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Abstract: Organic semiconducting polymers are promising candidates for stretchable 

electronics for their mechanical compliance. Despite the wide spread application for Donor-

Acceptor type conjugated polymers in electronic devices due to recent boost in electronic 

property, the effect of the electron-donating thiophene group on the thermomechanical property 

of conjugated polymers has not been carefully studied. Here, we investigated thin film 

mechanical property for diketopyrrolopyrrole (DPP)-based conjugated polymers with varying 

electron donating groups by changing the number of isolated thiophene moieties and the size 

of fused thiophene rings in the polymer backbone. Interestingly, we found that the thiophene 

unit acted as an anti-plasticizer, which resulted in increased glass transition temperature (Tg) of 

the polymer backbone, and consequently elastic modulus of the respective DPP polymers. 

Regarding the deformability, the DPP polymer with isolated thiophene building blocks showed 

impressive stretchability up to 50%, measured by pseudo-free standing tensile test. Detailed 

morphological study for DPP films by atomic force microscopy, optical spectroscopy and X-

ray scattering suggested that all samples showed similar semicrystalline morphology. This anti-

plasticization effect also exists in para-azaquinodimethane (p-AQM)-based conjugated 

polymers, indicating that this can be a general trend for various conjugated polymer systems. 

Using the knowledge gained above, a new DPP-based polymer with increased alkyl side chain 

density through attaching alky chains to the thiophene unit was engineered. The new DPP 

polymer demonstrated a record low glass transition temperature, high stretchability up to 35%, 

and 50% lower in elastic modulus compared to the reference polymer that without side-chain 

decorated on the thiophene unit. This work can provide a general design rule for making low 

Tg conjugated polymers for stretchable electronics applications. 

 

1. Introduction 

Polymer-based semiconductors are receiving more and more attention due to their intrinsic 

mechanical flexibility, solution processability and chemical tunability, together with their 
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applications in organic electronics like organic field effect transistors (OFET),[1–5] organic 

photovoltaics (OPV) and thermoelectrics.[6–11] Building upon the success of polythiophene 

polymers, recent efforts have been devoted to synthesizing new conjugated polymers such as 

low band-gap donor-acceptor (D-A) polymers to boost their charge carrier mobility for OFETs 

and power conversion efficiency (PCE) for OPVs.[12–18] Although great improvements have 

been achieved in devices’ electronic and optical performance, there is an increasing need for 

improving their mechanical property, i.e., lower stiffness and higher stretchability,[19] laying a 

foundation for future applications in wearable, stretchable electronics,[20–22] and 

bioelectronics.[23,24] 

Early studies on the mechanical property of conjugated polymers started from polythiophene 

polymers have shown that backbone engineering, side chain engineering, copolymerization 

with deformable blocks and physical blending can efficiently improve the stretchability and 

reduce the elastic modulus.[25–28] Similar methods were later applied to D-A polymers, a class 

of conjugated polymers with superior electrical performance relative to P3ATs.[20,29] 

Diketopyrrolopyrrole (DPP)-based conjugated polymers are one of heavily studied D-A 

semiconducting materials with a top performing charge mobility above 12 cm2 V-1 s-1,[30–32] 

which is as good as the polycrystalline silicon, allowing many practical applications in 

electronic devices. Encouraged by its promising electronic property, several methods have been 

explored to improve the mechanical property of DPP-based polymers and unravel the role of 

backbone and side chain structure in their intrinsic stretchability and charge mobility in order 

to achieve the best of two worlds.[30,32–40] 

Backbone engineering of the DPP polymer comes from two strategies, either by tuning 

conjugated donor or acceptor groups or flexible non-conjugated linker groups.[41–43] Along this 

line, Roth et al. investigated a library of low band-gap polymers and qualitatively concluded 

that fused rings on the backbone would increase the elastic modulus and reduce the ductility, 

while branched side chains will have an opposite effect.[41] Similar conclusions were drawn by 
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Lu et al., where DPP polymers with branched side chains were noticed to be less stiff and more 

stretchable than linear ones.[40,44] Lipomi and Mei et al. showed that by introducing flexible 

groups like alkyl chains to the conjugated backbone, the crack onset strain increased from 4% 

without spacer to 12% with 70% ratio of spacer while retaining a decent charge mobility around 

0.05 cm2 V-1 s-1.[42] Furthermore, carefully designed non-conjugated linkers can also improve 

the solution processability of DPP polymers, which can be dissolved in benign solvents.[45] 

