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Abstract. Bezuidenhout and Grimmett proved that the critical contact process
dies out. Here, we generalize the result to the so called contact process in a random
evolving environment (CPREE), introduced by Erik Broman. This process is a
generalization of the contact process where the recovery rate can vary between two
values. The rate which it chooses is determined by a background process, which
evolves independently at different sites. As for the contact process, we can similarly
define a critical value in terms of survival for this process. In this paper we prove
that this definition is independent of how we start the background process, that
finite and infinite survival (meaning nontriviality of the upper invariant measure)
are equivalent and finally that the process dies out at criticality.

1. Introduction and main results

The contact process, introduced by Harris (1974), is a simple model for the
spread of an infection on a lattice. The state at a certain time is described by a

configuration, η ∈ {0, 1}Z
d

, where η(x) = 0 means that the individual at location x
is healthy and η(x) = 1 means it is infected. The model is such that infected people
recover at rate 1 and healthy people are infected with a rate proportional to the
number of infected neighbors. In more mathematical language, the contact process

is a Markov process, {ηt}t≥0, with state space {0, 1}Z
d

where the configuration
changes its state at site x ∈ Zd as follows:

η → ηx with rate 1 if η(x) = 1

η → ηx with rate λ
∑

y∼x

η(y) if η(x) = 0,
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where y ∼ x means that x and y are neighbors,

ηx(y) =

{

η(y) if y 6= x

1 − η(x) if y = x

and λ is a positive parameter called the infection rate. See the standard refer-
ences Liggett (1985) and Durrett (1988) for how these informal rates determine a
Markov process and for much on the contact process as well as other interacting
particle systems. Denote the distribution of this process when it starts with the
configuration η by P η

λ . We say that the process dies out at λ if

P
{0}
λ [ ηt = ∅ some t ≥ 0 ] = 1;

otherwise it is said to survive at λ. Here, the initial configuration {0} means there
is a single infection at the origin and the configuration ∅ means the element in

{0, 1}Z
d

consisting of all zeros. (As usual, we identify {0, 1}Z
d

with subsets of Zd.)
Using an easy monotonicity in λ, it is natural to define the critical value

λc := inf{λ : P
{0}
λ [ ηt 6= ∅ for all t ≥ 0 ] > 0 }.

A fundamental first question concerning this model is whether it survives when λ
is large and whether it dies out for small values of λ, i.e. whether 0 < λc < ∞,
and it is not very hard to show that this indeed is the case. Furthermore, since the
contact process is attractive (see Liggett, 1985 for this definition), we can define

λ′
c := inf{λ : ν̄λ 6= δ∅ },

where ν̄λ is the so called upper invariant measure, defined to be the limiting distri-
bution starting from all 1’s. A self-duality equation (see Durrett, 1988 or Liggett,
1985) easily leads to λc = λ′

c. A much harder question, and one which had been
open for approximately 15 years, is whether the contact process survives or dies
out at the critical value. A celebrated theorem by Bezuidenhout and Grimmett
(Bezuidenhout and Grimmett, 1990), gives us the answer.

Theorem 1.1 (Bezuidenhout and Grimmett). The critical contact process dies
out.

For a proof of this, see Bezuidenhout and Grimmett (1990) or Liggett (1999).
Note that changing λ to 1 and the recovery rate to δ corresponds to a trivial

time scaling and so the process could have instead been defined in this way. We
will denote the corresponding critical value by δc. This should be kept in mind in
what follows.

In 1991, Bramson, Durrett and Schonmann (Bramson et al., 1991) introduced the
contact process in a random environment, in which the recovery rates are taken to be
independently and identically distributed random variables and then fixed in time.
For further results concerning this model see for example, Liggett (1992), Klein
(1994) and Newman and Volchan (1996). Recently, Broman (2007) introduced an-
other variant where the environment changes in time in a simple Markovian way.

More precisely, he considered the Markov process, {(Bt, Ct)}t≥0 on {0, 1}Zd×{0, 1}Zd
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described by the following rates at a site x:

transition rate

(0, 0) → (0, 1)
∑

y∼x

C(y)

(1, 0) → (1, 1)
∑

y∼x

C(y)

(0, 1) → (0, 0) δ0

(1, 1) → (1, 0) δ1

(0, 0) → (1, 0) γp
(0, 1) → (1, 1) γp
(1, 0) → (0, 0) γ(1 − p)
(1, 1) → (0, 1) γ(1 − p)

where d ≥ 1, γ, δ0, δ1 > 0 with δ1 ≤ δ0 and p ∈ [0, 1]. In other words, at each site
x independently, {Bt(x)}t≥0 is a 2-state Markov chain with infinitesimal matrix

(

−γp γp
γ(1 − p) −γ(1 − p)

)

which in turn determines the recovery rate of {Ct(x)}t≥0 in the following way. For
each t, the recovery rate at location x is δ0 or δ1 depending on whether Bt(x) = 0
or Bt(x) = 1. In addition, the infection rate is always taken to be the number
of infected neighbors. (Actually, Broman did this on a more general graph, but
here we will only consider Zd.) Broman referred to {Bt}t≥0 as the background
process and the whole process {(Bt, Ct)}t≥0 as the contact process in a randomly
evolving environment (CPREE). Let {Cρ

t }t≥0 denote the right marginal where the
initial distribution of the whole process is ρ. In the case where ρ = µ × ν we write
{Cµ,ν

t }t≥0. Furthermore, let Pp denote the measure governing the process for the
parameters p, γ, δ0 and δ1, where γ, δ0 and δ1 are considered fixed. Also, denote
the product measure with density q ∈ [0, 1] by πq. Broman defined the critical
value

pc := inf
{

p : Pp[ C
πp,{0}
t 6= ∅ ∀t > 0 ] > 0

}

(pc is taken to be 1 if no p satisfies this) and proved that if δ1 < δc < δ0 and
γ > max(2d, δc − δ1), then pc ∈ (0, 1). At the end of his paper he asked whether
the critical value is affected if we vary the initial distribution of the background
process. Our first result answers this question. Given γ, δ0, δ1 > 0 with δ1 ≤ δ0,
q ∈ [0, 1] and A ⊆ Zd with |A| < ∞, define

pc(q, A) := inf
{

p : Pp[ C
πq,A
t 6= ∅ ∀t > 0 ] > 0

}

.

