not complying with MCP will be generated quantum mechanically and

this can be originated from two sources.

On one hand, quantum corrections are expected to generate interactions beyond MCP,

because, even if the tree amplitudes conform to MCP, loops can generate interactions that

violate MCP. It is crucial however that the theory is interpreted as an EFT so that non-

renormalisable operators are present. If the theory is renormalisable, then it is obvious that

MCP is stable under the quantum corrections. A paradigmatic example of MCP violation

within the context of gravity is given by the EFT interpretation of general relativity. If we

apply an MCP procedure to a canonical scalar �eld, then, at the one-loop level, direct cou-

plings of the scalar �eld to the curvature will be generated. Ultimately, this is because loop

processes permit the scalar �eld to sniff around the spacetime so it will be sensitive to its

geometrical properties. On the other hand, it is well-known that classical symmetries can be

broken at the quantum level via anomalies when the path integral measure or the renormalisa-

tion scheme do not respect them. Paradigmatic examples of this kind are the breaking of scale

invariance or the axial anomaly that, for instance, crucially permits the decay of the neutral pion

into two photons via the celebrated triangle diagram. This experimentally observed process

would be forbidden had the minimal coupling prescription taken the status of a fundamental

principle.

Our above discussion puts forward that MCP seems to be the appropriate prescription in

order to generate the leading order interactions in a given theory, but from an EFT perspec-

tive there is no fundamental reason why only interactions complying with MCP should be

considered.

3. Gauge fields

Though it takes just a one-line-calculation to arrive at our conclusion using just the electro-

magnetic �eld, in this section we set up the notation by generalising the derivation to arbitrary

gauge �elds (external and internal, assuming direct product) and by studying also their Bianchi

identities.

Lemma 1. Consider the gauge �eld Λ and the gauge-covariant exterior derivative D. (a)

We can write the canonical �eld strengths F as F = DΛ, iff the connection has no torsion.

Furthermore, (b) the Bianchi identity can then and only then be written as DF = 0.

Proof. We expand the gauge �eld Λ = Λ
NJN in the basis of generators JN that satisfy the

commutation relations [JK, JL] = f NKLJN, with f
N
KL the structure constants. Let the general linear

part of D be denoted by∇ = d+ Γ, so that D = ∇+ [Λ, ]. Our conventions are such that for

vector components Vμ and for one-form componentsWμ,

∇μV
α
= Vα

,μ + Γ
α
μλV

λ, (2a)

∇μWα = Wα,μ − Γ
λ
μαWλ, (2b)

respectively. It then follows that

[
∇μ,∇ν

]
Vα

= Rα
βμνV

β − Tβ
μν∇βV

α, (3a)

[
∇μ,∇ν

]
Wα = −Rβ

αμνWβ − Tβ
μν∇βWα, (3b)

which de�ne

6



Class. Quantum Grav. 37 (2020) 195013 J B Jiménez et al

The curvature:Rα
βμν = 2∂[μΓ

α
ν]β + 2Γα

[μ|λ|Γ
λ
ν]β , (4a)

and the torsion:Tα
μν = 2Γα

[μν], (4b)

of the connection Γ. Their derivatives satisfy the purely geometric identities

R
μ
[αβγ] −∇[αT

μ
βγ] + Tν

[αβT
μ
γ]ν = 0, (5a)

∇[αR
μ
|ν|βγ] − Tλ

[αβR
μ
|ν|γ]λ = 0, (5b)

That can be directly obtained from the Jacobi identity applied to∇ acting on a vector �eld. We

can now be very explicit and write

DΛ = D[μΛ
N
ν]JNdx

μ ∧ dxν =
(
∇[μΛ

N
ν] + f NKLΛ

K
μΛ

L
ν

)
JNdx

μ ∧ dxν

=
(
∂[μΛ

N
ν] − Tα

μνΛ
N
α + f NKLΛ

K
μΛ

L
ν

)
JNdx

μ ∧ dxν

= F− Tα
μνΛαdx

μ ∧ dxν , (6)

which proves lemma 1a. For the second part, let us use exterior algebra, wedging together the

bold symbols

DF = ∇F+ [Λ,F] = ∇
(
∇Λ+Λ

2
)
+ [Λ,∇Λ+Λ

2] = ∇2
Λ+ [∇Λ,Λ]+ [Λ,∇Λ]

= ∇2
Λ. (7)

At this point we have assumed the Jacobi identity fD[AB f
E
C]D = 0 of a Lie algebra so that

Λ
3
= 0. Recalling (3b) and then using (5a), we obtain that

DF = −
(
Rβ

αμνΛβ + Tβ
μν∇βΛα

)
dxα ∧ dxμ ∧ dxν

=
(
Tλ

αμT
β
γλΛβ −∇αT

β
μνΛβ − Tβ

μν∇βΛα

)
dxα ∧ dxμ ∧ dxν . (8)

lemma 1b is proven. We note that the necessary and suf�cient condition for the∇ to obey the

Poincaré lemma is that the Γ is symmetric.

The above lemma shows the problem of metric teleparallelism already for bosonic �elds

if one adopts MCP. Even standard �elds as the photon will be forced to couple to the torsion

non-minimally, which further jeopardizes the standard form of theU(1) invariance14. Since the

algebraic structure

DΛ = ∇Λ+
1

2
[Λ,Λ] = ∇Λ+Λ ∧Λ = F− (@a ·Λ)Ta, (9)

is re�ected in the spacetime geometry such that precisely torsion in af�ne geometry fails to

preserve it, in symmetric teleparallelism the problem is avoided elegantly since torsion is zero

and one has F = DΛ as in pure Riemann geometries.

