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ABSTRACT

The nonlinear power spectrum contains a large amount of cosmological information. Especially, weak lensing
has been established as a powerful probe of dark energy, if theoretical uncertainties can be controlled — or even
better avoided. For large field weak lensing surveys the nonlinear power spectrum has to be known at the one
percent level in order to allow constraints on dark energy at the same level of accuracy. It is therefore of utmost
importance to provide predictions for the nonlinear power spectrum at very high accuracy. The major obstacle
for doing this is the cost of high-precision N-body simulations. In this paper we demonstrate that a set of only
38 cosmological models — the “Coyote Universe” — will allow us to predict the nonlinear dark matter power
spectrum at the required high accuracy over a parameter range set by upcoming cosmic microwave background
observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction

scheme for the nonlinear dark matter power spectrum.

Subject headings: methods: N-body simulations — cosmology: dark matter power spectrum

1. INTRODUCTION

Since the discovery of dark energy a decade ago by Riess et
al. (1998) and Perlmutter et al. (1999), our understanding of the
nature of dark energy has made little progress. The main rea-
son for this is that the dark energy equation of state w so far is
consistence with a cosmological constant w =—1 at the ten per-
cent accuracy level and we have no constraints on any possible
time dependence yet. In order to be able to distinguish dif-
ferent models of dark energy, such as a cosmological constant
or quintessence models from a possible break-down of general
relativity on very large scales, our measurements of w and its
time-dependence have to improve by an order of magnitude to
percent-level accuracy. To achieve this ambitious goal, differ-
ent dark energy probes which measure the growth of structure
and the expansion history of the Universe have to be employed.

To date, the four most promising probes are: (i) Super-
novae Type Ia, to measure the expansion history of the Uni-
verse, (ii) clusters of galaxies, to measure the expansion history
and growth of structure, (iii) baryon acoustic oscillations, to
measure the expansion history, and (iv) weak lensing, to mea-
sure the expansion history and the growth of structure. The
last two probes, baryon acoustic oscillations and weak lens-
ing, rely strongly on precise predictions of the nonlinear matter
power spectrum, In the case of baryon acoustic oscillations,
the measurements are carried out on very large scales. There-
fore, higher order perturbation theory might offer a promising
way to obtain precise predictions for the nonlinear matter power
spectrum (see, e.g., Crocce & Scoccimarro 2006; Matsubara
2008; Pietroni 2008; Carlson et al. 2009 and references therein).
Weak lensing measurements cover much smaller scales, out to
k ~1—10 hMpc™" and even smaller in the future. On these
scales, we have to rely on numerical simulations to obtain the
required level of accuracy. The simulations have to be at least
as accurate, optimally even more accurate, as the observations.

As was shown by e.g. Huterer & Takada (2003) a wide-field
weak lensing survey such as the Supernova/Acceleration Probe
(SNAP ') requires power spectrum predictions at the 1% level
accurary, and a survey such as the Large Synoptic Survey Tele-
scope (LSST 2) requires predictions at the 0.5% level accuracy
to avoid biasing of cosmological parameter estimations.

These requirements bear two major challenges: first, we have
to be able to proof that the simulations have reached the desired
level of accuracy. In a recent paper (Heitmann et al. 2008) we
have shown that at scales out to k ~ | AMpc~' we can determine
the nonlinear matter power spectrum at sub-percent accuracy.
At smaller scales, baryonic physics becomes important at the
few to ten percent level and has to be taken into account (White
2004; Zhan & Knox 2004; Jing et al. 2006; Rudd et al. 2008), a
task which has to be tackled accurately in the near future. Sec-
ond, in order to constrain cosmological parameters, we have
to be able to cover a range of different cosmologies. Markov
Chain Monte Carlo methods, which are commonly used for pa-
rameter determination, rely on tenth of thousands to hundred
thousand models. Since an accurate N-body simulation on the
scales of interest takes currently of the order of ~ 30,000 Cpu-
hours, it is not feasible to run such simulations for each model.
Running 10,000 N-body simulations with the required resolu-
tion on a 2048 processor Beowulf Cluster today, would take 30
years! We therefore need a method that allows us to obtain very
accurate predictions for the matter power spectrum from a re-
stricted number of simulations which then can be used for con-
straining cosmological parameters. In the following, we will
refer to such a prediction scheme as emulator. The emulator
will replace the results from N-body simulations for the matter
power spectrum for a pre-defined set and range of cosmological
parameters.

"http://snap.lbnl.gov
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In the cosmic microwave background (CMB) community
several different paths have been suggested to speed up the cal-
culation of the temperature anisotropy power spectrum. These
include purely analytic (Tegmark & Zaldarriaga 2000; Jimenez
et al. 2004) and combinations of analytic and semi-analytic fits
(Kaplinghat et al. 2002). More recently neural network meth-
ods and machine learning techniques have been successfully
used to generate very accurate temperature anisotropy power
spectra (Fendt & Wandelt 2007a; Auld et al. 2007 Fendt &
Wandelt 2007b; Auld et al. 2008). These methods are based on
a large number of training sets, up to several tens of thousands.
While this does not constitute a problem for anisotropy power
spectra — codes such as CAMB and CMBFast are taking not
much time — this approach is not feasible for the matter power
spectrum.

As for the temperature anisotropy power spectrum, several
attempts have been made in the past to find good approxima-
tions for the nonlinear matter power spectrum to avoid costly
simulations. These range also from purely analytic deriva-
tions (e.g., Hamilton et al. 1991; Peacock & Dodds 1994 to
semi-analytic fits which are calibrated against simulation re-
sults (e.g., Peacock & Dodds 1996; Smith et al. 2003). These
approximations are accurate at best at the 5-10% level (see e.g.
Heitmann et al. 2008 for a recent comparison of simulations
with HALOFIT), hence are far from the requirements,

We have recently introduced the “Cosmic Calibration Frame-
work™ (Heitmann et al. 2006; Habib et al. 2007; Schneider et al.
2008) which combines sophisticated simulation designs with a
Gaussian Process (GP) model to create a very accurate emulator
from a very restricted set of simulations. By simulation design
we mean the determination of parameter settings at which to
carry out the simulations. One of the main reasons why the
cosmic calibration framework can provide very accurate results
from only a small number of training sets compared to the neu-
ral network approach is the optimization of the simulation de-
sign strategy to work well with the interpolation scheme. In this
paper we will demonstrate that with only a small number of 38
simulations we can obtain an emulator for the nonlinear matter
power spectrum at the level of one percent accuracy. We focus
on the regime of k < | AMpc™! and a redshift range between
z=0 and z = | covering the current space of interest for weak
lensing measurements. Such an emulator will eliminate a ma-
jor source of bias in determining cosmological parameters from
weak lensing data.