Theorem 1.2. Given A,A′ ⊆ Zd with |A|, |A′| < ∞ and p, q, q′ ∈ [0, 1],

Pp[ C
πq,A
t 6= ∅ ∀t > 0 ] > 0 ⇐⇒ Pp[ C

πq′ ,A
′

t 6= ∅ ∀t > 0 ] > 0. (1.1)

In particular, pc(q, A) is independent of both q and A.

We will let pc denote this common value. (Recall, pc of course depends on γ,

δ0 and δ1.) Also, if Pp[ C
πq,A
t 6= ∅ ∀t > 0 ] > 0 holds (which we now know is

independent of q and A), we say that {Ct} survives at p; otherwise it is said to die
out at p.
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Later on, we will see that the process is attractive. (See Proposition 2.4.) This
yields that the limiting distribution starting from all 1’s exists and we will denote
the limit by ν̄p. Also, we will refer to this measure as the upper invariant measure.
This measure gives us another natural way to define a critical value:

p′c := inf{ p : ν̄p 6= πp × δ∅ }.
For general attractive systems it might or might not be the case that these defini-
tions coincide. However, for the ordinary contact process, this is the case (due to
its self-duality) and our next result shows that this is also true in our situation.

Theorem 1.3. {Ct} survives at p if and only if ν̄p 6= πp×δ∅. In particular pc = p′c.

Our final result is a generalization of Theorem 1.1.

Theorem 1.4. If {Ct} survives at p > 0, then there exists δ > 0 so that it survives
at p− δ. In particular, if pc ∈ (0, 1], then the critical contact process in a randomly
evolving environment dies out.

The rest of the paper is organized as follows. In Section 2, we provide some
preliminaries, in Section 3, we prove Theorems 1.2 and 1.3 and in Section 4, we
prove Theorem 1.4.

2. Some preliminaries

In this section we will present the basic construction of the CPREE via a graph-
ical representation that is suitable for our situation. We will also prove the elemen-
tary fact that the CPREE is an attractive process. However, we will start off with
some notation and basic definitions. When the initial distribution of the process is
ρ, we will denote the distribution at time t by ρSp(t), suppressing γ, δ0 and δ1 in the

notation. (Of course, ρ is a probability measure on {0, 1}Z
d×{0, 1}Z

d

.) When ρ is a
product measure, ρ = µ× ν, we will denote the process by {(Bµ

t , Cµ,ν
t )}t≥0. In the

case where µ = δβ and ν = δη for some β, η ∈ {0, 1}Z
d

, we write {(Bβ
t , Cβ,η

t )}t≥0. To

simplify notation, we freely interchange between talking about elements in {0, 1}Z
d

and subsets of Zd. For η, η′ ∈ {0, 1}Z
d

we write η ≤ η′ if η(x) ≤ η′(x) ∀x ∈ Zd.

Furthermore, for (β, η), (β′, η′) ∈ {0, 1}Z
d × {0, 1}Z

d

we write (β, η) ≤ (β′, η′) if
both β ≤ β′ and η ≤ η′. These relations induce the concept of increasing function
in the usual way.

Definition 2.1. We say that a function f on {0, 1}Z
d

(or {0, 1}Z
d × {0, 1}Z

d

) is
increasing if f(η) ≤ f(η′) (f(β, η) ≤ f(β′, η′)) whenever η ≤ η′ ((β, η) ≤ (β′, η′)).

In our analysis we make extensive use of the concept of stochastic domination.

Definition 2.2. Given two probability measures µ1 and µ2 on {0, 1}Z
d

, we say
that µ1 is stochastically dominated by µ2 if µ1(f) ≤ µ2(f) ∀ increasing continuous
functions f and we denote this by µ1 ≤ µ2. If µi is the distribution of Xi, i = 1, 2,
we also write X1 ≤D X2.

It is well known (see for example Liggett, 1985) that this is equivalent to the
existence of random variables X1, X2 on a common probability space such that
X1 ∼ µ1, X2 ∼ µ2 and X1 ≤ X2 a.s. (The ∼ here means distributed according to.)

Also, since we can identify {0, 1}Z
d ×{0, 1}Z

d

with {0, 1}Z
d×{0,1} we have a similar
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result for measures on {0, 1}Z
d ×{0, 1}Z

d

. (Of course, stochastic domination makes
sense on any space of the form {0, 1}S where S is countable.)

Now, we turn to the graphical representation from which our process will be
defined. Let γ, δ0, δ1 > 0 with δ1 ≤ δ0 and p ∈ [0, 1] be given parameters. Let
{ej}d

j=1 denote the standard basis on Zd, i.e. for i, j ∈ { 1, . . . , d }

ej(i) =

{

1 if i = j

0 if i 6= j.

Define the following stochastic elements on a common probability space in such a
way that they are independent:

• M b,0→1 = {M b,0→1
t }t≥0, a process with state space NZ

d

where each mar-
ginal independently evolves as a Poisson process with intensity γp. (This
process will correspond to the 0 to 1 flips in the background process, see
below.)

• M b,1→0 = {M b,1→0
t }t≥0, a process with state space NZ

d

where each mar-
ginal independently evolves as a Poisson process with intensity γ(1 − p).
(This process will correspond to the 1 to 0 flips in the background process,
see below.)

• N δ1 = {N δ1

t }t≥0, a process with state space NZ
d

where each marginal
independently evolves as a Poisson process with intensity δ1.

• N δ0−δ1 = {N δ0−δ1

t }t≥0, a process with state space NZ
d

where each marginal
independently evolves as a Poisson process with intensity δ0 − δ1.

• ~N j = { ~N j
t }t≥0, j ∈ {±e1, . . . ,±ed }, independent processes with state

space NZ
d

where each marginal independently evolves as a Poisson process

with intensity 1. (We think of the points in ~N j(x) as being arrows from x
to x + ej and will correspond to the potential spread of infection from x to
x + ej .)

