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Considerable evidence has been gathered over the last 10 years showing that the tumor

microenvironment (TME) is not simply a passive recipient of immune cells, but an active

participant in the establishment of immunosuppressive conditions. It is now well docu-

mented that hypoxia, within the TME, affects the functions of immune effectors including

natural killer (NK) cells by multiple overlapping mechanisms. Indeed, each cell in the TME,

irrespective of its transformation status, has the capacity to adapt to the hostile TME and

produce immune modulatory signals or mediators affecting the function of immune cells

either directly or through the stimulation of other cells present in the tumor site. This

observation has led to intense research efforts focused mainly on tumor-derived factors.

Notably, it has become increasingly clear that tumor cells secrete a number of environ-

mental factors such as cytokines, growth factors, exosomes, and microRNAs impacting

the immune cell response. Moreover, tumor cells in hostile microenvironments may acti-

vate their own intrinsic resistance mechanisms, such as autophagy, to escape the effective

immune response. Such adaptive mechanisms may also include the ability of tumor cells to

modify their metabolism and release several metabolites to impair the function of immune

cells. In this review, we summarize the different mechanisms involved in the TME that

affect the anti-tumor immune function of NK cells.

Keywords: hypoxia, natural killer cells, autophagy, tumor-derived exosomes, tumor microenvironment

INTRODUCTION

Natural killer (NK) cells are potent cytolytic lymphocytes belong-

ing to the innate immune system. NK cells comprise up to 15% of

all circulating lymphocytes and are also found in peripheral tissues

including the liver, peritoneal cavity, and the placenta. Although

resting NK cells circulate in the blood, they are capable of infiltrat-

ing most cancer tissues following activation by cytokines. NK cells

can be rapidly activated in the periphery by NK cell stimulatory

factors, such as interleukin (IL)-12, interferon (IFN)-α and -β, IL-

15, or IL-2 (1). Regulation of NK cell activity depends on the reper-

toire of germline-encoded activating and inhibitory receptors. The

activating receptors recognize stress-induced, pathogen-derived,

or tumor-specific ligands, whereas the inhibitory receptors bind

self-molecules presented on normal cells. Owing to a diversified

set of inhibitory and activating receptors, NK cells are capable of

recognizing and killing an array of tumor cells (2). Beyond innate

activity, NK cells are important for the regulation of anti-tumor

adaptive immunity (3, 4).

In addition to their well-described role in inhibiting the early

stage of tumor formation, NK cells are able to eradicate large solid

tumors. Such eradication depends on the massive infiltration of

proliferating NK cells due to the release and the presentation of

IL-15 by cancer cells in the tumor microenvironment (TME). It

has been shown that infiltrating NK cells are strikingly similar

morphologically to uterine NK cells (5).

Based on the fact that NK cells can eliminate cancer cells in

experimental conditions, it has been proposed that NK cells can be

used clinically in therapeutic settings against cancer. Importantly,

data from haploidentical hematopoietic stem cell transplantation

and NK cell-based adoptive immunotherapy support the clini-

cal effects of NK cells (6). Based on our current knowledge of

the molecular specificities that regulate NK cell functions, it is

tempting to speculate that a design of tailored NK cell-based

immunotherapeutic strategies against cancer might be possible.

Recent data confirm that NK cells are required for the induc-

tion of potent anti-tumor-specific cytotoxic T lymphocytes (T

cells) responses, by a mechanism involving dendritic cell (DC)

editing (7, 8). Furthermore, NK cells can recognize tumors that

might evade T cell-mediated killing by aberrant human leukocyte

antigen (HLA) expression (9), indicating that NK cells participate

in tumor immunosurveillance.

A significant correlation between high intratumoral levels of

NK cells and increased survival has been shown in several types

of cancer (10). Indeed, high levels of NK-infiltrating tumors

have been associated with a significant improvement of clinical

outcomes in patients with head and neck squamous carcinoma

(HNSCC). It has been reported by van Herpen et al. that CD56+

NK cells in lymph nodes produced considerable amounts of IFN-

γ that subsequently lead to tumor regression in IL-12-treated

HNSCC patients (11). A direct positive correlation between the

density of CD57+ NK cells and a good prognosis has been reported

for oral squamous carcinoma (12) and gastric carcinoma (GC)

tumors (13). In addition, NK cell infiltration was found to also

correlate with the depth of invasion, the clinical stage, and the
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venous invasion. Therefore, the 5-year survival rate of GC patients

with a high rate of NK infiltration was significantly better than

that of patients with a low level of NK infiltration (13).

Natural killer-based immunotherapy is a promising strategy

for solid and hematologic cancers and it can potentially be

combined with chemotherapy, radiation, or monoclonal anti-

body therapy. For example, the proteasome inhibitor bortezomib

(Velcade®), which is clinically approved for the treatment of

refractory/relapsed myeloma, downregulates the expression of

major histocompatibility complex (MHC) class I on the tar-

get cell surface and thereby shifts the balance toward NK cell

activation and target cell killing (14). Therefore, such combi-

nation therapy has important therapeutic implications for mul-

tiple myeloma (MM) and NK cell-related malignancies in the

context of adoptively transferred allogeneic and autologous NK

cells (15). NK cell-based therapy can be combined with radi-

ation therapy as irradiation-induced tissue injury increases the

expression of NK-activating ligands (e.g., NKG2D ligands) on

malignant cells, thereby rendering tumors more susceptible to

NK cell cytotoxic activity (16) Another NK cell-based approach

used in therapy is the antibody-dependent cellular cytotoxicity

(ADCC). This approach is based on the ability of NK cells, express-

ing an activating Fc receptor, to kill tumor cells by recognizing the

constant region of tumor-bound monoclonal antibodies (mAbs).