This paper — establishing that with a small set of high-
precision simulations a power spectrum emulator with sub-
percent accuracy can be constructed — is the second in a series
of three communications. In the first, we have demonstrate that
it is possible to obtain dark matter power spectra at the sub-
percent level accuracy out to k ~ 1hMpc™' and derived a set of
requirements for such simulations. The third paper of the series
will present results from the complete simulation suite based
on the cosmologies presented in the current paper and publicly
release a precision power spectrum emulator. The simulation
suite is called the “Coyote Universe” after the cluster it has been
carried out on.

The paper is organized as follows. In Section 2 we describe
in detail the cosmic calibration framework with special empha-
sis on building a matter power spectrum emulator from a very
small set of simulations. We explain the design strategy for
generating the training sets and discuss the emulation step and
demonstrate the emulator accuracy. Next we provide a sensitiv-

ity analysis which basically shows which cosmological param-
eter changes the power spectrum on what scales. Finally, we
test the complete framework on a simulated data set using the
emulator for the data analysis. We conclude in Section 3.

2. THE COSMIC CALIBRATION FRAMEWORK

The Cosmic Calibration Framework consists of four inter-
locking steps: (i) the simulation design, which determines at
what parameter settings to generate the training sets, (ii) the
emulation which replaces the simulator, (iii) the uncertainty and
sensitivity analysis, and (iv) the calibration against data to find
parameter constraints.

In the following we will discuss each of these steps in detail
with special emphasis on generating a very accurate emulator
to determine the nonlinear matter power spectrum,

2.1. Design of the model grid

As discussed in the Introduction, one of the major challenges
in building an accurate emulator for the nonlinear matter power
spectrum is due to the very high cost of N-body simulations.
We have to find a scheme which builds upon an as small num-
ber of training sets as possible. An important step therefore
is to decide on the model grid which will comprise the train-
ing sets. This decision is guided by the interpolation scheme
used to build the emulator and current constraints from obser-
vations on the parameter space of interest. Space-filling Latin
hypercube (LH) designs have been proven to be well suited for
the GP model based approach (Sacks et al. 1989a; Currin et al.
1991).

The input on the parameter choices and ranges from obser-
vations are based on the most recent CMB observations from
WMAP-5 (Komatsu et al. 2008). In the following, we will dis-
cuss these two components for our design — the statistical and
the observational inputs.

2.1.1. Latin Hypercube Sampling

The aim is to find a distribution of the parameter settings —
the design — which covers the parameter space optimally with
a small number of sampling points. The first design that might
come to mind, is a simple grid. Suppose we want to vary 5
cosmological parameters and we can sample each parameter
only three times — at the maximum, at the minimum, and in the
middle of each parameter range. This would require 3° = 243
simulations. First, 243 is not a very small number, second, the
parameter space is not well covered at all with only three sam-
ple points per parameter. While some interpolation schemes

FiG, 1.— Left panel: an orthogonal array (OA) based design for 3 param-
eters, 0, 5, 3 and nine sampling points. Right panel: the OA based design
has been perturbed in such a way that the one-dimensional projection onto
any parameter leads to an equally spaced distribution of sample points. The
projection into any two dimension leads to a space filling design.
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rely on grid designs, this is not a feasible approach for us. For-
tunately, the GP model interpolation scheme does not require
a grid design. Another approach would be just to randomly
sample the parameter space. As for the grid design, this ap-
proach might work well if a large number of sample points is
available. For a small number, however, the points could be
clustered in some parts of the parameter space and not cover
others. Well-suited designs for GP model emulators are LH
based designs. An LH design is an n x m matrix in which each
column is a random permutation of {1,....,m}. The use of LH
designs in application where the aim is to predict the outcome
of some quantity at untried parameter settings from a restricted
set of simulations was first proposed by McKay et al. (1979).
As we discuss in some more detail later, GP models rely on
local information for their interpolation strategy. Therefore it
is important, that the parameter settings for the simulation runs
on which the interpolation will be based, provide a good cov-
erage in the whole parameter space. Space-filling LH designs
and variants therefore provide an optimal approach for this.

Very often, the LH designs are combined with other design
strategies such as orthogonal array (OA)-based designs or they
are optimized in other ways, e.g., by symmetrizing them (more
details are given below). By combining different design strate-
gies, different attributes of the sampling strategies will lead to
even better designs and short-comings of a specific design will
be eliminated. As a last step, optimization schemes for spread-
ing out the points evenly in a projected space are often applied.
One such optimization scheme is based on minimizing the max-
imal distance between points in the parameter space, which will
lead to an even coverage. For a discussion on different design
approaches and their specific advantages see, e.g., Santner et al.
(2003).

Let us now briefly discuss two design strategies well suited
for cosmological applications in which the number of parame-
ters is still much less than the number of simulations that can
be performed. We first explain how to set up an optimal OA-
LH design and then give a description of an optimal symmetric
LH design. The former has been used in previous work in cos-
mology (Heitmann et al. 2006; Habib et al. 2007), the latter
will be used in this paper to construct the design for the Coyote
Universe. For illustration purposes, we will use a very simple,
three-dimensional case with three parameters, ¢, 0, ¢3 and
nine sampling points.

In order to create an OA-LH design, we break up our strategy
into two steps: the orthogonal arrays and the construction of the
orthogonal-array based Latin hypercube on top of that. We fol-
low very closely the description by Tang (1993) and Leary et al.
(2003). An orthogonal array distributes runs uniformly in cer-
tain projections of the full parameter space. A more mathemat-
ically rigorous description is given by the following definition:
An n by m matrix A with entries from a set 1,2,....s is called
orthogonal array of strength r, size n with m constraints and s
levels if each n x r submatrix of A contains all possible 1 x r
rows with the same frequency A. Here A is termed the index of
the array, and n = As". The array is denoted OA(n,m,s,r) (Tang
1993).

