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The frog model on the rooted d-ary tree changes from transient to recurrent as the
number of frogs per site is increased. We prove that the location of this transition is
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1 Introduction

The frog model in its most general form is an interacting particle system taking
place on a countable collection of vertices, typically a graph, with a designated vertex
∅ that we call the root. The process is given by a pair (η, S) of particle counts and
paths. Initially, there is one active particle at the root, and η(v) sleeping particles at each
nonroot vertex v. When activated, the ith particle starting at vertex v moves according
to the path S•(v, i), with S0(v, i) assumed to be v. Whenever an active particle moves to
a new vertex, it activates all sleeping particles there. We continue the common practice
of referring to the particles as frogs.

Let Td denote the infinite d-ary tree rooted at ∅; that is, Td is the tree in which ∅ has
degree d and all other vertices have degree d+1. Our topic is the frog model on Td where
(η(v))v 6=∅ is an i.i.d.-Poi(µ) collection of random variables, (S•(v, i))v,i is a collection of
independent simple random walk paths, and the two collections are independent. We
abbreviate this as the frog model on Td with i.i.d.-Poi(µ) frogs per site.

We call a realization of the frog model transient if the root is visited finitely many
times by frogs and recurrent if it is visited infinitely often. Recurrence versus transience
is perhaps the most basic question for the frog model. It has been studied on Zd under a
variety of initial conditions and frog paths [TW99, Pop01, GS09, DP14, KZ16, Ros16]. In
[HJJ16b, HJJ16a, JJ16], we address the question on d-ary trees. For more background
material on the frog model, see the introduction to [JJ16].

We show in [HJJ16a] that the frog model on a d-ary tree with i.i.d.-Poi(µ) frogs per
vertex undergoes a phase transition between transience and recurrence as µ grows. In
more detail, for each d ≥ 2 there exists a critical value µc(d) such that the model is almost
surely transient for µ < µc(d) and is almost surely recurrent for µ > µc(d). The proof in
[HJJ16a] shows that for some constants C,C ′ > 0, we have Cd ≤ µc(d) ≤ C ′d log d. In
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this paper, we sharpen this result by removing the log d factor from the upper bound,
determining the order of µc(d) up to constant factors.

Theorem 1. For all sufficiently large d, it holds that .24d ≤ µc(d) ≤ 2.28d.

Theorem 1 can be extended to initial distributions other than Poisson using the
results of [JJ16]. For example, the frog model on a d-ary tree with deterministically
many frogs per site has a critical threshold of the same order; see [JJ16, Corollary 4] for
details.

An accurate description of the transition threshold on trees is especially relevant
given that the frog model on Zd behaves rather differently. A transition still occurs, but
it does so at a decaying density of frogs (see [Pop01, Theorem 1.1]). A natural next step
would be to investigate this problem for irregular trees. Perhaps the phase transition is
on the same order as the branching number of the tree (see [LP16, Section 1.2])? This is
completely speculative, as the mere existence of a phase transition for the frog model is
unknown even on a Galton–Watson tree.

Our other goal for this paper is to present as simply as possible the argument for
existence of a recurrence phase on trees. While the transience phase is fairly easy to
establish (see [HJJ16a, Proposition 15]), the recurrence phase is more difficult. Indeed,
the question of recurrence on T2 with one sleeping frog per site was first posed in
[AMP02] and was only recently answered in the affirmative [HJJ16b]. It remains open
to determine if the one-per-site frog model is recurrent on T3 and T4. Taking advan-
tage of some technical improvements we have made since [HJJ16b, HJJ16a], we give
a streamlined proof of recurrence on T2 with i.i.d.-Poi(µ) frogs per site (see Proposi-
tion 3). Using [JJ16, Corollary 3], this result also implies recurrence on T2 with two
sleeping frogs per site. This is weaker than the result in [HJJ16b], but the proof is much
simpler.

Ideas of the proof

As in [HJJ16b, HJJ16a], our proof of recurrence is based on recursion and boot-
strapping. To set this up, we first show that it is enough to establish recurrence for
a frog model whose paths are stopped non-backtracking walks, which we call the
self-similar frog model. Let V be the number of visits to the root in this process. A
self-similarity yields a relation between V and a collection of independent copies of
V . Such relations are called recursive distributional equations (see [AB05] for further
discussion).