Apart from backbone engineering, functional side chains were also used to improve the 

mechanical performance. Wang’s work showed that covalent crosslinking between side chains 

using oligo-siloxane can improve the elasticity and the ductility of the system, while 

maintaining the electrical performance even after 500 cycles at 20% strain.[46] Non-covalent 

crosslinking like hydrogen bonding was also shown to be useful by introducing self-healable 

electrical and mechanical properties to the polymer system.[47,48] Despite the versatility in 

improving the mechanical performance of D-A polymers, the dynamics of the conjugated 

polymer backbone, described by the glass transition temperature, upon using isolated or fused 

thiophene linkers in the polymer backbone is still not well explored and hinders rational design 

of the conjugated polymers with target glass transition temperature as well as mechanical 

property. 

Herein, we have systematically varied the main chain structure by inserting different donor 

moieties, including thiophene (T), bithiophene (T2), terthiophene (T3), thienothiophene (TT) 

and dithienothiophene (TTT) (Figure 1a) into the DPP polymer to study their impact on the 

thermomechanical property of conjugated polymer thin films. Our study revealed that all the 

thiophene building blocks act as anti-plasticizers and slow down the backbone dynamics, 

resulting in an increase in the elastic modulus for thin polymeric film. Further morphological 

studies on DPP thin films using grazing incidence wide-angle X-ray scattering (GIWAXS), 

atomic force microscopy (AFM) and ultraviolet visible spectroscopy (UV-Vis) showed that 

there is no significant influence of aggregation state on the mechanical property while the 
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degree of crystallinity would increase the elastic modulus slightly. Crystalline packing 

structure, degree of aggregation, and surface roughness do not directly correlate with the 

mechanical property of DPP polymers. This study provided new understanding of the effect of 

the thiophene unit insertion on the mechanical behaviors and chain dynamics of conjugated 

polymer thin films. Using the knowedge gained here, we finally designed and synthesized a 

new DPP polymer that has a record low backbone Tg and elastic modulus for the reported DPP 

family. This work will provide guidance to the future design of stretchable semiconducting 

polymers with desired thermomechanical property. 

2. Results and Discussion 

2.1. Thermomechanical property of DPP polymers 

Five different DPP polymers were synthesized according to previous reports.[38,49–52]  After the 

synthesis, the samples were purified and characterized by high temperature GPC in 

trichlorobenzene at 170 °C to gain insights into their molecular weight and polydispersity. 

Figure 1a and Table 1 summarized the structure and the material’s property of the synthesized 

DPP polymers. 

We first probed the mechanical property of ~ 90 nm pseudo-free standing thin films using 

custom-made thin film tensile tester as shown in Figure 1b. The details of the set-up were 

described in our previous publication.[53] This methodology eliminates the effect of the 

supporting elastomeric substrates compared to another popular thin film mechanical 

characterization technique named “buckling metrology”,[54] thus providing intrinsic mechanical 

property of the thin film. To provide a fair comparison between different DPP polymers, 

conjugated polymers with similar molecular weights were targeted and synthesized, followed 

by processing into thin films of similar thickness, and annealing at the same temperature. We 

carefully controlled the film thickness to be between 80 nm and 100 nm for all five samples by 
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changing the solution concentration, in order to avoid the influence of film thickness effect, 

also known as the confinement effect, on the mechanical property of thin films, as reported in 

previous studies.[53,55,56] The molecular weight is another factor that has been observed to 

critically influence the mechanical property of a given polymer, which was carefully tuned to 

be in the similar range, as shown in Table 1. The effect of film processing, film morphology, 

and molecular weight on their mechanical property will be discussed in more detail in the 

following section. 

The representative stress-strain curves of DPP polymeric thin films with varying electron-

donating units in the polymer backbone were shown in Figure 1c and Figure 1d.  Each polymer 

was tested for more than six times and the average value of elastic modulus and crack onset 

strain were summarized in Table 1. We first discussed the influence of isolated thiophene units 

on the thin film mechanics, followed by the fused thiophene units. Figure 1c plotted the stress-

strain curve of DPP-T, DPP-T2 and DPP-T3 (see Figure 1a for their chemical structure), which 

provided a close comparison for their mechanical behaviors. With the increasing number of 

isolated thiophene units on the backbone, the elastic modulus increased from 173 MPa for DPP-