Clinically, ADCC strategy has been used in CD20+ lymphoma

patients treated with rituximab (Rituxan™) (17) or HER2/neu-

expressing breast cancer patients treated with trastuzumab (Her-

ceptin™) (18). It is important to note that the co-administration

of immunomodulatory cytokines (e.g., IL-12) can enhance the

effects of anti-tumor mAbs via the activation of NK cells in vitro.

This effect has been observed in breast cancer patients overex-

pressing HER2/neu and treated with IL-12 and trastuzumab in a

phase I trial (19).

Despite the progress made in the field of NK-based

immunotherapy, there are still many obstacles to eliciting an effec-

tive immune response. One major impediment is the ability of

tumor cells to activate several mechanisms that lead to tumor

escape from NK-mediated killing. It has become increasingly

clear that the TME plays a crucial role in the impairment of the

immune response and in the development of many overlapping

mechanisms that create an immunosuppressive microenviron-

ment. It has been reported that tumor-associated NK cells display

a modified phenotype, thereby supporting the notion that tumor-

induced alterations of activating NK cell receptor expression may

hamper immune surveillance and promote tumor progression

(20). Decreased cytotoxic activity of NK cells infiltrating tumors

was also observed in different types of human cancer such as

lung carcinoma (21), indicating that the TME is a critical fac-

tor influencing NK-mediated killing of tumor cells. Hypoxia, a

characteristic feature of advanced solid tumors resulting from

defective vascularization and a subsequent insufficient oxygen

supply, is considered one of the hallmarks of the TME (22). It

is now well established that hypoxia contributes to malignant

progression in cancer by inducing an invasive and metastatic phe-

notype of tumor cells and by activating resistance mechanisms to

different anti-cancer therapies (23). Extensive efforts have been

made in recent years to identify these mechanisms. We review

here how the local microenvironment, in the particular con-

text of hypoxia, impacts NK cell responsiveness and shapes the

anti-tumor response (Figure 1).

TUMOR-DERIVED FACTORS CREATE AN

IMMUNOSUPPRESSIVE MICROENVIRONMENT FOR NK CELL

FUNCTIONS

IMPAIRMENT OF NK CELL FUNCTION BY CELLS FROM THE TUMOR

MICROENVIRONMENT

Hypoxic tumor cells have the ability to activate resistance

mechanisms to create an immunosuppressive microenvironment.

Indeed, through their ability to produce cytokines such as tumor

necrosis factor (TNF)-α and stromal cell-derived factor 1 (SDF-1),

hypoxic tumor cells induce the homing of bone marrow-derived

CD45+ myeloid cells to tumor areas (24). The invasion of myeloid

cells in the TME is reported to be a highly immunosuppres-

sive factor for NK cells (25). Myeloid-derived suppressor cells

(MDSCs) are one of the major components of the immune-

suppressive network responsible for the impairment of NK cell-

and T cell-dependent anti-cancer immunity (26). The immuno-

suppressive function of MDSCs is related to their production of

IL-10 that decreases the production by macrophages of IL-12,

a pro-inflammatory cytokine involved in the activation of NK

cells (27). It has also been shown that cancer-expanded MDSCs

induce anergy of NK cells by inhibiting cytotoxicity, NKG2D

expression, and IFN-γ production through membrane-bound

transforming growth factor (TGF)-β (28). Furthermore, it has

been demonstrated that hypoxia, via the induction of hypoxia-

inducible factor (HIF) 1-α in MDSCs, is responsible for their

differentiation to tumor-associated macrophages (TAMs) (29).

Although macrophages contribute to tumor cell death in the early

immune response to neoplasia, their presence in the TME corre-

lates with a poor prognosis for patients with advanced stages of

cancer (30, 31).

Macrophages constitute another major myeloid component of

the infiltrated tumors and can comprise up to 80% of the cell

mass in breast carcinoma (32). Hypoxic tumor secrete chemoat-

tractants [e.g., colony-stimulating factor (CSF)-1, CC chemokine

ligands (CCL) 2 and 5], resulting in the recruitment of mono-

cytes from the blood to the tumor site. Infiltrated monocytes

differentiate into CD206+ TAMs and accumulate in hypoxic areas

of endometrial, breast, prostate, and ovarian cancers (30). This

process is driven by tumor-secreted molecules such as endothe-

lial monocyte-activating polypeptide (EMAP) II, endothelin 2,

and vascular endothelial growth factor (VEGF) and also by the

inhibition of the CC chemokine receptors (CCRs) 5 and 2 expres-

sion (33). Exposure of TAMs to tumor-derived cytokines such

as IL-4 and IL-10 converts the TAMs into polarized type II

or M2 macrophages owing to the immunosuppressive and pro-

angiogenic activities. Subsequently, M2 macrophages establish an

environment that skews CD4+ and CD8+ T cell immunity toward

a tumor-promoting type 2 response (34). It has been also demon-

strated that hypoxia upregulates the expression of the matrix

metalloproteinase (MMP)-7 protein on the TAM surface, lead-

ing to the cleavage of Fas ligand from neighboring cancer cells,

making them less responsive to NK cells and T cell-mediated lysis

(35) (Figure 2).
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Baginska et al. Tumor microenvironment shapes NK functions

