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Abstract. In 1981, Hamachi introduced an interesting class of type Il shifts. Since
these are not measure-preserving, one cannot use metric entropy to study them. As a possible
substitute, we give estimates for the upper and lower critical dimensions of Hamachi shifts.
These invariants have previously been used by the authors to study odometer actions.

1. Introduction. A measurable dynamical system is a standard Lebesgue space
(X, B, n) and an automorphisiit € Aut(X, B, ) which preserves the measure class of
w. In the measure-preserving case, that is whenT = u, the entropyH (T') has been an
important tool for studying the system.# is a partition, we define thentropy H (P) of P
asH(P) = — ) pep n(P)logu(P). Apartition is called generating i (T, P), the smallest
completes -algebra containing all the partitiof@ P, i € Z, is all of 3. The metric entropy
of T is defined by taking any generating partitiéhand defining: H(T) = H(P,T) =
Iimn_)oo(1/n)H(\/’5*l T'P). To show that this limit exists, one uses in an essential way the
fact thatT" preserveg..

A theorem of Sinai shows that the limit iselsame for all genetiag partitions. Rokhlin,
Kolmogorov and Sinai [15, 16] used entropy to distinguish between shifts. Also, Ornstein’s
celebrated result tells us that Bernoulli systems of the same entropy are isomorphic. Much
further work has been done, and is too extensive to mention here.

In the general non-singular case where 7' ~ wu, the limit which definesH (T') may
no longer exist. As a consequence, whereas the theory of measure-preserving shifts is well-
developed, relatively little is knn about non-singular shifts. In [8], Hamachi introduced a
notion of non-singular ergodic conservative shift. More details are given in Section 3 below.

It is natural to enquire whether there is some quantity which can be used to replace en-
tropy in the study of Hamachi shifts, and which allows one to distinguish between them. For
non-singular systems which are not measure-preserving, Silva and Thielluen [17] gave a defi-
nition of entropy, but it takes values only 0,®#, and therefore is not as close a discriminator
between non-isomorphic systems as one might wish.

In her 1997 thesis [10], Mortiss tried some new approaches to the entropy of the odome-
ter action on an infinite product space. This led to the development afigper critical
dimension «(7") and thelower critical dimension 8(T) ([12, 6, 7]), which are invariants for
metric isomorphism of non-singular systémi, 55, T, ). These are defined using the growth
rate of sums of Radon derivatives, and one has &(7) < B(T) < 1. In the case of
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odometer actions, these have been shown to have entropy-like properties—if the two quanti-
ties coincide, then they are equal to the average coordinate entropy introduced in [10], there
is a Shannon-McMillan-Breiman theorem, and one can prove a version of Katok’s lemma for
this quantity.

It is therefore natural to try to use the critical dimension in the study of Hamachi shifts.
The aim of this paper is to estimate the critid@hension of Hamachi shifts. Specifically, we
show the following.

THEOREM 1. Lete > 0. There exists a Hamachi shift S with «(S) < ¢ and 8(S) >
1—e.

In fact, our estimates hold for Hamachi shifts with reasonably mild hypotheses on the
rates of growth of their defining parameters. We conjecture that, in some senses, Hamachi
shifts generically have (S) = 0 andg(S) = 1.

The fact that the Hamachi shifts have small lower critical dimension and high upper
critical dimension is not so surprising: see Proposition 2 of [8], where it is shown that the
Radon-Nikodym derivatives are either very large or very small. What is interesting is that
they can be estimated at all. It would be irgsting to have a better way of calculating these
invariants.

From this result, it follows that the Hamachi shifts which we construct are notisomorphic
to certain odometers (for example, they cannot be isomorphic to standard typddtheters,
&R{(1/1+ 1), (A/1+ A)}, on the infinite product of two-point spaces).