For our application, n denotes the number of simulation runs
which we can perform and m specifies the number of param-
eters we want to vary (these can be cosmological parameters
as well as numerical input parameters). Therefore, m also re-
flects the number of dimensions in the parameter hypercube.
s defines how many levels of stratification each column in the
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FiG, 2,— Projections of the design shown in Figure 1 into two dimensions.
The lower triangle shows the projection of the OA design, the upper triangle of
the OA-LH design. Note that when projected into one dimension, the OA-LH
design leads to an even coverage and no points are on top of each other.

matrix A has. In order to fill the parameter space well, it is of-
ten not enough to fill it well globally. Especially if two or more
parameters interact strongly with each other, one would like to
have a good space-filling design in the subspace of these pa-
rameters. In other words, if one projects the design down into,
e.g, two dimensions, such projection should have then space-
filling properties in those two dimensions too. The parame-
ter r, the strength of OA designs, indicates the projections for
which the LH design based on that OA are guaranteed to be
space-filling. For example, if r =3, then all 1, 2 and 3 dimen-
sional projections will be space-filling. Obviously, r cannot be
larger than m, the number of parameters varied. The strength
r is usually restricted to two or three for several reasons: (i)
Creating designs which have space-filling properties (besides
the global space filling property) in projected subspace higher
than three dimensions is algorithmically extremely demanding.
(ii) In most applications, only a small number of parameters in-
fluence the response heavily. Statisticians call this the “20-80
rule” — 20% of the parameters are responsible for 80% of the
outcome variation. Therefore, one would like to capture these
parameters well. Furthermore, outcome variation is often dom-
inated by a small number of single parameter and two-factor
interaction effects, which are adequately covered by OA-LH
designs based on r =2 or 3. (iii) The number of simulations
often has to be kept small, therefore r can not be chosen too
large, since the number of simulations n is connected to r via
n=As". As for r, s is also restricted by the number of runs one
can possibly perform, It is very often set to s = 2 which then re-
quires the number of runs to be a power of two. The frequency
A with which a permutation repeats, is kept small too. To cre-
ate a design, the strategy is to fix strength first, and try to find
an OA design that has approximately the right number of runs
and at least as many parameters as one needs. If not, then the
strength is reduced by one and one tries again. Usually, this
strategy is started with OA designs of strength 3, though many
more designs of strength 2 exists. It is rarely possible to find a
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strength four or higher design with few enough runs.

The above discussion shows one short-coming of orthogo-
nal arrays: the number of simulation runs cannot arbitrarily be
picked. Very often due to the choice s = 2, the OA designs are
requiring power of two for the number of runs. 3

Let us now turn to our example: nine sampling points (n =9)
and three parameters (m = 3). Therefore, we automatically
chose an OA design with 5 = 3 levels, strength r=2, A= 1,
and we leading to an OA(9,3,3,2) design. We require that if
we project our design down into any two dimensional direction,
the parameter space is well covered. The left panel in Figure 1
shows a possible realization of an OA with our example spec-
ifications, three parameters and nine sample points. The lower
triangle in Figure 2 shows the three possible two dimensional
projections of this design. This specific design is of course not a
unique solution but fulfills all our requirements. In matrix form
it reads:

(% 0.166 0.166 0.166
‘XN 05 0166 0832
¢ 13 0832 0.166 0.5
D2 3 || 0166 05 05
V22 Y o5 05 o6 ()
S 0832 05 0832
BN 0.166 0.832 0.832
= 2 2 \ 05 0832 05

1R Bd 0.832 0.832 0.166

From this 9 x 3 matrix we can now verify that each of the
three 9 x 2 sub-matrices indeed contains all possible 1 x 2 rows
with the same frequency A = 1. On the right hand side of
Equ. (1) we simply rescaled the design points into the [0...1]
space which is shown in Figures | and 2.

In order to cover the parameter space even better, in the next
step — the latin hypercube sampling — we will perturb the po-
sitions of each sampling points from A via the following pre-
scription: for each column of A, the As™™! positions with entry
k are replaced by a permutation of

k= DA™ + 1, (k= DA™ 42, (k= DA™ 4+ A" = kg™,
(2)

This means in our example that the entries for k = 1 will be
replaced by 1,2,3, the entries for k=2 will be replaced by 4,5,6,
and the entries for k=3 by 7,8,9. Another way of describing this
step is the following: The latin hypercube algorithm demands
that no two sample points are in the same column and due to
the OA base no two sample points will be in the same row ei-
ther. This requirement is equivalent to the following: if the
two dimensional projection of each two parameters is project
down to one dimension, the sampling in this one dimension
is again evenly covered with points. The right panel in Fig-
ure 1 shows a possible realization of this in three dimensions,
derived from perturbing the orthogonal array in the left panel.
The upper right triangle in Figure 2 shows the two-dimensional
projection of this design. The solid lines show the division for
the orthogonal array while the dashed lines show the additional
sub-division. Note that each sample point lies on a unique hori-
zontal and vertical dashed line — if we would project the sample
points down into any one direction, the one-dimensional space

3The other “short-coming” of orthogonal arrays is that they are
not easy to construct. A library with OAs can be found here:
hitp://www.research.att.com/ njas/oadir/index.htm]

would be evenly covered. In matrix form, our OA-LH design
looks like follows:

1 2 3 0 0125 025
(4 I 9\ (0.375 0 l )
7 35 075 025 05
25 6 0.125 05 0.625
s 41 [ o5 03715 0 (3)
8 6 7 0.875 0.625 0.75
37 8 025 075 0875
6 9 4 0625 1 0375
\9 8 2/ \ 1 0875 0125/

Note that we have replaced the entries randomly - we con-
vinced ourselves “by eye” that we have good coverage in 2-D
projection. Leary et al. (2003) suggest to choose an optimal
strategy to ensure even better coverage of the parameter space.
These optimization strategies are often used for the projected
parameter space. In order for the points to spread out, one has
to determine the closeness of points. This can be defined as
the smallest distance between any two points. A design that
maximizes this measure is said to be a maximin distance de-
sign. For more details, see Santner et al. (2003). The designs in
Heitmann et al. (2006) and Habib et al. (2007) combine the OA-
LH based design with a maximum distance design in each two-
dimensional projection. Other optimization methods are based
on an entropy criterion which is based on the minimization of
-log|R|, where R is the covariance matrix of the design (Shewry
& Wynn 1987) or Integrated Mean Squared Error (Sacks et al.
1989b).

Our example shows just one way to realize an OA-LH de-
sign. It can be implemented straightforwardly and leads to the
desired good coverage of the parameter space. After the design
has been determined in the [0,1] parameter space, it then can be
easily translated into the physical parameter space of interest.
At this point, when projected down to one dimension, the even
coverage of the parameter space in one dimension is of course
lost, but still no two sample points will fall on top of each other
in projection.