FIGURE 1 |The tumor microenvironment activates different

mechanisms to impair the NK-mediated anti-tumor immunity. Under

the pressure of the tumor microenvironment (TME), tumor cells adapt to

such stress by activating intrinsic resistance mechanisms (autophagy) or by

regulating their metabolism. Such regulation leads to the secretion of

several metabolites that impair the function of NK cells in the tumor site

(yellow area). Tumor cells under stress conditions may activate the release

of tumor-derived vesicles containing cytokines, growth factors, or

microRNAs to directly impact the NK functions (blue area). Such factors

can be secreted directly in the TME to recruit immunosuppressive cells or

to educate stromal cells involved in the impairment of NK cell functions

(green area).

Recently, a link between tumor hypoxia and immune tolerance

to NK cells through the recruitment of regulatory T (Treg) cells

has been established. Hypoxia induces secretion of the immuno-

suppressive cytokine TGF-β from gastric cancer cells, which sub-

sequently induces the proliferation and the accumulation of Treg

cells in the TME (36). Moreover, human Treg cells induce anergy

of NK cells through membrane-bound TGF-β and subsequently

downregulate the activating receptor NKG2D on the surface of NK

cells (37).

The immunosuppressive microenvironment can also be cre-

ated through the ability of cancer cells to activate cancer-associated

fibroblasts (CAFs) via the release of TGF-β or IL-6 (38, 39). CAFs

have been shown to sharply interfere with NK cells cytotoxicity

and cytokine production. Notably, it has been reported that CAFs

are able to inhibit the IL-2-induced upregulation of the activat-

ing receptors NKp44, NKp30, and DNAX accessory molecule-1

(DNAM-1) at the NK cell surface. NKp44 and NKp30 expression is

modulated by prostaglandin E2 (PGE2) released from CAFs, while

DNAM-1 regulation requires cell-to-cell interaction. Such inhibi-

tion results in impaired NK cell-mediated killing of melanoma

target cells (40). Likewise, CAFs directly impact cells of the TME

and/or attract additional cells to the tumor site by secreting numer-

ous factors including IL-6, TGF-β, VEGF, SDF-1, CXCL1/2, and

IL-1β (41) (Figure 2).

Other mechanisms implicated in the establishment of immune-

suppressive microenvironment are the expression of the immune

checkpoint receptors, cytotoxic T-lymphocyte antigen (CTLA)-

4, and the programed death receptor (PD)-1. Such receptors

appear to play important roles in anti-tumor immunity and

have been most actively studied in the context of clinical cancer

immunotherapy. However, the effect of the TME on their reg-

ulation is poorly investigated. Nevertheless, the TME has been

shown to mediate the induction of the PD-1 pathway (42). In

line with this observation, NK cells from MM patients express

PD-1, whereas normal NK cells do not. Anti-PD-1 antibody-

based therapy enhances human NK cell function against autol-

ogous primary MM cells (43), highlighting the role of the PD-

1/PD-L1 signaling axis in NK-mediated immune response against

tumors. There is no direct evidence so far linking hypoxia and

the induction of CTLA-4 expression and the PD-1/PD-L1 path-

way. Further investigations are required to determine the pre-

cise role of the TME in the regulation of CTLA-4 and the

PD-1/PD-L1 pathways.

INHIBITION OF NK CELLS BY TUMOR CELL-DERIVED FACTORS

The MHC class I chain-related (MIC) molecules, MICA and

MICB, as well as the UL16-binding proteins (ULBPs), expressed

on the surface of a broad range of carcinomas and some
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FIGURE 2 | Complex cellular interplay within the hypoxic tumor

microenvironment inhibits NK-mediated killing. Tumor cells in a hypoxic

tumor microenvironment (TME) secrete soluble factors that educate immune

cells [e.g., monocytes, tumor-associated macrophages (TAMs),

myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Treg)], and

stromal cells such as cancer-associated fibroblasts (CAFs). This scheme

summarizes the effects of tumor-derived soluble factors on recruitment,

differentiation, proliferation, and activation of tumor-associated cells (red

arrows) in the hypoxic TME and their immunosuppressive activities (green

lines) on NK-mediated lysis of tumor cells.

hematopoietic malignancies, play an important role in tumor

surveillance by NK cells. The interaction of cell surface MIC mol-

ecules with NKG2D receptors on NK cells is critical to activate

target cell killing. In this context, hypoxia has been reported to

increase MICA shedding from the surface of cancer cells through

the impairment of nitric oxide (NO) signaling and therefore

affect the NK-mediated killing of target cells. Soluble MIC leads

to a downregulated expression of NKG2D and CXC chemokine

receptor (CXCR) 1 on the NK cell surface (44). This mecha-

nism involves the HIF-1α-dependent upregulation of A disintegrin
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and metalloproteinase domain-containing protein (ADAM) 10,

which subsequently decreases the level of MICA on the tumor cell

membrane (44, 45) (Figure 3).

