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1 Introduction

Topological field theories (TFTs) are often divided in two classes: Schwarz’s TFTs and Wit-

ten’s TFTs. The peculiar feature of the former is that their classical action is manifestly

independent from the metric on the manifold on which the theory is defined.1 Standard

examples of such theories are the 3-dimensional Chern-Simons theory and the BF-models.

On the other hand, Witten’s TFTs are usually obtained starting from a supersymmetric

field theory and then performing a topological twist: after the twist one of the original,

spinorial, supercharges turns out to be a scalar and it can be treated as a BRST operator

for the resulting theory. Such a BRST symmetry (that one can call topological super-

symmetry, to remember its origin from a supersymmetric field theory) is so large that all

the local propagating degrees of freedom are BRST-exact and therefore they do not affect

the correlators. On the other hand, Schwarz’s TFTs do not enjoy usually any topological

supersymmetry.

1Of course, the gauge-fixing term is not metric-independent.
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What Schwarz’s TFTs and Witten’s TFTs have in common is that, in both cases,

all the dynamics is encoded in the global, non propagating, degrees of freedom. From

this point of view it is natural to think that these two types of theories could be two

different faces of the same coin and that could be related in a closer way. Indeed, for

some particular cases, such a relation can be found: for example, it has been noticed [1, 2]

that the topological A-model (a Witten’s TFT) can be obtained by performing a suitable

gauge-fixing of a particular Poisson sigma model (PSM), which is a Schwarz’s TFT that

we will describe in details later.

Starting from [3] for the case of 3-dimensional Chern-Simons, and then in subse-

quent papers [4, 5] and [6], a completely different connection between Witten’s TFTs

and Schwarz’s TFTs started to emerge: by coupling a Schwarz’s TFT to some additional

topological background multiplets (including topological gravity plus some other topologi-

cal multiplets which depend on the context) a topological supersymmetry appears. Since,

as we recalled, the topological supersymmetry is the prominent feature of a Witten’s TFT,

one understands that the coupling of a Schwarz’s TFT to topological backgrounds pro-

duces a (family of) Witten’s TFT(s). The original Schwarz’s TFT has to be considered as

a particular point in the space of the theories coupled to the topological backgrounds: in

generic points of the space of backgrounds the theory has the topological supersymmetry,

but in some very specific points of the space of backgrounds the topological supersymmetry

collapses and one ends up with the original Schwarz’s TFT.

From a technical point of view, the coupling to the topological backgrounds produces

a BRST operator which usually is nilpotent only on-shell. A standard method to treat

BRST operators nilpotent only on-shell is the so-called BV formalism.2 Let us recall its

main features: for each field one includes a corresponding antifield. Then one modifies the

BRST variations of the fields (and defines the BRST variations of the antifields) such that

at the end the BRST operator is nilpotent off-shell. However the antifields are not treated

as independent fields: during the gauge-fixing procedure they are fixed to some functionals

of the fields.

On the other hand, it has been observed in [5] and [6] that the BRST algebra including

also the antifields is equivalent to a twisted version of the SUSY algebra of a vector mul-

tiplet in a corresponding supersymmetric field theory. This observation has led to a new

interesting application of the BV algorithm: instead of treating the antifields as function-

als of the fields (and viewing the BV formalism as a way to gauge-fix a BRST symmetry

which closes only on-shell), the antifields can be treated as independent auxiliary fields,

whose role is just to ensure the closure of the algebra off-shell (this is indeed the role that

auxiliary fields play in supersymmetric field theories). Of course, it must be emphasized

that treating the antifields as auxiliary fields gives a theory which, a priori, is different

from the theory obtained via the traditional BV method: what we are saying here is just

that the BV algorithm provides an efficient way to construct theories with a topological

supersymmetry that closes off-shell. Following this recipe one finds a close and new relation

between topological field theories (coupled to the topological backgrounds) and supersym-

2See, for example, [7] for a concise introduction.
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metric field theories on curved space. This correspondence allows to understand some of

the results obtained via supersymmetric localization in the last ten years (see [8] for an

exhaustive review) from a topological and cohomological point of view, and in many cases

(discussed in [5] and [6]) such a cohomological viewpoint has provided an extension of the

results obtained via standard supersymmetric field theories.

In this paper we provides a generalization of the results obtained in [6]: in that paper it

is shown that the 2-dimensional BF-model can be consistently coupled to a topological U(1)

multiplet. After the coupling one obtains a topological description of the non-topological

theory of 2-dimensional YM. Moreover, the theory coupled to the background multiplet

acquires a topological supersymmetry that in the standard treatment of 2-dimensional

YM is introduced “by hand”. This gives a very explicit example of the phenomenon we

mentioned before: after the coupling to the topological background, a topological super-

symmetry emerges.

The 2-dimensional BF-model is a particular example of a set of TFTs which go under

the name of Poisson sigma models (PSMs) [9, 10]: they are topological sigma models in

which the target space is a Poisson manifold. Let us recall that a Poisson manifold is a

manifold M provided with a bivector field, Πij ∈ Γ(∧2TM), which satisfies the condition

[Π , Π]S ≡ Πil∂lΠ
jk + Πjl∂lΠ

ki + Πkl∂lΠ
ij = 0 , (1.1)

known as Jacobi condition. The BF-model can be seen as a particular case in which the

target space is a linear Poisson manifold, i.e. a Poisson manifold whose corresponding

bivector Πij is linear in the local coordinates.

In this paper we will show that the coupling to the topological U(1) multiplet, worked

out in [6] for a BF-model, can be generalized to include all the possible PSMs. The

procedure to obtain the coupled theory is similar, but more involved, to the one used

for the BF-model. The coupling to the U(1) background multiplet is done by choosing a

Casimir function C(X) on M (which, as we will review, is a function invariant under the

action of the Poisson bivector Πij). After the coupling, both the BRST variations and

the action are modified by terms involving the Casimir function C(X), and this changes

the observables of the theory: before the coupling to the topological U(1) multiplet, the

observables can be identified with the elements of the Poisson cohomology of M ; after the

coupling they are identified with the elements of the Poisson cohomology of M which also

have vanishing Schouten bracket with the Casimir function C(X). We will also see that

the coupled system admits new composite observables constructed out of the PSM fields

and the U(1) background fields.

The resulting model is further coupled to 2-dimensional topological gravity: this is

the first step to construct a topological string theory in propagation on the target space

M , an important problem that we hope to address in the future and that could lead to

define enumerative invariants for a Poisson manifold very similar to the GW invariants.

The observables of the system coupled to topological gravity are discussed.

Let us also mention that the system of backgrounds (the topological U(1) multiplet

and 2-dimensional topological gravity) that we considered in this paper is equivalent to

2-dimensional N = (2, 2) supergravity [6], therefore it is conceivable that the study of the
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PSMs coupled to these backgrounds could provide a way to define new 2-dimensional su-

persymmetric vector multiplets. This is another important aspect that we hope to address

in the future.

The paper is organized as follow. In section 2, to make the paper self-contained, we

review the coupling of the 2-dimensional BF-model to the topological U(1) background

multiplet. We also use this section to explain the new application of the BV technique we

described in this Introduction. This leads naturally to the topological supersymmetry. The

role of the “gaugino” field, usually introduced by hand in 2-dimensional YM, is here played

by a combination between γ(0), the ghost-for-ghost of the topological U(1) background

multiplet, and A∗, the antifield of the gauge field A. In section 3 we start by reviewing the

standard construction of a generic PSM, following mostly [11], and then we see how the

coupling to the topological U(1) background is carried out for these more general models.3

A discussion of the observables is given and we also see that the topological action is

equivalent, in the relevant cohomology, to a purely algebraic observable. In section 4 we

couple the resulting system to topological gravity. The observables identified in section 3

are immediately promoted to observables of the theory coupled to topological gravity. As

an application we discuss how the gauge-fixed vectorial supersymmetry discovered in [11]

can be easily understood in terms of the theory coupled to topological gravity. Finally,

section 5 contains the conclusions and some ideas for future works.

2 A review of two-dimensional Yang-Mills coupled to topological back-

grounds

In this section, we review the coupling of 2-dimensional YM to topological backgrounds [6].

The generalization to generic PSMs will be discussed in the next section.

