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Abstract

This paper treats several aspects of the induced geometrically exact theory of shearable rods� of
central importance for contact problems� for which the regularity of solutions depends crucially on
the presence of shearability� �An induced theory is one derived from the ��dimensional theory by the
imposition of constraints� Because the role of thickness enters into our theory in an essential way�
it is an exact version of what has been called the theory of �moderately thick� rods�� In particular�
we study how the theory and constitutive restrictions depend upon the choice of the base curve�
and we show how this choice has major qualitative consequences� which are illustrated with several
concrete examples�

� Introduction

The Euler�Bernoulli theory ��� of the elastica describes planar equilibrium states of inextensible� un�
shearable elastic rods with the bending couple at a section depending linearly on the di�erence in the
curvature at that section between its values at the deformed and natural con�gurations� Kirchho� ���
extended this theory to rods that can deform in 	�dimensional space� undergoing 
exure and torsion�
The Cosserats ��� formulated theories of rods that furthermore could su�er shear and both longitudinal
and transverse extension� The version of this theory for the small planar deformation of rods with no
transverse extension was developed by Timoshenko ����� These re�ned theories of rods describe e�ects
of limited importance in some traditional civil engineering applications of the theory of rods 
other than
buckling�� but are of greater importance in more modern applications of structural mechanics 
possibly
including physiological applications�� The role of shearability is central not only for buckling problems
���� but also for contact problems� in which the regularity of the solution depends critically on it ����
Contact problems form one of the main motivations for our study�
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When rod theories are constructed by imposing holonomic constraints on the 	�dimensional theory of
elasticity� the Strong Ellipticity Condition directly yields a class of very useful monotonicity conditions
on the constitutive functions of the ��dimensional theory ���� For certain problems� particularly contact
problems� these restrictions fail to prevent certain behavior that may be regarded as surprising ����� To
preclude such behavior it is necessary to impose further constitutive restrictions� As we shall see� such
constitutive restrictions for contact problems are not easily related to others useful for other kinds of
problems�

In Section � we outline our geometrically exact theory for the planar equilibrium states of shearable
nonlinearly elastic rods obtained by constraining the deformation and employing the Principle of Virtual
Work� The con�gurations of these rods are determined by a choice of base curve and a family of sections�
In Section 	� we treat the interesting and surprisingly rich question of determining when two such theories
based on di�erent choices of base curves and sections are equivalent� The transformation formulas we
obtain are used in the treatment of examples in Section �� In Section � we discuss constitutive restrictions
associated with the curvature of the base curve� These restrictions play a central role in Section ��

Notation� We employ Gibbs notation for vectors and tensors 
the latter used infrequently�� Vectors�
which are elements of Euclidean 	�space E� � and vector�valued functions are denoted by lower�case� italic�
bold�face symbols� The dot product of 
vectors� u and v is denoted by u � v � A 
second�order� tensor
is just a linear transformation from E

� to itself� The value of tensor A at vector v is denoted A � v 
in
place of the more usual Av� and the product of A and B is denoted A �B 
in place of the more usual
AB�� The transpose of A is denoted A�� We write u �A � A� �u � The dyadic product of vectors a and
b is the tensor denoted ab 
in place of the more usual a � b�� which is de�ned by 
ab� � u � 
b � u�a
for all u �

� Induced Rod Theories

A hierarchy of rod theories can be constructed by describing a slender rod�like body as a union of a
family of sections and then imposing holonomic constraints that endow each section with but a �nite
number of degrees of freedom� 
To these constraints may be added nonholonomic constraints like that
of incompressibility ����� If �
x� t� denotes the position at time t of the material point with a triple
of curvilinear coordinates x � 
s� x� y�� then a holonomic 
and scleronomic� constraint restricting the
section with coordinate s to n degrees of freedom has the form

�
x� t� � �
u
s� t��x�
����

where the set u of generalized coordinates lies in an n�dimensional space ��� Chap� ���� To be speci�c�
we limit our attention to planar deformations of rods the con�gurations of which are determined by a
plane curve� the base curve� representing the con�guration of some convenient material curve� and by
the orientations of sections with respect to the base curve� In order for constitutive functions of the
resulting theory to have nice symmetry conditions it is often convenient to take the base curve to be a
curve of centroids of the �� or 	�dimensional body 
provided that this curve exists�� On the other hand�
for contact problems� it is most convenient to choose the base curve to lie on the boundary potentially in
contact with the obstacle� In consequence� constitutive restrictions that are attractive in one formulation
can be very complicated in another� Reconciling the resulting con
icts between di�erent representations
is one of the aims of this paper�

Deformation� Let fi � j � kg be a right�handed orthonormal basis for Euclidean 	�space� For sim�
plicity� we restrict our attention to 
time�independent� plane�strain deformations of a material body
whose reference con�guration is an in�nite cylinder B�spanfkg with generators parallel to k � Here B
is a thin 
curvilinear rectangular� region in the fi � jg�plane that has the form

B � fr�
s� � xb�
s� � 
s� x� � Qg� Q �� f
s� x� � s� � s � s�� h�
s� � x � h�
s�g
����

where s� are given numbers� h� are given piecewise continuous functions for which h�
s� � h�
s� for
s� � s � s�� r� and b� are given continuous functions with piecewise continuous derivatives having
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values in span fi � j g� b� is a unit�vector�valued function� and the mapping

Q � 
s� x� �� r�
s� � xb�
s�

is one�to�one� r� is the base curve and the pair fr�� b�g is the skeleton of B� We restrict our attention
to Q�s for which h� � � � h��

We treat the special class of constrained deformations 
���� of B that have the form

�
x� � p
s� x� � yk � r
s� � xb
s� � yk � 
s� x� � Q� y � R�
��	�

where the functions r and b are absolutely continuous functions with values in span fi � j g� with b a unit�
vector�valued function� 
Absolutely continuous functions� which have an 
�� ���de�nition� are exactly
those functions that are inde�nite integrals of 
Lebesgue� integrable functions� Absolutely continuous
functions have derivatives a�e�� The deformation is thus determined by the functions r and b 
which
here constitute the u of 
������ r gives the deformed image of the base curve r� and b
s� gives the
deformed orientation of the section determined by b�
s��

We denote the values of functions in the reference con�guration by subscripted or superscripted
circles� If u is any such function� then u� � u� 
so that other indices can be conveniently attached to
u��

We set a �� 	k � b and let � denote the angle from i to a � so that

a � cos �i � sin �j � b � 	 sin �i � cos �j �
����

Thus a con�guration can be alternatively described by the pair 
r � ���
We denote di�erentiation with respect to s by a prime and di�erentiation with respect to other

variables by subscripts� We set

r � �� �a � �b � 	 �� ���
����

The functions �� �� 	� integrable on �s�� s�� by virtue of the absolute continuity of r and b � are the
strains for our problem� They determine a con�guration 
r � �� to within a rigid displacement�

Let S consist of those s � �s�� s�� at which r and � are di�erentiable� and let

Q
s� �� fx � h�
s� � x � h�
s�g�
����

We require that 
��	� locally preserve orientation in the sense that its Jacobian

��s
x���x
x�� � �y
x� 
 k � �
r �
s�	 x��
s�a
s�� � b
s�� 
 �
s�	 x	
s� � �
����

for all s � S and for all x � Q
s�� This restriction is equivalent to

�
s� �

�
h�
s�	
s� for 	
s� � ��

h�
s�	
s� for 	
s� � �

����

for all s � S� In particular� we require that 
���� hold in the reference con�guration� for which S�
consists of �s�� s�� except for a �nite number of points� 
Our restrictions on the signs of h� ensure that
� � � a�e��

Let

�z 
s� x� y� �� �
�
x� 
 r�
s� � xb�
s� � yk 
 p�
s� x� � yk �
����

Denote the inverse of �z by z �� 
�s
z �� �x
z �� �y
z ��� The Inverse�Function Theorem implies that

I �

�z


s


�s


z
�


�z


x


�x


z
�


�z


y


�y


z
� �
�� 	 x	��a� � ��b��


�s


z
� b�


�x


z
� k


�y


z

�����

	



where I is the identity� By successively premultiplying this equation with a��� b��� k �� we obtain

�sz � 
�� 	 x	����a�� �xz � b� 	 ��
�� 	 x	����a�� �yz � k �
�����

Thus the 
transposed� deformation gradient is

F �

p


s


�s


z
�


p


x


�x


z
� kk 
 �
� 	 x	�a � 
� 	 ���b �

a�

�� 	 x	�
� bb� � kk �
�����

Note that 
���� ensures that the denominator ��	x	� cannot vanish for s � S�� The right Cauchy�Green
deformation tensor is

C � F � �F � �
� 	 x	�� � 
� 	 �����
a�a�


�� 	 x	���
� 
� 	 ���

a�b� � b�a�

�� 	 x	�
� b�b� � kk �
���	�

Equilibrium� Let T 
z � denote the �rst Piola�Kirchho� stress tensor at z � let �
p�
s� x��p
s� x��
denote the body force per unit reference volume at x� and let ��
p�
s� x��p
s� x�� denote the tractions
per unit reference surface area on the top and bottom of the body at x� 
The possible dependence of
these functions on the actual position accommodates live loads� A slight generalization is needed to
account for hydrostatic pressure�� We suppose that T � �� �� are independent of y� If we take the
virtual displacements pM to be consistent with 
��	� 
i�e�� if we take them to be in the tangent space to
the constraint manifold of 
��	���

pM � rM 	 x�Ma �
�����

then the Principle of Virtual Work 
or weak formulation of the equilibrium equations� ��� Chap� ���
implies that


�����

Z
Q

f�T � a�� � �rM� 	 x
�M
�a � �M�

�b��	 �T � b�� � ��Ma � � � � �rM 	 x�Ma �
�
� 	 x	��g dx ds

�

Z s�

s�
�
� � �rM 	 h��Ma � j dds �r� � h�b��j ds	

Z s�

s�
�
� � �rM 	 h��Ma � j dds �r� � h�b��j ds � �

for all rM and �M vanishing at s�� Let us set

n � �

Z h�

h�
T � a� dx�
�����

M � � 	a �
Z h�

h�
xT � a� dx�
�����

f � �

Z h�

h�
�
�� 	 x	�� dx� �

�j dds �r� � h�b��j 	 �
�j dds �r� � h�b��j�
�����

l � � 	a �
Z h�

h�
x�
�� 	 x	�� dx	 a � ��j dds �r� � h�b��jh� 	 a � ��j dds �r� � h�b��jh��
�����

n
s� is the resultant contact force across the section at s� M is the resultant contact couple across the
section at s� f 
s� is the external force exerted at s per unit of s� and l
s� is the external couple exerted at
s per unit of s� Then 
����� is equivalent to a simpler version involving these new rod�theoretic variables�
If the functions entering this formulation are su�ciently smooth� then the use of symmetry condition
for T shows that this formulation is equivalent to the classical equilibrium equations ��� Chap� ���

n � � f � ��
�����
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M � � k � 
r � � n� � l � ��
�����

We set

n � Na �Hb �
�����

from which we get componential forms of 
����� and 
������

N � 	 	H � f � a � �� H � � 	N � f � b � �� M � � �H 	 �N � l � ��
���	�

Constitutive equations� We get constitutive equations for the resultants N�H�M from 
����� and

����� by replacing the T there with its constitutive function� In particular� elastic materials have
constitutive equations of the form

T � �T 
F � z � � F � �S
C � z �
�����

where �S is the symmetric second Piola�Kirchho� stress tensor� The substitution of 
����� and 
���	�
into 
����� shows that the constitutive functions for N�H�M depend only on the strains �� �� 	�

N
s� � �N
�
s�� �
s�� 	
s�� s�� etc�
�����

We assume that the reference con�guration is natural� i�e�� stress�free� so that �T 
I � z � � O and

�N
��
s�� ��
s�� 	�
s�� s� � �� etc�
�����

For simplicity of exposition� we assume that �N� �H� �M are continuously di�erentiable� 
By replacing our
di�erential equations with integral equations� we could still carry out most of our analysis under far
weaker assumptions��

If �T satis�es the strict form of the Strong Ellipticity Condition� then it can be shown ��� Chap� ���
that 
 �N� �H� �M� satis�es the strict monotonicity condition�

�
� �N�

�N�
�N�

�H�
�H�

�H�

�M�
�M�

�M�

�
� is positive�de�nite�
�����

We assume that this condition holds throughout this paper� If �S has the usual symmetry with respect
to the shear components of C � and if �� � � 
cf� 
	����� then it can be shown ��� Sec� ����� that

�N
�� �� 	� s� and �M
�� �� 	� s� are even� �H
�� �� 	� s� is odd�
�����

If �� � � and 	� � � 
so that the base curve r� is a straight line� and if r� is a line of centroids� then
it can be shown ��� Sec� ����� that

�N
�� �� �� s� and �H
�� �� �� s� are even� �M
�� �� �� s� is odd�
�����

If

�� �H
�� �� 	� s�	 � �N
�� �� 	� s��� � � for all 
�� �� 	� s� with � �� ��
��	��

then rods cannot su�er shear instabilities of the sort described in ��� Chap� ���
If both the strict monotonicity condition
����� and the coercivity condition


