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Abstract

The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins
have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life.
Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both
cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel
fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-
reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have
also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The
presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision
capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific
emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific
communication and evidence that fluorescence can be used for camouflage. This research provides insight into the
distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation
may play.
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Introduction

The primarily monochromatic blue spectrum that characterizes

large areas of the photic ocean provides a unique filtered-light

environment for visual organisms. Compared to the terrestrial

environment, marine organisms reside in a spectrally restricted

visual domain. The red, orange, yellow, and green components of

sunlight are selectively removed with depth resulting in a narrow,

near-monochromatic, band of blue light between 470 and 480 nm

[1]. Spectrally restricted illumination in the ocean provides unique

lighting conditions for organisms to exploit fluorescence to

produce visual contrast and patterns. In the marine environment,

biofluorescence is highly prevalent in cnidarians (particularly

Anthozoans) [2], and also in a ctenophore [3], copepods [4],

mantis shrimp [5], amphioxus [6] and some fishes [7]. In addition,

the photosynthetic apparatus associated with chlorophyll fluoresc-

es red and provides a background of biofluorescence in areas of

high algal growth on coral reefs.

Biofluorescence results from the absorption of electromagnetic

radiation at one wavelength by an organism, followed by its

reemission at a longer and lower energy wavelength, visually

resulting in green, orange, and red emission coloration in marine

organisms. Biofluorescence signaling has previously been reported

in butterflies [7], parrots [9], spiders [10], and flowers [11], as well

as a deep-sea siphonophore [12]. In scleractinian corals, biofluor-

escence has been suggested to function in photoprotection [13],

antioxidation [14], regulation of symbiotic dinoflagellates [15],

photoacclimation [16], visual contrast [2], and coral health [17].

Whereas insight into the evolution and function of biofluores-

cence has greatly enhanced our knowledge of coral biology, little

to nothing is known regarding the impact of biofluorescence on

other organisms that thrive in coral-reef habitats, particularly

those with advanced visual systems that could readily exploit

fluorescent coloration and contrast. Investigating the evolution of

biofluorescence across marine fishes is particularly appealing
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because they are visual animals, many of which possess yellow

intraocular (lenses or cornea) filters [18], which function as long-

pass filters and could enable enhanced perception of biofluores-

cence in the ocean. Worldwide, there are more than 8,000 species

of fishes that inhabit coral reefs. Many reef fish species are known

for their striking color patterns, whereas many others are

cryptically patterned and appear well camouflaged. However,

nearly nothing is known regarding the evolution or function of

fluorescence in fishes. Only recently has a fluorescent protein, a

novel fatty-acid-binding protein, been isolated from a vertebrate, a

Japanese eel [19].

Here we report, for the first time, that biofluorescence is

widespread throughout the tree of life for fishes, and it appears

particularly common and phenotypically variable in marine

lineages, especially cryptically patterned, well camouflaged coral-

reef lineages. Our findings identify a widespread and previously

unrecognized evolutionary phenomenon that provides new

insights into the evolution of marine fishes and the function of

light and visual systems in a marine environment, as well as

providing a framework for the discovery of additional novel

fluorescent proteins.

Methods

Research, collecting and export permits were obtained from the

government of the Bahamas, from the Ministry of Fisheries and

Ministry of Environment, Honiara, Solomon Islands, and from the

Department of Environment, Cayman Islands Government. This

study was carried out in strict accordance with the recommenda-

tions in the Guidelines for the Use of Fishes in Research of the

American Fisheries Society and the American Museum of Natural

History’s Institutional Animal Care and Use Committee (IACUC).

Fishes were collected via SCUBA, using both standard open

circuit systems and closed circuit rebreathers, via the application of

rotenone and quinaldine to a targeted variety of shallow to deep

(mesophotic) habitats in each sampling location where collecting

was permitted.