In the bootstrap part of the argument, we assume that V is stochastically larger than
Poi(λ) for some λ ≥ 0. We then analyze the recursive distributional equation to show
that V is in fact stochastically larger than Poi(λ+ ε). Iterating this argument starting
at λ = 0, we show that V is larger than Poi(ε), then larger than Poi(2ε), and so on, with
the conclusion that V =∞ a.s. Here and in [HJJ16a], this argument uses the standard
stochastic order, while in [HJJ16b] it uses a more exotic stochastic order.

The bootstrap phase of our argument is more elaborate than in [HJJ16a], where
we could only establish µc(d) = O(d log d). We obtain a better upper bound in this
paper because the version of the self-similar frog model here better approximates the
actual frog model. Put more simply, we are able to capture the contributions of more
frogs. The simplification that allows us to handle the extra complexity is our use of
[MSH03, Theorem 3.1(b)], a simple criterion for determining when a Poisson distribution
stochastically dominates a Poisson mixture. This allows us to avoid the more difficult
coupling argument used in [HJJ16a].
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2 A criterion for stochastic dominance

Given two probability measures ν and ν′ on the extended real numbers, we say that ν
is stochastically smaller than ν′ if

ν
(
(t,∞]

)
≤ ν′

(
(t,∞]

)
for all t ∈ R. We denote this relationship by ν � ν′. If X ∼ ν and Y ∼ ν′, we also write
X � Y , X � ν′, and ν � Y all to mean the same thing. An alternate characterization of
stochastic dominance is that X � Y if and only if there exists a coupling of X and Y

such that X ≤ Y a.s.
Theorem 2 provides a necessary and sufficient condition for a Poisson mixture to

dominate a Poisson distribution, which we will need in Section 3. We reproduce the
proof given in [MSH03] for our readers’ convenience. See also [Yu09] for a more general
result.

Lemma 2.1 ([MSH03, Lemma 3.1(b)]). For any positive integer n, the function

hn(x) = x

n∑
k=0

(− log x)k

k!

is increasing and concave on (0, 1].

Proof. We compute

h′n(x) =

n∑
k=0

(− log x)k

k!
−

n∑
k=1

(− log x)k−1

(k − 1)!
=

(− log x)n

n!
,

which is positive and decreasing on (0, 1], showing that hn(x) is increasing and concave.

Theorem 2 ([MSH03, Theorem 3.1(b)]). Let X ∼ Poi(λ), and let Y ∼ Poi(U) for some
nonnegative random variable U . Then the following are equivalent:

(i) X � Y ,

(ii) P[X = 0] ≥ P[Y = 0], and

(iii) λ ≤ − logEe−U .

Proof. Conditions (ii) and (iii) are just restatements of each other, since P[X = 0] = e−λ

and P[Y = 0] = Ee−U . Condition (i) implies (ii) by the definition of stochastic dominance.
It remains to prove that (iii) implies (i). It suffices to show that P[Y ≤ n] ≤ P[X ≤ n] for
all nonnegative integers n. We compute

P[Y ≤ n] =

n∑
k=0

E

[
e−UUk

k!

]
= E

[
ζ

n∑
k=0

(− log ζ)k

k!

]
= Ehn(ζ),

where ζ = e−U . Our assumption is that Eζ = Ee−U ≤ e−λ. By Lemma 2.1, the function
hn(x) is increasing and concave on (0, 1], where ζ takes values. Thus

Ehn(ζ) ≤ hn(Eζ) ≤ hn
(
e−λ) =

n∑
k=0

e−λλk

k!
= P[X ≤ n],

where we use that hn is concave to apply Jensen’s inequality in the first step, and we use
that hn is increasing in the second step.
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3 Critical parameters for d-ary trees

Our argument breaks down into two parts described in the introduction. In Sec-
tion 3.1, we define the self-similar frog model and define V as the number of visits to the
root in this process. Then, we determine a recursive distributional equation satisfied by
the law of V (see Lemma 3.5). The ideas in this section can be found in [HJJ16b, HJJ16a],
but they take some work to extract in the form we need. Though we do our best to avoid
duplicating material, when in doubt we have opted for comprehensibility over efficiency.

Next comes the bootstrap portion of the argument. In Section 3.2, we use the set-up
of Section 3.1 to carry this out in case of the binary tree, giving a short proof of the
existence of a recurrence phase. In Section 3.3 we give a more complex version of this
argument proving recurrence on the d-ary tree for µ = Ω(d).