��	�� j �N
�� �� 	� s�j� j �H
�� �� 	� s�j� j �N
�� �� 	� s�j � �
as j�j� j�j� j	j � � or as � 	 V 
	� s�� ��

�



hold� then it can be shown ��� Chap� �� that there are inverse constitutive functions ��� ��� �	 such that

����� is equivalent to

�
s� � ��
N
s�� H
s��M
s�� s�� etc�
��	��

These inverse functions are also strictly monotone� and inherit the smoothness� symmetry� and appropri�
ate coercivity properties of 
������ Henceforth� we simply assume that 
����� and 
��	�� are equivalent�

This sketch of the theory of shearable rods suppresses subtle questions associated with the Lagrange
multipliers that maintain the constraint 
��	� and that are responsible for the e�ectiveness of the gov�
erning equations� by ensuring� e�g�� that the traction boundary conditions on the lateral surface of the
rod are identically satisi�ed� See ��� Chap� ��� for details�

� Transformation of the base curve

It is usually convenient to take the reference con�guration to be a natural con�guration in which the
contact forces and couples vanish� It is customary to assume that in this con�guration� s is the arc�length
parameter for the curve r� and� more importantly� that b� is orthogonal to r ��� In this case�

�� � �� �� � �� i�e�� r �� � a��
	���

and the curvature of r� is 	�� If r� is taken to be the curve of centroids of B� provided that this curve
exists� then the constitutive equations typically are as simple as possible and enjoy various symmetries�
A trivial example of the nonexistence of a curve of centroids is that for a body of the form fsi � xj �
	� � s � �� � � x � h�
s�g where h�
s� � � � � for s � � and � � � � for s � � with � �� ��
By abandoning the requirement that the curve of centroids be continuous 
and thus by abandoning the
requirement that it be a curve�� we could immediately exhibit two straight�line segments that would
serve as curves of centroids for the left and right parts of this body� and would give a representation
simplifying the constitutive equations� Below we exhibit quite simple geometries with continuous h�

for which it is unlikely that a curve of centroids exists� 
Many of the virtues of the curve of centroids
evaporate for dynamical problems� as we point out in the Conclusion�� For contact problems� it is
more convenient to take r� to be a bounding curve of B that could come into contact with obstacles�
This section is devoted to the problem of determining when rod theories based upon di�erent choices of

r�� b�� are equivalent in a sense to be made precise�

Before beginning our analysis� it is illuminating to consider a simple example� that of the body B
shown in Figure �a� The top of B is the arc of the circle of radius � centered at the origin � and
subtending an angle �

� in going from 	j to i � The bottom of B is the arc of the circle of radius
p
�

centered at j and subtending an angle arctan � in going from 	
p� 	 ��j to �i � The left end is the
straight line joining 	j to 	
p� 	 ��j and the right end is the straight line joining i to �i � There
are many choices for 
r�� b��� we discuss just �ve� which are distinguished by the subscripts �� � � � ��
attached to the functions de�ning B�


�� If the top were subject to contact� we would be motivated to take it as the base curve r��
parametrized� e�g�� by the angle 
 from 	j to the position vector on the top circle�

��� �� � � 
 �� r�� 

� �� sin
i 	 cos
j
	���

and we could choose b�� to be the unit normal �eld to this circle�

��� �� � � 
 �� b�� 

� �� 	 sin
i � cos
j �
	�	�

Here 
 is the arc�length parameter� In this case� 
	��� would hold� The requirement that x measure
distance from r� along b� �xes h�� � so that h�� 

� � �� To �nd h�� 

� we must parametrize the bottom
curve by 
� we �rst parametrize it by the angle � between the downward vertical from j and the ray
from j to a point on the bottom circle�

��� arctan�� � � �� j �
p
��sin�i 	 cos�j ��
	���

�
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Figure �a� The body B� Di�erent skele�
tons for it are shown in Figures �b��f�

Figure �b� The 
thick� top curve is the
base curve� It and the cross sections
orthogonal to it form the skeleton�

We equate this expression to the representation of the bottom circle in terms of the parameter 
�

��� �� � � 
 �� r�� 

� � h�� 

�b
�
� 

� � ��	 h�� 

���sin 
i 	 cos
j ��
	���

from which we obtain

h�� 

� � � � cos
	
p
� � cos� 
�
	���


See Figure �b��
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Figure �c� The 
thick� bottom curve
is the base curve� It and the cross
sections orthogonal to it form the
skeleton�

Figure �d� The 
thick� bottom curve
is the base curve� It and the sections
orthogonal to the top form the skele�
ton�


�� If the bottom were subject to contact� we would be motivated to take it as the base curve r�� �
Then we could describe it by 
	���� 
We could replace � with an arc�length parameter s �

p
���� We

could take b�� to be the unit normal �eld to 
	���� given by k�
r�� �
��j
r�� ��j� In this case� if the arc�length

�



parametrization were used� then 
	��� would hold� The h�� as functions of � are determined as in case

i� by the equation r�� 
�� � h�� 
��b

�
� 
�� � sin
i 	 cos
j �

h�� 
�� � �� h�� 
�� �
p
�	

�
� cos� for � � � � �

� �

sec� for �
� � � � arctan��


	���


See Figure �c��

	� Alternatively� we could take the bottom as the base curve r�� parametrized with 
 by 
	���� 
	����

In this case� we could use 
	�	� to de�ne b�� �� b�� � but b
�
� would not be orthogonal to r�� � so that 
	���

would not hold� 
See Figure �d��

��� 
�� Since it is unlikely that B admits a 
globally de�ned� curve of centroids in the traditional

sense of bisecting normal sections to itself� we could take the sections to be determined� e�g�� by b�� or
b�� and �nd the corresponding curves r�� or r�� bisecting these sections�

r�� � � ��	 �
�h

�

� 

���sin 
i 	 cos
j ��
	���

r�� � � j � �
p
�	 �

�h
�

� 
����sin�i 	 cos�j ��
	���


See Figures �e�f�� In these cases 
	��� would not hold and we could not expect the constitutive equations
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5
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ψ

Figure �e� The 
thick� curve of cen�
troids is the base curve� It and the
sections orthogonal to the top curve
form the skeleton�

Figure �f� The 
thick� curve of cen�
troids is again the base curve� It and
the sections orthogonal to the bot�
tom curve form the skeleton�

to have nice symmetry properties� The di�culties of using some semblance of a curve of centroids as a
base curve might prompt us to take either the top or bottom circle as base curve� even when there is
no question of contact�

We now determine when di�erent choices of 
r�� b�� lead to equivalent theories� Let 
r�� � b
�
� � and


r�� � b
�
� � be two di�erent skeletons for B satisfying 
���� 
which is equivalent to 
������ so that B has

alternative and equivalent parametrizations 
s�� x�� and 
s�� x�� such that

fr�� 
s�� � x�b
�
� 
s�� � 
s�� x�� � Q�g � fr�� 
s�� � x�b

�
� 
s�� � 
s�� x�� � Q�g�
	����


cf� 
������ The equivalence of these parametrizations means that the equation

r�� 
s�� � x�b
�
� 
s�� � r�� 
s�� � x�b

�
� 
s��
	����

�



for 
s�� x�� � Q� can be uniquely solved for s�� x��

s� � �s�
s�� x��� x� � �x�
s�� x���
	����

and vice versa�

s� � �s�
s�� x��� x� � �x�
s�� x���
	��	�

By exploiting 
	���� and the fact that the b� are independent of x� we could obtain certain restrictions
on the b��s and h��s� We do not pause to work out the details of this observation because we can get
much sharper necessary restrictions by imposing the de�nition that two rod theories based on 
��	� and

���� are geometrically equivalent if they admit exactly the same set of deformations� In particular� if p�
and p� are deformations respectively generated by 
r�� b�� and 
r�� b�� via 
��	�� then they admit the
same set of deformations if for any given absolutely continuous 
r�� b�� satisfying 
����� the equation

p�
�s�
s�� x��� �x�
s�� x��� � p�
s�� x��� 
s�� x�� � Q��
	����

can be uniquely solved for absolutely continuous 
r�� b�� 
satisfying 
����� in terms of 
r�� b�� and vice
versa� Note that this equivalence ensures that 
	���� holds�

We �rst determine necessary conditions for equivalence� We choose p� to be a deformation that
straightens the axis of the rod� stretches it� and reduces the shear to ��

p�
s�� x�� � cs�i � x�j
	����

where c is a positive constant� Note that 
	���� can be e�ected by a continuous ��parameter family of
deformations from the reference con�guration each of which� including 
	���� satis�es
����� Then 
	����
implies that

r�
s�� � x�b�
s�� � c�s�
s�� x��i � �x�
s�� x��j �
	����

Taking the dot products of 
	���� with i and j � we see that �s� and �x� are a�ne functions of x�� i�e��
there are functions �� �� �� � such that

�x�
s�� x�� � �
s��x� � �
s��� �s�
s�� x�� � �
s��x� � �
s���
	����

Since �s� and �x� characterize the reference con�guration� the functions �� �� �� � cannot depend on the
parameter c� Substituting 
	���� into 
	���� and using the arbitrariness of x�� we obtain that

b�
s�� � c�
s��i � �
s��j � a�
s�� � b�
s��� k � �
s��i 	 c�
s��j �
	����

with

�� � c��� � �
	����

because a� and b� are unit vectors� Since this equation must hold for all positive c it follows that � � �
and � � 
�� We �x orientation by taking � � �� so that a� � i � b� � j � Thus 
	���� reduces to

�x�
s�� x�� � x� � �
s��� �s�
s�� x�� � �
s���
	����

Now we substitute 
	���� into 
	���� to obtain

r�� 
�
s��� � �x� � �
s���b
�
� 
�
s��� � r�� 
s�� � x�b

�
� 
s���
	����

The arbitrariness of x� then implies necessary conditions for geometric equivalence� There exist functions
� and � such that Q� can be transformed into Q� by 
	���� and such that

b�� 
�
s��� � b�� 
s���
	����

�



r�� 
�
s��� � �
s��b
�
� 
�
s��� � r�� 
s���
	��	�

Condition 
	���� says that the b� �elds must be the same�
By di�erentiating of 
	���� and 
	��	� we �nd that � and � are di�erentiable a�e� We substitute


	���� into 
	����� di�erentiate the resulting equation with respect to s�� and take into account 
	����
to get

	�
s�� � �� ��
s��i � ��
s��j � c��
s��i � ��
s��j �
	����

Consequently� �� � have to be absolutely continuous 
since ��� �� are integrable�� Since ��
s�� � � a�e�
by 
����� we obtain the natural condition that ��
s�� � � a�e�� i�e�� � is increasing�

Since �� � � a�e�� we can use 
	���� to show that the corner points 
s�� � h
�

� 
s
�

� ��� 
s�� � h
�

� 
s
�

� ���

s�� � h

�

� 
s
�

� ��� 
s
�

� � h
�

� 
s
�

� �� of Q� go into the corresponding corner points of Q�� 
For this purpose� we
note that s�� � supfs� � 
s�� x�� � Q�g and h�� � supfx� � Q�
s

�

� �g�
Now we study the preservation of orientation and absolute continuity under geometrically equivalent

transformations� We assume that there are skeletons 
r�� � b
�
� �� 
r

�
� � b

�
� � satisfying 
���� and that there

are absolutely continuous functions � and � with ��
s�� � � a�e� on �s�� � s
�
� � such that Q� transforms

into Q� acccording to 
	���� and such that 
	���� and 
	��	� hold� Our study of the transformation of
the strains will show that our necessary conditions are also su�cient for geometric equivalence and will
be useful in our study of constitutive equations� We substitute 
	���� into 
	���� to obtain

r�
s�� � x�b�
s�� � r�
�
s��� � �x� � �
s���b�
�
s���
	����

and immediately obtain� just as for 
	���� and 
	��	�� that

b�
�
s��� � b�
s���
	����

r�
�
s��� � �
s��b�
�
s��� � r�
s���
	����

Thus a unique pair 
r�� b�� is assigned to each deformation 
r�� b��� Conversely� with the inverse
transformation of 
	���� given by

�s�
s�� x�� � ���
s��� �x�
s�� x�� � x� 	 �
���
s���
	����

we can use analogous arguments to show that a unique pair 
r�� b�� can be associated with each 
r�� b���
Note that 
	���� and 
	���� also imply 
	���� and 
	��	�� To verify that the rod theories are geometrically
equivalent we still have to show that r� and b� are absolutely continuous and that 
r�� b�� satis�es 
����
if and only if the same is true for 
r�� b���

Di�erentiating 
	���� with respect to s� we obtain

	�
�
s����
�
s�� � 	�
s���
	����

Di�erentiating 
	���� with respect to s� we obtain

���
�
s���	 �
s��	�
�
s�����
�
s�� � ��
s���
	�	��

��
�
s����
�
s�� � ��
s�� � ��
s���
	�	��

Since �� � � a�e�� we can use the formula for changing variables in integrals to derive from 
	���� that

Z s�
�

s�
�

j	�
s��j ds� �
Z s�

�

s�
�

j	
�
s���j��
s�� ds� �
Z s�

�

s�
�

j	�
s��j ds��
	�	��


To show that this formula applies to absolutely continuous coordinate transformations it is necessary to
extend the standard formula for Lipschitz continuous transformations� We tacitly use analogous results