Let us mention that there is a simple way to avoid the problem, though by violating MCP

and giving up strictly the universality of gravity. One could consider the coupling of total gauge

connection, consisting of the direct sum of the GL and the internal connection. In other words,

we could take Γ +Λ as the full connection so that the �eld strength would be

Ftotal = [Dtotal, Dtotal] = d (Γ +Λ)+ [Γ +Λ,Γ +Λ] = R+ F, (10)

14A modi�ed U(1) transformation has been proposed to accommodate one scalar degree of freedom in torsion [29].
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where we have used that [Γ,Λ] = 0, since they belong to different subspaces. Since Λ is not

a section on a bundle associated with the spacetime connection Γ, but together with Γ a part

of the connection on the principal bundle, we could call this the uni�ed coupling principle

(UCP), de�ned by the different rules in the gauge and in the matter sectors. Since (UCP) by

construction preserves the given symmetries in both sectors, it is also compatible with the EFT

perspective of section 2.

Although we have obtained these results for non-Abelian gauge �elds described by one-

forms, it is straightforward to extend it to arbitrary p-forms. In general, for a given p-form Ap

it holds the identity

∇[μAν1...νp] = ∂[μAν1...νp] − pTα
[μνqAν1...νq−1]α, (11)

so our discussions are applicable to general p−form�elds as well. In four dimensions,massless

two-forms are dual to 0-forms and massless three-forms are non-dynamical so our discus-

sion on one-forms is exhaustive. In higher dimensions however there is a richer landscape and

analogous shortcomings should be considered.

4. Parallel transported clocks

This far we have discussed only a connection (in both internal and spacetime geometry) which

suf�ced for (MPC) with gauge �elds. To discuss the half-integer spin matter �elds, it is nec-

essary to introduce also a metric. But before moving to matter �elds, let us consider a related

issue that arises in the presence of both metric and af�ne structure. In particular, they may

be incompatible, in which case the usual metrical concepts may not be uniquely de�ned for

parallel transported objects.

However, we emphasise that the problem is of no direct relevance to the behaviour of matter

�elds. As suggested by the extremisation of the proper time of a point particle, matter tends to

follow the metric geodesics regardless of an independent connection; our study of spinor �elds

will con�rm (at least in symmetric teleparallelism) this suggestion from �rst principles. Thus,

the physical relevance of the evolution of a metric contraction during parallel transport with

respect to a non-metric connection is not so immediately clear. It is, nevertheless, a very basic

aspect of metric-af�ne geometry and thus worth clari�cation.

Take, as usual, a metric tensor with the components gμν . Then the incompatibility of the

af�ne connection is characterised by the non-metricity tensor Qαμν = ∇αgμν . We shall prove

the following

Lemma 2. The inner product is path-independent iff R(ab) = 0.

Proof. Consider two vector �elds U,V parallel transported along a curve γ with the tangent

vector X. The change of the inner product (U,V) = gμνU
μVν along the curve is obviously

given by∇X(U,V) = QμαβX
μUαVβ . We take γ to be a closed curve, a loop, since it is relevant

to issues such as the second clock effect which require observers to compare notes. The total

change is given by integrating ∇X(U,V) around the γ, and by the Stokes’ theorem [30] it

becomes an integral over a surface S outlined by γ,

∆(U,V)=

∮

γ

QμαβU
αVβdxμ =

∫∫

S

∂[μ
(
Qν]αβU

αVβ
)
dxμ ∧ dxν . (12)

By substituting the covariant derivative we obtain

∆(U,V) =

∫∫

S

[(

∇[μQν]αβ +
1

2
Tλ

μνQλαβ

)

UαVβ
+∇[μ

(
UαVβ

)
Qν]αβ

]

dxμ ∧ dxν . (13)

8
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Using the third (metric) Bianchi identity [31, 32]

∇[μQν]αβ = −R(αβ)μν −
1

2
Tλ

μνQλαβ , (14)

we see that the term∼ UαVβ in (13) is proportional to the symmetric part of the curvature. The

remaining term ∼ ∇(UαVβ) in (13) can be set to zero for the parallel transported vector �elds

upon the chosen surface. We have thus arrived at

∆(U,V) = −
∫∫

S

R(αβ)μνU
αVβdxμ ∧ dxν = −2

∫∫

S

R(ab)U
aVb. (15)

lemma 2 is veri�ed. This result can be derived in a more straightforward manner by resorting

to exterior calculus:

∆(U,V)=

∮

γ

QabU
aVb

=

∫∫

S

d
[
QabU

aVb
]
=

∫∫

S

D
[
QabU

aVb
]

=

∫∫

S

DQabU
aVb

= −2

∫∫

S

R(ab)U
aVb, (16)

where we have used the Bianchi identity DQab = −2R(ab) and the parallel transport condition.

One immediate implication of this result is that in parallel transported objects in teleparallel

spacetimes (symmetric or otherwise) do not experience a second clock effect (as was already

statedwithout proof in [4], but contrary statements are also found [33]). Indeed, the geometrical

foundation of ‘puri�ed gravity’ is a generalisation [25] of a Weyl integrable spacetime (WIST)

[7, 34, 35]. In a generalWeyl spacetime,Qαμν =
1
4
Qαgμν , and thus∇X(U,V) =

1
4
(U,V)Q(X),

yielding immediately the well-known result ∆ log(U,V) = − 1
4

∫∫

S
Ra

a. The vanishing of the

Streckenkrümmunga.k.a. homothetic curvature15Ra
a = 0 in aWISTwhereinQ = dQ for some

scalar Q, guarantees the path-independence of the inner product.

5. Matter fields

In section 3 we have discussed the case of gauge �elds separately because of their special status

and properties which are tightly related to their masslessness. We turn our attention now to the

matter sector. Our distinction closely follows the usual classi�cation of particle physics where

gauge �elds are associated to interactions. In the matter sector we can distinguish two crucially

different classes of matter �elds: bosons and fermions. As we will discuss, bosons can be easily

coupled to gravity, but fermions are more subtle.