3.1 The bootstrapping set-up

3.1.1 The self-similar frog model

Many basic features of the frog model depend only on the range of each frog. This yields
rather nice abelian and monotonicity properties. For example, the total number of visits
to the root is unaffected by the order frogs wake up in and the rate they reveal vertices
in their ranges. Also, trimming the range of frogs can only reduce the number of visits
to the root. Applying this observation in combination with the coupling characterization
of stochastic dominance, we note the following fact. Let r(η, S) be the number of visits
to the root in the frog model (η, S).

Fact 3.1. Consider a collection of frog paths S =
(
S•(v, i)

)
v∈G,i≥1 on a graph G. Suppose

that another collection of paths S̃ can be coupled with S such that for all i and v, the
range of S̃•(v, i) is a subset of the range of S•(v, i). Then r(η, S̃) � r(η, S).

From now on, let S = (S•(v, i), v ∈ Td, i ≥ 1) denote a collection of independent
simple random walks with S•(v, i) started at v, and let the components of η = (η(v))v∈Td
be i.i.d.-Poi(µ), independent of S. The first step in studying the frog model (η, S) will be
to replace S by a collection of paths T to obtain (η, T ), which we call the self-similar frog
model in reference to a useful property described in Fact 3.3.

We define T in two steps. First, let S′ = (S′•(v, i), v ∈ Td, i ≥ 1) denote a collection of
independent random non-backtracking walks stopped at ∅. In more detail, call a random
walk a simple random non-backtracking walk on an arbitrary graph if it chooses from
its neighbors uniformly for its first step, and then in all subsequent steps it chooses
uniformly from its current neighbors except the one it just arrived from. We define
S′•(v, i) to be a simple non-backtracking random walk stopped on arrival at ∅. The walks
S′•(v, i) and S•(v, i) can be coupled so that the range of the first is a subset of the range
of the second by making S′•(v, i) a stopped, loop-erased version of S•(v, i). This is proved
in detail in [HJJ16b, Proposition 7].

Now we construct T as a modification of S′. Each path T•(v, i) will be a stopped
version of S′•(v, i). Let v be a nonroot vertex in Td with parent u. Suppose that v is visited
in the frog model (S′, η) for the first time at time j, necessarily by one or more frogs
moving from u to v. Select one of these visiting frogs arbitrarily, and stop all of the other
ones. (Observe that it is irrelevant which frog is allowed to continue, so long as one
views frogs as indistinguishable.) If any frogs move from u to v at subsequent times, stop
them at v as well. Do this for all vertices v ∈ Td, and let T be the resulting collection
of stopped walks. As the range of each T•(v, i) is a subset of the range of S′•(v, i), the
following fact (also noted in [HJJ16b, Proposition 7]) follows:

Fact 3.2. There is a coupling of S and T so that the range of each T•(v, i) is a subset of
the range of S•(v, i).
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Figure 1: In the self-similar frog model on Td, the initial frog moves from ∅ to ∅′ to v1
and then continues down the tree. The random variables V and V1, counting the number
of frogs moving from ∅′ to ∅ and from v1 to ∅′, respectively, both have distribution ν

(see Lemma 3.5). For i ∈ {2, . . . , d}, the distribution of Vi conditional on a frog entering
the subtree Td(vi) is also ν.

By Facts 3.1 and 3.2, we have r(η, T ) � r(η, S). We will now work exclusively with the
self-similar frog model, (η, T ), and prove recurrence for it with sufficiently large µ. Unlike
all other frog models considered in this paper, the frog paths T are not independent of
each other nor of η, because one frog’s motion in (η, T ) can cause another frog to be
stopped. This is the only form of dependence, however, and frogs that have not been
stopped move independently of each other. So, it is not a serious obstacle.

Let V = r(η, T ). Next, we discuss a self-similarity property of the model and its
consequences for V . For any vertex v ∈ Td, let Td(v) denote the subtree made up of v
and its descendants. We call Td(v) activated in the self-similar frog model if v is ever
visited. Let u be the parent of v. By our construction of T , if Td(v) is activated, then
there is a unique frog that moves from u to v, entering Td(v) and then never leaving it.
The frog model viewed starting from the time of activation only at vertices {u} ∪Td(v)

then looks identical to the original self-similar frog model viewed on {∅} ∪Td(∅′). This
yields the following fact, proved in more detail in [HJJ16b, Proposition 6].

Fact 3.3. Let V ′ be the number of frogs that move from v to its parent u in the self-similar
frog model. The distribution of V ′ conditional on Td(v) being activated is identical to the
distribution of V .