Taxonomic field surveys of biofluorescence in marine fishes

were conducted during the following expeditions: Little Cayman

Island, January 2011, working out of the Central Caribbean

Marine Institute; the Exumas, Bahamas, May 2011 and December

2011, at the Perry Institute for Marine Science on Lee Stocking

Island; and a taxonomically comprehensive survey conducted at

numerous localities in the Solomon Islands (June–July, 2012 and

September 2013). In addition, we have supplemented these field

studies with specimens available in the aquarium trade and by

imaging specimens at aquariums after hours (e.g., Mystic

Aquarium and Institute for Exploration, Mystic, CT; Birch

Aquarium, Scripps Institution of Oceanography, La Jolla, CA).

All collected specimens were placed on ice to preserve

coloration and digitally imaged upon return to shore using Nikon

D300s, D7000, or D800 DSLR cameras affixed with either a 60 or

105 mm Nikkor macro lens under white light. Fishes were

subsequently scanned for fluorescence using bright LED light

sources equipped with excitation filters and observed using

emission filter glasses/goggles. All fluorescent fishes were then

imaged (Fig. 1) using the ‘‘Fluorescent Macro Photography’’

protocol outlined below.

The list and phylogenetic distribution of biofluorescence across

cartilaginous and bony fishes presented in Figure 2 and Table S1

are the result of this survey work, and they also include data from

[7] that specifically examined red fluorescence in some shallow,

reef-associated fishes. In addition, we have summarized other

accounts of biofluorescence in fishes from the popular literature

(underwater photography magazines and websites) and available

on the internet.

Emission Spectra
Emission spectra were collected using an Ocean Optics

USB2000+ miniature spectrometer (Dunedin, FL) equipped with

a hand-held fiber optic probe (Ocean Optics ZFQ-12135).

Excitation spectra were achieved during illumination with a

band-pass filter (450–500 nm, Omega Optical, Inc., Brattleboro,

VT, or Semrock, Inc., Rochester, NY). Emission spectra were

recorded by applying the fiber optic probe to specific anatomical

parts of the individual fish specimen exhibiting biofluorescence.

This was repeated several times for each specimen to ensure the

accuracy of measurements.

Fluorescent Macro Photography
Individual fish specimens were placed in a narrow photographic

tank and held flat against a thin plate glass front. Fluorescent

macro images [736064912 (Nikon D800); 492863264 (Nikon

D7000); 218061800 pixel (Nikon D300S)] were produced in a

dark room by covering the flash (Nikon SB 600, SB 800, or SB910)

with interference bandpass excitation filters (Omega Optical, Inc.,

Brattleboro, VT; Semrock, Inc., Rochester, NY). Longpass (LP)

and bandpass (BP) emission filters (Semrock) were attached to the

front of the camera lens. A variety of excitation/emission filter

pairs were tested on each sample to elicit the strongest fluorescence

emission: excitation 450–500 nm, emission 514 LP; excitation

500–550 nm, emission 561 LP.

Phylogeny reconstruction
A majority of the DNA sequence data used in this study is from