T to 281 MPa for DPP-T2, and 319 MPa for DPP-T3 for ~ 90 nm thin films. At first glance, the 

observation may seem contradictory since the incorporation of thiophene units into the 

backbone would be expected to increase the backbone flexibility. Donor-acceptor polymers 

typically have rigid polymer backbones and are less flexible. Here, we measured that DPP-T 

polymer has a persistence length of ~ 9 nm determined by small angle neutron scattering for 

dilute polymer in deuterated solvents (Figure S1). Previous report by Segalman group suggested 

that P3HT has more flexible, coiled chain with persistence length of ~3 nm.[57] Thus inserting 

more thiophene units would likely to reduce backbone rigidity. This interesting observation of 

increased elastic modulus upon incorporating thiophene units was later rationalized by the Tg 

of DPP polymers. The observed increase in elastic modulus is closely correlated with the 
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increased Tg measured in both thin film and bulk state of conjugated polymers (discussed in 

more detail in the later part). On the other hand, the stretchability, using crack onset strain as 

metric, showed less significant difference among three DPP polymers with different amounts 

of isolated thiophene units. Free-standing DPP-T thin films on average can be impressively 

stretched up to 53% of strain while the other two DPP polymers reached 44% of strain before 

the formation of cracks. Both crack onset strain reached record-high value compared to other 

pseudo free standing test results reported previously for pure donor-acceptor polymeric thin 

films (see Table S4 in the Supporting Information for a summary of previous reported values). 

We attribute this observation to the high molecular weight for these three DPP polymers 

synthesized here, as well as below room temperature backbone Tg. 

In addition to tensile pulling test, stress-relaxation test provided insights into the viscoelastic 

property of the conjugated polymer, thus was performed on DPP-T, DPP-T2 and DPP-T3 

polymers. The polymer film was stretched to 2% strain at the strain rate of 1*10-3 s-1 then 

measured the stress relaxation. The stress was recorded as a function of time and plotted in 

Figure 1e. The Kohlrausch-Williams-Watts (KWW) equation was used to obtain the relaxation 

time for molecular chains to gain insights into the chain dynamics.[58] Detailed fitting 

information can be found in Figure S2 of the Supporting Information. The average relaxation 

time was 116 s, 3563 s, 6058 s for DPP-T, DPP-T2, DPP-T3, respectively. This is in good 

agreement with the observed trend for Tg, and further supported that the insertion of the 

thiophene unit will slow the backbone dynamics.  

For DPP polymers with fused thiophene rings on the backbone, the increase in elastic modulus 

was more distinct, from 173 MPa for DPP-T to 480 MPa for DPP-TTT, as shown in Figure 1d. 

In the meantime, the decay in crack onset strain was substantial with increased size of fused 

rings, from 53% to 3%. This phenomenon agreed well with previous research demonstrating 
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that polymers with fused rings have higher stiffness and higher tendency to break upon tensile 

strain than polymers with isolated rings.[41] 

The molecular weight of the conjugated polymer can greatly influence a given polymer’s 

mechanical property.[59,60] Consequently, we also studied thin film mechanical property for 

three DPP polymers (DPP-T, DPP-T2, and DPP-TT) with a lower molecular weight (Mn = ~ 

25 kDa), as opposed to DPP polymers with Mn around 50 kDa as shown in Figure 1. We found 

little difference in the value of the elastic modulus on molecular weight, while higher Mn 

consistently leads to higher crack onset strain, which can be attributed to increased inter-chain 

entanglements between DPP chains (Figure S3, Supporting Information).[60,61] Surpassing the 

entanglement molecular weight of a given conjugated polymer is important to enhance its crack 

onset strain. Although we were not able to measure the critical entanglement molecular weight 

for DPP conjugated polymers, the mechanical tensile test suggested that critical entanglement 

molecular weight is likely to be below 50 kDa, thus significant intermolecular chain 

entanglements resulted in good deformability of these three samples reported in Figure 1. 

The effect of thermal treatment on the mechanical property was also investigated. Figure S4 

showed the stress-strain curves for DPP-T, DPP-T2 and DPP-TT polymers before and after 

thermal annealing at 200 °C for 10 mins (Supporting Information). The elastic modulus 

increased slightly by ~ 10% while the stretchability decreased by ~ 20%, due to increased 

degree of crystallinity upon annealing. The detailed analysis on the thin film morphology will 

be discussed in the following section. 