The description of fermions in the presence of gravity is substantially more contrived and

subtle than for bosonic �elds. The underlying reason for the additional complications resides

in the fact that bosonic �elds are described by tensor representations while fermions require

spinor �elds. The starting point to introduce gravity is the �at spacetime version of the the-

ory endowed with a Lorentzian structure. When switching on gravity, Lorentz tensors become

GL(4,R)-tensors univocally through the soldering form so no ambiguity arises and one can

straightforwardly map the SO(1,3)-connection in the Lorentz bundle to an af�ne connection

in the GL(4,R)-bundle. For spinors however this is not a direct procedure because it �rst

15Actually, this component corresponds to the overall, direction-independent change of scale, while the rest of the

symmetric curvature describes how shapes are ‘sheared’ or ‘disformed’ through both local rotation and variation in

lengths.
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requires obtaining the universal (double) cover of the Lorentz group and the direct transla-

tion to GL(4,R) is, in general, not possible. In other words, unlike for tensor representations,

there is no isomorphism for the corresponding spinor representations. In fact, constructing

spinor representations for GL(4,R) is by itself a non-trivial task. This lack of an isomorphic

relation between spin representations introduces an obstruction for the de�nition of the corre-

sponding connection. It is possible to trace the main dif�culty to the presence of non-metricity

that obstructs to map the spin connection associated to the Lorentz bundle (more precisely, the

connection in spin(1,3)≃ SL(2,C)) to the GL(4,R) bundle. In the absence of non-metricity, it

is possible to use the Kosmann lift to establish the desired map. For this reason, we will care-

fully derive our results for fermions below, but let us �rst brie�y consider the simplest bosonic

�elds.

5.1. Bosonic fields

Bosonic �elds are described by Lorentz tensors in the starting inertial theory without gravity.

As we said above, the isomorphic correspondence between tensor representations of SO(1,3)

and GL(4,R) eases the introduction of their couplings to gravity with the covariant derivative

complying with the MCP. It is worth however to mention some subtle points that might arise.

Firstly, although there is an isomorphism for the tensor representations, there is no way of

distinguishing between (proper) tensor densities of differentweights for the Lorentz group. The

(pseudo-)orthogonal nature of the Lorentz transformations trivialises the weight dependence

of tensor representations, the only important property being their behaviour under parity.When

turning on gravity, the weight of the tensor densities matters and the covariant derivative sees

it, i.e., it includes an additional contribution to correct for the weight. Thus, we need to make

a choice for the weight when promoting the Lorentz tensors to their curved versions.

It is also interesting to emphasise what happens for massless gauge �elds that further

motivates the separate dedicated discussion in section 3. In order to be speci�c, let us con-

sider again a massless spin-1 �eld. It is then well-known that its polarisation vector does

not transform as a Lorentz vector under Lorentz transformations, but it picks an inhomoge-

neous part. A consequence of this anomalous transformation is that the operator describing

the gauge �eld Aμ transforms under a Lorentz rotation parameterised by Lαβ ∈ SO(1,3) as

Aμ → Λ
ν
μAν + ∂μΩ, with Ω an arbitrary function. This does not correspond to how a Lorentz

vector transforms so that mapping it to a GL(4,R)-vector is not possible. The dif�culty

can be easily solved by assuming that the homogeneous part is mapped to the GL(4,R)-

version while the inhomogeneous part remains the same. This observation shows another

view on the speci�c troubles for gauge �elds that complements those already explained in

section 3. In particular, since it does not transform as a tensorial quantity, de�ning a covariant

derivative can be ambiguous. Of course, the physical quantity is given by the corresponding

�eld strength for which the inhomogeneous part drops and, therefore, it does transform as a

tensor.

After brie�y commenting on the potentially ambiguous points of applying the MCP to

bosonic �elds, let us delve into the more subtle case of fermions.

5.2. Fermionic fields

We will start by stating the following

Lemma 3. Consider MCP in the Hermitian theory of Dirac. The action is unaffected by a

real, af�ne generalisation of the metric connection iff the generalised connection has no axial

torsion.

10
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Proof. In the more subtle case of fermions it is pertinent to report the derivations in greater

detail. Though irrelevant for the lemma 2, for generality we consider the connection of the

complexi�ed general linear group GL(4,C)16. All quantities in this section should be consid-

ered as matrices, and we can omit the unit matrix �, so that e.g. ηab is understood as ηab�.
Forms (except 0-forms) are denoted by bold symbols, e.g. ea = eaμdx

μ. Objects with spacetime

indices are denoted by greek letters if they are connections (e.g.Λ) and by latin letters if they

are tensors (e.g. F).

Consider a �nite transformation λ generated with the in�nitesimal parameters λab, in the

case of the coframe ea,

ea → Lab(λ)e
a, Lab = exp

(
1

2
λcd(∆(1)

cd )
a
b

)

. (17)

A spinor ψ transforms according to a spinor representation

ψ → L(λ)ψ, L = exp

(
1

2
λab∆

( 12 )

ab

)

. (18)

At this point we do not assume anything about the transformation, so L may stand for Lorentz

as well as (general) linear. We also drop the argument λ when it is unnecessary. Since the

derivative of the spinor then transforms non-covariantly,

ψ,μ → Lψ,μ + L,μψ, (19)

we introduce the covariant derivative Dμ with the connection Γμ such that

Dμψ = ψ,μ + Γμψ, Γμ → LΓμL
−1 − L,μL

−1 ⇒ Dμψ → LDμψ. (20)

Note that the matrix one-form Γ is just an example of a gauge �eld Λ such that for matrices

with spacetime indices we can write D = ∇+ [Γ, ].

The metric can be expressed in terms of the Dirac matrices γμ = γaeμa , as (note that in our

convention {γα, γβ} = 2γ(αγβ))

γ(aγb) = −ηab, γ(μγν)
= −gμν. (21)

The Hermitian property of Dirac matrices is (γa)† = γ0γaγ0. In the following we will make

use of the identities which follow from the Clifford algebra (21)

γaγbγc = ηacγb − 2ηb(aγc) − iǫdabcγdγ
5 ⇒

[
γaγb, γc

]
= 4ηc[aγb],

{
γaγb, γc

}
= 2ηab + 2iǫdabcγdγ

5,
(22)

where the γ5 = iγ0γ1γ2γ3γ4 is Hermitian, (γ5)† = γ5. The frame �eld ea = eμa∂μ is de�ned as
the inverse of the coframe, eb · {e}a = δab , e

a
νea

μ = δμν . If we allow for non-metricity, Dμg
αβ =

∇μg
αβ = −Qαβ

μ , the Diracmatrices can not be considered covariantly constant. If we start from

the de�ning property of the Dirac matrices given in (21) and perform an arbitrary variation of

the metric δηab that induces a corresponding variation δγa we obtain

δ{γa, γb} = {δγa, γb}+ {γa, δγb} = −2δηab, (23)