The following observation shows that once a subtree Td(v) is activated, the random
variable V ′ defined in the above fact is independent of the frog model outside of Td(v).

Fact 3.4. Let V ′ be defined as in Fact 3.3. Conditional on Td(v) being activated, V ′

depends only on the path of the activator and on {T•(w, i), η(w) : w ∈ Td(v), i ≥ 1}.
We will use Facts 3.3 and 3.4 to express V recursively in terms of independent copies

of itself, an idea expressed in Figure 1. This relation will be given in terms of an operator
we define next.

3.1.2 The operators B and U

Suppose that the initial frog in the self-similar frog model moves from ∅ to ∅′ to v1. Let
v2, . . . , vd be the remaining children of ∅′. Observe that since frogs are stopped at ∅,
no children of ∅ other than ∅′ are ever visited. The idea of this section is to view the
self-similar frog model only at the vertices mentioned above. If a vertex vi is visited, we
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close our eyes to Td(vi), thinking of this entire subtree as a black box that eventually
emits some frogs from vi back to ∅′.

Enacting this view, we now define operators B and U on probability measures sup-
ported on the extended nonnegative integers. Informally, the operator B corresponds to
the number of visits to the root, and U corresponds to the number of subtrees v1, . . . , vd
that are activated. Let π be a probability measure on the nonnegative integers. To define
Bπ and Uπ, we consider the following frog model. The example to keep in mind is when
π is the law of V , in which case the following description matches up with the black box
view of the self-similar frog model described above.

Graph a star graph with center ρ′ and leaf vertices ρ, u1, . . . , ud (think of these as
paralleling ∅′ and ∅, v1, . . . , vd). The root of the graph is ρ.

Sleeping frog counts all independent, distributed as Poi(µ) at ρ′ and as π at u1, . . . , ud.
There is one frog at ρ, as is always true at the root vertex.

Paths All frogs have independent paths. The initial frog moves deterministically from
ρ to ρ′ to u1 and then remains there. All other frogs, if woken, perform simple
random non-backtracking walks from their starting points, stopped on arrival at a
leaf vertex.

We then define two quantities:

– Bπ is the distribution of the number of frogs that terminate at ρ.

– Uπ is the distribution of the final number of u1, . . . , ud that are visited by a frog.

Note that our definition of the initial frog path as deterministic is just for convenience.
By symmetry, we would arrive at the same measures Bπ and Uπ if it were also defined
as a stopped simple random non-backtracking walk.

We mention that B is closely related to the operators A defined in [HJJ16b] and
[HJJ16a], but differs from both of them. The operator A in [HJJ16b] is the same as B in
the d = 2 case if the initial distribution at ρ′ in the definition of B is changed from Poi(µ)

to δ1 (except that A acts on probability generating functions rather than distributions).
The operator A in [HJJ16a] is the same as B in the d = 2 case. For d ≥ 3, the two
operators differ in that in the frog model defining A, frogs initially at v2, . . . , vd do not
wake other frogs.

Now we relate this system back to the frog model.

Lemma 3.5. Let ν be the law of V = r(η, T ), the number of visits to the root in the
self-similar frog model on Td. It holds that Bν = ν.

Proof. Essentially, the frog model on the star graph exactly matches the black box view
of the self-similar frog model described at the beginning of Section 3.1.2, and the result
then follows from Facts 3.3 and 3.4. To make this more formal, we couple the two frog
models. We take full advantage of the abelian properties of the frog model by viewing
the frogs’ motions in a convenient order.

Consider the frog model used to define Bν as well as the self-similar frog model. We
can couple the initial number of frogs on ρ′ to be the same as on ∅′, and we can couple the
first (and only) step of each frog at ρ′ with the first step of the corresponding frog at ∅′.

Let Vi be the number of frogs that ever move from vi to ∅′ in the self-similar model,
and let Ui be the number of frogs initially at ui in the star graph model. Noting that
Td(v1) is activated by the initial frog, V1 ∼ ν by Fact 3.3. By Fact 3.4, V1 is independent
of all that we have coupled so far (that is, the number and first steps of frogs initially
at ∅′). The random variable U1 is also independent of all we have coupled so far and is
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distributed identically to V1. We can therefore couple U1 and V1 to be equal. Next, we
couple the second (and final) step of each frog at u1 with the step of the corresponding
frog counted by V1 after it moves from v1 to ∅′.