For s ≥ 0 and β ∈ {0, 1}Z
d

, we will begin to define a process Bβ,s = {Bβ,s
t }t≥s

where for each x ∈ Zd, Bβ,s(x) is a function of the arrivals of M b,0→1(x) and
M b,1→0(x) in [s,∞). Assume for example that β(x) = 0; the case when β(x) = 1
can be handled in a similar fashion. We then define

Bβ,s
t (x) = 0, s ≤ t < T1

Bβ,s
t (x) = 1, T1 ≤ t < T2

Bβ,s
t (x) = 0, T2 ≤ t < T3

Bβ,s
t (x) = 1, T3 ≤ t < T4

...

where T1 is the first arrival time of M b,0→1(x) after s, T2 is the first arrival time of
M b,1→0(x) after T1, T3 is the first arrival time of M b,0→1(x) after T2, T4 is the first
arrival time of M b,1→0(x) after T3 and so forth. In words, the points in M b,0→1

are the times at which the background process switches to 1 (had it been in state
0) and similarily for M b,1→0. Note importantly, we have all the processes Bβ,s, as
β and s vary, defined on the same probability space.
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Given Bβ,s, N δ1 and N δ0−δ1 , define Xβ,s = {Xβ,s
t }t≥s, a point process on

Zd × [s,∞), in the following way:

Xβ,s =
{

(x, t) ∈ Zd × [s,∞) : (x, t) ∈ N δ1 or
(

(x, t) ∈ N δ0−δ1 and Bβ,s
t (x) = 0

)}

In words, for each site x, we choose points in [s,∞) from N δ1(x) when the back-
ground process is in state 1 and from the union of N δ1(x) and N δ0−δ1(x) when the
background process is in state 0.

Definition 2.3. Given space-time points (x, s) and (y, t) with t > s and β ∈
{0, 1}Z

d

, we say that there is a β-active path from (x, s) to (y, t) if there is a
sequence of times s = s0 < s1 < . . . < sm < sm+1 = t and space points x = x0,
x1, . . . , xm = y so that for i = 1, . . . , m, there is an arrow from xi−1 to xi at
time si and there are no points in Xβ,s on the vertical segments {xi} × (si, si+1),
i = 0, . . . , m.

Remark: Note importantly, that both Bβ,s and the existence of a β-active
path from (x, s) to (y, t) are measurable with respect to the Poisson processes after
time s and hence are independent of everything in the Poisson processes up to that
time. The reason that these objects are introduced for s > 0 is that they are useful
objects to which the original process can be usefully compared as will be done in
the proof of Theorem 1.4.

To define the process {(Bβ
t , Cβ,η

t )}t≥0 for a given initial configuration (β, η) ∈
{0, 1}Z

d × {0, 1}Z
d

, we let Bβ
t = Bβ,0

t and

Cβ,η
t = { y ∈ Zd : for some x ∈ Zd with η(x) = 1,

there is a β-active path from (x, 0) to (y, t) }.
This is our formal definition of the CPREE. Note as β and η vary, we have all the

processes {(Bβ
t , Cβ,η

t )}t≥0 defined on the same probability space.
Having defined {(Bt, Ct)}t≥0 with initial configuration (β, η), it is a simple mat-

ter to extend the definition to an arbitrary initial distribution ρ. Just add to our
probability space, independently of all the random variables already defined, two

random variables on {0, 1}Z
d

with joint distribution ρ. We will denote the proba-
bility measure governing all these variables by Pp, suppressing γ, δ0 and δ1 in the
notation.

The first easy fact about the CPREE we will show is that it is an attractive
process.

Proposition 2.4. (Bt, Ct) satisfies the attractivity condition:

ρ ≤ σ =⇒ ρSp(t) ≤ σSp(t) ∀t > 0. (2.1)

Proof . It is standard that (2.1) is equivalent to (δβ × δη)Sp(t) being stochastically
increasing in (β, η) for all t ≥ 0. However, it is immediate from the construction
that if β1 ≤ β2 and η1 ≤ η2, then for all t ≥ 0

Bβ1

t ≤ Bβ2

t

and

Cβ1,η1

t ≤ Cβ2,η2

t .

This gives the stochastic domination (with an explicit coupling). �
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3. Proofs of Theorems 1.2 and 1.3

Recall, given γ, δ0, δ1 > 0 with δ1 ≤ δ0 and q ∈ [0, 1] we have defined

pc(q, A) := inf
{

p : Pp[ C
πq,A
t 6= ∅ ∀t > 0 ] > 0

}

where A ⊆ Zd, |A| < ∞, and πq denotes product measure with density q.

Proof of Theorem 1.2. We will prove the statements:

• For all A ⊆ Zd with |A| < ∞ and p, q ∈ [0, 1],

Pp[ C
πq,A
t 6= ∅ ∀t > 0 ] > 0 ⇐⇒ Pp[ C

πq,{0}
t 6= ∅ ∀t > 0 ] > 0. (3.1)

• For all p ∈ [0, 1],

Pp[ C
∅,{0}
t 6= ∅ ∀t > 0 ] > 0 ⇐⇒ Pp[ C

Z
d,{0}

t 6= ∅ ∀t > 0 ] > 0. (3.2)

Combining these two will yield the statement in Theorem 1.2. For (3.1), the left
implication follows from translation invariance and the right implication follows
easily from the additivity property of the process meaning

Cβ,A∪B
t = Cβ,A

t ∪ Cβ,B
t ∀A, B ⊆ Zd, ∀β ∈ {0, 1}Z

d

.

To prove (3.2), observe that the right implication is immediate from Proposition 2.4

and so we assume Pp[ C
Z

d,{0}
t 6= ∅ ∀t > 0 ] > 0. Define

ϕt(x) = 1
{B∅

t (x)=BZd

t (x)}
x ∈ Zd, t ≥ 0.

(Recall this is well defined since {B∅
t }t≥0 and {BZ

d

t }t≥0 are defined on the same
probability space.) Note that ϕt has the property that for each site independently,
after an exponentially distributed time with mean 1

γ , the process flips to one and

stays there. Therefore we have Pp[ ϕt(x) = 1 ] = 1 − e−γt. For A ⊆ Zd, define

{C̃A
t }t≥0 from the graphical representation in the same way as {C · ,A

t }t≥0 except
that all recoveries are ignored. This is what is usually called the Richardson model,
see Durrett (1988).

Lemma 3.1. Pp[ C̃
{0}
t ⊆ ϕt , ∀t ≥ n ] → 1 as n → ∞.

Proof . Let In = {−n2, . . . , n2}d and for x ∈ Zd define

t(x) = inf{ t : x ∈ C̃
{0}
t }.