It is commonly said that 2-dimensional Yang-Mills is a topological theory since gauge

invariance in two dimensions removes all the propagating local degrees of freedom. How-

ever, the 2-dimensional YM action is not topological, i.e. it is not independent from the

2-dimensional metric. It is convenient to write the 2-dimensional action in a slightly un-

usual way [12] by introducing, beyond the gauge field A = AaT a, an additional adjoint

scalar φ = φaT a,4

ΓYM =

∫
Σ

Tr (φF ) + ε

∫
Σ

d2x
√
g

1

2
Tr (φ2) , (2.1)

where ε is a constant proportional to the square of the standard YM coupling constant, Σ

is a 2-dimensional Riemann surface5 provided with a metric g and F is the field-strength

3Let us also mention that, for a generic PSM, treating the antifields as indipendent fields gives a theory

which is effectively different from the original PSM: this is a possibility that we already mentioned and

indeed the PSM provides an explicit example of such a phenomenon. For this reason we also make a

discussion about the coupling to the topological backgrounds in the BV formalism.
4Both A and φ have ghost number 0 and T a, with a = 1 . . . dimG, are the generators of the Lie algebra

associated to the group G.
5Since the main goal of the paper is to explain the procedure of coupling the topological theory to

topological backgrounds, we will restrict to the case in which Σ is closed. The discussion can be generalized

to the case in which Σ has boundaries.
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two-form

F = dA+A2. (2.2)

The correspondence with the standard YM action is then recovered by integrating out φ

Γ′YM = −1

ε

∫
Σ

d2x
√
g

1

2
Tr (F 2) . (2.3)

On the other hand, (2.1) makes explicit the dependence of the theory from the 2-

dimensional metric, via the volume form d2x
√
g which appears in the term

ε

2

∫
Σ

d2x
√
gTr (φ2) . (2.4)

The action (2.1) also shows that, at least classically, the dependence from the metric gets

removed by considering the ε→ 0 limit: in this way one obtains the topological action

ΓYM|ε=0 =

∫
Σ

Tr (φF ) , (2.5)

which is manifestly independent from the metric. It is indeed the action for a 2-dimensional

BF-model: a topological theory of Schwarz’s type.

Both the physical action (2.1) and the topological action (2.5), do not possess any

topological supersymmetry: they are only invariant under gauge BRST transformations

sgaugec = −c2 ,

sgaugeA = −D c ,

sgaugeφ = −[c, φ] , (2.6)

where, as usual, c = caT a is the ghost field associated to the gauge invariance and the

gauge covariant derivative is6

D c ≡ d c+ [A, c]+ , (2.7)

whereas it is not present any topological supersymmetry, like the one of 4-dimensional

topological YM

sA = ψ , (2.8)

where ψ is the topological gaugino (a 1-form of ghost number 1). The lacking of a topo-

logical supersymmetry is not surprising, since 2-dimensional YM is a deformation of a

Schwarz’s TFT.

However the action ΓYM
∣∣
ε=0

can be easily supersymmetrized, by adding a decoupled

quadratic fermionic term [12]

Γtop = ΓYM
∣∣
ε=0
− 1

2

∫
Σ

Trψ ∧ ψ =

∫
Σ

TrφF − 1

2

∫
Σ

Trψ ∧ ψ . (2.9)

6In this paper we will adopt the convention that the BRST operator and the external differential anti-

commute.
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This action is indeed invariant under topological Yang-Mills BRST transformations7

s0 c = −c2 + φ ,

s0A = −D c+ ψ ,

s0 ψ = −[c, ψ]−Dφ ,

s0 φ = −[c, φ] . (2.10)

Notice that the deformation (2.10) shifts the ghost number of the scalar field φ: it has now

ghost number +2. This shift makes harder to generalize the deformation (2.9) to more

general PSMs. We will see that the coupling to topological backgrounds gives a way to

overcome this difficulty.

By switching on ε, one obtains the final action

ΓW =

∫
Σ

TrφF +
ε

2

∫
Σ

d2x
√
gTrφ2 − 1

2

∫
Σ

Trψ ∧ ψ. (2.11)

ΓW is also invariant under (2.10); nevertheless it is not fully topological, since it explicitly

depends on a 2-dimensional background metric via the volume form d2x
√
g.

The construction of [6], that we are going to review, shows that both the non-topological

deformation (2.4) and the fermionic term

1

2

∫
Σ

Trψ ∧ ψ , (2.12)

can be obtained by considering the topological BF-theory (2.5) coupled to an abelian

topological background U(1) multiplet. In this way one obtains a topological formulation

of 2-dimensional YM and a more natural understanding of the topological supersymmetry

transformations (2.10).

The main idea of [6] is to replace both the metric and the coupling constant ε with a

topological background and to extend the BRST action on the background. This produces

automatically the term (2.12), introduced by hand in [12].

Let then f (2) be a 2-form field and let us replace the action (2.1) with

Γ1 =

∫
Σ

TrφF − 1

2

∫
Σ
f (2)Trφ2 . (2.13)

This action is not equivalent to the original one. A generic f (2) admits a Hodge decompo-

sition

f (2) = Ω(2) + d Ω(1) , (2.14)

where

Ω(2) = ε d2x
√
g , (2.15)

7We will use the symbol s0 to denote the rigid BRST operator, to be distinguished from the BRST

operator coupled to topological gravity which we will denote with s and that will be discussed in section 4.
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is a representative of H2(Σ) and Ω(1) a 1-form. For Γ1 to be equivalent to ΓYM we must

remove the degrees of freedom associated to Ω(1). We do this by introducing a BRST

symmetry for the background f (2),8

s0 f
(2) = −dψ(1) , (2.16)

where ψ(1) is a fermionic background 1-form field of ghost number +1. The BRST transfor-

mation (2.16) is degenerate: therefore we introduce also a scalar ghost-for-ghost background

field γ(0) of ghost number +2

s0 ψ
(1) = −d γ(0) , (2.17)

with

s0 γ
(0) = 0 . (2.18)

However BRST-invariance is lost, since

s0 Γ1 = −s0

(
1

2

∫
Σ
f (2)Trφ2

)
=

1

2

∫
Σ

dψ(1) Trφ2 = −
∫

Σ
ψ(1) ∧ Tr(φDφ) . (2.19)

To cure for this we modify the BRST transformation law for A

s0A = −D c+ ψ(1) φ+ · · · , (2.20)

so that the BRST variation of the first term in Γ1 cancels the lack of invariance of the

second term:

s0 Γ1 = 0 . (2.21)

The problem with (2.20) is that it is not nilpotent:

s2
0A = −d γ(0) φ+ · · · , (2.22)

to fix this it is necessary to deform the BRST transformation rule for the ghost c

s0 c = −c2 + γ(0) φ . (2.23)

With this modification one has

s2
0 c = 0 , (2.24)

and also this induces an extra term in s2
0A which cancels the term proportional to d γ0:

s2
0A = D

(
γ(0) φ

)
− d γ(0) φ+ · · · = γ(0) Dφ+ · · · . (2.25)

8The idea of extending the BRST symmetry to physical coupling constants has been introduced, in a

different context, in [4].
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Although this is still not zero, the lack of nilpotency is now reduced to a term proportional

to the equations of motion of A:

δΓ1

δA
= Dφ = 0 , (2.26)

and therefore

s2
0A = 0 on shell . (2.27)

The BV formalism provides a systematic way to go off-shell. One introduces the antifield

corresponding to A

A∗ ≡ A∗aµ T a dxµ , (2.28)

which is a 1-form in the adjoint of the gauge group of ghost number -1, and an antifield

dependent term in the BRST transformation of A

s0A = −D c+ ψ(1) φ+ γ(0)A∗ . (2.29)

This makes s0 nilpotent off-shell on all fields

s2
0 c = s2

0A = s2
0 φ = s2

0A
∗ = 0 off shell , (2.30)

as long as A∗ transforms according to

s0A
∗ = −[c, A∗]−Dφ . (2.31)

The new term proportional to γ(0) in (2.29) spoils the invariance of the action

s0 Γ1 = −
∫

Σ
TrφD

(
γ(0)A∗) =

∫
Σ
γ(0) Tr Dφ ∧A∗ , (2.32)

and this is anticipated in the BV framework: once an antifield dependent term is introduced

in the BRST transformation of a field, terms quadratic in the antifields must be added to

the action. Indeed the final, topological, action

Γ =

∫
Σ

TrφF − 1

2

∫
Σ
f (2)Trφ2 +

1

2

∫
Σ
γ(0) TrA∗ ∧A∗ , (2.33)

is invariant:

s0 Γ = 0 , (2.34)
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under BRST transformations of both fields and backgrounds9

s0 c = −c2 + γ(0) φ ,

s0A = −D c+ γ(0)A∗ + ψ(1) φ ,

s0 φ = −[c, φ] ,

s0A
∗ = −[c, A∗]−Dφ ,

s0 f
(2) = −dψ(1) ,

s0 ψ
(1) = −d γ(0) ,

s0 γ
(0) = 0 . (2.35)

2.1 The topological supersymmetry

We have seen that the field A∗ emerges naturally in the context of the BV formalism. In

the BV framework, the action (2.33) would not however be the full action. The BV action

is given by adding to (2.33) a canonical piece, which schematically reads

Γcan =
∑

Φ

∫
Σ

(s0 Φ) Φ∗ , (2.36)

where we use the symbol Φ to collectively indicate all the fields and backgrounds. The full

BV action

ΓBV = Γ + Γcan , (2.37)

generates the BRST transformations of both fields and antifields via the familiar

BV formulas.