Let V1 consist of the indices i ∈ {2, . . . , d} such that ui has been visited so far. By the
construction of our coupling, we can also describe V1 as the set of i ∈ {2, . . . , d} such
that Td(vi) has been activated so far. Furthermore, identically many frogs have returned
so far to ρ as to ∅. By Facts 3.3 and 3.4, conditional on the information so far, the random
variables (Vi, i ∈ V1) are i.i.d.-ν and are independent of the information so far, as are
the random variables (U1, i ∈ V1). We can therefore couple these two random vectors
to be equal. We then couple the paths of the frogs at these vertices to match up as we
did with the frogs at u1 and v1.

As above, a vertex ui is visited for the first time in this second round if and only
if Td(vi) is visited for the first time in this second round. Let V2 be the set of such i.
We can repeat the coupling argument of the previous paragraph, maintaining identical
numbers of frogs terminating at ρ as at ∅, until we get an empty Vj and have counted
all returns to ρ and ∅. Thus, under this coupling, the number of frogs terminating at
ρ in the star graph model is the same as the number of frogs terminating at ∅ in the
self-similar model. The first of these counts has distribution Bν, while the second has
distribution ν, showing that the two are equal.

The next lemma is similar to [HJJ16b, Lemma 10] and [HJJ16a, Lemma 10].

Lemma 3.6. If π1 � π2, then Bπ1 � Bπ2.

Proof. This immediately follows from the coupling definition of stochastic dominance.
We couple the frog models defining Bπ1 and Bπ2 so that the frogs in the former are a
subset of the frogs of the latter model, resulting in more visits to the root.

Just as in [HJJ16a, Lemma 11], the operator B applied to a Poisson distribution yields
a mixture of Poisson distributions. This is a consequence of the following property,
known as Poisson thinning: Consider a multinomial distribution with Poi(λ) trials and
n-types, each having probability pk. Then the vector of outcomes is distributed as an
independent collection of Poi(λpk) random variables.

Lemma 3.7. Let U be a random variable distributed as U Poi(λ).

BPoi(λ) = Poi

(
µ

d+ 1
+ U

λ

d

)
. (3.1)

Proof. In the frog model defining BPoi(λ), the number of frogs at ρ′ that move back to ρ
is distributed as Bin(Poi(µ), 1/(d+ 1)). By Poisson thinning, this is Poi(µ/(d+ 1)). Each
visited ui releases Poi(λ) sleeping frogs. These will take a non-backtracking step back to
ρ′, then with probability 1/d will move to ρ. Thus, each activated ui sends Poi(λ/d) frogs
to ρ. It follows that

BPoi(λ) ∼ Poi(µ/(d+ 1)) +
∑d

1 1{ui visited}Poi(λ/d).

The above sum is equal to
∑U

1 Poi(λ/d). By Poisson thinning, the Poi(λ/d) terms are
independent of U . Applying additivity of Poisson random variables then brings us to the
claimed formula.

3.2 Simplest proof of recurrence on the binary tree

We now break from the main thread to give a short proof that the frog model on
the binary tree with Poisson-distributed frogs has a recurrence phase. The idea of the
argument is to use Lemma 3.7 to demonstrate that for some δ > 0, it holds for all λ ≥ 0
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that BPoi(λ) � Poi(λ + δ). Lemmas 3.5 and 3.6 then let us bootstrap out way to the
conclusion that that V is stochastically larger than any Poisson distribution, and hence
V =∞ a.s.

Proposition 3. The frog model on T2 with i.i.d.-Poi(µ) frogs per site is recurrent for
µ > 3 log

(
(1 +

√
5)/2

)
≈ 1.4436.

Proof. In the d = 2 case, BPoi(λ) is a particularly simple mixture:

BPoi(λ) =

{
Poi
(
µ
3 + λ

2

)
with probability exp

(
−µ3 −

λ
2

)
,

Poi
(
µ
3 + λ

)
with probability 1− exp

(
−µ3 −

λ
2

)
.

(3.2)

This follows from Lemma 3.7 once we show that

U Poi(λ) =

{
1 with probability exp

(
−µ3 −

λ
2

)
,

2 with probability 1− exp
(
−µ3 −

λ
2

)
.