From page 16 of Durrett (1988), we get that there are constants c1,c2,c3 ∈ (0,∞)
such that

Pp[ t(x) < c1|x|∞ ] ≤ c2e
−c3|x|∞ ,

where | · |∞ is the L∞ norm. This easily gives us the estimate

Pp[ C̃
{0}
c1(n+1) * In ] ≤ P (n)e−c3n,

where P (n) is a polynomial in n, and from the Borel Cantelli lemma we can conclude

Pp[ ∃N ≥ 1 such that C̃
{0}
c1(n+1) ⊆ In , ∀n ≥ N ] = 1. (3.3)

Furthermore, independence gives

Pp[ In ⊆ ϕc1n ] = (1 − e−γc1n)(2n2+1)d

.
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and since
∞
∑

n=1

1 − (1 − e−γc1n)(2n2+1)d

< ∞,

the Borel Cantelli lemma again yields

Pp[ ∃N ≥ 1 such that In ⊆ ϕc1n , ∀n ≥ N ] = 1. (3.4)

Combining (3.3) and (3.4), we obtain

Pp[ ∃N ≥ 1 such that C̃
{0}
t ⊆ ϕt , ∀t ≥ N ] = 1,

as desired. �

Since C
Z

d,{0}
t ⊆ C̃

{0}
t ∀t ≥ 0, the claim tells us that, with probability one,

after some time and thereafter, the two background processes influence C
∅,{0}
t and

C
Z

d,{0}
t in exactly the same way. Next, countable additivity gives us that for some

n ≥ 1 we have

Pp[ C̃
{0}
t ⊆ ϕt ∀t ≥ n , C

Z
d,{0}

t 6= ∅ ∀t > 0 ] > 0

and then that for some m (depending on n)

Pp[ C̃
{0}
t ⊆ ϕt ∀t ≥ n , C̃

{0}
t ⊆ [−m, m]d ∀t ∈ [0, n], C

Z
d,{0}

t 6= ∅ ∀t > 0 ] > 0.

Denote the previous event by A and define the random set

U = { (x, t) ∈ [−m, m]d × [0, n] : BZ
d

t (x) = 1 }
and let

B = { no arrivals in N δ0−δ1 during U }.
It is clear that

A ∩ B ⊆ {C
∅,{0}
t 6= ∅ ∀t > 0 }

and so it remains to show that

Pp[ A ∩ B ] > 0.

However, if we condition on A and U , then we will not yield any information about
the N δ0−δ1 process on U and so

Pp[ B |A, U ] = e−(δ0−δ1)L(U)

where L(U) is the “length” of U . This easily gives

Pp[ B|A ] > 0

and the proof is complete. �

Remark: The same argument shows that strong survival does not depend on the
initial distribution of the background process in the sense that

Pp[ 0 ∈ C
∅,{0}
t i.o. ] > 0 ⇐⇒ Pp = [ 0 ∈ C

Z
d,{0}

t i.o. ] > 0.

This answers another question in Broman (2007).

Recall the definition of p′c from the introduction:

p′c := inf{ p : ν̄p 6= πp × δ∅ }.
Here ν̄p = limt→∞(δZd × δZd)Sp(t). (The limit exists due to Proposition 2.4.) To
prove Theorem 1.3 we will use the next Lemma.
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Lemma 3.2. Given p, q ∈ (0, 1) with q ≥ p we have

lim
t→∞

(πq × δZd)Sp(t) = ν̄p.

Proof . By simple stochastic comparison, it is enough to consider the case when
q = p. We begin to establish the existence of that limit. Since πp is the stationary
distribution for the background process and the right marginal always occupies less

than or equal to the whole {0, 1}Z
d

, we have

(πp × δZd)Sp(t) ≤ πp × δZd ∀t > 0.

Using attractiveness and the Markov property yields

(πp × δZd)Sp(s + t) ≤ (πp × δZd)Sp(s) ∀s, t > 0,

and so the existence of the limit is clear from monotonicity. Denote this limit by
ν′

p and observe it is necessarily stationary. It is clear that ν′
p ≤ ν̄p so we are done

if ν̄p ≤ ν′
p. For this, note that attractiveness again gives that the map

µ 7→ Eµ[f(δt, ηt)]

is increasing whenever f is continuous and increasing. Using this, and the fact
that any stationary distribution necessarily has as first marginal πp, we can do the

following calculation for any stationary distribution µ of (Bt, Ct) and f : {0, 1}Z
d ×

{0, 1}Z
d → R continuous and increasing:

∫

fdµ = Eµ[f(δt, ηt)] ≤ Eπp×δ
Zd [f(δt, ηt)] →

∫

fdν′
p as t → ∞.

Hence, µ ≤ ν′
p and we are done. �

Proof of Theorem 1.3. When the initial distribution of the background process
is πp, it is easy to see from the graphical representation that Ct is self-dual in the
sense that

Pp[ C
πp,A
t ∩ B 6= ∅ ] = Pp[ C

πp,B
t ∩ A 6= ∅ ] ∀t > 0, A, B ⊆ Zd. (3.5)

If we take A = {0}, B = Zd in this equation and let t → ∞ using the previous
lemma, we can easily conclude that

Pp[ C
πp,{0}
t 6= ∅ ∀t > 0 ] > 0 ⇐⇒ ν̄p 6= πp × δ∅

and we are done. �

Remark: There is a weaker duality equation when the initial distribution of the
background process differs from πp, but this is less natural and seems less useful.

4. Proof of Theorem 1.4

We now turn to the proof of Theorem 1.4, that the critical CPREE dies out.
Once Lemma 4.1 below is established, the rest follows similar lines as in the proofs of
Theorem 1.1 carried out in Bezuidenhout and Grimmett (1990) and Liggett (1999).
Our main goal is to prove that if {Ct} survives at p > 0, then there is a number
δ > 0 and integers n, a such that

Pp−δ[ C
∅,[−n,n]d

t survives in Z × [−5a, 5a]d−1 × [0,∞) ] > 0. (4.1)
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If pc ∈ (0, 1], this will immediately imply

Ppc
[ C

∅,{0}
t 6= ∅ ∀t ≥ 0 ] = 0.

To achieve (4.1), we begin by showing that if the CPREE survives, then it is very
likely to have survival if the initial configuration is sufficiently large even if we start
with all zeros in the background process.

Lemma 4.1. If {Ct} survives at p > 0 then

lim
n→∞

Pp[ C
∅,[−n,n]d

t 6= ∅ ∀t > 0 ] = 1.

For the proof of this we use the following result.

Lemma 4.2. For all n ≥ 1, we have

lim
ǫ→0

Pp[ C
πp−ǫ,[−n,n]d

t 6= ∅ ∀t > 0 ] = Pp[ C
πp,[−n,n]d

t 6= ∅ ∀t > 0 ].