However, from an algebraic point of view, the interpretation of A∗ as the antifield of A

is not mandatory. In [5] and [6] it has been observed that an alternative — although exotic

— interpretation is available and it leads naturally to the topological supersymmetry (2.10)

and to the action (2.9). Let us review this interpretation.

In the new approach (that we could call supersymmetric to recall that it realizes a

connection with the study of supersymmetric field theories on curved spaces) A∗ is seen as

an independent auxiliary field, whose role is to close the BRST transformations off-shell:

at the same time, the action is taken to be Γ, disregarding the canonical piece Γcan.

This approach is consistent since the BRST transformations close on the fields

(φ,A, c, A∗) and leave Γ invariant. The only local gauge symmetry of Γ, which eventu-

ally will have to be fixed, is the non-abelian gauge symmetry: Γ enjoys also a global vector

supersymmetry which, together with the gauge symmetry, gives rise to the BRST symmetry

in (2.35).

Notice that, with this reinterpretation, the “ghost field” associated to the topological

supersymmetry is the ghost number +1 combination γ(0)A∗, i.e. a composite field.

9It can be observed that the action (2.33) and the transformations (2.35) can be also understood via the

so-called AKSZ formalism [13]: they can be thought as obtained by considering two different BF-models

(one of them abelian) and then coupling them via a cubic term. The author thanks A. S. Cattaneo for

discussions on this point.
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Γ in (2.33) is invariant under simultaneous transformations of fields and backgrounds.

To obtain the action invariant under rigid topological supersymmetry we consider the

backgrounds which are left invariant under (2.35)

dψ(1) = 0 , d γ(0) = 0⇔ γ(0) = constant ≡ γ0 . (2.38)

One usually restricts oneself to bosonic backgrounds. In this case

ψ(1) = 0 , (2.39)

and the BRST transformations reduce to

s0 c = −c2 + γ0 φ ,

s0A = −D c+ γ0A
∗ ,

s0 φ = −[c, φ] ,

s0A
∗ = −[c, A∗]−Dφ . (2.40)

By introducing the rescaled fields

φ̂ ≡ γ0 φ ψ̂ ≡ γ0A
∗ , (2.41)

with ψ̂ and φ̂ of ghost number 1 and 2 respectively, the BRST transformations (2.40)

become identical to the topological Yang-Mills BRST transformations (2.10) and the BRST

invariant action coincides with the Witten topological action ΓW in (2.11). Notice that,

with this approach, the shift on the ghost number of the field φ does not occur: it is the

composite field φ̂ that has ghost number 2. The fundamental field φ remains of ghost

number 0. This property will be important when we will extend the discussion to more

general PSMs.

Let us summarize our logic: we started from 2d YM. To mantain the topological nature

we replaced the 2-dimensional metric and the coupling constant ε with a 2-form background

field f (2), at the same time asking that the physics only depends on the cohomology class of

f (2). This entails both extending the BRST gauge transformations to the background (and

completing f (2) to a topological U(1) multiplet) and to deform the BRST transformations

of the gauge multiplet. Since the deformed BRST transformations close only up to the

equations of motion of the gauge field, it has been necessary to introduce the auxiliary

field A∗ — which in the BV formalism would be the antifield of A. We managed to

obtain in this way a BRST invariant theory coupled to topological backgrounds. Theories

invariant under rigid supersymmetry are now obtained by considering the backgrounds

which are bosonic fixed points of the deformed BRST operator, i.e. γ(0) = γ0 constant

and ψ(1) = 0. For γ0 6= 0 one gets the topological YM Witten theory and identifies the

somewhat mysterious topological gaugino ψ of [12] as γ0A
∗.

By choosing the point γ0 = 0 in the space of BRST-invariant backgrounds one recovers

the original YM action (2.1): in this limit the topological supersymmetry collapses and

the BRST symmetry reduces to the pure gauge one, (2.6). By further taking the point

γ0 = f (2) = 0 one instead obtains back the original BF-model action (2.5). We see therefore

– 10 –
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that our theory, coupled to the topological backgrounds, provides a topological extension

of the standard 2-dimensional BF-model.

The fact that the γ0 = 0 point is degenerate in the space of backgrounds, gives a

conceptual understanding of why the topological supersymmetry of the standard YM ac-

tion is “hidden”. On generic points γ0 6= 0 of the space of backgrounds the topological

supersymmetry is manifest.

2.2 Superfield formulation

Whatever the point of view one chooses — the BV point of view which treats A∗ as an

antifield, or the supersymmetric one in which A∗ is an independent field — it is possible

to develop a superfield formulation for the theory coupled to the topological backgrounds.

To this end, let us introduce the 2-form fields φ∗ and c∗, of ghost number −1 and −2

respectively. In the BV formalism these fields would be the antifields of the scalars φ and

c. We can then introduce the polyforms

A ≡ c+A+ φ∗ ,

Φ ≡ φ+A∗ + c∗ , (2.42)

carrying total ghost number (given by the sum of ghost number and form degree) +1 and

0. The background fields are collected in a single polyform

f ≡ γ(0) + ψ(1) + f (2) , (2.43)

of total ghost number +2; we also introduce the coboundary operator

δ0 ≡ s0 + d . (2.44)

It is now straightforward to see that the relations

δ0A+A2 = f Φ ,

δ0 f = 0

δ0 Φ + [A,Φ] = 0, (2.45)

precisely reproduces the BRST variations (2.35) together with the BRST transformations

for φ∗ and c∗:

s0 φ
∗ = −[c, φ∗]− F + γ(0)c∗ + ψ(1)A∗ + f (2)φ ,

s0 c
∗ = −[c, c∗]− [φ∗, φ]−DA∗ . (2.46)

Once written in the polyform notation (2.45), the geometrical meaning of the coupling

to the topological backgrounds is very transparent: when one takes the degenerate point

f = 0 the BRST variations for the polyforms A and Φ are completely decoupled. On this

particular point, one ends up with the standard gauge invariance of the 2-dimensional BF-

model. When f is turned on, the BRST variations for A and Φ are coupled: this coupling

realizes the topological supersymmetry discussed in section 2.1.
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3 Coupling Poisson sigma models to topological backgrounds

In this section we will see how the coupling to the topological backgrounds we outlined

in section 2 can be extended to a generic PSM, of which the BF-model is a particular

case with a linear Poisson structure. We will start in subsection 3.1 with a review of

the construction of a generic PSM, mainly following [11].10 Then, in section 3.2, we will

introduce the coupling to the topological backgrounds.

3.1 A review of the Poisson sigma models construction

A PSM is a topological sigma model in which the target manifold M is a d-dimensional

Poisson manifold. As such, M is provided with a Poisson structure, i.e. a bivector Πij(X) ∈
Γ(∧2TM) satisfying the Jacobi condition

[Π , Π]S ≡ Πil∂lΠ
jk + Πjl∂lΠ

ki + Πkl∂lΠ
ij = 0 , (3.1)

where [· , ·]S denotes the Schouten bracket and X are local coordinates on M .

The PSM describes maps from a Riemann-surface Σ to the target space M . It has two

real bosonic (ghost number 0) fields Xi and ηi. X
i describes the map from Σ to M , i.e. it

is represented by d functions Xi(x), where x are collectively the coordinates on Σ. ηi is a

1-form on Σ valued in X∗(T ∗M), the pullback of the cotangent bundle on M .