(3.3)

Recall that U Poi(λ) is the distribution of the number of vertices out of {u1, u2} that are
visited in the frog model defining B. The vertex u1 is always visited by the initial frog
in this model. Each of the Poi(µ) frogs initially at ρ′ has a 1/3 chance of visiting u2, and
each of the Poi(λ) frogs initially at u1 has a 1/2 chance of visiting u2, all independently
of each other. By Poisson thinning, the number of these frogs that visit u2 is distributed
as Poi(µ/3 + λ/2), and thus u2 is visited with probability 1 − exp(−µ/3 − λ/2). This
establishes (3.3) and hence (3.2).

Theorem 2 now instructs us to compute the probability placed on 0 by BPoi(λ), which
is

− log

[(
1− e−

µ
3−

λ
2

)
e−

µ
3−λ + e−

2µ
3 −λ

]
= λ+

µ

3
− log

[
1− e−

µ
3−

λ
2 + e−

µ
3

]
≥ λ+

µ

3
− log

[
1 + e−

µ
3

]
> λ+ δ

for some δ > 0 depending on µ but not on λ, under our assumption that µ > 3 log
(
(1 +√

5)/2
)
. By Theorem 2,

BPoi(λ) � Poi(λ+ δ) (3.4)

for any λ ≥ 0.
Now, we carry out the bootstrap. Recall that ν is the distribution of r(η, T ), the

number of visits to the root in the nonbacktracking frog model on the binary tree. As
ν � Poi(0), Lemma 3.6 shows that Bν � BPoi(0), and so Bν � Poi(δ) by (3.4). But ν is
a fixed point of B by Lemma 3.5, implying that ν � Poi(δ). Repeating this argument of
successively applying Lemma 3.6, (3.4), and Lemma 3.5, we show that ν � Poi(2δ), and
so on. Thus ν is stochastically larger than all Poisson distributions, which implies ν = δ∞.
Finally, recalling that r(η, S) is the number of visits to the root in the frog model and that
r(η, S) � ν by Facts 3.1 and 3.2, we can conclude that r(η, S) =∞ a.s.

3.3 A more complicated bootstrap

We now give an argument along the same lines as our proof of Proposition 3, proving
recurrence for all d under assumptions on µ that are optimal up to constant factors, as
shown by the lower bound in Theorem 1. This bound follows from [HJJ16a, Proposition
15], which is proven by coupling the frog model with a transient branching random walk.
Our contribution here is the upper bound.
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Recall that U Poi(λ) is the distribution of the number of vertices u1, . . . , ud visited
in the frog model on the star graph defined in Section 3.1.2. The essential difference
between our proofs of recurrence for µ = Ω(d) here and for µ = Ω(d log d) in [HJJ16a]
is that here we give a better lower bound on U Poi(λ). For a fixed λ ≥ 0, we define a
lower bounding random variable U ′ ∈ {1, . . . , d} as follows. Consider the frog model
used to define BPoi(λ) and U Poi(λ), and observe how many of u1, . . . , ud are visited by
the Poi(µ) frogs starting at ρ′. If at least dd/ce of these vertices are visited for a yet
to be determined constant c, then arbitrarily choose dd/ce of them and allow the frogs
activated there the chance to visit the remaining d− dd/ce vertices. If fewer than dd/ce
vertices are visited by the frogs at ρ′, then recall that u1 is guaranteed to be activated
by the initial frog, and just use the frogs at u1 to try to activate the remaining vertices
u2, . . . , ud. We define U ′ as the number of vertices out of u1, . . . , ud activated in the end
in this scheme. This is summarized as follows:

Let U ′1 be the number of vertices u1, . . . , ud visited by the frogs initially at ρ′.

Case 1 U ′1 ≥ dd/ce
Arbitrarily choose dd/ce of the vertices counted by U ′1 and denote them by V ⊆
{u1, . . . , ud}. Let U ′ be the sum of dd/ce and the number of the remaining d− dd/ce
vertices {u1, . . . , ud} \ V visited by frogs starting in V.

Case 2 U ′1 < dd/ce
Let U ′ equal one plus the number of number of vertices u2, . . . , ud visited by frogs
returning from u1.

As U ′ counts only a subset of the full collection of activated vertices, we have U ′ �
U Poi(λ).

We now sketch the argument in more detail. Throughout the remainder of the paper,
we will assume that µ = C(d + 1) with C a yet to be determined positive constant. In
Lemma 3.8, we prove that Case 2 occurs with exponentially small probability as d grows.
Next, in Lemma 3.9 we give a very explicit definition of a random variable U ′′ satisfying
U ′′ � U ′ � U Poi(λ). In Lemma 3.10, we use this lower bound together with Lemma 3.7

to prove that if V � Poi(λ), then V � Poi(λ + δ) for some δ > 0. The same iterative
argument used in Proposition 3 then implies that V =∞ a.s.