16This may be convenient because of the existence of �nite spinorial representations for GL(4,C) which does not

imply however the existence of �nite spinorial representations for the double covering of GL(4,R).
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whose general solution can be written as (see e.g. [36, 37])

δγa =
1

2
δηabγb + [k, γa] (24)

with k ∈ C4×4 arbitrary. This arbitrariness simply re�ects the in�nitesimal version with gener-

ator k of the well-known fact that the Clifford algebra can be realised with equivalent sets of

γ’s related by a similarity transformation. We can specify this general expression to the case

when the variation in the metric corresponds to a covariant derivative so the equation reduces

to

D{γa, γb} = {Dγa, γb}+ {γa, Dγb} = 2Qab, (25)

where we have used that Dηab = −Qab (see (29) below), and the solution reads [36, 37] (see

also [38])

Dγa = −1

2
Qa

bγ
b
+ [k, γa]. (26)

The �rst piece in this expression is directly generated by the non-metricity and evinces the

impossibility of having covariantly constant Dirac matrices in a non-metric space. On the other

hand, the arbitrariness encoded into k remains even with vanishing non-metricity and re�ects

the non-triviality of the kernel of the covariant derivative of the Clifford algebra.As commented

above, the non-trivial structure of the kernel is due to the freedom in performing a similarity

transformation that preserves the Clifford algebra.We are thus free to choose a convenient rep-

resentative among the equivalence class without affecting the physics and the usually adopted

one consists in trivialising k so that we have

Dγa = −1

2
Qa

bγ
b or, equivalently Dμγ

α
= −1

2
Qμν

αγν . (27)

The frame connection is related to the af�ne connection via

Dea = 0 ⇒ Λ
a
μb = eaν

(
∇μeb

ν
)
= −

(
∇μe

a
ν

)
eb

ν . (28)

By computing Dηab we �nd the non-metricity one-form

Qab = dηab − 2Λ(ab). (29)

We shall adopt the orthonormal frame such that dηab = 0. This implies that dγa = 0 andDγa =
−Λ(ab)γ

b, Dγa = Λ
(ab)γb. As shown in appendixB, the spinor representation of the connection

is given as

Γ = −1

4
Λabγ

aγb − 1

8
Z, (30)

where Z is an arbitrary one-form. Let us do a consistency check by computing (27):

Dμγ
α
= ∇μ (γ

cec
α)− 1

4
Λaμb

[
γaγb, γc

]
ec

α

= γcΛa
μcea

α − Λaμbη
c[aγb]ec

α

= γaΛ
(a
μ
b)
eb

γ
= −1

2
Qμν

αγν. (31)

In the �rst line we have only used the de�nitions of the spacetime Dirac matrices and the

covariant derivative, in the second line the relation (28) and the identity (22), and in the third

line recalled (29) in the orthonormal frame.
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Consider the Hermitian Dirac action for a spinor ψ with mass m

Iψ = −1

2

∫

d4x
√−g

[(
iψ̄γμDμψ

)
+
(
iψ̄γμDμψ

)† − 2mψ̄ψ
]

, (32)

where ψ̄ = ψ†γ0 is the conjugate spinor. More explicitly, we have

Iψ = −
∫

d4x
√−g

[
i

2

(
ψ̄γμ∂μψ − ∂μψ̄γ

μψ
)
+ ψ̄

(
iΓH − m

)
ψ

]

,

where

Γ
H
=

1

2

(
γ · Γ− γ0

Γ
†γ0 · γ

)
. (33)

We have denoted the vector γ = γμ∂μ. Plugging in (30) gives

Γ
H
= −1

8
Re(Λab) · {γ, γ[aγb]} −

i

8
Im(Λab) · [γ, γ[aγb]]−

i

8
Im(Q+ Z) · γ, (34)

which becomes, by using (22),

Γ
H
= − i

4
ǫabcd Re(Λab) · {e}cγdγ5

+
i

2
Im(Λ[ab]) · {e}aγb −

i

8
Im(Q+ Z) · γ. (35)

Thus, instead of being coupled to γ · Γ, the spinor is coupled to ΓH.

At this point, it is useful to recall the well-known decomposition of the GL(4) connection,

Aabc = ωa
bc + Ka

bc + Labc, (36)

where the Levi-Civita connectionωabc, the contortion tensorK
a
bc and disformation tensor Labc,

ωa
bc =

1

2
Ω
a
bc − Ω(bc)

a, Ka
bc =

1

2
Tabc − T(bc)

a, Labc =
1

2
Qa

bc − Q(bc)
a, (37)

are given by the coef�cients of anholonomyΩabc,

dea = −1

2
Ω
a
bce

b ∧ ec ⇔ Ω
a
bc = ea ·

[
{e}b, {e}c

]
⇔ Ω

a
bc = 2ea[μ,ν]eb

μec
ν , (38)

the torsion Tabc = Dea · eb · ec and the nonmetricityQabc = Dηbc · ea of the connection, respec-
tively. There are six independent objects one can obtain by different contractions of the

components of the connection,

ωa = ωb
ba, ω̃a = ǫabcdω

bcd, Ta = Tbab,

T̃a = ǫabcdT
bcd , Qa = Qab

b, Q̃a = Qba
b.

(39)

The pieces relevant to the Hermitian version of the spin connection (35) are given by

ǫabcdAab · ec = ǫabcdAacb = −ω̃d − T̃d, (40)

A[ab] · ea = A[a b]
a = ωb − Tb − 1

2

(

Qb − Q̃b
)

. (41)

We can then decompose (35) as follows:

13
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iΓH
= iγμ

Γ
H
μ = γμ

(
γ5
Φμ +Ψμ

)
, (42)

wherein the real and the imaginary parts of the af�ne connection enter as

Φ =
1

4
Re

(
ω̃ + T̃

)
, (43a)

Ψ = −1

2
Im

(

ω − T+
1

2
Q̃

)

+
1

8
Im (3Q+ Z) , (43b)

respectively. This veri�es the claim of the lemma 2. To wit, if the connection is real, Ψ = 0,

and devoid of axial torsion, T̃ = 0, only the Levi-Civita part contributes to the action (32)

through ω̃. This property was used to show the viability of certain vector distorted geometries

in [39].