The action is given by

Γ0
PSM =

∫
Σ
ηi ∧ dXi +

1

2
Πij(X) ηi ∧ ηj , (3.2)

and, thanks to the Jacobi identity (3.1), it has the gauge invariance

s0X
i = −Πij(X)βj ,

s0 ηi = −dβi − ∂iΠkl(X) ηkβl ,

s0 βi = −1

2
∂iΠ

jk(X)βjβk , (3.3)

where βi is the ghost field (a scalar of ghost number +1). Notice that, up to an integration

by parts, the action (3.2) and the BRST transformations (3.3), in the special case of a

Poisson structure linear in the coordinates Xi, are equivalent to the BF-model action and

BRST variations, equations (2.5) and (2.6). This is nothing but the well-known fact that

the BF-model is a particular example of PSM.

Contrary to the particular case of the BF-model, the BRST variations (3.3) are not

nilpotent in general. Indeed, using again the Jacobi property (3.1), one finds s2
0X

i =

s2
0 βi = 0 and

s2
0 ηi = −1

2
∂i∂kΠ

rs(X)βrβs
(
dXk + Πkj(X) ηj

)
. (3.4)

10Compared to [11], our formulas differ by some signs. This is a consequence of the different conventions

we adopt for the (anti)-commutation rules between the BRST operator and the external differential.
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The non-nilpotency of s0 in (3.4) is given by a term proportional to the equations of

motions. It is therefore necessary to use the BV formalism, or its supersymmetric reinter-

pretation in terms of auxiliary fields we recalled in section 2.1. This is the main difference

between a generic PSM and the particular case of BF-model: while in the case of the

BF-model before the coupling to the topological U(1) multiplet the BRST operator was

nilpotent off-shell, for a generic PSM the necessity of the antifields arises from the very be-

ginning.

Let us therefore introduce the antifield η∗i. It is a 1-form on Σ valued in TM of ghost

number −1. The BRST transformations get modified to the nilpotent ones

s0 βi = −1

2
∂iΠ

jk(X)βjβk ,

s0 ηi = −dβi − ∂iΠkl(X) ηkβl −
1

2
∂i∂jΠ

kl(X) η∗jβkβl ,

s0X
i = −Πij(X)βj ,

s0 η
∗i = −dXi −Πij(X) ηj − ∂kΠij(X) η∗kβj . (3.5)

Since the BRST transformation rules for ηi have been modified by a term including

the antifield η∗i, the BRST invariance of the action (3.3) is lost

s0 Γ0
PSM 6= 0 , (3.6)

but it can be restored by adding, as usual, a term quadratic in the antifield η∗i

ΓPSM =

∫
Σ

[
ηi ∧ dXi +

1

2
Πij(X) ηi ∧ ηj −

1

4
η∗i ∧ η∗j ∂i∂jΠkl(X)βkβl

]
. (3.7)

We stress that, both the nilpotency of the BRST operator in (3.5) and the invariance of

the action (3.7), requires the Jacobi identity (3.1).

A few remarks are now in order. First of all, we notice that the transformations (3.5)

do not have an interpretation as a topological supersymmetry: indeed, even if the antifield

η∗i is already present in the BRST variation of the field ηi, the term

−1

2
∂i∂jΠ

kl(X) η∗jβkβl , (3.8)

is a non-linear term (it is at least cubic). Therefore such a term cannot be interpreted as

a topological supersymmetry for the field ηi. This is not surprising since, as we discussed

for the case of the BF-model, the topological supersymmetry appears after the coupling to

the topological backgrounds.

More importantly we notice that, contrary to the case of the BF-model, by treating

the antifield η∗i as an independent field one obtains a theory which is different from the

original PSM. Indeed the additional term involving the antifield in (3.7) changes the local

symmetry content of the theory: since in this term the ghost field βi appears explicitly,

we should consider the symmetry carried by the ghost field βi as a global symmetry, and

not as a local symmetry anymore. We conclude therefore that, if we insist in treating
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the antifields as independent fields, what we obtain is a theory which is different from the

original PSM, in which the antifields are forced to be functionals of the fields during the

gauge-fixing and the βi symmetry is local and must be gauge-fixed.11

For this reason, we will discuss how to complete the action (3.7) to the full BV-action

which can be eventually gauge-fixed using the standard BV rules. For doing that, let

us introduce the antifields X∗i , a 2-form of ghost number −1, and β∗i, a 2-form of ghost

number −2, and let us introduce the superfield formulation.

3.1.1 Superfield formulation

Let us define the polyforms

X̃i ≡ Xi + η∗i + β∗i ,

η̃i ≡ βi + ηi +X∗i , (3.9)

of total ghost number 0 and +1, respectively. Notice that X̃i is a polyform on Σ valued

on TM and η̃i is a polyform on Σ valued on T ∗M . Moreover, the Poisson bivector Πij(X)

is promoted to the polyform of total ghost number 0

Πij(X̃) ≡
(
Πij(X)

)
+
(
∂kΠ

ij(X) η∗k
)

+

(
1

2
∂k∂lΠ

ij(X) η∗k ∧ η∗l + ∂kΠ
ij(X)β∗k

)
, (3.10)

which satisfies the elegant relation

Πil(X̃)∂lΠ
jk(X̃) + Πjl(X̃)∂lΠ

ki(X̃) + Πkl(X̃)∂lΠ
ij(X̃) = 0 , (3.11)

formally identical to the Jacobi condition (3.1).

The BRST variations of both the fields and antifields can be described in a compact

notation as

δ0 X̃
i = −Πij(X̃) η̃i ,

δ0 η̃i = −1

2
∂iΠ

jk(X̃) η̃j η̃k , (3.12)

where, as in (2.44), δ0 is given by δ0 ≡ s0 + d. Written in components (3.12) read

s0 βi = −1

2
∂iΠ

jk(X)βjβk ,

s0 ηi = −dβi − ∂iΠkl(X) ηkβl −
1

2
∂i∂jΠ

kl(X) η∗jβkβl ,

s0X
∗
i = −d ηi − ∂iΠkl(X)X∗kβl − ∂i∂jΠkl(X) η∗j ∧ ηkβl −

1

2
∂iΠ

kl(X) ηk ∧ ηl

−1

4
∂i∂j∂pΠ

kl(X) η∗j ∧ η∗pβkβl −
1

2
∂i∂jΠ

kl(X)β∗jβkβl ,

s0X
i = −Πij(X)βj ,

s0 η
∗i = −dXi −Πij(X) ηj − ∂kΠij(X) η∗kβj ,

s0 β
∗i = −d η∗i −Πij(X)X∗j −

1

2
∂k∂lΠ

ij(X) η∗k ∧ η∗lβj

−∂kΠij(X) η∗k ∧ ηj − ∂kΠij(X)β∗kβj . (3.13)

11The author thanks C. Imbimbo for discussions on this point.
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3.1.2 The BV action

As anticipated, let us complete the action (3.7) by constructing the full BV action for the

PSM. To this end, we have to consider the canonical piece, that we wrote schematically

in (2.36) and that in this case reads

Γcan = −
∫

Σ

(
β∗is0 βi + η∗i ∧ (s0 ηi) +X∗i s0X

i
)
. (3.14)

By a simple computation we observe that Γcan is BRST invariant:

s0 Γcan = 0 , (3.15)

and so we conclude that, the full BV action12

ΓBV = ΓPSM + Γcan , (3.17)

is given by the sum of two pieces which are separately BRST invariant

s0 ΓBV = s0 ΓPSM = s0 Γcan = 0 . (3.18)

Thanks to the property (3.18), when in the following we will discuss the invariance of the

action we will sistematically restrict our attention to the non-canonical term only, since

the canonical term will be automatically BRST invariant.

3.2 The coupling to topological backgrounds

Having described the general theory of PSMs, it becomes natural to couple the PSM to

the topological backgrounds (2.43), similarly to what we did for the BF-model (2.5). As

we have seen, this coupling provides a topological reformulation of 2-dimensional YM and

makes manifest the topological supersymmetry.

Given the BRST transformations for 2-dimensional YM written in the polyform nota-

tion (2.45), and given the similarities with the transformations (3.12) for a generic PSM,

one would guess that the second equation in (3.12) should be modified by a term involving

f and the superfield X̃i. However, this cannot be the correct way to perform the coupling:

indeed X̃i and η̃i are valued in TM and T ∗M respectively, and therefore they cannot be

related directly in the BRST variations.

On the other hand, the deformation term appearing in (2.4) is constructed via a

Casimir function : given a certain Poisson manifold M , with the corresponding Poisson

bivector Πij(X), a function f(X) ∈ C∞(M) is said to be Casimir if[
Π , f

]
S
≡ Πij(X) ∂jf(X) = 0 . (3.19)

The term Tr (φ2) is an example of Casimir function for the particular case of the BF-model.