[20], but additional sequences were obtained from many studies

[21–84]; the GenBank accession numbers for these sequences as

well as our added GenBank accession numbers (KF768155-

KF768177) can be found in Table S2. Mitochondrial and nuclear

genes were aligned using the program MAFFT v6.0 with default

parameters [85]. The phylogenetic analysis presented herein had a

total of 5,238 base pairs including: one mitochondrial gene

(cytochrome oxidase I, 812 bps), and five protein-coding genes

(glycosyltransferase gene, 732 bps; myosin heavy chain 6 alpha

gene, 737 bps; pleiomorphic adenoma protein-like 2-like gene,

659 bps; recombination activating gene 1, 1403 bps; zic family

member protein, 890 bps). For each maximum likelihood analysis,

the dataset was partitioned by individual gene fragments. A model

of molecular evolution was chosen by the program jMODELT-

EST v.2.1 [86] with the best fitting model under the Akaike

information criteria (AIC) for each individual gene partition

assigned, including: cytochrome oxidase I (GTR+I+C), glycosyl-

transferase (GTR+ C), myosin heavy chain 6 alpha (GTR+I+C),

pleiomorphic adenoma protein-like 2-like gene (GTR+I+C),

recombination activating gene 1 (SYM+I+C), and zic family

member protein (GTR+I+C). Maximum likelihood analyses were

performed in GARLI v2.0 [87]. Ten separate analyses were

conducted, and the tree having the best likelihood score is

presented here (Fig. S1, Fig. 2) to evaluate evolutionary

relationships.

Results

The results presented in this study are based upon ichthyofaunal

surveys conducted during multiple expeditions to the Caribbean

and tropical Western Pacific (2011–2013), analysis of living

aquarium collections, and previous observations of biofluorescence

from the literature. Biofluorescence is phylogenetically widespread
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and phenotypically variable in both cartilaginous (Chondrichthyes:

sharks and rays) and bony (ray-finned: e.g, eels, lizardfishes,

gobies, flatfishes) fishes (Figs. 1, 2, Table S1). We find biofluor-

escence to be most common and morphologically variable in

cryptically pigmented and patterned marine lineages, including

true eels (Anguilliformes), lizardfishes (Aulopiformes), scorpion-

fishes (Scorpaenoidei), blennies (Blennioidei), gobies (Gobioidei),

and flatfishes (Pleuronectiformes) (Figs. 1, 2), groups that generally

appear well camouflaged in the reef environment. With our initial

surveys, we have already identified 16 orders, 50 families, 105

genera, and more than 180 species of biofluorescent fishes, and we

have reconstructed our current understanding of the phylogenetic

distribution of biofluorescence for ray-finned fishes (Fig. 2, Table

S1).

We show that besides red fluorescence previously reported in

shallow reef-associated fishes (e.g., [7,88]), marine fishes also

commonly exhibit green fluorescence, or combinations of green

and red or orange fluorescence in unique, species-specific patterns

(Figs. 1, 3). Biofluorescent patterning in fishes ranges from simple

red, orange or green eye rings to striking, complex, species-specific

patterns of interspersed fluorescent elements, frequently compris-

ing multiple colors, on the head, jaws, fins, flank, and ventrum—

and even bright fluorescence of the entire body (e.g., chlopsid eels;

Fig. 1). Considerable interspecific variation in fluorescent emission

patterns are recorded for members of the lizardfish genus Synodus

(Fig. 3) and the goby genus Eviota (Fig. 1L, M), even among closely

related species that appear nearly identical under white light

(Fig. 3A, B).

Discussion

We find biofluorescence to be widespread across cartilaginous

and bony fishes, and we show that this evolutionary phenomenon

is most common and phenotypically variable in cryptically colored

and patterned marine fishes, such as eels, lizardfishes, blennies,

scorpionfishes, gobies, and flatfishes (Figs. 1, 2). The repeated

evolution of biofluorescence combined with phenotypically vari-

able coloration (green, orange, red) and patterns in fishes may

suggest a previously unrecognized role in communication,

including mating behavior as has been observed in parrots [9].

Fluorescence may be exploited in fishes to produce visual contrast

and patterns in otherwise cryptically patterned or camouflaged

species that blend in well on the reef in shallow sunlit waters.