Proof . Fix n ≥ 1. The probability on the left increases when ǫ decreases and so
the limit exists and is clearly at most the right hand side. For the other inequality
let δ > 0 and define

ϕǫ
t(x) = 1

{B
πp−ǫ
t (x)=B

πp
t (x)}

x ∈ Zd, t ≥ 0,

where πp−ǫ and πp are coupled in the usual monotone way. Recall the definition of
ϕt from the proof of Theorem 1.2 and observe that

ϕt ⊆ ϕǫ
t ∀t > 0, ∀ǫ > 0.

Also, an easy modification of the proof of Lemma 3.1 yields

lim
T→∞

Pp[ C̃
[−n,n]d

t ⊆ ϕt , ∀t ≥ T ] = 1.

(Recall that C̃A
t is the CPREE starting from the configuration A but with no

recoveries.) This allows us to choose T > 0 such that

Pp[ C
πp,[−n,n]d

t 6= ∅ ∀t > 0 ] ≤ Pp[ C̃
[−n,n]d

t ⊆ ϕt , ∀t ≥ T, C
πp,[−n,n]d

t 6= ∅ ∀t > 0 ]+δ.

Given this T , choose m ≥ 1 such that

Pp[ C̃
[−n,n]d

t ⊆ [−m, m]d ∀ 0 ≤ t ≤ T ] > 1 − δ

and for that m choose ǫ0 > 0 such that

Pp[ B
πp−ǫ

0 = B
πp

0 on [−m, m]d ] > 1 − δ, ∀ 0 < ǫ ≤ ǫ0.

Now since

{ C̃
[−n,n]d

t ⊆ ϕt , ∀t ≥ T, C̃
[−n,n]d

t ⊆ [−m, m]d ∀ 0 ≤ t ≤ T,

B
πp−ǫ

0 = B
πp

0 on [−m, m]d, C
πp,[−n,n]d

t 6= ∅ ∀t > 0 } ⊆ {C
πp−ǫ,[−n,n]d

t 6= ∅ ∀t > 0},
we get

Pp[ C
πp,[−n,n]d

t 6= ∅ ∀t > 0 ] ≤ Pp[ C
πp−ǫ,[−n,n]d

t 6= ∅ ∀t > 0 ] + 3δ,

whenever 0 < ǫ ≤ ǫ0 and so the proof is complete. �
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Proof of Lemma 4.1. Let δ > 0. From the self-duality equation (3.5), Lemma 3.2
and the easily verified fact that the second marginal of ν̄p gives zero measure to ∅,
we easily get that there is an n ≥ 1 such that

Pp[ C
πp,[−n,n]d

t 6= ∅ ∀t > 0 ] > 1 − δ.

The previous lemma makes it possible to now choose an ǫ > 0 such that

Pp[ C
πp−ǫ,[−n,n]d

t 6= ∅ ∀t > 0 ] > 1 − δ.

Denote the semigroup operator associated with the background process by T (t) and
note that for ǫ above there is a time s such that

δ∅T (s) ≥ πp−ǫ.

Now, let Bm,n denote the box in Zd with sidelength mn and write

Bm,n =

md

⋃

i=1

Ai,

where each Ai is a translation of the box with sidelength n and with the Ai’s
disjoint. Then, define

As
m,n = {No arrivals in N δ1 or N δ0−δ1 up to time s in some Ai }.

Given n and s, we can choose m so large that

Pp[ A
s
m,n ] > 1 − δ.

The proof is finished by noting that monotonicity easily implies that

Pp[ C
∅,[−mn,mn]d

t 6= ∅ ∀t > 0 |As
m,n ] ≥ Pp[ C

πp−ǫ,[−n,n]d

t 6= ∅ ∀t > 0 ],

using the fact that As
m,n is independent of the background process.

Remark: A slightly more abstract but considerably shorter proof of Lemma
4.1 is found by Olle Häggström after submission of the paper and is as follows. For
x ∈ Zd, let Y ∅

x be the indicator variable for survival when the process starts with
only x infected and all zeros in the background process. By translation invariance,
Pp[ Y

∅
x = 1 ] is independent of x and by Theorem 1.2 we know that it is positive.

It follows from the graphical representation that the process {Y ∅
x }x∈Zd is ergodic

and hence a.s. there is some x for which Y ∅
x = 1. Moreover, the event in Lemma

4.1 occurs as soon as some site in [−n, n]d has Y ∅
x = 1 and so the lemma follows at

once.

We have now set up the necessary ground work for our model in order to be able

to follow the steps in Liggett (1999). For L ≥ 1 and A ⊆ (−L, L)d, let LC∅,A
t be

the truncated process, using only ∅-active paths (recall Definition 2.3) which stay
in (−L, L)d × [0, t].

Lemma 4.3. For all finite A ⊆ Zd and N ≥ 1, we have

lim
t→∞

lim
L→∞

Pp[ |LC∅,A
t | ≥ N ] = Pp[ C

∅,A
t 6= ∅ ∀t > 0 ]

Proof . Fix A and N . Since

C∅,A
t =

∞
⋃

L=1

LC∅,A
t ,
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we easily get that for fixed t

Pp[ |C∅,A
t | ≥ N ] = lim

L→∞
Pp[ |LC∅,A

t | ≥ N ],

and so we are done if

lim
t→∞

Pp[ |C∅,A
t | ≥ N ] = Pp[ C

∅,A
t 6= ∅ ∀t > 0 ].

For this, it is enough to check two things:

lim
t→∞

Pp[ |C∅,A
t | ≥ N, C∅,A

s = ∅ some s > 0 ] = 0

lim
t→∞

Pp[ |C∅,A
t | ≥ N, C∅,A

s 6= ∅ ∀s > 0 ] = Pp[ C
∅,A
t 6= ∅ ∀t > 0 ]

The first equality follows easily by applying Fatou’s Lemma. The second one follows
if

lim
t→∞

|C∅,A
t | = ∞ a.s on {C∅,A

t 6= ∅ ∀t > 0 }.

Assume the contrary, i.e.

Pp[ |C∅,A
t | does not converges to infinity, C∅,A

s 6= ∅ ∀s > 0 ] > 0. (4.2)

From the martingale convergence theorem we get that

Pp[ C
∅,A
t 6= ∅ ∀t ≥ s | Fs ] → 1

{C∅,A
t 6=∅ ∀t>0}

as s → ∞, (4.3)

where Fs is the σ-algebra generated by the whole process up to time s. Equation
(4.2) and (4.3) implies that with positive probability the following can happen:

lim
s→∞

P(βs,Cs)[ Ct 6= ∅ ∀t > 0 ] = 1

∃ M > 0, {τi}i≥1 ∋ τ1 < τ2 < . . . < τi → ∞ , |Cτi
| ≤ M ∀i.