12From which, using the usual BV rules, we obtain the BRST variations of the fields and antifields

s0 Φ = −
−→
∂ ΓBV

∂Φ∗ , s0 Φ∗ = −
−→
∂ ΓBV

∂Φ
. (3.16)
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Let us take a Casimir function C(X) on M . Thanks to the Casimir property (3.19) it

satisfies

s0C(X) = ∂iC(X) s0X
i = −∂iC(X) (Πij(X)βj) = 0 , (3.20)

i.e. it is BRST invariant. Let us also modify the PSM action (3.7) to13

ΓCPSM[f (2), C(X)] =

∫
Σ

[
ηi ∧ dXi +

1

2
Πij(X) ηi ∧ ηj

−1

4
η∗i ∧ η∗j ∂i∂jΠkl(X)βkβl − f (2)C(X)

]
. (3.21)

Again, the BRST invariance is lost

s0 ΓCPSM[f (2), C(X)] = +

∫
Σ

dψ(1)C(X) = −
∫

Σ
∂iC(X)ψ(1) ∧ dXi , (3.22)

but it can be restored by modifying the BRST variation of ηi

s0 ηi = −dβi − ∂iΠkl(X) ηkβl −
1

2
∂i∂jΠ

kl(X) η∗jβkβl + ∂iC(X)ψ(1) . (3.23)

With this modification the action is BRST invariant

s0 ΓCPSM[f (2), C(X)] = 0 , (3.24)

but s0 is not nilpotent anymore on the field ηi

s2
0 ηi = +∂iΠ

kl(X) ∂kC(X)ψ(1)βl + Πkl(X) ∂k∂iC(X)ψ(1)βl − ∂iC(x) d γ(0)

= −∂iC(X) d γ(0) , (3.25)

where, again, we made use of the Casimir property (3.19)

∂iΠ
kl(X) ∂kC(X)ψ(1)βl + Πkl(X) ∂k∂iC(X) = ∂i(Π

kl(X)∂kC(X))βl = 0. (3.26)

Similarly to what we did for the 2-dimensional BF-model, let us introduce a deforma-

tion term in the BRST variation of βi

s0 βi = −1

2
∂iΠ

kl(X)βkβl + γ(0)∂iC(X) . (3.27)

The nilpotency of s0 on βi and Xi is preserved

s2
0 βi = γ(0)∂i

(
Πkl(X) ∂lC(X)

)
βk = 0 ,

s2
0X

i = −γ(0)Πij(X) ∂jC(X) = 0 , (3.28)

13The action analogous to (2.1) for a generic PSM, i.e. the action in which the Casimir function is added

in a way which breaks the topological invariance, has been already considered in the past [14]. We stress

that our approach, instead, preserves the topological nature of the model by considering the background

multiplet f .
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whereas, exactly as we did for the 2-dimensional BF-model, the nilpotency of the BRST

operator on ηi requires a new term linear in the antifield η∗j :

s0 ηi = −dβi − ∂iΠkl(X) ηkβl −
1

2
∂i∂jΠ

kl(X) η∗jβkβl

+∂iC(X)ψ(1) + γ(0)∂i∂jC(X) η∗j . (3.29)

Summarising, the nilpotent BRST transformations on the fields βi, ηi, X
i and η∗i coupled

to topological backgrounds are

s0 βi = −1

2
∂iΠ

jk(X)βjβk + γ(0)∂iC(X) ,

s0 ηi = −dβi − ∂iΠkl(X) ηkβl −
1

2
∂i∂jΠ

kl(X) η∗jβkβl

+∂iC(X)ψ(1) + γ(0)∂i∂jC(X) η∗j ,

s0X
i = −Πij(X)βj ,

s0 η
∗i = −dXi −Πij(X) ηj − ∂kΠij(X) η∗kβj ,

s0 f
(2) = −dψ(1) ,

s0 ψ
(1) = −d γ(0) ,

s0 γ
(0) = 0 . (3.30)

Notice that, in the particular case of a linear Poisson structure and a quadratic Casimir

function C(X), we obtain the same expressions we got for 2-dimensional YM (2.35).

Since we modified the BRST variations of the field ηi by a term involving the antifield

η∗i, the action (3.21) is not BRST invariant anymore under BRST transformations of both

the fields and backgrounds, and we must add another term quadratic in the antifields

ΓCPSM[f (2), γ(0), C(X)] =

∫
Σ

[
ηi ∧ dXi +

1

2
Πij(X) ηi ∧ ηj

−1

4
η∗i ∧ η∗j ∂i∂jΠkl(X)βkβl

−f (2)C(X) +
1

2
γ(0) η∗i ∧ η∗j ∂i∂jC(X)

]
. (3.31)

What we obtained is the equivalent, for a generic PSM, of the discussion explained in

section 2.1: we have taken the topological PSM and we have coupled it to the topological

backgrounds and to the Casimir function C(X). In doing this extension we have obtained

the new action and BRST transformations, formulas (3.31) and (3.30). We have seen that

these modifications, in the case of a linear Poisson structure and quadratic Casimir, give

the transition from the BF-model to a reformulation of 2-dimensional YM and they provide

the topological supersymmetry we discussed in section 2.1. In the case at hand, we see

that the BRST variation of ηi acquires a term

γ(0)∂i∂jC(X) η∗j , (3.32)

which, for Casimir functions C(X) which are quadratic in the local coordinates Xi (or,

at least, that can be expanded in series and contain a quadratic piece in the expansion),
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can be interpreted as the topological supersymmetry we were looking for. Therefore we

see again that, also for generic PSMs (beyond the case of the BF-model), the coupling

to the topological U(1) multiplet introduces a topological supersymmetry in the model.

However it is interesting to observe that, contrary to the case of the BF-model, in a generic

PSM the βi-symmetry and the topological supersymmetry controlled by the term (3.32)

are mixed together.

Let us complete the description of the BRST transformations by introducing, as usual,

the polyform notation and considering also the antifields X∗i and β∗i.

3.2.1 Superfield formulation for the coupled theory

Beyond the polyforms for the dynamical fields (3.9), for the topological backgrounds (2.43)

and for the Poisson bivector (3.10) we also introduce a polyform, of total ghost number 0,

corresponding to the Casimir function C:

C(X̃) ≡ C(X) +
(
∂iC(X) η∗i

)
+

(
1

2
∂i∂jC(X) η∗i ∧ η∗j + ∂iC(X)β∗i

)
. (3.33)

The BRST variations for the fields and the backgrounds are again rewritten in terms

of the coboundary operator δ0 of (2.44). They reads

δ0 f = 0 ,

δ0 X̃
i = −Πij(X̃) η̃j ,

δ0 η̃i = −1

2
∂iΠ

jk(X̃) η̃j η̃k + f ∂iC(X̃) . (3.34)

Notice that, in the polyform notation, the Casimir condition (3.19) is rewritten in terms

of the superfields Πij(X̃) and C(X̃) in the elegant form

Πij(X̃)∂jC(X̃) = 0 , (3.35)

formally identical to (3.19).

Again, when expressed in the polyform notation, the meaning of the deformation is

much more transparent: via the topological background f , the two superfields X̃i and η̃i get

coupled. This coupling realizes, at least for Casimir functions C(X) that can be expanded

in series (and that have a quadratic term in the expansion), the topological supersymmetry

of the deformed model.