To rationalize the change in elastic modulus upon insertion of thiophene building blocks, we 

measured the Tg for five DPP polymers in both bulk state by using DMA and in thin film state 

by AC chip calorimetry. Previous work indicated the challenge of using DSC to probe weak 

transitions for conjugated polymers.[62] Thus, we used two techniques that are sensitive to the 
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Tg, and the results were summarized in Table 1. Figure 2 showed the results for DMA analysis 

including the Tg of five DPP polymers. Here, we identified the major peak on the tan δ curve 

as the backbone Tg. We assigned relative weak shoulders around -50 °C to be the Tg of the 

flexible alkyl side chain, which can be observed in all five polymers. The side chain transition 

peak was more pronounced as observed in the loss modulus curve. Only the side chain Tg can  

be measured by DSC (Figure S5, Supporting Information), which agreed with previously 

reported literature.[40] From Figure 2a to 2c, we observed a noticeable increase of backbone Tg 

from -3.96 °C (DPP-T) to 11.95 °C (DPP-T2), and 18.98 °C (DPP-T3) as the number of 

thiophene units increased (Table 1). Similarly, when comparing Figure 2a, 2d and 2e, the Tg 

increased from -3.96 °C (DPP-T) to 2.76°C (DPP-TT), and 4.11 °C (DPP-TTT) as the size of 

fused ring structure enlarged. The increase in Tg synchronized with the observed increase in 

elastic modulus. We further used AC-chip calorimetry to characterize the conjugated polymer’s 

Tg in the thin film state. The exact value of Tg is not the same since the glass transition is a 

kinetic property and highly depends on probing techniques and measurement conditions (e.g. 

cooling or heating rate). However, the same trend in the probed Tg values was observed using 

the AC-chip calorimetry (Figure S6, Supporting Information). Additionally, we also 

investigated the molecular weight effect on Tg. DPP polymers with low molecular weight (~ 25 

kDa) were tested. The difference in Tg was insignificant with only 3 °C difference being 

observed (Figure S7, Supporting Information), which explained the similar elastic modulus 

between different molecular weights of polymers observed above. The weak dependence of Tg 

on molecular weight can be rationalized by the Flory-Fox equation, which predicted the weak 

dependence of Tg on the molecular weight at high molecular weight region.[63,64] Both bulk and 

thin film techniques suggested the incorporation of the electronic donating group into the 

polymer structure greatly altered its backbone dynamics, and reflected in their macroscopic 

mechanical properties. 
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Although the focus of this paper is not on the electronic property of conjugated polymers, we 

measured the charge carrier mobility of five samples using thin film transistors with doped 

silicon as bottom gate electrode, silicon dioxide as the dielectric layer and evaporated gold as 

source and drain electrode. We found that all the five polymers showed decent electronic 

property, ranging from 0.03 ~ 1 cm2 V-1 s-1 (Table S1). The transfer curve for all the 

measurements were provided in Figure S8 of the Supporting Information. We also summarized 

the charge carrier mobility data for previously reported DPP polymers with thiophene units as 

the donor unit in Table S5.  Due to the difference in the molecular weight and processing 

method, our reported mobility data was not the highest among reported works.  

2.2 The relationship between mechanical property and morphology 

We used multiple morphology characterization techniques, including GIWAXS, UV-Vis and 

AFM, to understand the potential correlation between the morphology and mechanical property 

for the DPP polymers. Firstly, the degree of crystallinity and molecular packing lattice 

parameter in the crystalline region of five DPP thin films were measured by GIWAXS, before 

and after thermal annealing. All DPP polymers exhibited semicrystalline structures. The 2D 

scattering patterns and the 1D line-cut profiles (both in plane and out of plane scattering profile) 

were shown in Figure 3 for annealed films and Figure S9 for as-deposited films in the 

Supporting Information, respectively. For as-cast polymers, a bimodal orientation, both edge-

on and face-on orientation, was shown, as evidenced by (010) π-π stacking peak presented in 

both in plane and out of plane direction. DPP-T exhibited mostly face-on orientation and less 

ordered crystalline domain, as inferred from the large full width at half maximum (FWHM) for 

(100) peak and the absence of high-order diffraction peaks. In contrast, other polymers showed 

a preference for edge-on orientation and high-order (h00) peaks. Upon annealing, the fraction 

of edge-on orientation increased for all polymers, evidenced by much weaker (010) peak along 

the qz axis and stronger (010) peak along the qxy axis. Also, improved microstructural ordering 
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was shown, judging from the more intense elliptical shape of (h00) peaks. These observations 

are similar to previous reports from Zhang et al. for DPP-T, DPP-T2 and DPP-TT polymers.[65] 