However, using elementary facts about exponentially distributed variables, we get

P(βτi
,Cτi

)[ Ct = ∅ some t > 0 ] ≥ P(Zd,Cτi
)[ Ct = ∅ some t > 0 ]

≥
(

δ1

δ0 + γ + 2d

)M

∀i,

which yields a contradiction and the proof is complete. �

The next step is to take care of the sides of the space-time box. Define

S(L, T ) = { (x, t) ∈ Zd × [0, T ] : |x|∞ = L }.
Fix A ⊆ (−L, L)d and look at all points on S(L, T ) that can be reached from A by
an ∅-active path using vertical segments where the space coordinate is in (−L, L)d

and infection arrows from (x, ·) to (y, ·) with x ∈ (−L, L)d. Define NA
∅ (L, T ) to

be the maximum number of such points with the following property: If (x, t1) and
(x, t2) are any two points with the same spatial coordinate, then |t1 − t2| ≥ 1.

Lemma 4.4. Assume Lj ր ∞ and Tj ր ∞. Then for any M, N ≥ 1 and finite
A ⊆ Zd, we have

lim sup
j→∞

Pp[ N
A
∅ (Lj, Tj) ≤ M ]Pp[ |Lj

C∅,A
Tj

| ≤ N ] ≤ Pp[ C
∅,A
t = ∅ some t > 0 ].
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Proof . The proof follows the steps of Proposition 2.8 in Liggett (1999) with some
adjustments. Let FL,T denote the σ-algebra generated by M b,0→1, M b,1→0, N δ1 ,

N δ0−δ1 and ~N j, j ∈ {±e1, . . . ,±ed } in (−L, L)d × [0, T ]. We first argue that

Pp[ C
∅,A
t = ∅ some t > 0 | FL,T ] ≥

(

e−4dδ1

δ0 + γ + 2d

)k

(4.4)

a.s on {NA
∅ (L, T ) + |LC∅,A

T | ≤ k }

For x ∈ LC∅,A
T there is a conditional probability of at least

δ1

δ0 + γ + 2d

that x becomes healthy before it infects any of its neighbors. So, if |LC∅,A
T | = m,

then the conditional probability that no x ∈ LC∅,A
T contributes to survival is at

least
(

δ1

δ0 + γ + 2d

)m

.

For the sides of the box, consider a time line {x} × [0, T ], where |x|∞ = L and let

(x, t1), . . . , (x, tj)

be a maximal set of points that can be reached from A by an ∅-active path with
the property that each pair is separated by at least distance 1. Let

I =

j
⋃

k=1

{x} × (tk − 1, tk + 1)

and note that the probability that there are no arrows coming out from I is at
least e−4dj. Furthermore, for each interval of length y in the complement of I in
{x} × [0,∞), the probability of the event that if there is at least one arrival of the
Poisson processes in the interval with the first one coming from N δ1 or there is no
arrivals at all is

(

1 − e−(δ0+γ+2d)y
) δ1

δ0 + γ + 2d
+ e−(δ0+γ+2d)y ≥ δ1

δ0 + γ + 2d
.

By independence, we get that the conditional probability that none of the points
in the time line {x} × [0, T ] contributes to survival is at least

(

e−4dδ1

δ0 + γ + 2d

)j

.

Now, considering the contribution of different x’s yields

Pp[ C
∅,A
t = ∅ some t > 0 | FL,T ] ≥

(

δ1

δ0 + γ + 2d

)|LC∅,A
T | (

e−4dδ1

δ0 + γ + 2d

)NA(L,T )

which implies (4.4). For the rest of the proof, one proceeds exactly as in the second
half of Proposition 2.8 in Liggett (1999), pages 48-49. The needed inequality

Pp[ N
A
∅ (L, T ) ≤ M, |LC∅,A

T | ≤ N ] ≥ Pp[ N
A
∅ (L, T ) ≤ M ]Pp[ |LC∅,A

T | ≤ N ]

is justified by the fact that NA
∅ (L, T ) and |LC∅,A

T | are increasing functions of ~N j,

j ∈ {±e1, . . . ,±ed } and M b,0→1, and decreasing in N δ1 , N δ0−δ1 and M b,1→0. This
completes the proof. �
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We are soon ready to state and prove the so called finite space-time condition.
However, we first need two more propositions. We just state them here since the
proofs are exactly the same as for Propositions 2.6 and 2.11, pages 46-47 and 49 in
Liggett (1999).

Proposition 4.5. For every n, N ≥ 1 and L ≥ n, we have

Pp[ |LC
∅,[−n,n]d

t ∩ [0, L)d| ≤ N ] ≤
(

Pp[ |LC
∅,[−n,n]d

t | ≤ 2dN ]
)2−d

Let

S+(L, T ) = { (x, t) ∈ Zd × [0, T ] : x1 = L , xi ≥ 0, 2 ≤ i ≤ d }
and define NA

∅,+(L, T ) in a similar manner as NA
∅ (L, T ) using S+(L, T ) instead of

S(L, T ).

Proposition 4.6. For any L, M ≥ 1, T > 0 and n < L,

(

Pp[ N
[−n,n]d

∅,+ (L, T ) ≤ M ]
)d2d

≤ Pp[ N
[−n,n]d

∅ (L, T ) ≤ Md2d ]

The proof of these propositions requires certain random variables to be positively

correlated. For Proposition 4.5, let X1 = |LC
[−n,n]d

t ∩ [0, L)d| and X2, . . . , X2d be
defined similarly with respect to the other orthants in Rd. The needed positive

correlation of {Xi}2d

i=1 is justified in the same way as in the end of the proof of
Lemma 4.4. Similarly justification can be made in the proof of Proposition 4.6.

Theorem 4.7. If {Ct} survives at p > 0, then it satisfies the following condition:
For all ǫ > 0 there exist n, L ≥ 1 and T > 0 such that

Pp[ L+nC
∅,[−n,n]d

T+1 ⊇ x + [−n, n]d some x ∈ [0, L)d ] > 1 − ǫ (4.5)

Pp[ L+2n+1C
∅,[−n,n]d

t+1 ⊇ x + [−n, n]d some 0 ≤ t < T, (4.6)

some x ∈ {L + n} × [0, L)d−1 ] > 1 − ǫ

Proof . Again, we will follow the steps in Liggett (1999) with some modifications.
Let 0 < δ < 1. We will see at the end how to choose δ for a given ǫ > 0. Lemma
4.1 gives us an n such that

Pp[ C
∅,[−n,n]d

t 6= ∅ ∀t > 0 ] > 1 − δ2. (4.7)

Given n, choose N ′ such that

(

1 − Pp[ n+1C
∅,{0}
1 ⊇ [−n, n]d ]

)N ′

< δ

and then choose N so large such that if A ⊆ Zd with |A| ≥ N , then there exists
B ⊆ A with |B| ≥ N ′ and

|x − y|∞ ≥ 2n + 1 ∀x, y ∈ B, x 6= y.