In addition, hypoxic stress can induce the formation of dimers

of the non-classical MHC class I molecule HLA-G at the surface of

melanoma cells, thereby protecting tumor cells from NK-mediated

killing. It appears that such induction is mediated by secretion

of IFN-β and -γ and by direct interaction of HLA-G with NK

cells (46).

Inhibiting the expression of activating NK cell receptors,

including NKp30, NKp44, and NKG2D, has been shown to impair

NK cell-mediated cytolytic activity in a model of melanoma (47).

Although NK cells in the TME adapt and survive hypoxic stress by

upregulating HIF-1α, they lose the ability to upregulate the surface

expression of NKp46, NKp30, NKp44, and NKG2D receptors in

response to IL-2 or other activating cytokines (e.g., IL-15, IL-12,

and IL-21). However, it is important to note that hypoxia does not

significantly alter the surface density and the function of the Fc-γ

receptor CD16, thus allowing NK cells to maintain their capability

of killing target cells via ADCC (48).

In addition to solid tumors, the immunosuppressive effect

of the hypoxic TME has been also described in MM cells as

hypoxia reduced NK cell killing of MM cell lines despite an

unchanged NK cell degranulation level. In addition, hypoxia

did not alter the surface expression of NK cell ligands (HLA-

ABC and -E, MICA/B, and ULBP1-2) and receptors [killer cell

Ig-like receptors (KIR), NKG2A/C, DNAM-1, natural cytotox-

icity receptors (NCR), and 2B4], but decreased the expression

of the activating NKG2D receptor and intracellular level of

perforin and granzyme B. Pre-activation of NK cells by IL-2

removed the detrimental effects of hypoxia and increased NKG2D

expression (49).

It is now well documented that the killing capacity of NK cells

can be potentiated by cytokines such as IFN-γ and IL-2 (50, 51).

Besides its effect of damping the cytotoxic activity of NK cells,

hypoxia substantially decreases the ability of NK cells to be acti-

vated by IFN-γ through a mechanism that is not fully understood

(52). Overall, it appears that manipulation of the TME will be

an important consideration in achieving optimal NK-mediated,

anti-tumor responses.

Since NKG2D ligand mRNAs are expressed in normal tissues,

it has been proposed that their expression might be regulated

at the post-transcriptional level by microRNAs (miRNAs) (53).

Indeed, a subset of endogenous cellular miRNAs is proposed to

repress MICA and MICB by targeting their 3′ UTR regions (54).

Upon stress induction, the increase in MICA and MICB tran-

scription might exceed the inhibitory function of miRNAs, whose

expression remains constant, and result in an overexpression of

MICA and MICB. Interestingly, among this subset of miRNAs,

miR-17-5p, miR-20a, miR-93, miR-106b, miR-372, miR-373, and

miR-520 have been shown to be overexpressed in various tumors

and be involved in tumor progression and invasion. Therefore, a

new function of these miRNAs has been proposed in the impair-

ment of the immune response through the regulation of MICA

and MICB expression (Figure 1). Based on these observations, a

“miRNA-based immunoevasion” model has been described that

highlights intracellular cancer-associated miRNAs as important

factors able to impair immune recognition through the targeting

of NK ligands (54). Furthermore, miR-10b, an important “metas-

tamir,” has been described to downregulate MICB and decrease

the NKG2D-dependent cytotoxicity of NK cells (55). MiR-520b,

an IFN-γ-induced miRNA, has been described to regulate MICA

expression at both the transcriptional and post-transcriptional

levels (56). It has also been proposed that viruses can take advan-

tage of miRNA-based immunoevasion. Indeed, the hcmv-miR-

UL112 encoded by the human cytomegalovirus impairs NK cell

function during viral infection through the modulation of MICB

expression (57). In addition, hcmv-miR-UL112 acts synergistically

with the cellular miR-376a to induce escape from NK-mediated

immune elimination (58). Together, these studies highlight the

importance of miRNAs in the regulation of NKG2D ligand expres-

sion and tumor immune surveillance. Whether the expression of

such miRNAs is regulated by hypoxia in the TME remains to be

investigated.

TUMOR MICROENVIRONMENT-DEPENDENT MODULATION

OF CANCER CELL METABOLISM AFFECTS NK CELL

FUNCTIONS

Through the sensing of oxygen level and/or the transcriptional

activity of HIF-1α, hypoxia plays a key role in the reprograming

of cancer cell metabolism. Indeed, reduced O2 availability induces

HIF-1α, which regulates the transcription of a set of genes that

encode proteins involved in various aspects of cancer biology (59).

A well-known example is the shift of glucose and energy metab-

olism from oxidative to glycolytic metabolism that allows for the

maintenance of redox homeostasis under conditions of prolonged

FIGURE 3 | Soluble MICA/B regulate NKG2D receptors on the surface of

NK cells. Under hypoxic stress, tumor cells activate expression through

HIF-1α and the release of ADAM10. Released ADAM10 cleaves MICA/B

ligands on the surface of tumor cells and soluble MICA/B downregulates the

expression of NKG2D on the surface of NK cells, leading to tumor escape

from NK-mediated killing.
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hypoxia (60). The effects of such metabolic adaptations evolved

by hypoxic cancer cells have received particular attention in the

establishment of immune tolerance. In this section, we will focus

on the mechanisms involved in tumor metabolism adaptation that

participate in shaping the NK cell anti-tumor response within a

hypoxic microenvironment (Figure 1).