6. Implications for fermions

Let I = IG(g,∇)+ Iφ(g,∇,φ) be an action for a coupled matter-gravity system. The variations

of I w.r.t. the geometric variables de�ne the metric �eld equations, the connection excitation

and the hypermomentum as

Eμν =
δI

δgμν
, Pμν

α =
δIG

δΓα
μν
, Hμν

α = − δIφ
δΓα

μν
, (44)

respectively. For this generic action considered in the geometrical setting with arbitrary Γ,

holds the following

Lemma 4. The generalised Noether identity resulting from the diffeomorphism invariance

of I is

DμEμ
ν =

[
δρν

(
∇α∇β + 4T(α∇β) + 2∇βTα + TαTβ

)
− 2Tρ

μβ∇α

− 4TαT
ρ
νβ − Rρ

μαβ

] (
Pαβ

ρ −Hαβ
ρ

)
+ D(φ)

ν

(
δIφ
δφ

· φ
)

,

with D(φ)
μ φ some derivative that depends on the type of matter �eld and · stands for a sum over

internal indices.

Proof. See appendix A. This gives an explicit form for the generalised Bianchi identity [8],

which is useful in applications to particular geometries (one may consider the Lagrange multi-

pliers that impose the desired geometry to be included in φ). In the three special cases we will
consider below, the connection equation of motion we state could also be easily deduced from

the derivations of [32].

We shall now specialise to the case of a fermion �eld Iφ = Iψ . Separating contributions from

the real and the possible imaginary parts of the connection,

real:Hμν
ψ α

= −1

4

√−ggραǫρμνβψ̄γβγ5ψ, imaginary:Hμν
ψ α

= −1

4

√−gδμαγν . (45)

We can then consider different cases of interest.

• Palatini theory. The connection equation of motion is Pμν
α = Hμν

α. In the case IG ∼
∫
d4x

√−gR corresponding to case of Einstein–Cartan–Kibble–Sciama theory coupled

to spinors, we obtain
√−g(Tμ

α
ν + δμαT

ν − Tαg
μν + Qα

μν − δμαQ̃
ν + Q[μδν]α ) ∼ Hμν

ψ α
,

14
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which is solved by a metric-compatible connectionwith axial torsion proportional to (45).

As it is well-known, this results in a four-fermion contact interaction which only becomes

relevant at extreme densities [40].

• General (including metric) teleparallelism. The connection equation of motion is (∇μ +

Tμ)Pμ[να] = (∇μ + Tμ)Hμνα. In the case of the teleparallel equivalent of general relativity,

the left-hand side vanishes identically, resulting in an additional constraint for spinors

in the presence of torsion. At the Minkowski limit, the constraint is degenerate with the

conservation law ∂μj
μ = 0 derived below, but in a generic gravitational system probably

leads to an inconsistency, as has been claimed previously.

• Symmetric teleparallelism. The connection equation of motion is ∇μ∇νPμν
α =

∇μ∇νHμν
α. Because of the antisymmetry of (45) and the commutative property of the

symmetric teleparallel covariant derivative, the right-hand side vanishes identically for the

real part in (45). The contribution from the possible imaginary part is guaranteed to vanish

due to the conservation of the probability current. Thus, the hypermomentumof spinors is

irrelevant to the dynamics of gravitation. In the case of coincident general relativity, also

the left-hand side vanishes identically.

For completeness, the energy–momentum tensor of spinors is given as

1√−g
δIψ
δgμν

=− i

2

[
ψ̄γα∇H

αψ −
(
∇H

α ψ̄
)
γαψ

]
gμν

+
i

2

[
ψ̄gα(μγν)∇H

αψ − gα(μγν)
(
∇H

α ψ̄
)
ψ
]
+ mψ̄ψ, (46)

and the equations of motion δIψ/δψ̄ = δIψ/δψ = 0 are

iγμ
(
∂μ + Γ

H
μ

)
ψ +

i

2
√−g∂μ

(√−gγμ
)
ψ − mψ = 0, (47a)

i
(
∂μψ̄ − Γ

H
μ ψ̄

)
γμ

+
i

2
√−g ψ̄∂μ

(√−gγμ
)
+ ψ̄m = 0. (47b)

Using the formulae (38) and the constancy dγa = 0 of the Dirac matrices, we can alternatively

write
(

iγμ∂μ + γμ
Γ
H
μ +

i

2
γμωμ − m

)

ψ = 0, (48a)

(
∂μψ̄

)
iγμ − ψ̄

(

iγμ
Γ
H
μ − i

2
γμωμ − m

)

= 0. (48b)

It is easy to see that the probability current, jμ =
√−gψ̄γμψ, is conserved, ∂μj

μ = 0.

It would seem very challenging to experimentally constrain the precise form of the coupling

of spinors to the gravitational connection.We can obtain a second order evolution equation for

the projected one-component spinor

φ =
1

2

(
1+ γ5

)
ψ. (49)

Let us de�ne a short-hand notation and restore the Planck constant,

∇̂μψ =

[

∂μ + Γ
H
μ +

1

2
ωμ

]

ψ i.e.
(

i�γμ∇̂μ − m
)

ψ = 0. (50)
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Computing now
(

iγ · ∇̂ − m
)

φ from (49) and noting that ΓHγ5 = −γ5Γ
H we obtain the

desired second-order equation

(

i�γμ∇̂μ − m
)(

i�γμ∇̂μ + m
)

φ = 0. (51)

In the semi-classical approximation one may consider the Ansatz φ = exp(iS/�)φ0, where S

is very large in units of �. Then (51) reduces to

gμνS,μS,ν + m2
= �

[

γα∂α
(
γμS,μ

)
− gμνΓ̂μS,ν

]

− �
2
[

γα∂α

(

γμ
Γ̂μ

)

+ gμνΓ̂μΓ̂ν

]

. (52)

At the leading order this describes the dispersion relation gμνkμkν = −m2, and the trajec-

tories become the metric geodesics. Only a correction proportional to the � appears to the

above equation which is dependent on the independent connection. A modi�ed dispersion

relation at the lowest order could occur on a non-trivial background con�guration for the

connection.