The key parameters of chain packing for conjugated polymers were summarized in Table 2. In 

this study, the π-π stacking distance showed no obvious trend concerning varied backbone 

structures, while DPP-TTT has the closest packing distance of 3.59 Å among the five polymers, 

which could arise from its greater coplanarity due to its large fused ring. On the contrary, the 

lamellar packing distance showed a clear trend upon systematically varying the main chain 

structure. With more isolated thiophene units incorporated into the DPP backbone, the d-

spacing distance gradually dropped from 23.44 Å for DPP-T to 22.20 Å for DPP-T2, and 20.67 

Å for DPP-T3 in annealed samples. Similarly, as the size of fused thiophene rings increases, 

the lamellar packing distance decreased to 22.60 Å for DPP-TT, and 21.67 Å for DPP-TTT. 

This is because side chains attached to the DPP moiety can fold into the extra space created by 

less bulky thiophene units between DPP building blocks (Scheme S2, Supporting Information). 

Similar observation was reported previously in other conjugated polymer systems.[66,67] The 

FWHM for the (100) peak increased with the number of thiophene units or the size of fused 

thiophene rings, which indicated a reduction in the polymer crystallite size. To further quantify 

the effect of film morphology on mechanical properties, we extracted the relative degree of 

crystallinity (RDoC) for annealed polymers and plotted in Figure 3, detailed procedures to 

obtain RDoC can be found in Figure S10 (Supporting Information) as well as previous reports 

by Baker et al.[68–70] Judged from the (100) pole figures, the relative degree of crystallinity 

increased in the order of DPP-T < DPP-T2 < DPP-T3, and DPP-T < DPP-TT < DPP-TTT, 

which is consistent with the trend of elastic modulus. Despite similar RDoC between DPP-T2 

and DPP-TT, or between DPP-T3 and DPP-TTT, there is still 50% difference in elastic modulus 

between two polymers, which could be mostly attributed to the different Tg and backbone 

rigidity between two polymers. Thus the RDoC played a secondary role in influencing the 

mechanical property of the conjugated polymer film, after the glass transition temperature. 
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AFM was performed on both as cast (Figure S11, Supporting Information) and thermally 

annealed polymer films (Figure 4) to study the film morphology using tapping mode. All five 

samples displayed similar nanofibrillar textures. The film roughness (Ra) for all films was 

within 1 nm, which can be attributed to their good solubility in chlorobenzene solvent. There is 

no direct correlation between the mechanical property with surface morphology of conjugated 

polymers. The UV-Vis absorption spectra were measured in thin film state (Figure S12, 

Supporting Information). It is noted that two absorption bands were presented, corresponding 

to the π-π* transition (400 to 460 nm) and intramolecular coupling between donor and acceptor 

units (700 to 850 nm), which is consistent with previous studies on DPP-based conjugated 

polymers.[40,48] The aggregation behavior was investigated by comparing the relative intensity 

of peak 0-1 and peak 0-0, the result indicated slight difference in the aggregation behavior for 

the polymer chain, e.g., DPP-T3 showed 11% decrease in short-range aggregation when 

compared with DPP-T. The absorption peak positions and peak areas were summarized in Table 

S2 and Table S3 of the Supporting Information, respectively. We did not observe clear 

correlation between the aggregation state of the DPP polymer films with respective to their 

mechanical property. 

Through the detailed morphological characterization, we found that the crystallinity could 

increase the fraction of hard-rigid phase in the thin films thus increase their elastic modulus 

slightly. The degree of order in the amorphous aggregation phase did not influence the apparent 

elastic modulus which can be attributed to the fact that the probed aggregation order is in the 

short range (e.g. inter π-π interaction). 

2.3 Influence of the side chain on the backbone Tg 

From our experimental results, we found that adding either isolated or fused thiophene rings in 

the backbone both raised the backbone Tg and consequently the elastic modulus of the 
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polymeric thin film. The glass transition temperature of the DPP polymer upon addition of 

thiophene building blocks can be estimated by classic Fox equation (Equation 1).[71]  

                                                           (1) 

Since DPP polymers can be viewed as the DPP unit and the inserted donor unit, the Tg can be 

treated to be the combinatory effect of two individual components. For example, the Tg of DPP-

T is -3.96 °C, and the Tg of a polythiophene polymer without side chain was previously 

determined to be around 120 °C.[72] Upon incorporating one additional thiophene unit, the Tg 

of DPP-T2 can be calculated to be around 3 °C, and 13 °C for DPP-T3 using Equation 1.  The 

calculated result agrees well with experimentally measured Tg for DPP-T2 and DPP-T3. For 

DPP polymers with fused thiophene rings, we were not able to perform similar calculation since 

there is no reported Tg of fused thiophene rings. 