The plan of the paper is as follows. In Section 2, we introduce the main ideas of critical
dimension. Section 3 then introduces Hamachi shifts. In Sections 4 and 5 we prove Theorem
1(i) and (ii), respectively.

We thank Jane Hawkins for introducing us to the theory of Hamachi shifts. We gratefully
acknowledge the support of the Australian Research Council.

2. Critical dimension. Given (X, B, u, T) a non-singular measurable dynamical
system, that is, whep o T is equivalent tqu, we letw; (x) = du o T! (x)/d .

DEFINITION 1. Let (X, B, u, T) be a non-singular conservative ergodic dynamical
system withu(X) = 1.

(i) Let
n—1

Xy = {x e X; ",ﬂiorlf <Zwi(x)>/no‘/ > 0} ,
i=0
and notice thatX, is an invariant set. The supremum over the set'of> 0 for which
w(Xq) = 1is called thdower critical dimensiona = «(7T) of (X, B, u, T).
(i) Let

Xp = {x €eX: Iimsup(Zw,-(x))/nﬂ' = O} .
i=1

n— oo



CRITICAL DIMENSIONS OF HAMACHI SHIFTS 59

Let B be the infimum of the s€iB’ > 0; u(Xg) = 1}. We call 8 = B(T) the upper critical
dimension.

Notice that we havea = liminf,(log) ! jwi(x))/logn and g =
limsup,_, . (logY_7_; wi(x))/logn. In the case where = g, we say that the system has
critical dimension «. The following theorem was proved in [7].

THEOREM 2. If (X,B,u,T) and (X', B, i/, T") are metrically isomorphic, then
a(T) = a(T") and B(T) = B(T").

It is not too hard to see that® o < 8 < 1. Indeed, if8 were strictly greater than one,
then for any 1< g’ < B, letting¢, = (1/n) 3" w;, we would have lim supn*~#")¢, > 0
a.e. Atthe same time, singeis a probability measurg, ¢,du = 1 for all n. An elementary
argument in measure theory shows that this is impossible.

Notice that ifu o T = u, thena = 8 = 1. By a theorem of Maharam [9], we know that
the following are equivalent:

(i) There is afiniteT-invariant measure.

@iy lim,-s(1/n) Z?;l w; (x) exists as a positive number a.e.
Itfollowsthat0< « < B < 1for all systems of type };, or type lll,« > O for systems of type
Il and thatx = g = 1 for systems of type il (We recall the von Neumannn classification
of dynamical systems, see [18]. A system is of type Il if it has a preserved measure equivalent
to wu: it is of type Iy if the measure is probability and of typeJlif the space has infinite
measure. An ergodic system is of type Ill if there is no measure equivalgntvthich is
T-invariant.)

We summarize briefly the main results from [6, 7], on odometer actions, although in this
article, we will consider the shifs. Let/(i) > 2 be a bounded sequence of integers and
consider the infinite product spa&e= []72; Z;;), Where we writeZ;;, = {0, ..., (i) — 1}.

The odometefl acts onX by the standard methodf'x = y if y is the smallest element
greater tharnx in the lexicographic order, andéf= (/(1) — 1,/(2) — 1,...,i(n) — 1,...),
thenT¢ =0=(0,0,0,...). We denote(n) =[(0) - --I(n).

We shall assume that is equipped with the usual produetalgebra, and an infinite
product measurge = @7, ni, wherep; is a fully supported probability measure on the
finite spaceZ; ;. The entropyH (P,) of the partition of the first coordinates with respect to
w is given by

H(Py) ==Y (i (0)10g ;i (0) + - - + i (l; — ) log ;i (li — 1))
i=0

Leto andg denote the upper and lower critical dimensions(@®y B, ., T).
THEOREM 3. Let T bethe odometer action on X. Then the following hold.
(i)
o = liminf — 2==1109K 0D _ e HPn)
n—00 log(s(n)) n—co log(s(n))
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for n almost all x € X.
(if)
B = lim sup——z":1 0 ixi) _ iy supiH(P")
n—00 log(s(n)) n—oo 10g(s(n))
for n almost all x € X.