As mentioned above, the major restriction of OA-LLH based
designs is that they cannot be setup for an arbitrary number of
simulation runs. This is specifically a concern, if one can only
run a very restricted number of simulations. In addition, the set-
up of an OA-LH can be non-trivial. Very often, one has to rely
on OA libraries which are restricted in their parameters and also
not always easily available. Li & Ye (2000) propose an alterna-
tive, space-filling design strategy, which offers a compromise
between the computing efforts and the design optimality - opti-
mal symmetric latin hypercube designs. Following their defini-
tion, a LH design is called a symmetric LH (SLH) design if it
has the following property: For any row i of a LH design, there
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Fi1G. 3.— Two-dimensional projections of the SLH design given in Eqn. (4).
We have connected the symmetric design points to show the reflection through
the center.


http://www.research.att.com/njas/oadir/index.html

Heitmann, White, Wagner, Habib, Higdon, Williams 5

exists another row in the design which is the ith row’s reflection
through the center. For example, in an n x m Latin hypercube
with levels from 1 to n, if (ay,az,...,a,) is one of the rows, the
vector (n+ 1 —ay,n+1—as,....n+1—a,) should be another row
in the design. The symmetry imposes a space-filling require-
ment on the designs considered up front, which carries through
to all projections. An example for an SLH design is given by:

4)

N W WU s oo —
h Oy W oo — I
OO = o Ln ~1 b ON W

In this design, the ith+1 row is symmetric to row i. We start
the construction of this design from our original OA-LH de-
sign. Row by row we derive the symmetric ith+1 row until in
the 7th row we have to ensure by hand that the LH nature of
the design is preserved. Obviously, the number of rows has
to be even for this kind of design. As before, we do not at-
tempt to optimize the resulting design. Its two-dimensional
projection is shown in Figure 3. Li & Ye (2000) provide an
excellent discussion of optimal SLH designs, including a de-
scription of possible algorithmic implementations and compar-
ison with traditional optimal LH designs. As an example, they
show that the computational effort to find an optimal LH design
by starting with an SLH design reduces roughly by a factor of
ten for a 25 x 4 design from 48026 seconds to 3574 seconds
on a workstation. As before, the SLH design is usually opti-
mized in the last step, often with respect to a distance based
criterion which spreads out the points in two-dimensional pro-
jections. Two standard search algorithms for optimal SLH de-
sign are the columnwise-pairwise (CP) algorithm by Ye (1998)
and the simulated annealing (SA) algorithm Morris & Mitchell
(1995). Simply put, these algorithms are based on columnwise
exchanges of entries which will keep the symmetry properties
(since the corresponding symmetric pairs are always switched
at the same time). They are iterative procedures, which will
stop after the certain pre-set optimization criterion is fulfilled
or the process is interrupted by time limitations. Very often,
several designs are produced at the same time and the most op-
timal will be kept in the end.

In the following, we will use a LH design which is optimized
via a distance criterion. In detail, 20 optimizations with CP and
20 with SA were carried out, and the best was chosen in the end
where the quality was measured by a distance criterion. For CP,
10 of the designs had a symmetry requirement and the other 10
did not. For SA, 10 of the designs had a symmetry requirement
and were optimized with a local optimization criterion, and the
other 10 did not have a symmetry requirement and were opti-
mized with a more global optimization criterion. The best de-
sign from all of these came from one of the optimizations using
SA, a global optimization criterion, and no symmetry require-
ment.

2.1.2. Observational Considerations

We take as our basic 5 parameters w,, = Quh?, wy = h?,
ng, w, and og where £2,, contains the contributions from the dark
matter and the baryons. Thus we restrict ourselves to power-law
models (no running of the spectral index), to spatially flat mod-

els without massive neutrinos and to dark energy models with
constant equation of state. A sixth parameter, the redshift or
time, simply requires us to dump data from each run at multiple
epochs.

The effect of massive neutrinos can be roughly approximated
by decreasing €2,, (Brandbyge et al. 2008). We do not expect
any realistic dark energy model to have a constant equation of
state, but we wanted to begin with the most restrictive parame-
ter space in order to validate our methods. The next generation
of experiments will pose at best weak constraints on any time
variation of w, and in this sense our constant w can be thought
of as an appropriate average of w(z). Using growth matching
techniques (White & Vale 2004; Linder & White 2005; Francis
et al. 2007) one can map the power spectrum from a complex
w(z) onto one with a constant w with reasonable accuracy.

The normalization is another area where choices need to be
made. Historically the amplitude of the power spectrum was set
by oy, the amplitude of the linear theory matter power spectrum
smoothed with a top-hat on scales of 8 4'Mpc

2_ [dk .2 3j,(kR)]?
oy = /? Aj, (k) {T] s (3)
R=8 h~'Mpc
with the linear power spectrum being defined as
K Piin(k)
2 = in
&lm(k) == 2?1_2 . (6)

This scale and normalization was chosen because the fluctua-
tions of counts of L, galaxies in cells of this size is close to
unity. With the advent of the COBE data it became common
to quote the normalization at horizon scales e.g. Bunn & White

: E

I(1+1)C J2m[pK’]

:

4000

g

g

Ratio with respect to best-fit WMAP-5

0 200 300 600 800 1000
Multipole Moment /

F1G, 4.— Best-fit TT power spectra for each model in Table | using the
WMAP-5 results. The only parameter which has been optimized by mini-
mizing x? is the optical depth 7. The upper panel shows the resulting power
spectra, the black points with error bars show WMAP-5 data points and the
thick black line the best-fit WMAP-5 model. The lower panel shows the resid-
uals for the each model with respect to the best-fit model. Some of our models
are undernormalized, the best-fit T is smaller than 0.01 which would lead to a
reionization redshift of z < 2 and x? for these models is larger than 3000 (the
x? for the best-fit WMAP-5 model is at roughly 2650). We fixed 7 for those
models at 7= 0.01 and show them with dashed lines.



6 Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

(T T T

T = W N T T T X T Bt e |
o i K 1200 ™

mm 47
sl IR W T b 1

A0 G120 b IR 02 [T T T

] oo

ook 01 00 014

T T T T

a0 0l 0l nF o air om0k

FiG. 5.— Sweep through 7 for 16 models for which 7 > 0.01. The lowest
value on the y-axis is set to the x? value for the best-fit WMAP-5.

(1997). As CMB data improved the pivot point was shifted to
smaller scales, closer to the middle of the range over which the
spectrum is probed and where the normalization is best deter-
mined. In order to make closer connection with the initial fluc-
tuations the amplitude not of the matter power spectrum but of
the curvature or potential fluctuations has been adopted. These
differ mostly by factors of growth and €2,,. Anticipating fu-
ture advances k, =0.002Mpc™ was selected for the most recent
CMB analysis by Komatsu et al. (2008) and the rms curvature
fluctuation on this scale is now most commonly used as a nor-
malization. With present CMB data the biggest uncertainties
in the normalization are the near degeneracy with the optical
depth, 7, and the uncertain growth of perturbations at low red-
shift due to the unknown equation of state of the dark energy,
e.g. White (2006).