LACTATE

To adapt to oxygen deprivation, hypoxic cancer cells undergo a

dramatic alteration of cellular glucose metabolism characterized

by a high glycolytic activity. HIF-1α plays a central role in this

metabolic switch by inducing the expression of multiple genes

involved in glucose uptake (glucose transporters-1 and -3) and

metabolism (i.e., hexokinases-1 and -2 and lactate dehydrogenase

A) (61). In addition, HIF-1α regulates the expression of mono-

carboxylate transporter 4 and pyruvate dehydrogenase kinase 1,

thereby inhibiting the conversion of pyruvate to acetyl CoA (62).

The accumulation of pyruvate in cells prevents its metabolism

through the tricarboxylic acid cycle in mitochondria. Pyruvate

is subsequently reduced to lactate and finally released from the

tumor cells. It has been recently reported that cancer cells escape

immune response through the release of lactate in the microen-

vironment and the presence of a low extracellular pH, as a con-

sequence of the “Warburg effect” induced under hypoxia. In vivo

and in vitro evidence has been provided indicating that tumor-

derived lactate directly and indirectly alters NK cell functions.

The direct effect involves the impairment of the cytolytic activity

of NK cells by downregulating NKp46 expression and reduc-

ing perforin/granzyme B production. Moreover, lactate affects

the NK-mediated killing indirectly through the increased MDSCs

generation from mouse bone marrow, thus creating an immuno-

suppressive microenvironment. Interestingly, these immunosup-

pressive effects were efficiently reverted in a lactate dehydrogenase

A-depleted cancer model (63).

ADENOSINE

Hypoxia-driven accumulation of adenosine in the TME has been

identified as another mechanism for immune modulation (64). It

has been reported that the concentration of adenosine in the extra-

cellular fluid of solid carcinomas may be increased up to 20-fold

compared with normal tissues (65). The accumulation of adeno-

sine is sustained, at least in part, by the hypoxia-mediated modula-

tion of enzymes implicated in adenosine metabolism (i.e., adeno-

sine kinase, endo-5′-nucleotidase). Moreover, the additional gen-

eration of extracellular adenosine from extracellular ATP occurs

through the sequential enzymatic activity of the membrane-bound

nucleotidases CD39 and CD73. It has been shown that CD73,

involved in the dephosphorylation of AMP to adenosine, is upreg-

ulated by HIF-1α (66, 67). Once released in the extracellular envi-

ronment, adenosine exerts various immunomodulatory effects

via binding on adenosine receptors (i.e., A1, A2A, A2B, and A3)

expressed on multiple immune subsets including NK cells.

In contrast to other immune cells such as macrophages and

neutrophils, the effect of extracellular adenosine on NK cells is not

fully known. Adenosine has been shown to inhibit TNF-α release

from IL-2-stimulated NK cells and suppress their proliferation

(68). Another study reported that adenosine inhibits cytotoxic

granules exocytosis from murine NK cells via binding to an

unidentified adenosine receptor (69). More recently, data support

the fact that adenosine and its stable analog 2-chloroadenosine

inhibit perforin- and Fas ligand-mediated cytotoxic activity as

well as cytokines production (i.e., IFN-γ, macrophage inflam-

matory protein 1-α, TNF-α, and granulocyte-macrophage CSF)

from activated NK cells. These inhibitory effects occur through

the stimulation of the cyclic AMP/protein kinase A pathway fol-

lowing the binding of adenosine to A2A receptors on NK cells (70,

71). In this context, targeting the CD73-adenosine pathway has

recently emerged as a potential clinical strategy for immunother-

apy (66). In vitro data revealed that the inhibition of the CD39,

CD73, or A2A adenosine receptor by siRNA, shRNA, or specific

inhibitors resulted in a significant improvement of NK cell lytic

activity against ovarian cancer cells (72). Furthermore, in vivo

blocking of the A2A adenosine receptor enhanced NK cell activ-

ity in a perforin-dependent manner and reduced metastasis of

CD73-overexpressing breast cancer cells (73).

As multiple immune competent cells express adenosine recep-

tors, an additional level of immunomodulatory activity, via adeno-

sine, needs to be considered. For example, several studies reported

that adenosine interaction with other immune subsets impairs

the cytotoxic activity, the pro-inflammatory cytokines production,

and the proliferation of T cells. In addition, adenosine impairs the

recruitment and the immunosuppressive activity of MDSCs in

tumors, as well as the migration and the immunosuppressive func-

tion of Treg cells into the TME (74). Taken together, by sustaining

the immunoregulatory activity of extracellular adenosine, all the

mechanisms described above collaborate to impair the anti-tumor

NK-mediated immunity.

NITRIC OXIDE

Accumulating evidence suggests that the exposure of cells to low

oxygen levels results in a marked inhibition of NO production

(75). NO is produced from l-arginine in a reaction catalyzed by

the NO synthase (NOS) enzymes, in which oxygen is a required

cofactor. Hypoxia has also been shown to increase arginase activ-

ity, thereby redirecting l-arginine into the urea cycle, away from

the NO generation pathway (76). Siemens et al. provided evidence

that hypoxia-mediated impairment of NO signaling in tumor cells

contributes to tumor escape from NK immunosurveillance. They

demonstrated that hypoxia-mediated shedding of MIC occurs

through a mechanism involving impaired NO signaling in human

prostate cancer. Such shedding can be blocked after reactivating

NO signaling by the administration of NO mimetic agents (45).