A few instances of green biofluorescence have also been

reported in deepwater (500–600 m) catsharks (Scyliorhinidae),

lizardfishes (Aulopiformes: Chlorophthalmidae), and an unidenti-

fied ceriantharian (Cnidaria) [88–89]. The presence of biofluor-

escence in these deepwater taxa that spend their lives primarily in

the dark, beyond the reach of the high-energy blue light necessary

for excitation of fluorescence, is curious from a functional

perspective. Biofluorescence in these taxa potentially represents

the ancestral condition in lineages whose shallower water relatives

Figure 1. Diversity of fluorescent patterns and colors in marine fishes. A, swell shark (Cephaloscyllium ventriosum); B, ray (Urobatis
jamaicensis); C, sole (Soleichthys heterorhinos); D, flathead (Cociella hutchinsi); E, lizardfish (Synodus dermatogenys); F, frogfish (Antennarius maculatus);
G, false stonefish (Scorpaenopsis diabolus); H, false moray eel (Kaupichthys brachychirus); I, false moray eel (Kaupichthys nuchalis); J, pipefish
(Corythoichthys haematopterus); K, sand stargazer (Gillellus uranidea); L, goby (Eviota sp.); M, goby (Eviota atriventris); N, surgeonfish (Acanthurus
coeruleus, larval); O, threadfin bream (Scolopsis bilineata).
doi:10.1371/journal.pone.0083259.g001

Figure 2. Observed occurrences of green and red fluorescent emissions indicate the evolution of biofluorescence is widespread
across the evolutionary history of ray-finned fishes (Actinopterygii). Family-level tree showing evolutionary relationships of ray-finned
fishes inferred from maximum likelihood analysis of 221 species and six (one mitochondrial, five nuclear) genes. Note: Not all biofluorescent lineages
are shown due to sampling limitations (see Table S1, Fig. S1).
doi:10.1371/journal.pone.0083259.g002
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also exhibit biofluorescence (Figs. 1, 2). Some bioluminescent

(production and emission of light through a chemical reaction)

deep-sea organisms have previously been shown to exhibit

biofluorescence through a coupling of both bioluminescent and

biofluorescent systems. A heavily studied example is the crystal

jellyfish (Aequorea victoria) in which the bioluminescent system

(aequorin) produces blue light that directly excites green fluores-

cent protein (GFP) to emit green light [90], likely via a Förster

energy transfer process [91]. In another example, the deep-sea

loose-jaw dragonfish (Malacosteus) emits red light through biofluor-

escence via the absorption of blue bioluminescent light produced

by the fish, which is reemitted by a chlorophyll-like compound as

red light and is hypothesized to aid in predation [92]. In addition,

some deep-sea siphonophores also utilize bioluminescent light to

excite red biofluorescence [12].

Shallow water bony fishes generally exhibit good color vision

[93–94], a result of living in a visually complex environment; in

contrast, fishes occurring in deeper water exhibit limited color

vision due to a simpler (blue-shifted) visual environment. Recent

evidence indicates that sharks and rays also exhibit color vision

[95–96]. Many of the fishes we find to exhibit biofluorescence

(Figs. 1, 2), such as sharks, lizardfishes, scorpionfishes, labrids

(wrasses), and flatfishes, also possess yellow intraocular filters [18].

Yellow intraocular filters in the lenses and corneas of certain fishes

function as long-pass filters, thus enabling the species that possess

them to visualize and potentially exploit fluorescence to enhance

visual contrast and patterns that are unseen to other fishes and

predators that lack this visual specialization.

It has been hypothesized that some polarization sensitive

cephalopods communicate via ‘‘private’’ polarized light signals

that allow them to simultaneously remain camouflaged to

predators [97] and exploit a ‘‘hidden’’ communication mechanism

between conspecifics [98]. Cephalopods possess a rhabdomeric

visual system that enables detection of linearly polarized light and

they are able to produce polarized skin patterns using iridophores

[99], whereas many of their predators (marine mammals and some

fishes) are not sensitive to the polarization of light [100]. Likewise,

fishes that possess the necessary yellow intraocular filters for

visualizing biofluorescence could be exploiting a similar ‘‘hidden’’

light signal for a similar functional role. We found that

biofluorescent patterning was especially prominent in cryptically

patterned fishes, and that many of these lineages also possess

yellow long-pass intraocular filters that could enable visualization

of such patterns (Figs. 1, 2).