For our purposes however a normalization tied to the present
day matter power spectrum and close to the non-linear scale
has many advantages. Rather than introduce yet another con-
vention, we therefore chose to use oy as our normalization pa-
rameter. Of course, since all of the parameters of the models are
specified one can compute any other parameter for our models.
As an example, we have evaluated for each of the 38 models
the best-fit value for 7 using the likelihood code provided by
the WMAP-5 team. The resulting TT power spectra are shown
in Figure 4 as well as their ratios with respect to the best-fit
WMAP-5 model. Some of our models are undernormalized
and the resulting 7 is smaller than 0.01 leading to reionization
redshifts of z < 2. This undernormalization however is not a
concern: we chose the 38 models to cover the parameter space
overall well and not to provide fits close to the concordance cos-
mology. Figure 5 shows the best-fit value for 7 for 16 models
with rau > 0.01.

Frgnm the WMAP 5-year data, in combination with BAO, we
have

wm=0.1347 £0.0040 (3%)
wp =0.0227 £0.0006 (3%) (7
n; =0.9610+0.0140 (2%)

Current data restrict a constant equation of state for the dark en-

*See http://lambda.gsfc.nasa.gov/
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F1G. 6.— Sweep through i for model 32. The red circle marks the estimate
for the Hubble parameter from assuming perfect knowledge of £4. It is in
excellent agreement with the result we obtain from the WMAP-5 likelihood
for the best-fit value of h for this model.

ergy to —1 with roughly 10% accuracy (for very recent results
from supernovae see, e.g., Kowalski et al. 2008; for weak lens-
ing see, e.g., Kilbinger et al. 2008; and for the latest constraints
from clusters of galaxies, see Vikhlinin et al. 2008). Recent de-
terminations put the normalization in the range 0.7-0.9 with
still rather large uncertainties (see, e.g. Vikhlinin et al. 2008for
constraints from clusters, Voevodkin & Vikhlinin 2004 for a
low estimate from clusters, Tegmark et al. 2007 for constraints
from combined CMB and large scale structure data, and Evrard
et al. 2008 for an extended discussion of recent results). Con-
sidering all these constraints and their uncertainties, we choose
our grid to cover
0.120 < wy < 0.155
0.0215 < wp < 0.0235
0.85 <n, < 1.05 (8)
-1.30 <w < -0.70
0.61 <oy <0.9
as shown in Table 1.

In order to solve for the full set of cosmological parameters
we impose a constraint that ¢4, = wd,,/r; = 302.4, where d| is
the distance to the last scattering surface and r, is the sound
horizon. Observationally this is known to 0.3%, and models
which significantly violate this equality are poor fits to the CMB
data (see Figure 6). Unfortunately the sound horizon, like the
epoch of last scattering, can be defined in a number of differ-
ent ways which differ subtly. Specifically we use the fit to the
redshift of last scattering of Eq. (23) of Hu & White (1997) and
use Eq. (B6) of Hu & Sugiyama (1995) for the sound horizon.
With these choices we find models with w,, and wj, in the range
preferred by WMAP do indeed provide good fits to the WMAP
data. This is demonstrated for model 32 in Figure 6.

The procedure is then as follows. For every specified w,,
and wy, we compute r, and hence the required dj; to fit the ¢4
constraint. We adjust h, at fixed spatial curvature and w,,, until
the model reproduces the required d);. Knowing h and w,, then
gives us €2, and hence ., as shown in Table 2.

Finally, we generated a model ‘0’ which has parameters
close to the current best fit from CMB and large-scale struc-
ture (e.g. Komatsu et al. (2008)). This model has €, = 0.25,
Qp =0.75, w, =0.0224, n =0.97 and o4 = 0.8 and can be used
as an independent check of the interpolation in the range of
most interest.
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TABLE |
PARAMETERS FOR 38 MODELS

W Wh My —W o # Win Wh n; —-w oy
0.1296 0.0224 09700 1.000 0.8000 [ 19 0.1279 0.0232 0.8629 1.184 0.6159
0.1539 0.0231 09468 0.816 0.8161 | 20 0.1290 0.0220 1.0242 0.797 0.7972
0.1460 0.0227 0.8952 0.758 0.8548 | 21 0.1335 0.0221 1.0371 1.165 0.6563
0.1324 0.0235 09984 0.874 0.8484 | 22 0.1505 0.0225 1.0500 1.107 0.7678
0.1381 0.0227 09339 1.087 0.7000 [ 23 0.1211 0.0220 09016 1.261 0.6664
0.1358 0.0216 09726 1.242 0.8226 | 24 0.1302 0.0226 0.9532 1.300 0.6644
0.1516 0.0229 09145 1.223 0.6705 | 25 0.1494 0.0217 1.0113 0719 0.7398
0.1268 0.0223 0.9210 0700 0.7474 | 26 0.1347 0.0232 09081 0.952 0.7995
0.1448 0.0223 09855 1.203 0.8090 | 27 0.1369 0.0224 0.8500 0.836 0.7111
0.1392 0.0234 09790 0.739 0.6692 | 28 0.1527 0.0222 0.8694 00932 0.8068
10 0.1403 0.0218 0.8565 0.990 0.7556 | 29 0.1256 0.0228 1.0435 0.913 0.7087
11 0.1437 0.0234 0.8823 1.126 0.7276 | 30 0.1234 0.0230 0.8758 0.777 0.6739
12 0.1223 0.0225 1.0048 0971 0.6271 | 31 0.1550 0.0219 0.9919 1.068 0.7041
13 0.1482 0.0221 09597 0.855 0.6508 | 32 0.1200 0.0229 0.9661 1.048 0.7556
14 0.1471 0.0233 1.0306 1.010 07075 | 33 0.1399 0.0225 1.0407 1.147 0.8645
15 0.1415 0.0230 1.0177 1.281 0.7692 | 34 0.1497 0.0227 0.9239 1.000 0.8734
16 0.1245 0.0218 09403 1.145 0.7437 | 35 0.1485 0.0221 0.9604 0.853 0.8822
17 0.1426 0.0215 09274 0.893 0.6865 | 36 0.1216 0.0233 09387 0.706 0.8911
I8 0.1313 0.0216 0.8887 1.029 0.6440 | 37 0.1495 0.0228 1.0233 1.294 0.9000

O o0~ W — O3

Note. — The five basic parameters for the 38 models in our grid. See text for definitions.