��



below�� Hence 	� is integrable if and only if 	� is� Analogously� we derive from 
	�	��� 
	�	�� that ��
and �� are integrable if and only if �� and �� are respectively integrable� Thus r� and b� are absolutely
continuous if and only if r� and b� are� Now 
	����� 
	�	��� and 
	���� imply that

��
s��	 x�	�
s�� � ���
�s�
s�� x���	 �x�
s�� x��	�
�s�
s�� x�����
�
s���
	�		�

Since ��
s�� � � a�e�� pairs 
r�� b�� and 
r�� b�� related by 
	����� 
	���� each satisfy 
���� or neither
satis�es 
����� We conclude that both theories have the same repertoire of deformations� It follows that
our necessary conditions are also su�cient for geometric equivalence�

We specialize 
	�	�� to the reference con�guration to obtain a representation for ���

�� �
���

��� 	 �	��

	�	��


condition
���� implies that the denominator cannot vanish except at a �nite number of points� Equation

	�	�� leads to elegant variants of our transformation formulas�

	��
�
� � 
��� 	 �	���	��
	�	��


�� 	 �	���
�
� � 
��� 	 �	������
	�	��

���
�
� � 
��� 	 �	����

� � 
��� 	 �	������
	�	��

Note that these last three conditions deliver 
	����� 
	����� 
	���� to within a rigid motion� From 
	�	���

	�	��� 
	�	�� we immediately get dual relations by switching the indices � and � and by replacing � by
	�� In particular� from 
	�	�� and its dual we obtain

���
��� 	 �	��

�
��� � �	��

���
� ���
	�	��

These results show that rod theories based upon the skeletons shown in the Figures ��b�d�e are
equivalent� that those for Figures ��c�f are equivalent� but none of the theories of the �rst set are
equivalent to those of the second�

It is of interest to determine those transformations that are consistent with a stronger notion of equivalence that

requires that the customary properties ����� be preserved� If we impose the requirement that ��
�

� � � ��
�
� then

the specialization of ������ to the reference con�guration immediately implies that ���� is a constant �� leading to a

strong restriction on ���	��� If we impose the requirement that ��
�

� � � ��
�
� then the specialization of ����
� yields

���s�� � ����� ���

�
�s���� which of course �xes � up to a translation�

Now we show that geometrically equivalent rod theories are mechanically equivalent in the sense that
the equilibrium equations are equivalent� Let Q�
�s

�

� � s
�
��� denote the part of Q� lying between the lines

s� � s�� and s� � s���

Q�
�s
�

� � s
�
��� �� f
s�� x�� � Q� � s

�

� � s� � s��g�
	�	��

Q�
�s
�

� � s
�
��� is de�ned analogously� For brevity� let us assume that �� � �� We assume that the

deformation of B is described by geometrically equivalent theories indexed by � and �� so that 
	�����

	�	�� hold�

Then 
����� implies that the total external couple on the part of B corresponding to Q�
�s
�

� � s
�
��� isZ s��

s�
�

l�
s�� ds�

� 	
Z s��

s�
�

Z h�
�
�s��

h�
�
�s��

�x�a�
s�� � �
�
r�
�
s�� � x�b

�
� 
s��� r�
s�� � x�b�
s��

�

��� 	 x�	

�
��� dx� ds��


	����

��



Under the change of variables 
	���� this integral becomes

	
Z s��

s�
�

Z h�
�
�x��

h�
�
�s��

f�x� � �
s���a�
s�� � �
�
r�
�
s�� � x�b

�
� 
s��� r�
s�� � x�b�
s��

�

��� 	 x�	

�
��g dx� ds�


	����

by virtue of 
	�����
	�	��� This is exactly
R s��
s�
�

�l�
s�� 	 �
s��a�
s�� � f�
s��� ds�� The arbitrariness of s��
then implies that

l�
�
s��� � l�
s��	 �
s��a�
s�� � f�
s�� 
 l�
s�� � k � ��
s��b�
s��� f�
s����
	����

A simpli�ed version of this computation shows that

f�
�
s��� � f�
s���
	��	�

Since the stress T depends on just the reference position p�
s� x�� de�nitions 
����� and 
����� likewise
imply that

n�
�
s��� � n�
s���
	����

M�
�
s��� �M�
s��	 �
s��N�
s�� 
M�
s�� � k � ��
s��b�
s��� n�
s����
	����

A straightforward computation using these identities shows that 
n��M�� f�� l�� satisfy the equilib�
rium equations 
����� and 
����� if and only if 
n��M�� f�� l�� does�

From 
����� and 
	�����
	�	�� we �nd that the constitutive functions transform according to

�N�
��� ��� 	�� s�� � �N�
��� 	 �	���
�� ���

� � ��� 	��
�� ���
s����

�H�
��� ��� 	�� s�� � �H�
��� 	 �	���
�� ���

� � ��� 	��
�� ���
s����

�M�
��� ��� 	�� s�� � �M�
��� 	 �	���
�� ���

� � ��� 	��
�� ���
s���

	 � �N�
��� 	 �	���
�� ���

� � ��� 	��
�� ���
s���


	����

where the arguments of �� �� and their derivatives are ���
s��� By 
	�	���
	�	��� 
	����� 
	���� we
analogously �nd transformation formulas for the constitutive functions ��� ��� �	�

� Curvature

For contact problems� the actual shape of the boundary of the body in contact with the obstacle is of
great importance� This shape is determined by the curvature and the elongation of the boundary curve�

These quantities depend on the strains and their derivatives�� We represent the curvature of r in terms
of the strains and then formulate a constitutive restriction involving this curvature�

Let 
 denote the counter�clockwise angle from i to r �� so that

r � � jr �j
cos
i � sin
j ��
����

Then the curvature of r is

� ��

�

jr �j �
k � 
r � � r ���

jr �j� �
	
�� � ��� � ��� 	 ���

jr �j� �
����

We replace �� �� 	 with their constitutive functions 
��	�� to obtain

jr �j�� � �	
��� � ���� � ��
��NN
� � ��HH

� � ��MM � � ��s�	 ��
��NN
� � ��HH

� � ��MM � � ��s��
��	�

��



and then use 
���	� to express N �� H �� M � in terms of N�H�M and the strains� so that

jr �j�� � jr �j� ��
N�H�M� s�	 
����N 	 ����N �f � a 	 
����H 	 ����H�f � b 	 
����M 	 ����M �l
����

where

jr �j� �� �� �	
��� � ���� � �	�
����N 	 ����N �H 	 
����H 	 ����H�N �	 
����M 	 ����M �
��H 	 ��N� � ����s 	 ����s