For each of the two statements above, the left hand equality is like a version of the
theorem of Shannon-MacMillan-Breiman, wigh(resp.8) playing the part of the entropy.

In the case where = B, the two expressions on the right hand sides coincide with
lim,— o H(Py)/log(s(n)). In [10], this expression (when it exists) was called #verage
coordinate entropy and denoted alsac (1). For an odometer on the infinite product of 2-point
spaces, taking logarithms to base/ac(n) = lim,—o(3>_/_1 H(ui))/n and therefore it
actually is the limiting average of the entropy of the individual coordinate measures.

Note that if we were to use the usual definition [13, 14] of metric entropy, we would
evaluate lim_ o H(P,)/s(n), as the odometer takasn) steps to produc®,. Thus, the
usual entropy limit of these odometer actiongéso. By contrast, the critical dimension can
have any value between 0 and 1.

Similar results were proved in [7] for Markov odometers, where we replace infinite prod-
uct measures by Markov measures in the sense of [5].

3. Description of Hamachi shifts. LetX = [[;2__ Z> andS$ be the shift action on
X, so that
(Sx)i = xiy1.
Now we will equipX with a product measure = @:>_ . ni, where
wi(1) =u;(0)=1/2 foranyi >0.

Fori < 0, eitheru; (0) = 1/2 or u; (0) = 1/(1 + A;) according to the following rules:
1) k@) =1/(L+x) if =Ny <k <—-M; 1,
(2) we©@ =1/2 if —M; <k <—N;,
where{1,}°, is a decreasing sequence with all > 1 ande’il(log(/\,))2 < o0o. The
sequences/; andN, are defined by the following equations

Ny=M;,1+n; M =N +my; Mo=1.

Heren, andm, are two series of positive integers determined by an inductive process in [8].
We omit the details of the construction here. The reader is referred to [8] for a full description
of the definition.

The inductive steps involved in the construction require that for eaeh N, after
Ai—1, ny—1 andm;_1 have been chosen, the order of parameter selectignis, m;. Prior to
beginning the induction, one chooses two sequefG¢s ; and{p,};°; such that

o0 o0
Zet<oo and Zptzoo.
=1 =1
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The sequencgy,}2, is then defined as

[e'¢)
ne = E Ey .
u=t

Note that); is chosen so that
3) A1 expler) .

Furthermore, extra conditions may be added by which @aclan be made smaller, and
eachn; andm, larger. Hamachi showed the following.

PROPOSITION 4 ([8]). For asuitable choice of the parameters above, (X, B, u, S) is
anonsingular ergodic systemwhich istype lll and conservative.

4. Thelower critical dimension.
LEMMA 5 ([8]). With notation asin Section 2, let

o0
U= +x— i u+i +{x— _ +x_ _ e x i
Kii(x) = l_[ )\u{x Nu+1FHX_n,+2 XNt py, g1, q42 X, 1+}.
u=t+1
IfO<i < N;, then
. -

ds—'u : Mr—i (Xk)
T (0 = Kpi(x) x I1 _Ex) .

K kN1 Mk

Now K, ;(x) is bounded from above and below, in terms;of

eXp—T]tJ,_l < Kt,i < eXan_l .

Hence, in order to determine the lownaitical dimension, we need to estimate

— o) )
l_[ M — 1_[ M for O <i<N;.
k=N, 41 i (Xk) k=M1 i (xk)

Now the above product is equal to

13
o R
s=1

where the integep; (i, x) lies between—n,; andng for eachs € {1, 2,...,r}. Note that
ps(@) = Z,i,'zo ds(j), whereds(j) € {—1,0, 1} for eachj > 1. Now d;(j) depends on only
two coordinates ok, namely,x_y,+1+; andx_u;,_,+14;. Thus, for fixeds, andi, j < ny,
ds (i) andd;(j) are independent.