2.1.3. The Resulting Design parameters: €2, Qg (recall, that we assume flatness), & as de-
rived from our constraint on £4, and d..

The two-dimensional projection of the design is shown in
Figure 7. The upper part of the triangle shows the five input

Based on the above considerations, we are now able to gen-
erate a space-filling design for the five parameters of interest.
We restrict ourselves to 37+1 cosmologies and we will show in
the remainder of the paper that this number is indeed sufficient
to generate an accurate emulator, The resulting cosmological 100
models are listed in Table 1 where we give the values for the
basic parameters. In Table 2 we give in addition a few derived

L IIIIII'Iq L T'II'I"TI LELLBLALE

z=1

T R P ey F’
1B ot 4 = 2 LAY » ] d ; PR ETITT B SRR M ST
Y : o vl Po% ; LI le-
o [Fe0a% [P0 b ha Lk Boor oo 0.1 I
0.2 a4 O |ﬁl)1?2%1l.[ﬂ] l‘}.‘l I 06 [].j’ OR09-1.2-1 08 020304 lt.hi}.?ﬂ.lfﬂ.? . k[ Mpc- 1]
F1G. 7.— Resulting design for the five parameters under consideration in red, ) ) . ) .
projected into two dimensions. The blue points show three derived parameters: F1G, 8.— Dimensional power spectra for the 32 cosmologies specified in

Qi h, and dg. Table | at z =0 (lower panel) and z = | (upper panel).
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TABLE 2

DERIVED PARAMETERS FOR 38 MODELS
# Q, Qe h dis (%) #Q, Qe h dis T(x)
0 02500 07500 0.7200 10.25 0.1 19 0.1940 0.8060 08120 1424 <0.01(7712)
1 0.4307 0.5693 0.5977 13.59 0.064 20 03109 0.6891 0.6442 14.27 0.15
2 04095 05905 05970 13.80 0.205 21 0.2312 07688 0.7601 14.14 <0.01(21579)
3 02895 0.7105 0.6763 14.10 0.19 22 03317 0.6683 0.6736 1370 <0.01(11139)
4 0.2660 0.7340 0.7204 1399 <0.01(5569) | 23 0.1602 0.8398 0.8694 14.48 < 0.01 (4478)
5 0.2309 0.7691 0.7669 14.11 <0.01 (2756) | 24 0.1854 0.8146 0.8380 14.21 <0.01(13138)
6 03059 06941 0.7040 13.66 <0.01(19318) |25 04558 0.5442 05724 13.76 <0.01(3033)
T 0.3310 0.6690 0.6189 14.31 0.225 26 0.2804 0.7196 0.6931] 14.05 0.14
8 0.2780 0.7220 0.7218 13.84 <0.01(4320) | 27 03357 0.6643 0.6387 14.04 0.08
9 03707 0.6293 0.6127 1393 <0.015(2845) | 28 0.3988 0.6012 0.6189 13.66 0.06
10 03131 06869 06695 1398 0.05 20 0.2516 0.7484 0.7067 14.32 < 0.01 (2809)
11 02790 0.7210 07177 13.82 <0.01(3928) | 30 0.2810 0.7190 0.6626 14.37 0.155
12 02235 07765 0.7396 1443 <0.01(5901) | 31 0.3791 0.6209 0.6394 13.62 <0.01(17774)
13 0.3974 0.6026 0.6107 13.77 <0.01(11549) | 32 0.1922 0.8078 0.7901 14.47 0.115
14 03289 06711 0.6688 13.74 <0.01(11803) | 33 0.2634 0.7366 0.7286 13.96 <0.01(2829)
15 02363 0.7637 0.7737 13.89 <0.01(9905) | 34 0.3532 0.6468 0.6510 13.71 0.1
16 0.1981 0.8019 0.7929 14.40 0.025 35 0.3990 0.6010 06100 13.77 0.135
17 03586 06414 0.6305 1394 <0.01(5012) | 36 0.2949 0.7051 0.6421 14.41 (0.455
18 0.2578 0.7422 07136 1422 <0.01(5641) | 37 0.2796 0.7204 0.7313 13.71 <0.01 (2971)

Note, — The derived parameters, obtained from the basic parameters listed in Table 1 by applying the constraint on £4. The distance to last scattering is in Gpe, all

other parameters are dimensionless. See text for details.

parameters in red, demonstrating a good sampling of the pa-
rameter space. The blue points show projections of three of the
derived parameters, €2, i, and dj,.

The key statistical observable discussed in this paper is the

density fluctuation power spectrum P(k), the (ensemble-averaged)

Fourier transform of the two-point-density correlation function.
In dimensionless form, the power spectrum can be written as

K P(k)

272
equivalent to the linear power spectrum in Equ. (5). Figure 8
shows the resulting dimensionless power spectra for the 38 cos-
mological models at z = 0 (lower panel) and at z =1 (upper
panel). The parameter space is overall well covered by these 38
models and the coverage should be sufficient to accommodate
upcoming weak lensing survey measurements.

A’k = 9)

2.2. Emulation

After specifying the design, we can now build the emulator
which will lead to predictions for the matter power spectrum
within the parameter priors we specified in the design. For an
in-depth mathematical description in the cosmological context
of building such an emulator we refer the reader to Habib et
al. (2007) and Schneider et al. (2008). Here we will explain the
major ideas behind the process and explicitly show the emulator
performance for our 37 model design.

In order to construct the emulator, we model the simulation
output from the 37 models using a p,-dimensional basis repre-
sentation:

M
nk;0) =Y ditkwi(O)+e, B€[0,1]7.

i=1
Here, 7(k, #) represents the power spectrum, which depends on
the wavenmuber k and five cosmological parameters denoted

(10)

by €. It turns out to be more convenient to model the power
spectrum as
5
n(k;0) = A—{k,)
2nk3/?
which enhances the wiggles in the power spectrum due to the
baryons. The dimensionality p, refers the number of orthog-
onal basis vectors {¢1(k),....dp, ) }. As we will show later,
in our case p,, = 6. The parameter py is the dimensionality of
our parameter space — with 5 cosmological parameters we have
po =5. As we mentioned earlier it is more convenient to map
the parameter ranges into [0,1] space. The w;(6) are the weights
of the basis vectors and we will model them via Gaussian Pro-
cess (GP) models. The last term in Eqn. (10), € is the error term.
Therefore, our main tasks in building the emulator are:

(1)

e Construct a suitable set of orthogonal basis vectors ¢;(k).
In our case, principal components turn out to be an effi-
cient representation,

e Model the weights w;(#). Here, GP models have been
proven to be very well suited for smooth functions such
as the power spectrum.