7. Conclusions and discussion

Complementary perspectives to gravity emerge from different geometrical formulations,

wherein one may interpret a given theory in terms of curvature, torsion, or non-metricity. An

instance of this is the ternion of geometrical representations of general relativity. Neverthe-

less, subtleties and ambiguities might arise in generalised geometries when matter couplings

have to be considered as well. If one starts with the usual point particle I that extremises

the purely metrical quantity, the proper time, one obtains the equation motion in terms of

solely the Levi-Civita connection, w.r.t. which the autoparallels coincide with the geodesics.

This intuitive result is also the natural consequence of MCP for bosonic and fermionic

�elds in spacetimes equipped with only the metric connection. For general spacetimes MCP

does not necessarily give rise to the same standard matter coupling, especially if torsion

is present.

In this paper we investigated the coupling of the standard matter and gauge �elds to space-

time geometry, leaving the detailed study of non-canonical scalar, vector and other �elds

elsewhere. Then, from the lemmas 1 and 3 now follow the

(a) Spacetime torsion, if it exists, is non-minimally coupled.

That the spacetime torsion has to couple to matter in some non-minimal manner, e.g.

according to MCP, is required generically to save the gauge symmetries of the standard

model. In teleparallel models particularly, it is in addition required for consistent dynamics

of elementary particles—in the symmetric af�ne sector, the lemmas 1–3 justify the

(b) R(ab) measures the 2nd clock effect. In a torsion-free spacetime MCP = mCP.

As it should be clear from our results, the second clock effect is absent for physical

particles. Therefore, minimally coupled gauge and matter �elds interact with an arbitrary

symmetric and non-metric connection—even the vanishing connection of coincident general

relativity—exactly as they do with the metric-compatible Levi-Civita connection. However,

the non-metric i.e. symmetric curvature is a gauge-invariant measure of the path-dependent

discalibration, whereas the more familiar metric i.e. Riemann curvature is a measure of the

local rotation.

It should be clari�ed that by spacetime geometry we mean the real components of both

the metric and the af�ne structures. This excludes beyond the scope of the present paper the

16
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possible relation between the imaginary components of the af�ne connection and the gauge

�elds of internal interactions17.

Needless to say, one need not to followMCP, but can regard it only as a procedure that works

in some theories but ought not to be naively extrapolated to others. In any case, MCP enforces

some technical economy, and re�ects both the logic of gauge theory and the unique, universal

character of gravity expressed in the equivalence principle. It yet remains to be investigated

how much further MCP may guide us.

Embracing MCP is understanding the limitations it puts to a theory. A well de�ned theory

must have a canonical choice of the generalisation of the spacetime derivatives in canonical

inertial coordinates; the generalisation must be uniquely determined for any representation

and for any geometrical construction including objects such as frames, volumes, determinants,

products such as dual, star, wedge, derivatives such as exterior, adjoint, Lie, etc which are all

available if a suitable manifold structure is postulated; the generalisation∇ is not arbitrary, but

determined by G, or even more properly, by I(η,φ, ∂φ) which encodes both the �elds φ, their
symmetry G, and the necessary details included in the action formulation I which typically

amounts to the instructions for integrating the quotient of G that is interpreted as the space-

time manifold; and if still carried further, the principle should dictate also the dynamics of the

gravitational �elds, and would then for example exclude the case IEH(φ, ∂φ, ∂
2φ) =

∫
g(D2)

known as the Einstein–Hilbert action whilst allowing to take terms such as
∫
g(g,∇g) into

consideration.

We end with a proposition. It is based upon a curious feature of MCP, Iφ(g,φ,Dφ) =
Iφ(g,φ, ∂φ), that is already there in standard general relativity (but not in its Palatini vari-

ant) and upon (the �rst part of) the conclusion (b) that carries the feature into the symmetric

teleparallel spacetime so that also there Iφ(g,φ,∇φ) = Iφ(g,φ, ∂φ).

Proposition 1. Given the physics Iφ(η,φ, ∂φ) in an inertial frame, its classical gravity is
determined18 by

The minimal decoupling principle : IG(η, ∂η)
︸ ︷︷ ︸

=0

+ Iφ(η,φ, ∂φ)
︸ ︷︷ ︸

@inertial frame

→ IG(g,∇g)
︸ ︷︷ ︸

=
∫
d4xQ=̈IE(g,∂g)

+ Iφ(g,φ,∇φ)
︸ ︷︷ ︸

=Iφ(g,φ,∂φ)

. (MDP)

A certain coincidence occurs also in the φ-sector.
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Appendix A. Generalized Noether identity

In this appendix we will derive the Noether identities corresponding to the gauge diffeomor-

phisms invariance of the action. These results can be found in the literature (see e.g. [2, 43]),

but we will reproduce them here for completeness. We will also seize the opportunity to clarify

some potentially confusing points. Let us then consider the following action

I = IG[g,Γ] +
2

M2
P

Iφ[g,Γ,φ], (A1)

where g and Γ represent the gravity sector and φ stands for the matter �elds. We will work

with the spacetime version of the theory, i.e., all quantities in the general linear bundle are

translated to the spacetime tangent bundle. The variations of the gravitational �elds under a

diffeomorphism generated by the vector �eld vμ are given by the Lie derivatives [31]

δvgμν = −Lvgμν = −
(
vλ∂λgμν + 2gλ(μ∂ν)v

λ
)
, (A2)

δvΓ
α
μν = −LvΓ

α
μν = −

(
vλ∂λΓ

α
μν − ∂λv

α
Γ
α
μν + ∂μv

λ
Γ
α
λν + ∂νv

λ
Γ
α
μλ + ∂μ∂νv

α. (A3)