Written in components, the BRST variations for the fields and the backgrounds re-

produces the transformations (3.30), completed with the BRST variations of the fields X∗i
and β∗i

s0 βi = −1

2
∂iΠ

jk(X)βjβk + γ(0)∂iC(X) ,

s0 ηi = −dβi − ∂iΠkl(X) ηkβl −
1

2
∂i∂jΠ

kl(X) η∗jβkβl

+∂iC(X)ψ(1) + γ(0)∂i∂jC(X) η∗j ,
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s0X
∗
i = −dηi − ∂iΠkl(X)X∗kβl − ∂i∂jΠkl(X) η∗j ∧ ηkβl −

1

2
∂iΠ

kl(X) ηk ∧ ηl

−1

4
∂i∂j∂pΠ

kl(X) η∗j ∧ η∗pβkβl −
1

2
∂i∂jΠ

kl(X)β∗jβkβl

+f (2) ∂iC(X) + ∂i∂kC(X)
(
γ(0)β∗k + η∗k ∧ ψ(1)

)
+

1

2
γ(0)∂i∂k∂jC(X) η∗k ∧ η∗j ,

s0X
i = −Πij(X)βj ,

s0 η
∗i = −dXi −Πij(X) ηj − ∂kΠij(X) η∗kβj ,

s0 β
∗i = −dη∗i −Πij(X)X∗j −

1

2
∂k∂lΠ

ij(X) η∗k ∧ η∗lβj

−∂kΠij(X) η∗k ∧ ηj − ∂kΠij(X)β∗kβj ,

s0 f
(2) = −dψ(1) ,

s0 ψ
(1) = −d γ(0) ,

s0 γ
(0) = 0 . (3.36)

3.3 The polyform for the action

We have seen that the action for the PSM coupled to the topological backgrounds is given

by the formula (3.31). It also satisfies the so-called descent equation. Let us consider a

generic observable of the theory, given by a 2-form of ghost number p, O(2)
p . It is possible

to complete O(2)
p to a polyform, of total ghost number p+ 2, that we call Op+2

Op+2 ≡ O(2)
p +O(1)

p+1 +O(0)
p+2 , (3.37)

where O(1)
p+1 and O(0)

p+2, are taken to be solutions of the system of equations (the descent

equation)

s0O(2)
p = −dO(1)

p+1 ,

s0O(1)
p+1 = −dO(0)

p+2 ,

s0O(0)
p+2 = 0 , (3.38)

that can be compactly rewritten, in terms of the polyform Op+2 and of the coboundary

operator δ0 as

δ0Op+2 = 0 . (3.39)

Let us take O(2)
0 the ghost number 0 observable given by the topological action

O(2)
0 ≡ ηi ∧ dXi +

1

2
Πij(X) ηi ∧ ηj

−1

4
η∗i ∧ η∗j ∂i∂jΠkl(X)βkβl − f (2)C(X) +

1

2
γ(0) η∗i ∧ η∗j ∂i∂jC(X) . (3.40)

By computing the BRST variation of O(2)
0 , one observes that it gives rise to the polyform,

of total ghost number 2,

O2 ≡ O(2)
0 +O(1)

1 +O(0)
2 , (3.41)
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where the descendants solving the descent equations (3.38) are

O(1)
1 = βi dXi − ψ(1)C(X) ,

O(0)
2 = −1

2
Πij(X)βiβj − γ(0)C(X) . (3.42)

However, the 0-form O(0)
2 can be also completed to the algebraic polyform

Õ2 ≡ −1

2
Πij(X̃)η̃iη̃j − f C(X̃) , (3.43)

which also solves the descent equation (3.39), and whose 1-form and 2-form parts are

given by

Õ(1)
1 = −1

2
∂kΠ

ij(X) η∗kβiβj −Πij(X)βiηj − ψ(1)C(X)− γ(0)∂iC(X) η∗i ,

Õ(2)
0 = −1

4
∂l∂kΠ

ij(X) η∗l ∧ η∗kβiβj −
1

2
∂kΠ

ij(X)β∗kβiβj − ∂kΠij(X)βiηj ∧ η∗k

−1

2
Πij(X) ηi ∧ ηj −Πij(X)βiX

∗
j − f (2)C(X)− ∂iC(X)ψ(1) ∧ η∗i

−1

2
γ(0)∂k∂iC(X) η∗k ∧ η∗i − γ(0)∂iC(X)β∗i . (3.44)

Summarising, we have found that the 0-form observable

O(0)
2 = −1

2
Πij(X)βiβj − γ(0)C(X) , (3.45)

can be completed to two different polyforms, both solving the descent equation (3.39).

The first one, that we called O2, is given by (3.40) and (3.42); in particular it includes,

at the 2-form level, the topological action (3.31). The second one, that we called Õ2, is

totally algebraic and it is given by (3.43) and (3.44). The two polyforms are related by a

δ0-trivial cocycle

O2 = Õ2 + δ0(α′) ,

α′ = ηi ∧ η∗i + βiβ
∗i + βiη

∗i , (3.46)

where α′ has total ghost number +1. We conclude therefore that Õ2 and O2 are

BRST equivalent.

3.4 The observables

Let us discuss the observables of the coupled theory (3.36). Without introducing the

deformation controlled by C(X), a class of observables has been considered in [1] and they

go in correspondence with the elements of the Poisson cohomology of the target space M .

We will review the analysis of [1] and we will see how it gets modified in the deformed model.

To this end, let us review the concept of Poisson cohomology. It is well-known that,

for a Poisson manifold (M , Π), the Schouten bracket [· , ·]S satisfies the relation (see, for

example, [15])

[Π , [Π, A]S ]S = 0 , (3.47)
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where A is an arbitrary multivector field, i.e. a section of ∧pTM with p generic. (3.47)

states that the operator

[Π , ·]S , (3.48)

which sends p-vector fields to p+ 1-vector fields, is nilpotent. Therefore it makes sense to

define the cohomology groups (called the Poisson cohomology groups)

Hp
Π(M) =

ker
(
[Π , ·]S : T p(M)→ T p+1(M)

)
Im
(
[Π , ·]S : T p−1(M)→ T p(M)

) . (3.49)

Recall that, given a Poisson manifold (M , Π), there is a natural homomorphism between

the de Rham cohomology and the Poisson cohomology. However, except for the very special

case in which M is symplectic, this homomorphism is not an isomorphism and actually the

Poisson cohomology groups can be very big, even infinite-dimensional.

Let us take w(X) ∈ Γ(∧pTM) and construct the superfield, of total ghost number p

Op = O(2)
p−2 +O(1)

p−1 +O(0)
p ≡ wi1···ip(X̃)η̃i1 · · · η̃ip , (3.50)

whose components read

O(0)
p = wi1···ip(X)βi1 · · ·βip ,

O(1)
p−1 = ∂kw

i1···ip(X) η∗kβi1 · · ·βip + pwi1i2···ip(X) ηi2βi2 · · ·βip ,

O(2)
p−2 =

1

2
∂l∂kw

i1···ip(X) η∗l ∧ η∗kβi1 · · ·βip + ∂kw
i1···ip(X)β∗kβi1 · · ·βip

+p ∂kw
i1i2···ip(X) η∗k ∧ ηi1βi2 · · ·βip + pwi1i2···ip(X)X∗i1βi2 · · ·βip

+
p(p− 1)

2
wi1i2i3···ip(X) ηi1 ∧ ηi2βi3 · · ·βi3 , (3.51)

and that generalizes the expressions (3.44) to ghost numbers different from 2.

Let us compute the BRST variation of (3.50). Using the BRST variations for the

superfields, formula (3.34), we get

s0Op ≡ s0 (wi1···ip(X̃)η̃i1 · · · η̃ip)

= −d (wi1···ip(X̃)η̃i1 · · · η̃ip)− 1

2

([
Π(X̃) , w(X̃)

]
S

)ji1···ip
η̃j η̃i1 · · · η̃ip

+f
([
w(X̃) , C(X̃)

]
S

)i2···ip
η̃i2 · · · η̃ip . (3.52)

The second line in (3.52) is the BRST variation one obtains in the undeformed model:

from this expression we see that, in the underformed model, the observables are in corre-

spondence with the elements of the Poisson cohomology of M ; in other words Op defines

an observable for the underformed model iff the multivector field w(X) ∈ Γ(∧pTM) lies

in the Poisson cohomology group Hp
Π(M). On the other hand, the second line in (3.52)

tells us that, in the deformed model, the fact that w(X) lies in the Poisson cohomology is

a necessary condition for Op being an observable but it is not sufficient: one has also to

require that the Schouten bracket

[w(X) , C(X)]S , (3.53)

vanishes.
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In other words, we conclude that the observables of the deformed theory are in cor-

respondence with the elements of the Poisson cohomology of M that also commute with

the Casimir function C(X). Notice that in the particular case of M being a symplectic

manifold the additional requirement (3.53) is automatically satisfied, since the Casimir

functions C(X) are simply constant in the local coordinates.

To conclude this subsection we note that an observable Op of total ghost number p

can be transformed into a composite observable, of total ghost number p+ 2n, obtained by

dressing Op with powers of the background f :

Op+2n
fn ≡ (f)nOp . (3.54)

A simple example of this kind of observables is given by

f C(X̃) , (3.55)

which appears in the topological action (3.43).

4 The coupling to topological gravity

In this section we will explain how the PSMs (deformed or not) can be further coupled to

2-dimensional topological gravity.14 This is the first step to study topological strings in

propagation on a Poisson manifold M , a problem that we hope to address in future works.