Besides DPP-based polymer system, the above trend was also observed in the quinoidal para-

azaquinodimethane (p-AQM)-based low-bandgap conjugated polymers.[67] As shown in Figure 

5, the Tg of two polymers (PA3T-BC2-C10C12 and PA4T-BC2-C10C12) with increased 

number of backbone thiophene units were compared. With one additional thiophene unit 

inserted into the polymer backbone while maintaining the same side chain length, PA4T-BC2-

C10C12 showed 25 °C increase in Tg than that of PA3T-BC2-C10C12. This observation 

indicated that the anti-plasticization effect upon inserting thiophene units to the backbone can 

be a general phenomenon for conjugated polymers. 

2.4 Engineering low Tg and low modulus DPP polymers  

Encouraged by our findings above, we aim to go to the opposite direction by incorporating the 

low Tg component into the DPP system to reduce its Tg. Another DPP-based polymer was 

purposely designed and synthesized by incorporating DPP unit with an alkyl chain decorated 
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thiophene unit. The chemical structure and mechanical property of this new polymer (DPP-T3-

C8) were shown in Figure 6. Detailed synthesis of this polymer can be found in the Supporting 

Information.  The number average molecular weight of the new DPP polymer is 26.8 kDa, with 

a polydispersity of 2.5. Through additional side chains on the thiophene unit, we effectively 

increased the weight fraction of the side chain to 64.9%. Consequently, the Tg of DPP-T3-C8 

polymer dropped from 18.98 °C for reference polymer DPP-T3 to -11.83 °C. Using this 

strategy, we were able to reach a record low elastic modulus for DPP polymers down to 150 

MPa. Compared to DPP-T3 with a similar molecular weight, the crack onset strain was 

decreased from 44 % to 35%, representing a 20% decrease. 

We further surveyed the previously reported work on the DPP polymers with various side chain 

lengths and listed them in Table S5 of the Supporting Information. There are several popular 

side chain length choices, 2-hexyloctyl (2-HO), 2-octyldodecyl (2-OD), and 2-decyl dodecyl 

(2-DD). Those DPP polymers have sixteen carbons, twenty carbons, and twenty-four carbons 

in the polymer side chain respectively. Using volume fraction of side chain as a measurement 

metric, the DPP-T3 polymer with three different side chain lengths would have varied weight 

fractions of the side chain of 55.0% (2-HO), 57.1% (2-OD) and 58.9% (2-DD), respectively. 

Previously reported DPP-TT polymer, for example, is mostly focused on the 2-octyldodecyl (2-

OD) side chains, thus would result in lower side chain content, high Tg, higher elastic modulus 

and lower crack onset strain. A systematic study of the side chain length is outside the scope of 

this work and will be reported in a separate work. 

3. Conclusion 

In summary, this paper studied the effect of thiophene based electron-rich building block on the 

thermomechanical property and morphology of semiconducting polymers. Five different DPP-

based polymers with isolated thiophene units (DPP-T, DPP-T2, DPP-T3) and fused thiophene 

rings (DPP-TT, DPP-TTT) were systematically synthesized, their thermomechanical properties 
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were measured and compared. The addition of thiophene units or fused thiophene rings resulted 

in the increase in the Tg of the polymer measured in both bulk and thin film state and appeared 

as an increase in its elastic modulus. These behaviors can be related to the addition of high-Tg 

chemical moieties to the main chain, i.e., reduction in low temperature side chain fraction. This 

observation can be generally applied to other conjugated polymer systems. Based on the results 

above, we engineered a new stretchable DPP-based polymer DPP-T3-C8 by increasing the side 

chain content on the thiophene unit. With the elastic modulus as low as 150 MPa, and Tg of -

11.8 °C, the polymer showed 50% decrease in elastic modulus and 35% in stretchability. Taken 

together, this study demonstrated that controlling low-Tg side chain content is an efficient way 

to develop new stretchable conjugated polymers. 