This work suggests that reactivation of NO could help to overcome

hypoxia-driven tumor escape.

PROSTAGLANDIN E2

Several lines of evidence suggest that the deregulation of the

cyclooxygenase (COX)-2/PGE2 pathway is a key factor in tumor

evasion of the immune response (77). COX enzymes catalyze

the formation of prostaglandins from arachidonic acid following

sequential oxidation. Interestingly, COX-2 can be overexpressed in

both adenoma and carcinoma cells under hypoxia via a mechanism

dependent on HIF-1α. This upregulation is associated with PGE2

overproduction and secretion in the microenvironment (78). Early
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studies showed that PGE2 suppresses the cytolytic activity of NK

cells (79, 80) by a mechanism related to the inhibition of IFN-

γ production (81, 82). Recently, Pietra et al. have shown that

melanoma cells affect the function of NK cells by downregulating

the surface expression of activating receptors, including NKp30,

NKp44, and NKG2D. This impairment appears to be related, at

least in part, to PGE2 production by melanoma cells as PGE2-

specific inhibitor-restored NK cell functions (47). In addition to

its direct effect on NK cells, more recent data reported that PGE2

can indirectly affect the NK cell function by promoting the estab-

lishment of an immunosuppressive microenvironment through

the induction of Treg cells (83), macrophages (84), and MDSCs

(27, 85) development.

GALECTINS

Galectins (Gal) are proteins belonging to the lectins family that

participate in the delivery of signals after binding to glycopro-

teins and glycolipids on the cell surface of target cells. Using a

proteomic approach, Le et al. have identified Gal-1 as a novel

hypoxia-regulated protein (86). They proposed that tumor aggres-

siveness of HNSCC is dependent on hypoxia-mediated production

and the secretion of Gal-1, which in turn negatively regulates

the anti-tumor immune response. Additional studies have sup-

ported the contribution of Gal-1 in creating an immunosuppres-

sive microenvironment at the sites of tumor growth by several

mechanisms (87). Thus, it has been reported that recombinant

Gal-1 is able to promote the differentiation of CD4+CD25+

Treg cells in vitro (88). Recently, Dalotto-Moreno et al. showed

that tumor-derived Gal-1 increases the abundance and/or the

expansion of peripheral Treg cells in vivo and modulates their

suppressive capacity. Conversely, attenuation of Gal-1 reduces the

frequency of Treg cells within tumors, lymph nodes, and spleen

and removes the immunosuppressive function of Treg cells (89).

More recently, Gal-3, another member of the galectin family regu-

lated by HIF-1α (90), was reported to exert an immunosuppressive

function in the TME. Tsuboi et al. provided evidence that cell

surface Gal-3 on bladder tumor cells modulates MICA-NKG2D

interactions by binding MICA through poly-N -acetyllactosamine,

thereby severely impairing the NK cell activation and degranula-

tion (91). The effect of Gal-9 is still debated as it may regulate both

positively and negatively the NK cell response depending on the

activation threshold and the expression of its receptor. Gleason

et al. have shown that Gal-9 binding to the immune receptor T cell

Ig and mucin-containing domain-3 (Tim-3) enhances the produc-

tion of IFN-γ by NK cells (92). Conversely, higher doses of Gal-9

impair the cytotoxic function of NK cells in a Tim-3 independent

manner (93).

REGULATION OF NK CELL-MEDIATED KILLING BY

AUTOPHAGY

It has become increasingly clear that tumor cells activate key

biochemical and cellular pathways under hypoxic stress that

are important for tumor progression, survival, and metasta-

sis. Several recent reports highlight autophagy as a critical

process that modulates the anti-tumor immune response. Briefly,

autophagy is a catabolic process in which a cell self-digests its

own components. Autophagy can be activated in response to

multiple stressors including hypoxia, nutrient starvation, growth

factor withdrawal, and endoplasmic reticulum stress. Under stress-

ful stimuli, autophagy activation serves as an adaptive response

to provide nutrients and prevents accumulation of altered cell

components (94).

To adapt to hypoxia, cells activate autophagy through both

HIF-1α dependent and independent pathways, depending on the

sensor activated (95). The role of autophagy in cancer immunity

seems to be complex as hypoxia-induced autophagy occurs in tar-

get cells and in tumor-infiltrating immune cells. Although the role

of autophagy induction in target cells is well documented, rela-

tively little attention has been given to its role in immune cells.

Therefore, understanding how autophagy modulates the tumor

immune response represents a major challenge in the field of

tumor immunotherapy. Recently, it has been reported that NK

cells not only provide lytic signals to their target cancer cells,

but also promote autophagy in the remaining un-killed target

cells. Moreover, the NK-mediated autophagy induction in target

cells was enhanced by provision of IL-2 and cell-cell interactions

between NK cells and tumor cells. This study highlights autophagy

induction in target cells as a cell mechanism of resistance to NK-

mediated killing (96). More recently, we showed in vitro and in vivo

that targeting autophagy under hypoxia restores NK-mediated

lysis in breast cancer cells. In addition, we provided mechanis-

tic evidence that the activation of autophagy under hypoxia led

to the degradation of NK-derived granzyme B, making hypoxic

tumor cells less sensitive to NK-mediated killing (Figure 4) (97).