In recent years, biofluorescence has also been found in patchy

occurrences in some copepods [4] and mantis shrimp (phylum

Arthropoda) [5], amphioxus (phylum Chordata) [6], and a species

of comb jelly (phylum Ctenophora) [3]. Biofluorescence has been

shown to enhance signaling in the mantis shrimp, Lysiosquillina

glabriuscula, a species identified to have a complex system of color

visualization [5]. Additionally, there have been reports of

fluorescence signaling in butterflies [8], parrots [9], spiders [10],

and flowers [11], as well as in a deep-sea siphonophore [12].

The phylogeny presented in Figure 1 indicates that biofluores-

cence is phylogenetically widespread and phenotypically variable

across ray-finned fishes (Actinopterygii) in terms of the diversity of

patterns observed (Figs. 1, 3), emission spectra (Fig. 4), and

intensity. We observed distinct variation among lineages and

pronounced interspecific variation in emission patterns in closely

related taxa that otherwise look nearly identical under white light.

For example, closely related lizardfish species within the genus

Synodus exhibit fluorescence patterns that are notably more distinct

than their pigmentation patterns appear under daylight/white

light (Fig. 3). Considerable interspecific fluorescent pattern

variation is also observed across species in the goby genus Eviota

(Fig. 1L, M) and for chlopsid eels (Anguilliformes: Chlopsidae;

Fig. 1H, I). Our observations indicate that flatfishes exhibit

distinctly different fluorescent patterns on their sighted and blind

surfaces (fluorescence on the sighted side being primarily red

(Fig. 1B), whereas the blind side generally fluoresces green), which

is intriguing given that flatfishes are well known to flash their blind

sides to each other during mating rituals. Individuals of some other

species were found to exhibit both alternating red and green

fluorescent patterns (e.g., Fig. 1K), whereas in other lineages, only

the larval forms were observed to fluoresce (e.g., Fig. 1N,

acanthurids). Such observations in combination with pronounced

Figure 3. Top panel: Interspecific variation in fluorescent emission pattern (from top: lateral, ventral, and dorsal views) in two congeneric and
sympatric members of the lizardfish genus Synodus. A, S. synodus. B, S. saurus. Bottom panel: Interspecific variation in coloration and pigmentation
pattern under white light (top: lateral; bottom: dorsal) in same two congeneric and sympatric members of the lizardfish genus Synodus. A, S. synodus.
B, S. saurus.
doi:10.1371/journal.pone.0083259.g003
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interspecific variability in fluorescence emission pattern in

otherwise similarly patterned taxa suggest that intraspecific

communication is a function of biofluorescence in marine fishes,

as has been shown in other organisms with complex visual systems

(e.g., [9]). In addition, certain marine fishes (e.g., [101,102]) spawn

synchronously surrounding the full moon. Moonlight illumination

in shallow ocean waters could potentially provide the appropriate

excitation energy for green and red biofluorescence in fishes, and

as a result, species-specific biofluorescent patterning may provide

an added layer of species recognition during the spawning phase,

when fishes are particularly vulnerable to predation.

In addition, we present evidence that some fish lineages might

be utilizing fluorescence as a means of camouflage in specific

marine environments (Fig. 5; Videos S1, S2). Red and far-red

biofluorescence is a ubiquitous feature of photosynthetic organisms

due to the properties of chlorophyll and other photosynthetic

pigment complexes. The photosynthetic apparatus associated with

chlorophyll fluoresces red and provides a background of biofluor-

escence in areas of algal growth. Apart from photosynthetic

organisms, red biofluorescence also occurs due to fluorescent

proteins [4]. In two species of red biofluorescent scorpionfishes

that we imaged, individuals were observed residing on top of a

patch of red fluorescing algae (Fig. 5A). We also recorded a bream

(Scolopsis) with green fluorescent patterns on its nape swimming

within a green fluorescing Acropora coral outcrop (Fig. 5B). It would

appear that under fluorescent conditions, these species are

particularly well camouflaged in the specific environments in

which they were imaged.