These variations can be expressed in terms of manifestly tensorial quantities and the af�ne

connection as follows:

δvgμν = −2gλ(μ∇ν)v
λ
+
(
2T(μν)λ − Qλμν

)
vλ, (A4)

δvΓ
α
μν = −∇μ∇νv

α
+ Tα

νλ∇μv
λ
+
(
Rα

νμλ +∇μT
α
νλ

)
vλ. (A5)

The transformation for the metric can be substantially simpli�ed by recalling the usual GR

result that is of course also in the general af�nely connected space

δvgμν = −2gλ(μDν)v
λ
= −2D(μvν), (A6)

so themetric changes with its Levi-Civita connection. There is nothing special about the metric

in this sense and this transformation law applies to any symmetric rank-2 tensor. We can then

express the variation of the action as

δvI = −
∫

d4x
δI

δΨA
LvΨ

A (A7)

withΨA
= {gμν ,Γα

μν , . . .}, where the dots stand for all other possible matter �elds. As a proxy

of the matter sector for illustrative purposes and for the sake of simplicity we will take a set of

(diffs-)scalar �elds ϕa, which could nevertheless belong to some non-trivial representation of

an internal group. They transform as

δvϕ
a
= −Lvϕ

a
= −vλ∂λϕ

a. (A8)

The extension to other �elds is straightforward and it is just necessary to include the non-trivial

dragging terms in the Lie derivative. If we introduce the functional variations

Eμν ≡ δI

δgμν
, Fα

μν ≡ δI

δΓα
μν

and Ea ≡
δI

δϕa
(A9)

18
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that give the corresponding �eld equations, we �nd

δvI =

∫

d4x
[

2∇̂μEμ
λ +

(
2Tμνλ − Qλμν

)
Eμν − ∇̂ν∇̂μFλ

μν
+ Tα

λν∇̂μFα
μν

+
(
Rα

νμλ + Tβ
βμT

α
νλ

)
Fα

μν − Ea∂λϕa
]
vλ +

∫

d4x ∂μ
(
J μ

λv
λ
+ J μν

λ∂νv
λ
)
,

(A10)

wherewe have de�ned the derivative ∇̂μ ≡ ∇μ − Tα
αμ that arises from integrationby parts and

J μ
λ and J μν

λ are two density currents that depend on the different �elds. The second term

originates from the inhomogeneous piece of the connection transformation that depends on

second derivatives of the gauge parameter. This is a distinctive feature of metric-af�ne theories

that does not appear in e.g. Yang–Mills theories. In order to obtain the off-shell conserved

currents we need to impose that both the gauge parameters and their derivatives vanish on the

boundary19 so that we obtain the set of identities:

2∇̂μEμ
λ +

(
2Tμνλ − Qλμν

)
Eμν − ∇̂ν∇̂μFλ

μν
+ Tα

λν∇̂μFα
μν

+
(
Rα

νμλ + Tβ
βμT

α
νλ

)
Fα

μν
= Ea∂λϕa. (A11)

These are the general identities derived from the diffeomorphism-invariance of the action. The

three pieces coming from the metric conspire to give 2DμEμ
λ so the identities can alternatively

be written as

2DμEμ
λ − ∇̂ν∇̂μFλ

μν
+ Tα

λν∇̂μFα
μν

+
(
Rα

νμλ + Tβ
βμT

α
νλ

)
Fα

μν
= Ea∂λϕa. (A12)

Of course, there is no secret conspiracy and this is the form of the identities we would have

obtained had we used (A6) instead of (A5). For a general matter �eld, the right-hand side of

the Bianchi identities would be given by some differential operator. If instead of a scalar we

considered an arbitrary (p, q)-tensorAμ1...μp
ν1...νq , possibly with some internal indices as well,

from the transformation rule δvA = −LvA, the right-hand side of the Bianchi identities would

be given by the following covariant derivative:

D
(A)
λ

[
δI

δAμ1...μpν1...νq

Aμ1...μp
ν1...νq

]

≡ δI

δAμ1...μpν1...νq

∂λAμ1...μp
ν1 ...νq − ∂ν1

(
δI

δAμ1...μpν1...νq

Aμ1...μp
λν2...νq

)

− · · · − ∂νq

(
δI

δAμ1...μpν1...νq

Aμ1...μp
ν1...νq−1λ

)

+ ∂κ

(
δI

δAμ1...μpν1...νq

Aκμ2...μp
ν1...νq

)

δμ1λ

+ · · ·+ ∂κ

(
δI

δAμ1...μpν1...νq

Aμ1...μp−1κ
ν1 ...νq

)

δμpλ, (A13)

19The additional condition on the behaviour of the gauge parameter on the boundary may have interesting non-trivial

consequences for the infrared structure of the theories, asymptotic charges of spacetimes with boundaries.
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where a sum over internal indices is implied. Notice that the covariant character of this expres-

sion is guaranteed by its own de�nition even though it is not manifestly covariant. Furthermore,

�elds that do not transform as proper tensors under diffeomorphisms (e.g. spinors or tensorial

densities) will feature a different expression for this covariant derivative but it will always be

determined by the corresponding Lie derivative. If we restrict to the pure gravity sector, i.e. the

sector of the action that does not depend on the matter �elds, the right-hand side of the Bianchi

identities vanishes and we obtain

2DμGμ
λ − ∇̂ν∇̂μPλ

μν
+ Tα

λν∇̂μPα
μν

+
(
Rα

νμλ + Tβ
βμT

α
νλ

)
Pα

μν
= 0 (A14)

with

Gμν ≡ δIG
δgμν

and Pμν
α ≡ δIG

δΓα
μν
. (A15)

It may be convenient to stress that for these identities to hold, it is not necessary that the matter

�elds are on-shell. This simply follows from imposing diffeomorphism invariance for the piece

IG in (A1). In a pure metrical theory without any dependence on the connection, this equation

recovers the standard Bianchi identities DμGμ
λ = 0. It is also important to realise that these

metric Bianchi identities will be satis�ed in a general metric-af�ne theory in any sector that is

decoupled from the connection. That is for instance the case of the bosonic sector of the theory

with minimal couplings.