TUMOR-DERIVED EXTRACELLULAR VESICLES INFLUENCE NK

CELL ACTIVITY

Recent advances have led to the identification of an additional

mechanism used by tumor cells to escape NK cell recognition and

impair the NK-mediated immune response (98). Indeed, tumor

cells release vesicle-bound molecules (cytokines, NKG2D ligands,

and miRNAs) targeting and inhibiting NK cell functions (99).

Exosomes are 50–150 nm membrane vesicles derived from the

multi-vesicular bodies that are secreted by all cell types [reviewed

in Ref. (100)]. As a consequence, exosomes are found in many

biological fluids such as urine, plasma, and saliva. As their content

reflects the cells from which they are derived, exosomes represent,

therefore, attractive biomarkers (101). Exosomes and other types

of extracellular vesicles are well-known mediators of intercellu-

lar communication and play a crucial role in the development of

aggressive and metastatic tumors (102, 103).

CANCER CELL-DERIVED EXOSOMES

The production of NKG2D ligand-bearing exosomes has been

proposed as a mechanism for tumor cell escape from immune

recognition (99, 104, 105). Indeed, it has been demonstrated that,

in contrast to ULPB2, released ULBP3 is included into exosomes.

Remarkably, ULBP3-containing exosomes have been shown to

be more potent downregulators of the NKG2D receptor than

the soluble form of ULBP2 proteins released by the metallo-

proteinases ADAM10 and 17. Pre-incubation of NK cells with

ULBP3-containing exosomes induced a dramatic reduction of

NKG2D-mediated lysis of MICA-expressing cells (106). Tumor-

derived exosomes (TDEs) are rapidly taken up by NK cells and
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FIGURE 4 | Hypoxic stress activates autophagy in tumor cells as an

intrinsic resistance mechanism to NK-mediated killing. In our model,

the cytolytic effectors perforin and granzyme B enter the target cells by

endocytosis and then are found in enlarged endosomes called

“gigantosomes.” In hypoxic cells, the activation of autophagy leads to the

formation of autophagosomes that fuse with “gigantosomes” to form

amphisomes. The fusion between amphisomes and lysosomes selectively

degrades granzyme B in this compartment, making hypoxic tumor cells less

sensitive to NK-mediated lysis.

remain stable for 48 h (104, 107). The transfer of TDE-bearing,

membrane-anchored TGF-β, MICA, and MICB leads to the down-

regulation of NKG2D expression at the surface of NK cells and

impairs their cytotoxic functions (Figure 5) (99, 108). However,

TDEs can only weakly impair the NK cell proliferation compared

with their strong negative effect on the proliferation of CD8+ T

cells (109). Nevertheless, numerous studies highlighted TGF-β as a

major immunosuppressive molecule for NK cells (108, 110, 111).

Indeed, an elevated plasma level of TGF-β was detected in lung or

colorectal cancer patients compared with healthy volunteers. This

increase inversely correlated with NKG2D surface expression on

NK cells in these patients (110). Recently, TGF-β was shown to

block NK cell activation by repressing gene expression and antag-

onizing IL-15-induced proliferation (111). A striking observation

was also done by Clayton et al. who identified exosomal TGF-β1

FIGURE 5 | Impairment of NK cell function by tumor-derived

exosomes. Tumor cells secrete extracellular vesicles called exosomes.

Tumor-derived exosomes contain numerous factors able to modulate the

function of NK cells such as MICA/B, ULBP3, TGF-β, PI-9, and different

microRNAs. Exosome-derived MICA/B, ULBP3, TGF-β, and miR-1245 can

decrease NKG2D on the surface of NK cells, while PI-9 degrades granzyme

B. Tumor-derived exosomes can also decrease the level of perforin in NK

cells by a still-unknown mechanism.

as a more potent contributor to antiproliferative effects than the

soluble form (109).

Several cancer models have generated evidence supporting the

important roles of TDEs. Indeed, mammary carcinoma exosomes

promote tumor growth by suppressing NK cell function in mice

(104). A decrease in splenic NK cell cytotoxicity was observed after

in vivo injection of TDEs. Moreover, a reduction in the number

and the percentage of NK cells was observed in the lungs 3 days

after exosome injection, without a reduction in the viability of

the NK cells. Interestingly, TDEs also reduced the expression of

the NK pore-forming and cytolytic protein perforin (Figure 5)

(104, 111), whereas the level of granzyme B was unaffected (104).

A decrease in NK cell proliferation in response to IL-2 was also
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observed after treatment with exosomes derived from different

tumor cell types (breast and melanoma) due to the inhibition of

the JAK-STAT signaling. However,TDEs did not affect DC matura-

tion but hampered their ability to stimulate the immune response

(104). The granzyme B-inhibitory serpin proteinase inhibitor-9

(PI-9) has also been identified inside exosomes (112) and could

also play an important role in the resistance of tumor cells to NK

cells (Figure 5). Taken together, these data highlight the crucial

role that TDEs may have on the tumor immunosurveillance by

affecting the NK cell receptors, proliferation, and release of cyto-

toxic molecules, thus impairing an effective anti-cancer immune

response.