LEMMA 6. Forn < N;, we have

n—1 dSii/,L t—1 n—1

s (i,x)
> = [ T
i=0 s=1 i=0
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We now focus on the termf’(i’x). Nown; >> M;_1. ForM,_1 < i < ny, d, (i) = =1
with probability A /(2(1 4 1)), d,(i) = 0 with probability /2 andd, (i) = 1 with probability
1/(2(1 + 1)). Again, fori < n, all thed; (i) are independent.

THEOREM 7. LetO<a <1< rand0 < p < 1. Let 2 be a probability space, and
choose independent random variables {d; (w); i € N} on £2 taking values {—1, 0, 1} with

+1 with probability 1/(2(1+ 1)),
di(w) = {0  with probability 1/2,
—1 with probability 1/(2(1+ A)).

Let pr (@) = Y5_,; di(w). Then

n—1 .
lim Do M

n—o00 n%

=0

on a set of measure at least p.

PrOOF. Choose > 0 andlety = (1 — «a + ¢)/logx, so thaty > 0.
Now define

k
Ey = {w € Q;Zdj(w) = pr(w) < —nlogk = Ck}
j=1
and setek = N2, Eq.

LEMMA 8. Ifw e E* for somek, then

n—>00 p% 4

1 n
lim — Zw(‘") =0.
j=1

ProoF From the definition, we have

n n n n
Z)\pk(a)) < Z)rnlogk — Zefnlogklogk — Zef(lfowrs) logk
k=1 k=1 k=1 k=1
n
— Zkozflfs < O(I’lais) )
k=1
Thus
1 n
— ZW(‘") =0n* -0
n k=1
asn — o0. O

PROPOSITION 9. Let0 < p < 1. Thenthereexists k such that P(E¥) > p.

PrROOF. We first calculateP (E;). For simplicity, we assume thatis even. Entirely
similar estimates apply for the case wheig odd.
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Notice thatp;(w) = a — b, wherea is the number of times that (w) = +1 andb is the
number of times thad; (w) = —1fori =1, ...,[. Thus,d;(w) = 0,] — (a + b) times. For

fixeda, b, there are
l l—a) _ i
a b albl(l—a—Db)!

possible places to put thel’'s and the probability of a given disposition is

1\ » V1 1
(2(1+)\)) (2(1+)\)) 2—a=b T 2 (L4 pyath

Thus, the probability of +1's andb —1's is

1 1 AP

2L albl (I —a—b) (L+1)ath "
Puttingu = a + b and summing, we have

2’2( >(1+1W2“:( Z )Ab'

To estimate the probability that € E;, we needto have —b < C;,and alsai +b < u,
so thath > [(u + C1)/2].
Thus, the probability of; is

4) P(El>—212( >(1+ = 3 (Z)xb.

b>[(u+Cy)/2)

We now use the following standard estimates:

LEMMA 10. Supposethat p +¢g = 1with p > ¢g. Then for n even,

0] )
n k_n—k _ 1
P'q —.
kg;z( k ) ~ 1+(q/p)"?
(i) Ifn/2>r > Othen

$ n k_n—k _ 1 . n r
2 (k)” T 1+ @/ r(n/2>(”/”

k=n/2+r
We apply Lemma 10 witp = A/1+ A, g = 1/14 1, n =1 andr = [C;/2]. Hence we

obtain L c
l l
Pz =5 (1))

Now, by Stirling’s approximation< I;Z ) ~ 241//2x1, and so we get

1 n 2\1/2;mlogr—1/2
P(E) > — /(1 + [1109%=1/215q; .
(l)_1+)rl/2 m( /(A+21)%) g
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Notice that 4./(1 4+ 1)2 < 1.
Entirely similar calculations give similar estimates faxdd. It now follows that

o0

!
o 212 .
P((EM) < E P(Ef) < E T 7+ «/_ 1+A [11094=1/2 09

1=k

As k — oo, the left hand side tends to zero. It follows that tosufficiently large, we have
P(EX) > p. O

We now prove the first part of Theorem 1.