Appendix B. On representations

The cotangent space of the GL(4) group can be spanned by the 16 vectors Σab = 2xa∂b, with
the commutation relations

[Σab,Σcd] = 2 (ηbcΣad − ηadΣcd) . (B1)

The Killing vectors can be splitted into the Lorentz rotations rab = Σ[ab] and the shear

generators qab = Σ(ab), with the algebra

[rab, rcd] = 2
(
ηd[arb]c − ηc[arb]d

)
, [rab, qcd] = −2

(
ηd[aqb]c + ηc[aqb]d

)
,

[qab, qcd] = 2
(
ηd(arb)c + ηc(arb)d

)
.

(B2)

The in�nitesimal gauge transformations are given by the Lie derivatives along the Killing

vectors. For example, for the transformation of a vector V, we get

LΣab
V = [Σab,V] =

(
ΣabV

c − 2ηd[aδ
c
b]V

d
)
∂c =

[

(Σ(0)
ab )δ

c
d + (∆(1)

ab )
c
d

]

Vd∂c, (B3)

where the second piece, the matrix part of the operator (the �rst piece being called the orbital

part of the operator acting upon V) de�nes the vector representation we referred to in (17),

(∆(1)
ab )

c
d
= −2ηdaδ

c
b, i.e. (r(1)ab )

c
d
= rabδ

c
d − 2ηd[aδ

c
b]

and

(q
(1)
ab )

c
d
= qabδ

c
d − 2ηd(aδ

c
b). (B4)

Similarly we obtain the matrices in the one-form representation,

(∆
(0,1)
ab )c

d
= 2ηcaδ

d
b , i.e. (r

(0,1)
ab )c

d
= rabδ

d
c + 2ηc[aδ

d
b]
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Table 1. The elements of the centrally extended conformal group in terms of generating vectors and in terms of
16 4×4 matrices, and the matrix representations corresponding to the former.

Transformation Matrix Vector (∆(1,0))cd (∆(0,1))c
d

∆
( 1
2
) Potential

Translation
+
γa =

1
2

(

1+ γ5
)

γa ∂a 0 0 0 τ
a

Co-translation
−
γa =

1
2

(

1− γ5
)

γa x2∂a − 2xax
b∂b 2ηadx

c − 4δc[axd] −2ηacx
d + 4δd[axc] xa σ

a

Rotation − 1
2
γ[aγb] rab = 2x[a∂b] −2ηd[aδ

c
b] 2ηc[aδ

d
b] − 1

2
γ[aγb] ω

ab

Dilation − 1
2
γ5 xc∂c −δcd δdc Two κ

Identity 1 0 0 0 0 z

2
1
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and

(q
(1)
ab )

c
d
= qabδ

d
c + 2ηc(aδ

d
b). (B5)

From these we can build the matrices for tensors of an arbitrary rank by simply taking the

direct product of the above. For example, the matrices for rank (0, 2) tensors are given as

(∆
(0,2)
ab )c

d

e

f

= (∆
(0,1)
ab )c

d
δ fe + δdc (∆

(0,1)
ab )e

f
. (B6)

Our convention is such that the gauge �eld Λ is represented as Λ = − 1
2
Λ
ba
∆ab. Then, given

for example a vector Va, according to (B4) we have DVa = dVa +Λ
a
bV

b. As another example,

the constant ηab lives in the representation (B6), and thus we get

Dηab = −1

2
Λ
ec(∆(0,2)

ce )a
d

b

f

ηd f = −2Λ(ab), (B7)

in agreement with (29).

Having reviewed the construction of tensor representations, we can �nally proceed to

spinors. The Lie derivative of a spinor �eld ψ along the vector V is de�ned as on a metric

manifold as

LVψ = VaDaψ − 1

4
DaVbγ

aγbψ. (B8)

If V is assumed to be a Killing vector of the metric whose covariant derivative Da is, we have

DaVb = D[aVb]. The Kosmann lift generalises the above formula for arbitrary vectors that need

not be Killing vectors by imposing the antisymmetrisation. We have not imposed the antisym-

metrisation, but it is easy to see that this the only difference this would make is that in the result

(43b) we would have 3Q+ Z replaced by Z. The metric we consider is the Minkowski metric

of the tangent space, and thus the metric-covariant derivatives reduce to partial derivatives. The

Lie derivatives of a spinor along the generating vectors of the GL become

LΣab
ψ = Σabψ − 1

2
γaγbψ = Σabψ +∆

( 1
2
)

ab ψ, (B9)

and thus, in accordance with (30),

∆
( 12 )

ab = −1

2
γaγb, i.e. r

( 12 )

ab = rab −
1

2
γ[aγb] and q

( 12 )

ab = qab +
1

4
ηab. (B10)

This completes our justi�cation for the use of (B10) in the calculations.

The group SL(4,C) is the double cover of the group SO(6,C). The general linear algebra

must thus be isomorphic to the conformal algebra extended by including the central element.

For curiosity, we shall check some properties of the representations in the conformal basis of

the algebra. Some results are summarised in table 1. Comparing with our results, it looks like

Q and Q̃ correspond to the pieces κ and xaσa. Finally, for whatever it might be good for, we

could write down a spinor connection

D = d+ t
a+γa + σa

−
γa − 1

4
ω
abγ[aγb] −

1

2
κγ5

+ z, (B11)

and couple this connection into the Dirac action (32), to obtain its Hermitian version that

survives in that action,
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Γ
H
=

1

4
Re

(
τ aμ + σaμ

)
[γμ, γa]+

1

2
Re

(
τ aμ − σaμ

)
δμaγ

5

− i

2
ǫabcd Re(ωaμb)ec

μγdγ
5
+ Re(κμ)γ

μγ5

− 1

2
Im

(
τ aμ + σaμ

)
δμa − 1

4
Im

(
τ aμ − σaμ

)
γ5[γμ, γa]

+ i Im(ωa
μb)ea

μγb + Im(zμ)γ
μ. (B12)
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