In the following, we discuss these two steps in more detail.

2.2.1. Principal Component Analysis

Before we determine the basis vectors to model the simula-
tion output we standardize the simulation power spectra in the

following way. We first center the power spectra around their
37

mean, given by F}—IZH n;. The resulting mean as a function
of redshift z and wavenumber k is shown in in the upper left
corner of Figure 9. We would like to remind the reader that
we divide A*(k) by 27k*/* which leads to the flattening of the

power spectrum at high k. It also enhances the baryonic wiggles
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mean PCbasa 1 PC basis 2

F1G. 9.— Mean (upper left corner) and five principal component (PC) bases
derived from the output from the 38 HALOFIT power spectra. The third axis
shows the time evolution of the mean and the five principal components be-
tween redshift z= 1 and z = 0. While the first two principal component bases
show a lot of variation, the fourth and fifth are already almost flat, indicating
that the inclusion of even higher principal component bases would not improve
the quality of our emulator and the underlying GP model anymore.

as can be seen in Figure 9. After having centered the simula-
tions around the mean, we scale the output by a single value so
that its variance is 1.

The next step is the principal component analysis (PCA)
which will lead to the orthogonal basis vectors ¢;(k) for mod-
eling the simulation output following Eqn. (10). For this step,
we write the standardized power spectra in an n, X m matrix,
where n,, denotes the number of wave vectors for each power
spectrum and m = 37 is the number of simulations. The matrix
then reads:

_)"siqul'-q];---;'lh?]- (12)

Following Habib et al. (2007), we now apply a singular value
decomposition to the simulation output matrix ygj,s giving

Ysims = UDVT, (13)

where U is an nn x m orthogonal matrix, D is a diagonal m x m
matrix holding the singular values, and V is an m x m orthonor-
mal matrix. The PC basis matrix ®, is now defined to be
the first p,, columns of [UD/+/m] and the principal component
weights are given by [/mV].

In order to model the nonlinear matter power spectrum,
we find that five principal components are sufficient to cap-
ture all information. Therefore we have p, =5 and ®.ta =
[1:haipasdyids]. The resulting five PC bases are shown in
Figure 9 as a function of z and k. The fourth and the fifth com-
ponent are already very flat which leads us to the above conclu-
sion that 5 PCs are sufficient for our analysis.

2.2.2. Gaussian Process Modeling

In the next step we have to model the PC weights w;(f) in
Eqn. (10). Here we will use a Gaussian Process (GP) model
approach. The GP model is a nonparametric regression model
which is particular well suited for interpolation of smooth func-
tions of parameter space. A major feature of the GP is that it
relies on local interpolation, hence the smoothness is important
and an good sampling scheme which evenly covers the parame-
ter space under investigation. The GP (also called Gaussian ran-
dom functions) is simply a generalization of the Gaussian prob-
ability distribution, While the Gaussian distribution describes
random variables which are scalars or vectors, the Gaussian
process is the generalization to functions. (For an excellent in-
troduction to Gaussian processes, see, Rasmussen & Williams
2006.) While the Gaussian distribution is specified simply by

PC3

w, ()
=]

o5

E|=|um L}

FiG. 10.— Principal component weights w; 1o ws as a function of two cos-
mological parameters, w,, and n,. The cosmological parameters are displayed
in the normalized [0..1] space.

a scalar mean g or a mean vector and a covariance matrix, the
GP is specified by a mean function and a covariance function.
In our case, each PC weight w;(#),i=1,...,5 is modeled as a
mean-zero GP

wi(6) ~ GP(0, A, 1R(6,6'; pi)). (14)

(The symbol ~ here means distributed according to) Here A, is
the marginal precision of the process and the covariance func-
tion is given by:

Po PR

R9,0";p.) =[] o, (15)

I=1
The parameter p,; controls the spatial range for the /th input
dimension of the process w;(#). Under this parametrization, p,,;
gives the correlation between w;(f) and w;(f") when the input
conditions # and ¢ are identical, except for a difference in 0.5
in the /th component.

2.2.3. Emulator Performance

In order to evaluate the accuracy of the emulator we generate
a second set of power spectra with HALOFIT within the prior
parameter ranges. For this set we choose the input cosmolo-
gies randomly, still insuring that the constraint on the Hubble
parameter is satisfied. We then predict the results for those cos-
mologies with the emulator scheme and compare them to the
HALOFIT output, the “truth”, The results for the residuals are
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F1G. 11.— Boxplots of posterior samples for each p,;; for the nonlinear

matter power spectrum. Boxplots offer a convenient way of showing the dis-
tribution of data by just five numbers. The blue box itself contains 50% of the
data, the lower edge indicates the 25th percentile and the upper edge the 75th
percentile of the data set. The red (center) line denotes the median. If the red
line is not at the center of the box, the data is skewed. The black lines (or
whiskers) extend out to the full range of the data. With our parametrization, a
box value close to | indicates that the parameter is inactive, i.e., the PC is not
changing much under the variation of that parameter,
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FiG. 12.— Emulator performance at three redshifts, z= 1. 0.5 and 0 (left
to right). The emulator is tested on 10 additional HALOFIT runs within the
parameter priors. Shown is the error of the emulator compared to the HALOFIT
results. The central gray region contains the middle 50% of the residuals, the
wider light gray region, the middle 90%. The errors are sub-percent level.

shown in Figure 12 for three redshifts, z=0, 0.5, and 1. The
middle 50% of the residuals (dark gray band) are accurate to
0.5% or better over the whole k-range and for all three redshifts.
All predictions have errors less than 1%. This result shows that
a simulation set with an as small number as 37 cosmologies
is sufficient to produce a power spectrum emulator accurate at
1%.

In a previous paper (Habib et al. 2007) several more con-
vergence tests were shown. These tests demonstrated that the
emulator performance improves considerably (by an order of
magnitude) if either the number of simulation training runs
is increased or the parameter space under consideration is de-
creased. In the present paper we follow the second strategy and
restrict the priors as much as possible to obtain accurate results.

2.3. Sensitivity Analvsis

After the emulator has been built it can be used to explore
the behavior of the power spectrum within the parameter priors
in more detail, the so-called sensitivity analysis can be carried
out. Sensitivity is used here with respect to the changes of the
power spectrum under the variation of the cosmological input
parameters.