In summary, the widespread nature of biofluorescence in both

cartilaginous and bony, ray-finned marine fishes, coupled with the

presence of yellow intraocular filters in many biofluorescent

lineages that would permit the visualization of fluorescent

emissions, is intriguing. Biofluorescence is most prominent and

phenotypically variable in cryptically patterned, well-camouflaged

lineages (Figs. 1, 2) that otherwise blend in with their surroundings.

Coupled with observations of notably distinct fluorescent emission

patterns among closely related species (including sister species) that

otherwise strongly resemble each other under white light/daylight

(Figs. 2, 3), suggests a intraspecific communication/species

recognition function. Conversely, we observed species that appear

to blend in with their surroundings under fluorescent lighting

conditions (Fig. 5), and that could theoretically exploit biofluor-

escence as a means of camouflage to either avoid being detected by

potential prey or to elude predators. Based on these data, the

possibility exists that marine fishes are using biofluorescence for a

variety of functions, including communication (species recognition,

mating), predator avoidance, and potentially even prey attraction/

predation. The broad phylogenetic distribution of biofluorescence

across bony fishes is consistent with its repeated independent

evolution, and its importance in the diversification of marine fishes

remains to be explored. As Johnsen [103] justly notes, the field of

biofluorescence is wide open for study and there have been far too

few studies to date, most of which have focused on cnidarians.

With the recent discovery of a novel fluorescent protein from a

vertebrate [14], we expect that biofluorescence in marine fishes

will be the subjects of many future studies, from the level of

proteins to whole organisms in their environment.

Supporting Information

Figure S1 Maximum likelihood topology of the evolutionary

relationships of ray-finned fishes inferred from the analysis of 221

species (representing more than 145 families), with six gene

fragments (one mitochondrial, five nuclear).

(PDF)

Table S1 Biofluorescent fishes known to date. Taxa are listed

alphabetically by Order (column 1), Family (column 2), and

Figure 4. Plot of emission spectra for representative green and
red fluorescing marine fishes, also showing the spectra for
enhanced green fluorescent protein (eGFP) for comparison. Key
to species sampled: Ray (family Urotrygonidae, genus Urobatis); Eel
(family Chlopsidae, genus Kaupichthys); Scorpionfish (family Scorpaeni-
dae, genus Scorpeana); Goby (family Gobiidae, genus Eviota).
doi:10.1371/journal.pone.0083259.g004

Figure 5. Images of reef fishes fluorescing in their natural
habitat captured with a Red Epic video camera at night in the
Solomon Islands. (A) A red fluorescing scorpionfish, Scorpaenopsis
papuensis, perched on red fluorescing algae. (B) A green fluorescing
nemipterid (bream), Scolopsis bilineata, near a green fluorescing
Acropora sp. coralhead.
doi:10.1371/journal.pone.0083259.g005
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Species (column 3). Columns 4 (red) and 5 (green) contain filled

circles corresponding to the observed color of fluoresced light.

Column 6 gives AMNH catalog numbers. Taxa indicated with an

* are not included in the phylogenetic reconstruction (Fig. 2).

(DOCX)

Table S2 GenBank accession numbers and sources for DNA

sequences utilized in the phylogenetic reconstruction shown in

Fig. 2 and Fig. S1.

(PDF)

Video S1 Supplementary video to accompany Fig. 5A showing a

red fluorescing scorpionfish, Scorpaenopsis papuensis, perched on red

fluorescing algae in its natural habitat. Video captured with a Red

Epic video camera at night in the Solomon Islands.

(MOV)

Video S2 Supplementary video to accompany Fig. 5B showing a

green fluorescing nemipterid (bream), Scolopsis bilineata, swimming

near a green fluorescing Acropora sp. coralhead. Video captured

with a Red Epic video camera at night in the Solomon Islands.