Another motivation to study the coupling to topological gravity is the following: as already

remarked, it has been observed in [5] and [6] that the topological theory coupled to rigid

topological gravity (and, in 2 dimensions, to the topological U(1) multiplet) is equivalent to

a twisted version of a supersymmetric field theory in curved spaces. Therefore it is conceiv-

able that study the PSMs coupled to the topological backgrounds (including topological

gravity) could provide a way to define more general supersymmetric vector multiplets in 2

dimensions; in which the gauge group is replaced by, for example, a Lie algebroid.

Let us recall the field content and the BRST transformations of topological gravity [16–

19]. The field content includes the 2-dimensional metric gµν , the gravitino field ψµν , the

diffeomorphism ghost ξµ and the ghost-for-ghost γµ which ensures the nilpotency of the

BRST transformations. Such fields carry ghost numbers 0, 1, 1, 2 respectively and they

transform as

s gµν = −Lξgµν + ψµν ,

s ξµ = −1

2
Lξξµ + γµ ,

s ψµν = −Lξψµν + Lγgµν ,
s γµ = −Lξγµ , (4.1)

where Lξ and Lγ are the Lie derivatives along the vector field ξµ and γµ, respectively. Let

us introduce the operator S

S ≡ s+ Lξ , (4.2)

14The coupling to topological gravity for the special case of a BF-model (and its deformation) has been

already discussed in [6], here we will see that exactly the same construction can be exported to generic PSMs.
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whose defining property is to satisfy, on all the fields but ξµ, the relation

S2 = Lγ . (4.3)

It is known [20] that coupling a certain topological matter theory to topological gravity is

equivalent to find a new BRST operator S, acting on the matter fields and satisfying also

on them the relation

S2 = Lγ . (4.4)

The general solution to this problem, for a theory formulated in terms of polyforms like

our PSM, has been given in a 3-dimensional context in [3]: it is sufficient to replace the

coboundary operator δ0 introduced in (2.44) with a new nilpotent operator δ:

δ ≡ S + d− iγ , δ2 = 0 . (4.5)

Given (4.5), we derive in a straightforward way the BRST variations for the fields and

backgrounds of the PSM: in polyform notation they are

δ f = 0 ,

δ X̃i = −Πij(X̃) η̃j ,

δ η̃i = −1

2
∂iΠ

jk(X̃) η̃j η̃k + f ∂iC(X̃) , (4.6)

and in components they read

S βi = −1

2
∂iΠ

jk(X)βjβk + γ(0)∂iC(X) + iγ(ηi) ,

S ηi = −dβi − ∂iΠkl(X) ηkβl −
1

2
∂i∂jΠ

kl(X) η∗jβkβl

+∂iC(X)ψ(1) + γ(0)∂i∂jC(X) η∗j + iγ(X∗i ) ,

S X∗i = −dηi − ∂iΠkl(X)X∗kβl − ∂i∂jΠkl(X) η∗j ∧ ηkβl −
1

2
∂iΠ

kl(X) ηk ∧ ηl

−1

4
∂i∂j∂pΠ

kl(X) η∗j ∧ η∗pβkβl −
1

2
∂i∂jΠ

kl(X)β∗jβkβl

+f (2) ∂iC(X) + ∂i∂kC(X)
(
γ(0)β∗k + η∗k ∧ ψ(1)

)
+

1

2
γ(0)∂i∂k∂jC(X) η∗k ∧ η∗j ,

S X i = −Πij(X)βj + iγ(η∗i) ,

S η∗i = −dXi −Πij(X) ηj − ∂kΠij(X) η∗kβj + iγ(β∗i) ,

S β∗i = −dη∗i −Πij(X)X∗j −
1

2
∂k∂lΠ

ij(X) η∗k ∧ η∗lβj

−∂kΠij(X) η∗k ∧ ηj − ∂kΠij(X)β∗kβj ,

S f (2) = −dψ(1) ,

S ψ(1) = −d γ(0) + iγ(f (2)) ,

S γ(0) = iγ(ψ(1)) . (4.7)
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Therefore we see that S can be decomposed as

S ≡ s0 +Gγ , (4.8)

where the nilpotent operator Gγ is

Gγ βi = iγ(ηi) , Gγ ηi = iγ(X∗i ) , Gγ X
∗
i = 0 ,

Gγ X
i = iγ(η∗i) , Gγ η

∗i = iγ(β∗i) , Gγ β
∗i = 0 ,

Gγ γ
(0) = iγ(ψ(1)) , Gγ ψ

(1) = iγ(f (2)) , Gγf
(2) = 0 , (4.9)

and s0 is the rigid BRST operator (3.36). The operators s0 and Gγ satisfy the N = 2

twisted supersymmetry relations

s2
0 = G2

γ = 0 , {s0 , Gγ} = Lγ . (4.10)

Before concluding this section, let us recall [6] that one can treat both the topological

gravity multiplet and the topological U(1) multiplet f as external rigid backgrounds. In

this way one looks for bosonic configurations of the backgrounds which are invariant under

the action of the BRST operator S. The equations for such configurations read

Lγgµν = 0 ,

d γ(0) = iγ(f (2)) . (4.11)

The solutions of the system (4.11) have been fully classified in [6] where it has been also

shown that they go in one-to-one correspondence with the bosonic supersymmetric solutions

of N = (2, 2) supergravity, for which some explicit solutions were already known [21].

4.1 The observables and the action

In this section we will see that the observables introduced in section 3.4 for the rigid theory

are observables also for the theory coupled to topological gravity. We will then discuss how

to modify the topological action (3.31) to be invariant under the BRST operator coupled

to topological gravity (4.7).

In the context of topological field theories coupled to topological gravity, the relevant

cohomology is the equivariant one: such cohomology is equivalent to the absolute coho-

mology of the coboundary operator δ, defined in (4.5), on the space of polyforms which do

not contain the diffeomorphisms ghost ξµ.

To find representatives of the absolute cohomology of δ, let us observe that we have

δ ≡ S + d− iγ = s0 + d +Gγ − iγ = δ0 + δγ , (4.12)

where δγ is the nilpotent operator

δγ ≡ Gγ − iγ . (4.13)

From (4.12) we see that the observables of the rigid model, i.e. the cocycles of the rigid

coboundary operator δ0 are promoted to cocycles of the operator δ if they also satisfy the

“chirality” constraint

δγ Op ≡ (Gγ − iγ)Op = 0 . (4.14)
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Let us note that the constraint (4.14) is satisfied by all the superfields

δγ f = δγ X̃
i = δγ η̃i = 0 , (4.15)

and therefore we conclude that the observables of the rigid model we discussed in section 3.4,

formulas (3.50) and (3.54) are automatically promoted to observables of the model coupled

to topological gravity, i.e. they satisfy the equation

δOp = 0 , (4.16)

(and of course an identical equation for Op+2n
fn ) which in components reads

SO(2)
p = −dO(1)

p+1 ,

SO(1)
p+1 = −dO(0)

p+2 + iγ(O(2)
p ) ,

SO(0)
p+2 = iγ(O(1)

p+1) . (4.17)

Let us now discuss how to modify the topological action (3.31) to mantain the in-

variance under the BRST operator S (4.7). Looking at (4.7) we notice that the BRST

variations for ηi and Xi have been modified by terms involving the antifields (or, in our

framework, auxiliary fields) X∗i and η∗i. It is therefore natural to guess that the final ac-

tion, to be invariant under (4.7), should contain additional terms which are quadratic in the

antifields. Indeed, it can be verified by direct computation that the γµ-dependent action

ΓCPSM+grav[f (2), γ(0), C(X), γµ] =

∫
Σ

[
ηi ∧ dXi +

1

2
Πij(X) ηi ∧ ηj

−1

4
η∗i ∧ η∗j ∂i∂jΠkl(X)βkβl − f (2)C(X)

+
1

2
γ(0) η∗i ∧ η∗j ∂i∂jC(X) + η∗i ∧ iγ(X∗i )

]
, (4.18)

is BRST invariant

S ΓCPSM+grav = 0 . (4.19)

As we did in section 3.3 we can construct a polyform of total ghost number 2 in which

the action (4.18) is the two-form representative

O(2)g
0 ≡ ΓCPSM+grav . (4.20)

By simply applying the BRST operator S we obtain the one-form and the zero-form rep-

resentatives

O(1)g
1 = βidX

i − ψ(1)C(X) + ηiiγ(η∗i) ,

O(0)g
2 = −1

2
Πij(X)βiβj γ

(0)C(X) + βiiγ(η∗i) , (4.21)
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which generalizes the anlogous expressions (3.42) which we discussed in the case of the

rigid theory. It is interesting to note that the additional γµ-dependent terms appearing

in (4.20) and (4.21) allow to derive the relation

O2g = Õ2 + δ (α′) ,

α′ = ηi ∧ η∗i + βiβ
∗i + βiη

∗i , (4.22)

between the polyform

O2g ≡ O(2)g
0 +O(1)g

1 +O(0)g
2 , (4.23)

and the algebraic polyform Õ2 we defined in (3.43). Notice that in (4.22) it appears the

coboundary operator δ and not its rigid counterpart δ0. Therefore we conclude that, also

in the theory coupled to topological gravity, the topological action (4.18) and the algebraic

observable (3.43) are in the same cohomology class.