����

or� equivalently�

��
N�H�M� s� �� 
��� � ����������	
� � ��NH 	 ��HN�	 ��M 
��H 	 ��N� � ��s�
����

where � �� arctan
���� 
 
 	 � is the shear angle� �� �� arctan
������ is the corresponding constitutive
function� and the arguments of the constitutive functions areN�H�M� s� 
Alternatively� we could express
the curvature as a function of the strains by substituting the constitutive equations 
����� into 
���	��
using Cramer�s Rule 
justi�ed by 
������ to solve for �� and ��� and substituting these representations
into 
������

We shall �nd it convenient to consider materials for which the curvature in the actual con�guration
minus that for the reference con�guration has the same sign asM under �natural� conditions� i�e�� when
there is no body force or body couple� f � �� l � �� We say that a rod theory for a body B of 
����
has normal bending with respect to a skeleton fr�� b�g if it satis�es the constitutive restriction

���
N�H�M� s�	 ���M � � for M �� ��
����


If the base curve r� of a rod in the reference con�guration is a straight line of centroids with �� � � and

if �� does not depend explicitly on s� then 
����� implies that �� is odd in M � condition 
���� strengthens
this special case by ensuring that the curvature function �� vanishes only at M � ��� The condition

����� made complicated by the shearability as 
��	� shows� prevents the paradoxical bending behavior
described by �����

One could consider the restriction that 
���� hold for every skeleton 
the explicit formulation of
which could be e�ected by a complicated version of the process by which 
���� is derived from 
������
But there is no need to study this restriction because there are bodies B for which 
���� can hold merely
for one special skeleton and not for any others� Choose two skeletons which give equivalent theories
with �� � �� �� � �� ��s � � and assume that in each case 
���� holds for all N�H�M 
M �� ��� By the
symmetry 
������

��
N� ��M�M �
�	
N� ��M�M

��
N� ��M�

�
�	 ��H
N� ��M�

��
N� ��M�
N

�

����

for each skeleton� There is an � � � such that for each skeleton�

�	 ��H
N� ��M�

��
N� ��M�
N � �
����

for all jM j � �� jN j � �� By 
�����
����� �	
N� ��M�M � � for all M�N with � � jM j � �� jN j � ��
Thus �	� � � if � � M� � �� jN�j � �� Using 	� � 	���

�� �� � �� M� � M� 	 �N�� we get
�	�
N�� ��M��
M� 	 �N�� � �� so that M� � �N� for all M�� N� with � � M� � �� jN�j � �� which is a
contradiction� On the other hand� if we have a skeleton enjoying the symmetry 
����� 
e�g�� if r� is a
straight curve of centroids�� then 
���� holds for jM j � �� jN j � � 
for some small � � ��� By the same
argument as above we conclude that no other skeleton can satisfy 
����� Thus� in general� it cannot be
expected that 
���� holds for more than one skeleton� On the other hand� if there is a straight curve of
centroids and 
���� holds for some skeleton� then it can only hold for the skeleton based upon the curve
of centroids�

�	



� Applications

In this section we apply the theory developed above to some simple problems that exhibit novel e�ects�
We limit our attention to uniform rectangular beams of scaled length �� for which 
���� reduces to

B � fsi � xj � � � s � ��	h � x � hg
����

where h � � is a constant� We consider only skeletons of the form

r� � si � �j � b� � j
����

with � � �	h� h� a constant� 
Thus 
	��� holds� 	� � �� and �
s� � s�� We assume that the material
has normal bending with respect to a given skeleton� In view of the remarks following 
����� this means
that r� for this skeleton must be the line of centroids of the rod� so that � � � and 	h� � h� � h

note that h� in 
����� depend on ��� We accordingly denote variables associated with this skeleton by
the index c 
for centroid�� Variables associated with typical skeletons bear no indices�

Example �� We consider the deformation of a rod whose left end s � � is welded to a �vertical�
wall 
parallel to j � and that is subjected to a prescribed concentrated �downward� force 	�j � with �
positive� applied at the point r
�� 
cf� Figure �a�� There are no other externally applied forces� We
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Figure �a� Deformation of a
rod subject to a terminal force
applied at the midpoint of the
end� The material curves par�
allel to the curve of centroids
and lying above it are concave�
while such curves lying below it
are convex near the right end�

Figure �b� If a terminal force
is applied above the midpoint
of the end� then the deformed
curve of centroids is concave
near the right end�

Figure �c� If a terminal force
is applied below the midpoint
of the end� then the deformed
curve of centroids is convex
near the right end�

�rst study the curvature of r while the load acts at rc
�� and then we study the e�ect of applying the
load at r
�� on the curvature of rc� For this problem� varying the base curve is equivalent to varying
the point on the section s � � at which the force 	�j is applied�

The boundary conditions are

r
�� � �� �
�� � �� n
�� � 	�j � M
�� � ��
��	�

The equilibrium equation 
����� implies that

n
s� � 	�j �
����

��



which implies that

N
s� � 	� sin �
s�� H
s� � 	� cos �
s��
����

Thus

�
s� � ��
	� sin �
s��	� cos �
s��M
s��� �
s� � ��
	� sin �
s��	� cos �
s��M
s���
����

Thus the substitution of 
���� into 
���	�� and the use of 
��	�� produces the system of two �rst�order
equations�

M �
s� � � cos �
s���
	� sin �
s��	� cos �
s��M
s��

	 � sin �
s���
	� sin �
s��	� cos �
s��M
s��

��
s� � �	
	� sin �
s��	� cos �
s��M
s��


����

subject to the boundary conditions �
�� � �� M
�� � ��
Standard regularity arguments show that the strains �� �� 	 are continuous� In general� this problem

admits multiple solutions with loops when � is large enough� 
In view of our scaling� � can be made
large either by increasing the magnitude of the terminal force or by increasing the actual length of the
rod�� We limit our attention to solutions for which

r �
s� � i 
 �
s� cos �
s�	 �
s� sin �
s� � � for � � s � ��
����

When � � �� it follows from 
���� and the properties of �� that � � � and it follows from 
����
that � � � � M � Continuation theory ��� Chap� 	� can be used to show that emanating from the
trivial solution pair 

��M�� �� � 

�� ��� �� is a branch of nontrivial solution pairs 

��M�� �� of 
�����
Consequently 
���� holds for su�ciently small �� 
Actually much more can be proved by applying a
phase�plane analysis to the problem� cf� ��� Chap� ����

It follows from 
����� and 
���� that

M �
s� � �r �
s� � i � ��
����

so that
��	�� yields

M
s� � � for � � s � ��
�����

Now we consider the case in which the load is applied at the end of the curve of centroids� i�e�� at
rc
��� Under the assumption that 
���� applies to the skeleton c� we immediately obtain from 
�����
that

�c
s� � � for � � s � �� �c
�� � ��
�����

Now we introduce a second skeleton of the form 
���� with � � �	h� h�� � �� �� Thus 
	�	��� 
	�	���

	�	�� yield

	 � 	c� � � �c 	 �	c� � � �c�
�����

It follows from 
���� that

sign� � sign f	c�
�c 	 �	c�
� � �c

�� � 
�c 	 �	c��
�
c
	 �c
�

�
c
	 �	�

c
�g�
���	�

Since �c
�� � �� it then follows from 
���� that

sign�
�� � 	sign f��	c�
��c 	 �	c� � 	c�
�
c
	 �c	

�
c
�
��g�
�����

Since r�
c
is a straight curve of centroids� 
����� implies that 	c
�� � � becauseMc
�� � �� Hence sign�
��

� sign��c
��	
�
c

��� To show that this is not zero� we di�erentiate 	c
s� � �	c
Nc
s�� Hc
s��Mc
s�� with

��



respect to s and use 
����� 
����� 	c
�� � �� 
�	c�
M � � to get 	�
c

�� � �� From 
���� and 
��	� we get

�c
s� � 
	���� ���� and� thus� Hc
s� � �� �c
s� � �� Consequently sign�
�� � 	sign�� Thus� if the
load is applied at the end point rc
�� of the curve of centroids� then a �parallel� base curve in the upper
part of the rod is concave near s � � and a �parallel� base curve in the lower part of the rod is convex
near s � �� while �c
�� � � 
see Figure �a��

Now� we content ourselves with a complementary result� We take a skeleton of the form 
���� with
r� � r�

c
� �b�

c
� b� � b�

c
� � �� � � �	h� h� and take the force 	�j to be applied at r
��� i�e�� we take r

to be the image of the base curve� In contrast to the previous situation� we now study sign�c
��� From

	���� we obtain

M �Mc � �Nc� N � Nc�
�����

Since N
�� � � by 
����� it follows from 
������
������ 
���� that �c
�� � �� Since �c is continuous by
standard regularity arguments� it follows that �c is negative near s � �� so the image of the centroid is
concave here�

Below we show that

N
s� 
 Nc
s� � � for � � s � ��
�����

Equations 
����� and 
��	�� imply that

Mc
�� � 	�Nc
���
�����

If � � � 
e�g�� if the top of the body were taken to be the base curve�� then 
������ 
������ and 
����
would imply that �c
�� � �� so that the image of the line of centroids would be concave near s � � 
see
Figure �b�� On the other hand� if � � �� we likewise �nd the more surprising result that �c
�� � �� so
that the image of the line of centroids would be convex near s � � 
see Figure �c��

We now verify 
������ Since �
�� � � by 
��	� and since Mc
�� � M
�� � � by 
����� and 
�����
because N
�� � �� it follows from 
����� that 	c
�� � � and from 
����� that 	
�� � �� Thus �
s� � �
and N
s� � � for small positive s� Suppose that there were a �rst value � of s in ��� �� at which N
were to vanish� By the continuity of �� either �
�� � � or �
�� � 	�� But the latter possibility violates

���� and 
����� We therefore consider just the former case� Since �
s� � � for � � s � �� it follows
that 	
�� � �� Then 
����� implies that M
�� � �� in violation of 
����� provided that � � � or
M
�� � �� Suppose that � � � and M
�� � � and� thus� also �
�� � �� N
�� � �� Mc
�� � � by 
������
	c
�� � 	
�� � � by 
����� and 
������ Di�erentiating 
����� we get ���
�� � � by 
����� 
������ But this
inequality is incompatible with �
s� � � on 
�� �� and ��
�� � �� This contradiction yields 
������

Thus there is a signi�cant qualitative di�erence in the curvature of the line of centroids for � � � and
� � �� This di�erence does not appear for the corresponding problems for unshearable rods� Numerical
simulations of analogous ��dimensional problems of linear elasticity� exhibited in Figure 	� show the
same curvature e�ects�

Figures 	a�b�c� respectively correspond to those of Figures �a�b�c� Note the singular behavior at the
corners and at the places where the concentrated loads are applied�

The simulations shown here were done with an adaptive �nite�element code with about ������ nodes

so that the computational grid used is much �ner than that seen in the �gures�� The body B for
these simulations has h� � 	h� � �

� � 
We use very thick rods for these ��dimensional computations
because the e�ects of curvature are quite pronounced�� The position of the left edge s � � is �xed�
The concentrated load is approximated by a surface traction distributed along two of the squares in the
�gure at the right edge� The simulations for this and all our other examples are done for rubber with
� � ��� � ��� kg�cm�� 	 � ����� � ��� kg�cm� �	� Sec� 	���� The grids in all �gures show deformed
squares�

Example �� We adopt the same geometry as in Example �� but replace the terminal load by the weight
of the rod� If the density of the rod is constant and if we take r� to be the line of centroids� then 
�����
and 
����� imply that f and l have the forms

f 
s� � 	�j � l � ��
�����

��



a� b� c�

Figure 	� Numerical simulations of ��dimensional problems of linear elasticity corresponding
to those shown in Figure ��

where � � � is the constant weight per unit of s� The boundary conditions are

r
�� � �� �
�� � �� n
�� � �� M
�� � ��
�����

Then 
����� implies that n
s� � 	�
�	 s�j � whence 
����� yields

N
s� � 	�
�	 s� sin �� H
s� � 	�
�	 s� cos ��
�����

As in the Example � we are justi�ed in adopting 
����� Then it and 
���	�� yield

M �
s� � �
�	 s�r �
s� � i � M
s� � � for � � s � ��
�����

It follows from
����� that

	
s� � � for � � s � �� 	
�� � ��
�����

We cannot deduce from 
���� the analogous result that � is negative because �� is not the curvature for
this problem� To determine the curvature� we use 
��	�� The �rst term on the right�hand side of 
��	�
is clearly negative for s � �� Using 
������ the symmetry conditions 
����� and 
������ the fact that the
reference con�guration is stress�free� and 
������ we �nd that the last two summands of 
��	� at s � �
reduce to

���H
�� �� �� cos �
�� � ��
���	�

the inequality following from 
������ Thus the deformed centroid is convex near s � �� This result is
entirely due to the shearability of the rod�

To determine the curvature at s � �� we could again resort to the formula 
��	�� but now the last
two terms are complicated with no obvious sign� suggesting that the curvature depends on constitutive
properties� Equation 
���� yields

jr �j�� � jr �j� ��� ��
����N 	 ����N � sin � � 
����H 	 ����H� cos ���
�����

Since �
�� � � by 
������ it follows from 
����� that N
�� � � and H
�� � 	�� so that 
���� and

����� yield

jr �j�� � �	
��� � ����	 ��	
����N 	 ����N � � ���
����M 	 ���M � � �
����H 	 ����H� at s � ��
�����

��



with the arguments 
��	��M
��� in the constitutive functions� We know that 	
�� � � and �
�� � ��
but this information is insu�cient to give a sign to 
������ even in the case that the constitutive
equations were uncoupled� so that ��H � � � ��N 
an extreme version of 
������� The sign depends
on the constitutive response� especially the strength of the rod in resisting 
exure and shear 
which in
turn depends on the thickness�� and on the size of �� which depends on the actual length� We leave
as an exercise for the interested reader the computation� analogous to that for Example �� of how the
curvature depends on the choice of the base curve� A ��dimensional simulation of this problem under
conditions like those of Figure 	 is given in Figure �a�

a� b�

Figure �� Numerical simulations of ��dimensional problems of linear elasticity for the
deformation of rectangular bodies under their own weight when their left edges are
welded to a vertical wall�

If we take the body to have a shape that is the antithesis of a rod
like shape� i�e�� if the thickness is of the same order

as the length� then a 	
dimensional simulation of the equilibrium state for this body under its own weight gives Figure


b� Note that the deformed images of the material lines parallel to the line of centroids are each convex� It is amusing

to note that the formal treatment of such a problem within our rod theory gives the same convexity �even though the

rod theory is patently inappropriate for the treatment of such a problem�� Suppose that s� � � and that the length s�

is small� Then by exploiting ���	������	��� we could show that N�H�M are small� whence it follows that the deformed

con�guration is close to the reference con�guration� � � �� �� � � �� In this case� ��M � ��H � so that ���	
� is dominated

by ����H � �� i�e�� a very short rod is convex�

Example �� We study problems in which the material points of the base curve lying in an interval of
the form ��� �� with � � � are in contact with a rigid horizontal obstacle� and the rest of the base curve
lies above the obstacle� In particular� we assume that there is a hinge at r
�� that is �xed at a point
lying above the obstacle and we assume that there is a couple M
�� applied to the rod about the hinge
that is a su�ciently large positive number� See Figure �a� The most natural choice for the base curve is
the bottom of the rod� as shown in Figure �a� Contact problems for di�erent choices of base curves can
be realized by rods with longitudinal 
anges that lie on horizontal obstacles� as shown in Figures �b�c�
We assume that the only loads on the rod are the prescribed couple M
�� about r
��� the reaction at
r
��� and the reaction to contact with the obstacle�

There are several open questions for contact problems for rods� which we �nesse by making suitable assumptions� For

example� given the conditions at r���� can one prove that there is a solution of the equilibrium equations with the contact

region an interval of the form we have taken� If there is such a solution� is it the only one�

On the interval ��� �� of contact�

r � � j 
 � sin � � � cos � � �� � � � for s � ��� ���
�����

��



�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

Figure �a� The left part of a rod is pressed
against a rigid horizontal obstacle by a cou�
ple applied at the right end of the rod�

Figure �b� For a body with 
anges
the contact curve need not be a bottom

or top� curve of the corresponding ��
dimensional body B 
cf� 
������

We assume that the contact is frictionless� so that f 
s� � f
s�j with f
s� � � for � � s � �� Since the
contact force acts only on the base curve� it induces no couple l by 
������ For shearable rods undergoing
this kind of contact� Schuricht ��� proved that f is continuous on 
�� ��� that f
s� � � for � � s � ��
that f
s� � � on 
�� �� where there is no contact� that there can be a jump in f at s � � 
which we will
exploit�� and that the stress resultants N�H�M and the strains �� �� 	 are continuous on 
�� ���

In view of these results� the di�erence in the limits of 
���� as s approaches � from above and below
is

jr �
��j��
��� � f
�	��
����N 	 ����N � sin � � 
����H 	 ����H� cos ��js�� �
�����

Since 
���� implies that cos �
�� cannot vanish on ��� ��� we can solve 
����� for � and substitute the
result into the right�hand side 
������ which becomes

f
�	� ��

cos �
���N sin� � � 
��H � ��N � cos � sin � � ��H cos� ��js�� �
�����

the expression in brackets is a positive�de�nite quadratic form in ��N � ��H � ��N � ��H by virtue of 
������
Thus 
����� says that the jump in curvature has the same sign as the non�negative f
�	�� which is not
surprising�

To determine whether f
�	� is positive� we study 
���� at �	� which says that f
�	� has the
same sign as �� at � by virtue of the positivity of the quadratic form in 
������ 
Note that s ��
��
N
s�� H
s��M
s�� is continuous�� We wish to adopt 
����� so that f
�	� would have the same sign
as M
��� which we now study� In view of the remarks following 
����� however� we can only use 
����
when the base curve is the line of centroids� We limit our analysis to this case 
cf� Figure �c�� In accord
with the version of Figure �a appropriate for the base curve as the line of centroids� we assume that
M
�� � �� There is� however� a concentrated force at the left end� In particular� 
������ 
������ and the
results in ��� Example �� imply that there is an f	 � � such that

n
s� � 	
�
f	 �

Z s

	

f
t� dt

�
j �
�����

M
�� �

Z �

	

	
r �
s� � i

�
f	 �

Z s

	

f
t� dt

�

ds�
��	��

��



Since r �
s� � i � � a�e� on ��� �� by 
����� since f	 � �� and since f � � everywhere� it follows that
M
�� � �� Thus f
�	� � �� whence �
��� � �� This means that the rod lifts o� the obstacle at �� and
the solution has the expected form� Unfortunately� we found no attractive constitutive replacement for

���� that would give comparable intuitively obvious conclusions for base curves other than the line of
centroids�

� Comments

In many problems for rod 
and shell� theories� the constitutive equations based on a special choice of
base curve 
or surface� enjoy a variety of symmetries� If constitutive equations with respect to another
base curve are used� say� to handle contact problems� then these symmetries are hidden� It is only
by exploiting results on the change of base curve that we can have access to the hidden symmetries�
This di�culty unavoidably arises in another context� There are special choices of base curves 
and
surfaces� that considerably simplify the inertia terms in the equations of motion for rods 
and shells��
Unfortunately� when a rod 
or shell� is curved� this choice of base curve 
or midsurface� does not give a
concomitant simpli�cation to the constitutive equations� and in particular� may result in the hiding of
constitutive symmetries taken with respect to a centroidal base curve 
or midsurface��

This work shows that the theory of constitutive equations needed for concrete problems is necessarily
much richer than that needed to ensure the existence of solutions� We used the change of base curve
to develop new kinds of constitutive restrictions� distinct from those associated with monotonicity
and coercivity� and we showed that these new restrictions led to new qualitative e�ects� Our higher�
dimensional computations suggest that these new e�ects capture those that might be expected in ��
dimensional theories�

It is clear that the methods of this paper are valid for much more intricate rod and shell theories�
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