Let BA be a fixed (deterministic) such choice for each A.
In a similar fashion, choose M ′ such that

(1 − a)M ′

< δ, (4.8)
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where

a = Pp[ There are ∅-active paths from the origin to every

point in [0, 2n]× [−n, n]d−1 × {1} that

stays in [0, 2n] × [−n, n]d−1 × [0, 1] ]

Then choose M so large such that if A ⊆ Zd × [0,∞) is a finite set with |A| ≥ M ,
where the distance in time between points with the same spatial coordinate is at
least 1, then there exists B ⊆ A with |B| ≥ M ′ and with the property that for each
pair of points (x, s), (y, t) ∈ B we have either

x = y, |s − t| ≥ 1 or |x − y|∞ ≥ 2n + 1. (4.9)

Let BA be a fixed (deterministic) such choice for each A.
From Lemma 4.3, (4.7), the inequality 1 − δ < 1 − δ2 and the facts that for

fixed L, n and N , the map t 7→ Pp[ |LC
∅,[−n,n]d

t | > 2dN ] is continuous and that

limt→∞ Pp[ |LC
∅,[−n,n]d

t | > 2dN ] = 0, we can conclude that there exist Lj ր ∞
and Tj ր ∞ so that

Pp[ |Lj
C

∅,[−n,n]d

Tj
| > 2dN ] = 1 − δ ∀ j ≥ 1.

Furthermore, Lemma 4.4 with M and N replaced by Md2d and 2dN respectively
and with A = [−n, n]d, we get that for some j

Pp[ N
[−n,n]d

∅ (Lj, Tj) > Md2d ] > 1 − δ.

Let L = Lj and T = Tj for that specific j and apply Propositions 4.5 and 4.6 to
get

Pp[ |LC
∅,[−n,n]d

T ∩ [0, L)d| > N ] > 1 − δ2−d

(4.10)

Pp[ N
[−n,n]d

∅,+ (L, T ) > M ] > 1 − δ2−d/d. (4.11)

To obtain (4.5), define for B ⊆ Zd and T > 0

V T
B = { ∃ (x, t) ∈ B × {T } such that there are ∅-active paths from

(x, t) to every (y, s) ∈
(

x + [−n, n]d
)

× {T + 1}
that stays in

(

x + [−n, n]d
)

× (T, T + 1] },
and note that

⋃

A⊆[0,L)d

{ |LC
∅,[−n,n]d

T ∩ [0, L)d| > N, LC
∅,[−n,n]d

T ∩ [0, L)d = A, V T
BA

} ⊆

{ L+nC
∅,[−n,n]d

T+1 ⊇ x + [−n, n]d some x ∈ [0, L)d }. (4.12)

Let FT be the σ-algebra generated by M b,0→1, M b,1→0, N δ1 , N δ0−δ1 , and ~N j,
j ∈ {±e1, . . . ,±ed } up to time T and note that for given A ⊆ [0, L)d with |A| ≥ N ,
V T

BA
is independent of FT so

Pp[ V
T
BA

| FT ] = Pp[ V
T
BA

] ≥ 1 −
(

1 − Pp[ n+1C
∅,{0}
1 ⊇ [−n, n]d ]

)N ′

> 1 − δ.

By summing up over A ⊆ [0, L)d and using (4.10) and (4.12), we get

Pp[ L+nC
∅,[−n,n]d

T+1 ⊇ x + [−n, n]d some x ∈ [0, L)d ] > (1 − δ)(1 − δ2−d

).
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This yields (4.5) when δ is chosen appropriately.

To obtain (4.6), define for each space-time point (xi, ti) we count in N
[−n,n]d

∅,+ (L, T )

a variable Ỹi which is 1 if (xi, ti) infects all points in
(

xi + [0, 2n]× [−n, n]d−1
)

× {ti + 1}

using ∅-active paths in
(

xi + [0, 2n]× [−n, n]d−1
)

× (ti, ti + 1]

only and 0 otherwise. If N
[−n,n]d

∅,+ (L, T ) > M , we can choose M ′ space-time points

satisfying (4.9). Denote the corresponding variables by Yi, i = 1, . . . , M ′. Let
FL,T be as in the proof of Lemma 4.4 and note that conditioned on FL,T restricted

to the event {N
[−n,n]d

∅,+ (L, T ) > M }, the M ′ space-time points are specified and

Y1, Y2, . . . , YM ′ are independent with the (conditional) probability of Yi = 1 equal
to a. This implies that

Pp[ Yi = 1 some i = 1, . . . , M ′ | FL,T ] = 1 − (1 − a)
M ′

on {N
[−n,n]d

∅,+ (L, T ) > M },

which together with (4.8) and (4.11) yields

Pp[ L+2n+1C
∅,[−n,n]d

t+1 ⊇ x + [−n, n]d some 0 ≤ t < T,

some x ∈ {L + n} × [0, L)d−1 ] > (1 − δ)(1 − δ2−d/d).

This gives (4.6) when δ is chosen appropriately. �

The next part of the program is to carry out a comparison with oriented perco-
lation. For this, we start to combine (4.5) and (4.6) into one.

Lemma 4.8. If {Ct} survives at p > 0, then it satisfies the following condition:
For all ǫ > 0 there exist n, L ≥ 1 and T > 0 such that

Pp[ 2L+3nC
∅,[−n,n]d

t ⊇ x + [−n, n]d some T ≤ t < 2T,

some x ∈ [L + n, 2L + n] × [0, 2L)d−1 ] > 1 − ǫ (4.13)

Proof . We follow Proposition 2.20 in Liggett (1999). Let (x, τ) be the first (in
time) space-time point with the property appearing in the probability (4.6), where
x is choosen according to some deterministic ordering of Zd and restart (Bt, Ct) at
time τ + 1. From (4.5), (4.6) and the fact that these probabilities are increasing in
the background process, it follows that

Pp[ 2L+3nC
∅,[−n,n]d

t ⊇ x + [−n, n]d some T + 1 ≤ t < 2T + 2,

some x ∈ [L + n, 2L + n] × [0, 2L)d−1 ] > (1 − ǫ)2.