4.2 An application: the gauge-fixed vectorial supersymmetry

Let us describe a simple application of the coupling to topological gravity we constructed:

we will see that the gauge-fixed vectorial supersymmetry discovered in [11] has a transpar-

ent origin in the context of the theory coupled to topological gravity.15

In [11] the authors have noticed that, when the standard PSM is put on flat space16

and the gauge-fixing fermion is taken to be

Ψ = −
∫

dχi ∗ ηi, (4.24)

where χi is the antighost forming a BRST doublet with the corresponding Lagrange mul-

tiplier λi

s0 χ
i = λi , s0 λ

i = 0 ,

Gγ χ
i = 0 , Gγ λ

i = Lγχi , (4.25)

the theory develops a gauge-fixed vectorial supersymmetry which reads

δγ X
i = iγ(∗dχi) , δγ βi = iγ(ηi) , δγ ηi = δγ χ

i = 0 , δγ λ
i = Lγχi , (4.26)

where γµ is a Killing vector. It is immediate to see that, given the gauge-fixing fermion

Ψ (4.24) and recalling the BV rules to identify the antifields with the derivatives with

respects to the fields of the gauge-fixing fermion, one gets

X∗i = β∗i = λ∗i = 0 , η∗i = ∗dχi , χ∗i = d (∗ηi). (4.27)

15Our discussion in this section can be considered as a simple rephrasing of the ideas developed in [3] in a

3-dimensional context. Notice also that in this section, in accordance with [11], we will adopt the BV point

of view: the antifields will be considered as funtionals of the fields after the gauge fixing and the canonical

piece will be included in the action.
16To be more precise, they considered the PSM on the disk. However, for what we are going to say, the

presence of the boundary is not very important and can be neglected.
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Therefore we see that the transformations (4.26) are just the gauge-fixed version of the Gγ
transformations (4.9) and (4.25).

However, we noticed in section 4.1 that the topological action of the standard PSM (3.7)

is in general not invariant under the Gγ symmetry (4.9) and it must be completed by some

γµ-dependent terms. Including also the terms coming from the canonical piece (that in the

BV formalism of [11] must be added to the action), the γµ-dependent terms read

η∗i ∧ iγ(X∗i ) , β∗i iγ(ηi) , X∗i iγ(η∗i) , λ∗i Lγχi . (4.28)

It is immediate to see that, in the particular gauge-fixing (4.24), all the γµ-dependent terms

appearing in (4.28) vanish thanks to (4.27).

Hence we conclude that the gauge-fixed vectorial supersymmetry found in [11] is

just the remnant, in flat space and in the particular gauge-fixing (4.24), of the Gγ-

symmetry (4.9) and (4.25). The vectorial supersymmetry is understood in [11] as a

property of the gauge-fixed action because only in the particular gauge-fixing (4.27) the

γµ-dependent terms in the topological action, that would be necessary for the full Gγ-

invariance and that in [11] have not been considered, vanish.

5 Conclusions and outlook

In this paper we have discussed how the coupling of the 2-dimensional BF-model to topo-

logical backgrounds [6] can be generalized to an arbitrary 2-dimensional PSM (of which the

2-dimensional BF-model is just a particular case). Along the way we have also reviewed

a new application of the BV algorithm, application that has been inspired by the study

of supersymmetric field theories on curved spaces and that has been developed for the

first time in [5] and [6]: according to this supersymmetric point of view, the antifields are

treated as independent auxiliary fields whose role is just to ensure the closure of the BRST

algebra. It has been shown in [5] and [6] that this approach creates a natural connection

between topological field theories and supersymmetric field theories on curved spaces. In

the particular cases discussed in [6] (and similarly in [5]), one ends up with a correspon-

dence between the topological system (in which both the topological U(1) multiplet and

2-dimensional topological gravity are treated as rigid backgrounds and not as dynamical

fields) and the vector multiplet in the corresponding 2-dimensional supersymmetric field

theory. Given this connection, it is natural to conjecture that the study of the PSMs

coupled to the topological backgrounds can be related to new supersymmetric vector mul-

tiplets, in which the gauge group is replaced by more general geometrical objects enjoying

a Poisson structure, like for example a Lie algebroid.

It would be very interesting to compute, via localization, some relevant quantities (i.e.

the partition function and correlators of some observables) in the non-trivial topological

backgrounds that solve (4.11): for example, it is well-known [11] that the correlators of

the standard PSM sigma model on the disk reproduce the Kontsevich formula for the
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deformation quantization of the target space [22]. It would be interesting to understand

how the Kontsevich formula is modified by turning on the topological backgrounds.17

The coupling to the topological U(1) multiplet makes use of a Casimir function C(X)

on the target space M . The resulting coupled system depends on the chosen Casimir func-

tion both in the BRST transformations rules (3.36) and in the topological action (3.31).

Since the BRST transformation rules have been modified, the resulting system has different

observables: before the coupling, the observables are in correspondence with the Poisson

cohomology of the target space M [1]; after the coupling the observables are in corre-

spondence with the Poisson cohomology elements which also commute with the Casimir

function C(X). We have also shown that these observables are promoted to observables of

the theory coupled to topological gravity and that the topological PSM action is equivalent,

in the relevant cohomology, to a purely algebraic observable (formulas (3.46) and (4.22)).

The coupling to topological gravity we described in section 4 is the first step to con-

struct a topological string in propagation on the Poisson manifold M : on this aspect it is

worth to recall that in the particular case in which M is symplectic the PSM turns out to be

equivalent to the topological A-model [1, 2]. Moreover, the A-model coupled to topological

gravity computes the Gromov-Witten invariants of the target space. Given this observation

it is tantalizing to conjecture that the coupling of the PSM to topological gravity gives a

model that computes similar enumerative invariants for a generic Poisson manifold. For

example, one could try to start with two particular examples: the case of the dual of a Lie

algebra (i.e. consider 2-dimensional Yang-Mills coupled to dynamical topological gravity)

and the case of a log symplectic manifold (see, for example, [24] for the definition of such

manifolds). Let us also notice that the construction provided in [3] for the coupling of a

rigid topological field theory to topological gravity is very general and can be applied all

the times the rigid theory can be arranged in superfields: most of the TFTs of AKSZ type

can be indeed arranged in superfields, and therefore we think that all that theories can be

coupled to topological gravity in the same way as we did for the PSM in this paper.

Another, related, aspect that would be worth further investigation is the connection

between the topological string theory we started to construct in this paper and some new

integrable hierarchies, which should generalize the well-known correspondence between 2-

dimensional topological gravity and the KdV hierarchy [25–27].

Finally, it would be important to understand in full generality the relation between

the BV formalism, in which the antifields are finally treated as functionals of the fields

and they are used to gauge fix the local gauge symmetry, and the supersymmetric point

of view we described in this paper and that goes back to [5] and [6], in which instead

the antifields are treated as independent fields and the new theory is in correspondence

with a supersymmetric field theory on curved spaces: in the cases treated in [5] and [6]

the two approaches were trivially equivalent since the dependence of the action on the

terms involving the antifields was quadratic and the local symmetry content of the theory

was unchanged. On the other hand, for a generic PSM we have seen that the situation

17It could be worth to recall that another, completely different, application of the 2-dimensional PSMs is

in the description of the so-called dilaton gravity in 2 dimensions (See [23] for an exhaustive introduction).

It would be interesting to understand if some of the results of this paper can be relevant in this direction.
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is different and, for example, the local symmetry content gets changed when one treats

the antifields as independent fields. Therefore we expect that the two approaches could be

inequivalent in this case.

We hope to address all these open questions in future works.
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