4. Experimental Section 

Materials and processing: Five DPP-based conjugated polymers with systematically 

controlled main chain structures were synthesized. The electron donating unit was varied by 

introducing different numbers of thiophene units or sizes of fused thiophene rings. Their 

chemical structures were shown in Figure 1a. The synthesis procedures of DPP-T,[65,73] DPP-

T2,[50,51] DPP-T3,[38] DPP-TT[49,74] and DPP-TTT[52] have been reported elsewhere. The number 

molecular weight was measured by high temperature gel permeation chromatography (HT-

GPC) using trichlorobenzene as the eluent at 160 °C, polystyrene for calibration, viscometer 

and light scattering as the detector. One additional purposely engineered DPP-based conjugated 

polymer with additional flexible alkyl chains on the thiophene unit (Scheme S1) has been 

synthesized using a protocol detailed in Supporting Information. Polymer thin films were 

fabricated by spin coating of conjugated polymer solutions in chlorobenzene (CB) on the silicon 

substrate with native oxide layer. Thermal annealing of the deposited polymer film was 

performed at 200 °C for 10 mins inside of a glove box and allowed to cool down to room 

temperature before additional testing. 
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Small angle neutron scattering: Small-angle neutron scattering (SANS) study was performed 

at the extended Q-range small-angle neutron scattering diffractometer (EQ-SANS BL-6) line at 

the Spallation Neutron Source (SNS) located at Oak Ridge National Laboratory (ORNL). Two 

wavelengths and their corresponding sample-to-detector distances were used to obtain a wide 

q range: 2.5 Å at 2.5 m, and 8 Å at 8 m. The solution was made by dissolving the polymer in 

deuterated chlorobenzene with a concentration of 5 mg/ml. Data reduction was performed in 

MantidPlot to obtain the polymer scattering data by subtracting the solution signal with solvent 

scattering signal. Later, the obtained polymer scattering data was fitted by using SasView. 

Pseudo-free Standing Tensile Test: Thin film tensile tests were performed on the water 

surface through pseudo-free-standing tensile tester. Details about the tensile stage setup can be 

referred to our previous publication.[53] Briefly speaking, the polymer thin films (~ 90 nm) were 

patterned into dog-bone shape by oxygen plasma etching process and floated on top of water 

before being further unidirectionally pulled at a strain rate of 5*10-4 s-1 until the film fractures. 

At least six independent samples were measured for each conjugated polymer to provide 

statistically averaged mechanical property. The elastic modulus was obtained from the slope of 

the linear fit of the stress-strain curve using the first 0.5% strain (elastic region). 

Dynamic Mechanical Analysis (DMA): DMA measurements were performed on a TA Q800 

DMA.[75] Samples were prepared by drop casting of polymer solutions on top of glass fibers. 

In this test, the backbone Tg was determined to be the peak temperature corresponding to the 

peak of tan δ for all samples. 

Alternating Current (AC) Chip Calorimetry: The AC chip calorimeter was used to obtain the 

glass transition temperature of the polymeric thin film.[76] The experiments were performed at 

a frequency of 10 Hz and a heating/cooling rate of 1 °C/min. The dynamic glass transition 
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temperature was determined as the half-step temperature of the amplitude of the complex 

differential voltage. 

Grazing Incidence Wide Angle X-ray Scattering (GIWAXS): GIWAXS experiments were 

performed on beamline 11-3 at the Stanford Synchrotron Radiation Lightsource (SSRL). Data 

was collected under helium environment with an incident beam energy at 12.7 keV and an 

incidence angle of 0.12°. The sample to detector distance is about 300 mm. Diffraction data 

analysis was performed using Nika software package for Wavemetrics Igor, in combination 

with WAXStools. 

Atomic Force Microscopy (AFM): AFM images were acquired on Bruker Dimension Icon 

in tapping mode. The samples were casted on the flat silicon substrate as described above. 

UV-Vis-NIR Absorption Spectroscopy: The solid-state UV-Vis-NIR spectra were recorded 