(MOV)
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32. Espiñeira M, González-Lavı́n N, Vieites JM, Santaclara FJ (2008) Authenti-

cation of anglerfish species (Lophius spp) by means of polymerase chain reaction-

restriction fragment length polymorphism (PCR-RFLP) and forensically

informative nucleotide sequencing (FINS) methodologies. J Agricult Food

Chem 56: 10594–10599.

33. Santini F, Sorenson L, Marcroft T, Dornburg A, Alfaro ME (2013) A

multilocus molecular phylogeny of boxfishes (Aracanidae, Ostraciidae;

Tetraodontiformes). Mol Phylogenet Evol 66: 153–160.

34. Fu C, Guo L, Xia R, Li J, Lei G (2012) A multilocus phylogeny of Asian

noodlefishes Salangidae (Teleostei: Osmeriformes) with a revised classification

of the family. Mol Phylogenet Evol 62: 848–855.

35. Guo L, Li J, Wang Z, Fu C (2011) Phylogenetic relationships of noodle-fishes

(Osmeriformes: Salangidae) based on four mitochondrial genes. Acta Hydro-

biol Sinica 35: 449–459.

36. Holcroft NI (2004) A molecular test of alternative hypotheses of tetraodonti-

form (Acanthomorpha: Tetraodontiformes) sister group relationships using data

from the RAG1 gene. Molecular Mol Phylogenet Evol 32: 749–760.

37. Holcroft NI, Wiley EO (2008) Acanthuroid relationships revisited: a new

nuclear gene-based analysis that incorporates tetraodontiform representatives.

Ichthyol Res 55: 274–283.

38. Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, et al. (2008)

Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3:

e2490.

Fish Biofluorescence

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e83259



39. Hubert N, Meyer CP, Bruggemann HJ, Guerin F, Komeno RJL, et al. (2012)
Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA-barcoding
provides new support to the centre-of-overlap hypothesis. PLoS One 7: e28987.

40. Ilves KL, Taylor EB (2007) Are Hypomesus chishimaensis and H. nipponensis
(Osmeridae) distinct species? A molecular assessment using comparative
sequence data from five genes. Copeia 2007: 180–185.

41. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Evolution of the deep-sea
gulper eel mitochondrial genomes: Large-scale gene rearrangements originated
within the eels. Mol Biol Evol 20: 1917–1924.

42. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Basal actinopterygian
relationships: A mitogenomic perspective on the phylogeny of the ‘‘ancient
fish’’. Mol Phylogenet Evol 26: 110–120.

43. Inoue JG, Miya M, Tsukamoto K, Nishida M (2004) Mitogenomic evidence for
the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of
the leptocephalus larva. Mol Phylogenet Evol 32: 274–286.

44. Ishiguro N, Miya M, Nishida M (2001) Complete mitochondrial DNA
sequence of Ayu Plecoglossus altivelis. Fish Sci 67: 474–481.

45. Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: a
mitogenomic perspective on the phylogenetic reality of the ‘‘Protacanthopter-
ygii’’. Mol Phylogenet Evol 27: 476–488.

46. Jaafar TNAM, Taylor MI, Nor SAM, de Bruyn M, Carvalho GR (2012) DNA
barcoding reveals cryptic diversity within commercially exploited Indo-Malay
Carangidae (Teleostei: Perciformes). PloS One 7: e49623.

47. Kaeding AJ, Ast JC, Pearce MM, Urbanczyk H, Kimura S, et al. (2007)
Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of
‘‘Photobacterium mandapamensis’’. App Environ Microbiol 73: 3173–3182.

48. Lakra WS, Verma MS, Goswami M, Lal KK, Mohindra V, et al. (2011) DNA
barcoding Indian marine fishes. Mol Ecol Res 11: 60–71.
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