LEMMA 11. For any @ > 0, a Hamachi shift can be constructed with lower critical
dimension less than or equal to «.

PROOF. Leta > 0. We will define the measure = ®°__ ;. ®°2; 112 Using, as
above, an inductive choice of the parameters. Assume.thatn,_1 andm,_1 have all been
chosen. Choosk, as usual. Then selegt large enough to satisfy the conditions described
in [8] and in addition ensure that

2M,_ _
2M; g T A
ntoz/Z

< &

and

Zn,—l )Lp,(i,x)
i=2M,_1+1"t

2
n%!

< &t

on a setB, of measure at leagt;. We chooseV/,_; sufficiently large to ensure that the two
events are independent
M1
Note thatB; is \/_ N+2M, 17 \/M, 111 Jj-measurable.
Combining these two conditions, we obtain foralk B;,

ds—l 2Mt 1 1 —1 n—1 '
— Z /’L( )< Z A,ZMI 1 l_[ )\n.‘ + - 1_[ A?S Z )L,Io,(t,x)
i=0 s=1 t s=1 i:2Mt_1+l

<& +& = 281.

As > p; = oo, and theB, are independent, the Borel-Cantelli lemma implies that almost
every x is an element of infinitely many,. Clearly, « must be greater than or equal to
the lower critical dimension. Aa can be chosen arbitrarily small, we have proved the first
inequality of Theorem 1. a

5. The upper critical dimension. In this section, we complete the proof of Theo-
rem 1, showing that the sequeneg can be chosen so that the upper critical dimension is
arbitrarily close to 1. This choice is independent of the choiog ohade in Section 4.

We begin by recalling two results from [8].
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LEmMMA 12 ([8]). With the notation of Section 2, and with K;; asin Lemma 5, let
further
t

n
F(x) = l_[ (1 +2)L ) Ath—Nu+1+XNt—Nu+2+”'+XN,—Mu_1.
u=1 w/u

Then, if N, <i < m;, we have
ds !
dﬂ“ () = Krito) x [ ]
u=1
LEMMA 13 ([8]). Foreveryx € X andfor N; <i < my,
dS™'p - eXp—1i+1)

n (x) =

i N G R = S R S ;
< . u) )\u(x Nu+1FTX Ny +1 X_M,_1) XF;(S’_N’(x)).

N;
)\'l

PROOF. As F;(x) > ]‘[L:l (2/(1+ Ay))™, we have by the previous lemma,

dSii/L o0 "™ t o0 u t
- — — My — —ny
o’ @= [T % <[ = [T ot x []M
u=t+1 u=1 u=t+1 u=1
00
-N,
> [] exp—en) x 7™ (by (1))
u=t+1
—N;
—exp(—ni+1) X A7 O

This proof shows how using; close to 1 ensures conservativity of the shifta lfwere
approaching some other number (say 2), then a different technique would be required to guar-
antee that the sum of the Radon derivatives was infinite.

LEMMA 14. For anye > 0wecan construct a Hamachi shift so that the upper critical
dimensionisatleast 1 — «.

PrROOF. Assume that; andn; (and henceV,) have been chosen. Choosg large
enough that it satisfies the original construction and in addition

1— N,
(my — Np) exp(—ne1)/mi 0N > ¢

Then for allx € X,

-1 .
1 "~ ds exp(—
o 2 ez - Ny SR -
m; = dun my; AN

Continuing this construction, we build a Hamachi shift with upper critical dimension no
less than1l — ¢). O

Since the choice of, made in Lemma 11 and the choicemf in Lemma 13 can be
made independently of each other, this completes the proof of Theorem 1.
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