Lemma 3.8. Recall that U ′1 is the number of vertices u1, . . . , vd visited by the Poi(µ)

frogs initially at ρ′ in the frog model defining BPoi(λ) and U Poi(λ). We have

P[U ′1 < dd/ce] ≤ e−bd := p, (3.5)

where b = 2(1− e−C − 1
c )2.

Proof. It is a consequence of Poisson thinning that out of the Poi(µ) frogs starting at ρ′,
independently Poi( µ

d+1 ) = Poi(C) move to each leaf u1, . . . , ud. Thus each vertex has an

independent 1− e−C chance of having a frog visit it from the ones starting at ρ′, showing
that U ′1 ∼ Bin(d, 1− e−C).

Hoeffding’s inequality tailored to a binomial distribution states that P[Bin(n, p) ≤
(p− ε)n] ≤ exp(−2ε2n) (this follows from [Hoe63, eq. (2.3)]). If we apply the inequality to
U ′1 with ε = (1− e−C)− 1

c , we establish (3.5).

Lemma 3.9. Let

U ′′ ∼

dd/ce+ Bin
(
d− dd/ce, 1− e−λ/c

)
with probability 1− q,

1 + Bin
(
d− 1, 1− e−λ/d

)
with probability q,

(3.6)

where q = P
[
U ′1 < dd/ce

]
. Then U ′′ � U ′.
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Proof. Writing U ′ | E to mean U ′ conditioned on the event E, we claim that

U ′ | {U ′1 ≥ dd/ce} � dd/ce+ Bin
(
d− dd/ce, 1− e−λ/c

)
, (3.7)

and

U ′ | {U ′1 < dd/ce} � 1 + Bin
(
d− 1, 1− e−λ/d

)
. (3.8)

The lemma then follows because conditional stochastic dominance implies stochastic
dominance [SS07, Theorem 1.A.3, (d)].

Thus it just remains to confirm (3.7) and (3.8). Suppose U ′1 ≥ dd/ce. Then we are in
Case 1, and U ′ = dd/ce+U ′2, where U ′2 is the number of vertices in {u1, . . . , ud}\V visited
by frogs returning from V. Conditional on V, the counts of frogs proceeding from V to
each of {u1, . . . , ud} \ V form a collection of independent Poi(λdd/ce/d) random variables.
Thus each vertex in {u1, . . . , ud} \ V has an independent probability of 1− e−λdd/ce/d ≥
1−e−λ/c of being visited by one of these frogs, showing that U ′2 � Bin(d−dd/ce, 1−e−λ/c)
and confirming (3.7).

Next, suppose that U ′1 < dd/ce, and Case 2 is in effect. In this case, U ′ = 1 + U ′2,
where U ′2 is the number of vertices u2, . . . , ud visited by frogs returning from u1. By the
same reasoning as in the previous case, U ′2 � Bin(d− 1, 1− e−λ/d), confirming (3.8).

Lemma 3.10. Define

hC,c = hC,c(λ, d) := log
[(
e−

λ
c+

λ
d + 1− e−λc

)d−dd/ce
+ p
(
2− e−λd

)d−1]
,

where p is the value defined in (3.5), which depends on C and c. We have

BPoi(λ) � Poi

(
λ+

µ

d+ 1
− hC,c

)
.

Proof. Combining (3.1) and U ′′ � U Poi(λ), it follows from [SS07, Theorem 1.A.3, (d)]
that

BPoi(λ) � Poi

(
µ

d+ 1
+ U ′′

λ

d

)
. (3.9)

In light of Theorem 2, we would like to compute − logEe−
λ
dU

′′
. Recalling the definition

of U ′′ in (3.6), we use the fact that ExBin(n,p) = (1− p+ px)n to compute

Ee−
λ
dU

′′
= (1− q)e−λd dd/ce

(
e−

λ
c +

(
1− e−λc

)
e−

λ
d

)d−dd/ce
+ qe−

λ
d

(
e−

λ
d +

(
1− e−λd

)
e−

λ
d

)d−1
.