Replace T + 1 with T and the proof is complete. �

Now we are ready for the fundamental step in the construction towards the
comparison.
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Lemma 4.9. Assume {Ct} survives at p > 0 and fix ǫ > 0. Then there exist δ > 0,
n, a, b with n < a such that for all (x, t) ∈ [−a, a]d × [0, b]

Pp−δ[ ∃ (y, s) ∈ [a, 3a]×[−a, a]d−1×[5b, 6b] such that there are ∅-active paths from

(x, t) +
(

[−n, n]d × {0}
)

to every point in (y, s) +
(

[−n, n]d × {0}
)

that stays in [−5a, 5a]d × [0, 6b] ] > 1 − ǫ.

Proof . One can proceed exactly as in Proposition 2.22, pages 52-53 in Liggett
(1999) to first obtain the statement with p − δ replaced by p and therefore we
only outline this part of the argument. The main idea is to use Lemma 4.8 (or a
“reflected” version of it) repeatedly (between 4 to 10 times) to steer things properly
so that the desired event occurs. The existence of δ > 0 is a consequence of the
fact that the event in question depends only on the graphical representation in
[−5a, 5a]d × [0, 6b] and hence is continuous in p. �

Repeated use of the previous lemma together with appropriate stopping times
and monotonicity in the background process yields:

Lemma 4.10. Assume {Ct} survives at p > 0 and let ǫ > 0 and k ≥ 1 be fixed.
Then there exist δ > 0, n, a, b with n < a such that the following holds: For all
(x, t) ∈ [−a, a]d × [0, b], with Pp−δ-probability at least 1− ǫ, there exists a translate
(y, s) + [−n, n]d × {0} of [−n, n]d × {0} such that

a) (y, s) ∈ ([−a, a] + 2ka) × [−a, a]d−1 × [5kb, (5k + 1)b]

b) There are ∅-active paths from (x, t) + [−n, n]d × {0} to every

point in (y, s) + [−n, n]d × {0} that stays in the region

A =
k−1
⋃

j=0

([−5a, 5a] + 2ja) × [−5a, 5a]d−1 × ([0, 6b] + 5jb) .

Our final step towards (4.1) is to use the previous lemma in a so called renor-
malization argument. The set A from Lemma 4.10 (see Figure 1) and its reflection
with respect to the t-axis will consist of our building blocks. Given the conditions
in Lemma 4.10, the distance c in Figure 2 is well defined. (Define it to be zero
if the dashed vertical line is to the right of the left corner of the rectangle R, see
Figure 2.) It is easy to see that, if we choose k > 5, c will be bigger than 3a,
independent of the value of a. Fix such a k.



354 Jeffrey E. Steif and Marcus Warfheimer

−5a

5b

6b

t

x

  5a

Figure 1. The set A.

Theorem 4.11. If {Ct} survives at p > 0, then there are integers n,a and δ > 0
such that

Pp−δ[ C
∅,[−n,n]d

t survives in Z × [−5a, 5a]d−1 × [0,∞) ] > 0

Proof . The proof is a modification of Lemma 21 of Bezuidenhout and Grimmett
(1990). Let η > 0 be given and take ǫ > 0 such that 1 − ǫ > 1 − η and let n,
a, b and δ be as in Lemma 4.10. We will make an appropriate choice of η later.
Construct a process Zn(i) = (Xn(i), Yn(i)), i ≥ 0, n ≥ 0, where Xn(i) ∈ {0, 1}
and Yn(i) is a point in Zd × [0,∞). Yn(i) will be undefined when Xn(i) = 0. Start
with Z0(0) = (1, 0), X0(i) = 0, i 6= 0 and define inductively as follows: With
Zk(i) already defined for i ≥ 0, 0 ≤ k ≤ n let Xn+1(i) = 1 if for either j = i or
j = i − 1 it is the case that Xn(j) = 1 and there is a translation of [−n, n]d to the
shaded area (see Figure 3 for the shaded regions) on the top of the corresponding
block such that Yn(j) + [−n, n]d is connected with ∅-active paths to every point in
that translation. Furthermore, define Yn+1(i) = (xn+1(i), tn+1(i)), where tn+1(i)
is the earliest center of such a translation and xn+1(i) is chosen according to some
fixed ordering of Zd. Note that if Xn(i) = 1 for infinitely many pairs (i, n), then

C
∅,[−n,n]d

t survives in Z×[−5a, 5a]d−1×[0,∞) so it remains to prove that the former
has positive probability. Let Fn be the σ-algebra generating by Zk(i), where i ≥ 0,
0 ≤ k ≤ n and note that from Lemma 4.10 we get

Pp[ Xn+1(i) = 1 | Fn ] > 1 − η on {Xn(i − 1) = 1 or Xn(i) = 1 }.
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−5a

5b

6b

x

t

   5a
c

R

Figure 2. The definition of c.

Also, our choice of k and the fact that events that depend on disjoint parts of the
graphical representation are independent, we have that, conditioned on Fn, the
collection of variables {Xn+1(i) : i ≥ 0 } is one-dependent. Now, we are ready
to make the construction above for a specific choice of η. Take 1/4 ≤ p < 1 so
large that an oriented percolation process, {An}, on N with parameter p survives
with positive probability when it starts with a single infection at the origin and
choose η such that 1− η > 1− (1−√

p)3. A result of Liggett et al. (1997) (see also
Liggett, 1999, Theorem B26) tells us that a one-dependent process with density
1 − η stochastically dominates a product measure with density p on N. We can
then conclude that {Xn} dominates {An}. This completes the proof. �

We end with the following question:

Does the process obey a complete convergence theorem, i.e. is it the case that for

all p ∈ [0, 1] and β, η ∈ {0, 1}Z
d

(δβ × δη)Sp(t) → αp(β, η)ν̄p + (1 − αp(β, η))πp × δ∅ as t → ∞,

where

αp(β, η) = Pp[ C
β,η
t 6= ∅ ∀t ≥ 0 ].

Contemporaneously and independently of our work, Remenik (2008) has proved a
complete convergence theorem for the special variant when δ0 = ∞. We strongly
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t

x

origin

Figure 3. Our building block A together with its reflection are
translated in the x1 and t direction. The shaded regions indicate
where the paths start and stop in the definition of Zn.

believe that a complete convergence theorem also holds in our case and plan to
pursue some ideas that we have.
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