An example of this is shown in Figure 13. We show the vari-
ations of the power spectrum at three redshifts z =0, z = 0.5,
and z =1 (bottom to top). The reference power spectrum is the
power spectrum which we obtain if we fix every parameter at
the midpoint of its prior range, so in this case for the cosmology
wyy =0.1375, wy, = 0.02215, n, =0.95, w=—1, 65 =0.758. This
power spectrum is close to the mean of the 37 models from our
design but not the same. Next, only one parameter is varied
between its maximum and minimum value while the other four
parameters are fixed at their midpoints. In Figure 13 from left
to right we vary: w,,, wp, 1y, og, and w. Shown is the differ-
ence between natural logarithm of these two power spectra. We
would like to remind the reader that the Hubble parameter is
different for each power spectrum shown in this figure since it
is newly optimized for each cosmology.

The results contain information about the scales at which the
power spectrum is most sensitive to each parameter and about
parameter degeneracies. For example, it is clear that wy, is not
changing the power spectrum much at any scale or any redshift
and therefore will not be well constrained from power spectrum
measurements alone. We will show this point in more detail
in Section 2.4, In the quasi-linear to non-linear regime at k ~
0.1—=1 AMpc™', the power spectrum holds a lot of information
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F1G. 13.— Sensitivity analysis for each of the five parameters at redshift
z=0. 0.5, and | (bottom to top). The y-axis shows the deviation of the log
of the power spectrum from the nominal spectrum where each parameter is
set at its midpoint. The light to dark lines correspond to the smallest param-
eter setting to the biggest. This plots shows that, e.g. wy is not influencing
the power spectrum much and therefore will not be very well constraint from
matter power spectrum observations alone.

about oy and w, but degeneracies become an issue. Very large
scales are particularly sensitive to the spectral index and w,,. In
the statistics literature, parameters that change the quantity of
interest a lot are often called active parameters.

The sensitivity analysis also allows the targeted augmenta-
tion of simulation designs. If the accuracy of the emulator is not
sufficient for the problem of interest, one would like to improve
it by adding additional simulations. These simulations would
then involve variations of the most active parameters and keep
the other parameters more or less fixed. The augmentation of
existing designs is an active field of research in statistics.

2.4. Calibration

As the last step we perform a complete analysis of a synthetic
nonlinear power spectrum and determine the underlying cos-
mology. Since the emulator is a stand-alone routine, it is easily
coupled to any standard Markov Chain Monte Carlo (MCMC)
code such as CosmoMC (Lewis & Bridle 2002). Another route,
which we choose here, is to extend our framework to incorpo-
rate not only the simulation outputs but also the real data itself,

For our example, we assume the ability to measure the power
spectrum from observations at 1% accuracy in the quasi-linear
and nonlinear regime. On large scales, the statistical error in-
creases up to 10% due to sample variance. These error magni-
tudes are only rough estimates but they are sufficient to demon-
strate the accuracy of our framework. The synthetic power
spectrum is generated from a HALOFIT output at z =0 (The
same synthetic data set was used in Heitmann et al. (2008)).
We pick 34 points from the power spectrum, spaced accord-
ing to what future surveys will provide. We then move each of
these points off the base power spectrum according to a Gaus-
sian distribution with variance specified by the error estimate
outlined above. The resulting mock data points and the under-
lying power spectrum are shown in Figure 14.

3. CONCLUSIONS

Over the last three decades we have entered a new era in cos-
mology. From order of magnitude estimates, we have now mea-



Heitmann, White, Wagner, Habib, Higdon, Williams 11

100 3
10g E:
1E =
) [ ]
"a 01 E
0.01E E
: ]
0.001 ¥ Mockdata]| -3
F — Halofit 3
-I lll] L L Ll Illll L L - Illll L Ll i
oo 0.m 0.1 1
k[hMpe']

Fi1G. 14.— Synthetic power spectrum from a HALOFIT run. We choose 34
data points and assign error bars to them. For the smallest scales we assume
1% accuracy while on larger scales we increased the error bars to take cosmic
variance into account,
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F1G, 15.— Likelihoods for the five input parameters. The red dots mark
the true values. The constraints on wy, are rather weak, but that is expected
since the nonlinear power spectrum has not much constraining power on the
baryon fraction. All other parameters are constraint rather well. This example
demonstrates that with only 37 power spectra a reliable MCMC framework
can be build.
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surements at 10% accuracy or better, which have revealed one
of the biggest mysteries in physics today: a dark energy leading
to the acceleration of the expansion of the Universe. In order to
understand the origin, nature, and dynamics of this dark energy
— or to prove that the acceleration is due to a modification of
gravity on the largest scales — we have to go the next step and
obtain measurements at the 1% accuracy level. At the same
time, our theoretical predictions have to be at least as accurate,
Three major probes of dark energy — baryon acoustic oscilla-
tions, weak lensing, and clusters — are based on measurements
of the large scale structure in the Universe. In order to obtain
precise predictions for these probes, expensive, nonlinear sim-
ulations have to be carried out and we have to find ways to
extract the needed information from a limited number of such

simulations.

In this paper, we demonstrated, that if we have very accurate
simulations, we in fact can produce such predictions schemes
from just tenth of high-accuracy simulations. We have concen-
trated in this paper on the nonlinear matter power spectrum, but
our scheme will work as well for, e.g., the cluster mass func-
tion. We have introduced a set of 38 cosmologies, the Coyote
Universe named after the computer cluster it was carried out
on, and showed that from these simulations we can generate an
emulator for the nonlinear power spectrum which is accurate
at the 1% level or better. In order to get such high accuracy
from a small number of simulation inputs we have made use
of (i) an interpolation method based on a sophisticated simula-
tion design method and GP modeling which has been developed
and refined in the statistics community over the last decade to
address problems of the nature described here; (ii) the excel-
lent parameter constraints we have from CMB measurements,
which allow us to base our emulator on relatively narrow pa-
rameter priors and therefore ease the interpolation task.

This paper is the second in a series of three papers with the fi-
nal goal to provide a high-precision emulator for the nonlinear
power spectrum out to k ~ 1 AMpc™'. In the first paper Heit-
mann et al. (2008) we have demonstrated that we can achieve
the required accuracy to predict the power spectrum from N-
body simulations. The current paper introduces the cosmolo-
gies underlying the Coyote Universe and demonstrates that our
prediction scheme can achieve 1% accuracy from only 37 cos-
mological models. The third paper and final paper will present
results from the simulation suite discussed in this paper and
will include a power spectrum emulator that will be publicly
released.
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