Using the bound q ≤ p from Lemma 3.8 and the trivial bound 1− q ≤ 1 in the first step,
and factoring out e−λ in the second step,

Ee−
λ
dU

′′
≤ e−λd dd/ce

(
e−

λ
c +

(
1− e−λc

)
e−

λ
d

)d−dd/ce
+ pe−

λ
d

(
e−

λ
d +

(
1− e−λd

)
e−

λ
d

)d−1
= e−λ

[(
e−

λ
c+

λ
d + 1− e−λc

)d−dd/ce
+ p
(
2− e−λd

)d−1]
.

Thus,
− logEe−

λ
dU

′′
= λ− hC,c.
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Using the above calculation and Theorem 2, we deduce that

Poi

(
µ

d+ 1
+ U ′′

λ

d

)
� Poi

(
λ+

µ

d+ 1
− hC,c

)
.

Together with (3.9), this completes the proof.

Proof of Theorem 1. As we noted before, the lower bound is a consequence of [HJJ16a,
Proposition 15], and we just need to establish the upper bound by showing that the
frog model on Td is almost surely recurrent with i.i.d.-Poi(2.28d) frogs per vertex for
sufficiently large d. To apply our bootstrapping argument, we seek to show that for
some δ > 0, it holds for all λ ≥ 0 that BPoi(λ) � Poi(λ + δ). Considering the result
of Lemma 3.10, we need to choose C and c such that µ/(d + 1) − hC,c(λ, d) > δ for all
λ ≥ 0 and sufficiently large d. Recalling that µ = C(d + 1), rearranging terms, and
exponentiating both sides of the inequality, this is equivalent to showing that for some C,
c, δ, and d0 it holds that

exp(hC,c(λ, d)) < eC−δ, (3.10)

on the set {(λ, d) : λ ≥ 0, d ≥ d0}.
Towards proving this, we start with the inequality

exp(hC,c(λ, d)) =
(
e−

λ
c+

λ
d + 1− e−λc

)d−dd/ce
+ p
(
2− e−λd

)d−1
≤
(
1 + e−

λ
c

(
e
λ
d − 1

))d(1− 1
c ) + e−bd2d−1 (3.11)

obtained by applying the bounds 2−e−λ/d ≤ 2 and d−dd/ce ≤ d(1−1/c) and substituting
the value of p from (3.5). Note that b depends on C and c. Now we bound each of the
two terms on the right hand side of (3.11) for the right choice of C, c, and d0.

Some calculus shows that for any d and c satisfying d > c, the first term is maximized
in λ when eλ/d = d/(d− c). This demonstrates that if d > c, then

(
1 + e−

λ
c

(
e
λ
d − 1

))d(1− 1
c ) ≤

(
1 +

(
d− c
d

)d/c(
d

d− c
− 1

))d(1− 1
c )

=

(
1 +

(
d− c
d

)d/c
c

d− c

)d(1− 1
c )

≤
(

1 +
c

d− c

)d(1− 1
c )

≤ exp

(
d(c− 1)

d− c

)
.

Thus, for any ε > 0, we can choose d0 sufficiently large that for all d ≥ d0 and λ > 0,(
1 + e−

λ
c

(
e
λ
d − 1

))d(1− 1
c ) ≤ ec−1+ε. (3.12)

The second term to be bounded, e−bd2d−1, vanishes as d→∞ when b > log 2. Referring
back to (3.5) and doing some algebra, we see that b > log 2 when

C > − log

(
1− 1

c
−
√

log 2

2

)
. (3.13)

If this inequality holds, then for any ε > 0, we can choose d0 large enough that for all
d ≥ d0,

e−bd2d−1 ≤ ε. (3.14)
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Finally, we set c = 3.26 and C = 2.27, which satisfies (3.13). Applying (3.12) and
(3.14), for any ε > 0, there exists d0 such that for all d ≥ d0 and λ ≥ 0,

exp(hC,c(λ, d)) ≤ e2.26+ε + ε.

Choosing ε, δ > 0 sufficiently small, we can bound this by e2.27−δ, confirming (3.10).
In all, we have shown that for d ≥ d0, if µ ≥ 2.27(d+ 1) then for all λ ≥ 0,

BPoi(λ) � Poi(λ+ δ). (3.15)

Increasing d0 as necessary, we can revise our assumption to µ ≥ 2.28d for d ≥ d0. The
rest of the proof is to use this to bootstrap our way to the conclusion that the number
of visits to the root in the frog model is almost surely infinite given these assumptions,
which proceeds identically as the last paragraph of Proposition 3.
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