on Agilent Cary 5000 using polymer thin films deposited on glass slides. 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Thin film mechanical property of various DPP polymers. (a) Chemical structures of 
DPP polymers with different number of isolated thiophene units and fused thiophene rings. (b) 
Scheme of pseudo-free standing tensile test set-up. Comparison of stress strain curves for as-
cast DPP-based D-A polymer (Mn ~ 50 kDa) films around 90 nm thick. (c) Stress strain curves 
for thin DPP polymer films with different numbers of thiophene units, DPP-T, DPP-T2 and 
DPP-T3; and (d) different sizes of fused thiophene rings, DPP-T, DPP-TT and DPP-TTT. (e) 
Stress-relaxation behaviors of DPP-T, DPP-T2 and DPP-T3. The data is in double logarithmic 
scale. The speed of decaying represents the speed of relaxation of polymer chain at room 
temperature. The elastic modulus, backbone and side chain glass transition temperature of DPP 
polymers are shown in (f) and (g).  
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Figure 2. Viscoelastic property of DPP polymers measured by DMA. The storage modulus, 
loss modulus and tan δ are plotted for (a) DPP-T (b) DPP-T2 (c) DPP-T3 (d) DPP-TT (e) DPP-
TTT. The backbone Tg is marked on the transition peak of tan δ. The side-chain Tg is marked 
on the transition peak of loss modulus. (f) Summary of tan δ curve for five DPP polymers. The 
vertical dotted line in figure (f) represents the room temperature, or 25 °C. 
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Figure 3. 2D GIWAXS pattern of DPP-based polymers after annealing. (a) DPP-T, (b) DPP-
T2, (c) DPP-T3, (d) DPP-TT, (e) DPP-TTT. (f) 1D line-cut profiles in both in-plane direction 
(dotted line) and out-of-plane direction (solid line). (g) RDoC for different polymers with 
isolated rings (black line) and fused rings (red). 
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Figure 4. AFM images for annealed polymer films (a,b) DPP-T, (c,d) DPP-T2, (e,f) DPP-T3, 
(g,h) DPP-TT and (i,j) DPP-TTT. (a, c, e, g, i) are height images, (b, d, f, h, j) are phase images. 
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Figure 5. Chemical structures and DMA results for (a) PA3T-BC2-C10C12 and (b) PA4T-
BC2-C10C12. 
 

 

 
Figure 6. (a) Design of the new DPP-T3-C8 polymer with additional alkyl side chain. (b) 
Stress-strain curve of the DPP-T3-C8 polymer plotted with the same polymer without side chain. 
(c) DMA result of DPP-T3-C8 polymer. 
 

 
 

Table 1. Physical properties of DPP polymers 

 
 
 
 
 

Polymer 
Mn 

(kDa) a 
Đw b 

Side chain 
Tg (°C) c 

Backbone 
Tg (°C) d 

Backbone 
Tg (°C) e 

Elastic 
modulus 
(MPa) f 

Crack onset 
strain f 

DPP-T 47 2.83 -54.29 -3.96 -11 173 ± 10 0.53 ± 0.20 

DPP-T2 44 3.96 -51.89 11.95 17 281 ± 9 0.44 ± 0.09 

DPP-T3 27 3.18 -47.93 18.98 19 319 ± 49 0.44 ± 0.10 

DPP-TT 51 3.62 -52.99 2.76 3.5 400 ± 41 0.16 ± 0.03 

DPP-TTT 26 3.69 -52.49 4.11 22 480 ± 40 0.03 ± 0.01 

a Number-average molecular weight measured by high temperature GPC using trichlorobenzene 
as eluent at 170 °C. b Weight dispersity. c Obtained from peak of the loss modulus by DMA. d 
Obtained from the peak of tan δ plot in DMA. e Obtained from AC-chip calorimetry on thin film 
sample. Note that different Tg is expected due to different probing methods between DMA and 
calorimetry techniques. f Obtained from pseudo-free standing tensile test. 
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Table 2. Crystallographic parameters for DPP polymers 

Polymer Thermal 
treatment 

Lamellar 
spacing (Å) 

Lamellar peak 
FWHM (Å-1) 

π-π spacing 
(Å) 

π-π peak FWHM 
(Å-1) 

DPP-T 
As cast 22.20 0.1106 3.72 0.1799 

Annealed 23.44 0.0249 3.74 0.1315 

DPP-T2 
As cast 21.89 0.0550 3.74 0.1740 

Annealed 22.20 0.0250 3.77 0.1550 

DPP-T3 
As cast 20.53 0.0882 3.63 0.2362 

Annealed 20.67 0.0470 3.66 0.1583 

DPP-TT 
As cast 22.28 0.0519 3.69 0.2331 

Annealed 22.60 0.0367 3.78 0.1194 

DPP-TTT 
As cast 21.67 0.0833 3.60 0.1397 

Annealed 21.67 0.0430 3.59 0.1233 
 
 
 
 
 
 
  



  

31 
 

 
Trend: This paper investigates the effect of isolated/fused thiophene units on the 
thermomechanical properties of donor-acceptor conjugated polymers. In DPP-based polymers, 
it is noticed that thiophene units in the main chain structure serve as the anti-plasticizer, which 
increase the stiffness and glass transition temperature of polymer chains. This trend is also 
observed in another conjugated system, and later helps to develop a much softer conjugated 
polymer. 
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