Numerous studies have provided evidence that hypoxic stress

may influence the composition of TDEs. Indeed, to substitute

oxygen deprivation and a lack of nutrients, tumor cells induce

the expression of angiogenic factors to overcome hypoxic stress

through the formation of new blood vessels from existing vascu-

lature. In addition to secreted VEGF, several chemokines (G-CSF,

GM-CSF, CXCL16, and SDF-1) and exosomes were shown to be

important mediators for tumor cells to overcome hypoxic stress

(102). In this context, it has been reported that tumor cells under

hypoxic stress secrete numerous proteins sequestered in exosomes

involved in cell–cell communication, cell growth, and malignant

transformation. Other studies have focused on how hypoxia-

induced membrane vesicles stimulate angiogenesis in malignant

and angiogenic brain tumor glioblastoma multiforme (GBM).

Indeed, hypoxic cancer cells release exosomes containing tissue

factor (TF) acting on surrounding endothelial cells in a paracrine

manner, leading to the activation of a protease-activated receptor

2 (PAR2)-ERK signaling pathway (113). PAR2 has been recently

identified as a regulator of the innate immune response and a

mediator of cell proliferation and migration. Also called throm-

boplastin, TF forms a complex with the tissue protease factor VIIa

and is necessary for the initiation of thrombin formation. Because

hypoxic tumors are often characterized by endothelial cell hyper-

plasia and hypercoagulation, the combined presence of newly gen-

erated fibrin and activated platelets has been shown to protect the

tumor from NK cells and immune surveillance (114). Further find-

ings obtained with GBM cells indicates that hypoxic conditions

stimulated tumor cells to generate exosomes containing proteins

that reflect the hypoxic status of the tumor cells. These findings

support the hypothesis that the microenvironment significantly

impacts the TDE composition. The enrichment in exosomes of

specific hypoxia-related RNAs and proteins (cytokines,growth fac-

tors, and MMP) could indeed be associated with a poor patient

prognosis. In addition, hypoxic TDEs mediated a strong paracrine

stimulation of angiogenesis and activation of cancer cells, leading

to an acceleration of tumor growth in a mouse xenograft model

(115). TDEs systematically contain several members of the ADAM

family, mostly ADAM10 (107), which is able to shed NKG2D lig-

ands from the cell membrane (116). Finally, besides stimulating

the production of exosomes with a specific content, hypoxia has

also been shown to enhance exosome release by cancer cells (92).

Besides solid tumors, circulating tumor cells, such as leukemic

cells, escape NK surveillance at a systematic level in blood. It is

important to note that leukemic cells are constantly recirculat-

ing in the bone marrow, where the environment is maintained in

constant hypoxia (117). Recent studies have shed light on mecha-

nisms of tumor cell escape from NK-mediated killing that could be

used as new therapeutic approaches. These mechanisms include

the shedding of soluble (BAG6, and MICA) or exosome-derived

inhibitory molecules (TGF-β) in various malignancies such as

acute myeloid leukemia (118), chronic lymphocytic leukemia

(119), and Hodgkin’s lymphoma (119).

SECRETED microRNAs

As described above, under hypoxic conditions, most cell types

undergo important metabolic changes orchestrated by members

of the HIF transcription factor family. It is well documented

that HIF-1α is a potent inducer of miR-210 (120), which has

been described to be released by tumor cells (121, 122). It has

been shown that miR-210 released by leukemic and metastatic

cancer cells may be transported by exosomes and enter endothe-

lial cells (121, 122). In the recipient cells, miR-210 is able to

induce angiogenesis and promote tumor growth. These data high-

light the role of exosomal miR-210 in the shaping of the TME

and the potential action on various cell types present at the

tumor site. Although the data available are limited, we believe

that exogenous miRNAs can impair the anti-tumor function of

immune cells (Figure 5). In line with this concept, it has been

shown that the TGF-β1-induced miR-1245 downregulated the

NKG2D receptor on NK cells and impaired NKG2D-mediated

functions (123). The influence of exogenous miRNAs on NK

cells is currently unknown but understanding this new regula-

tory mechanism may help to improve the outcome of NK-based

immunotherapy.

CONCLUSION

Recent developments in cancer immunotherapies have now begun

to explore the use of NK cells (15, 124). Particularly, strategies

designed to improve NK-mediated killing using tumor-specific

mAbs have shown promising results in preclinical and some clini-

cal settings (125). This review has summarized the different mech-

anisms involved in the impairment of NK-mediated tumor killing

and highlighted that the majority of these mechanisms likely

evolve within the TME. In this regard, it should be emphasized that

the composition and characteristics of the TME are important in

determining the anti-tumor immune response. For example, dif-

ferent subsets of the immune system, including NK cells, DCs, and

effector T cells, are capable of driving potent anti-tumor responses.

However, the ability of tumor cells to exploit other cells present in

the TME is now widely regarded as a critical factor that switches

the immune response from a tumor-destructive profile to a tumor-

promoting profile. Such a microenvironment may also favor the

development of immunosuppressive populations of immune cells,

such as MDSCs, TAMs, and Treg cells.

Despite recent advances in cancer immunotherapy, the ther-

apeutic outcome was often disappointing in many clinical pro-

tocols. Given the important immunomodulatory effects of the

TME, it stands to reason that it may represent a therapeutic tar-

get that can be manipulated to improve the anti-tumor immune

response. Thus, the first clinical interventions that aim to target the

microenvironment to enhance tumor immunity are under active

evaluation.
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Overall, investigations oriented toward the identification of

novel therapeutic strategies, aiming to improve the anti-tumor

immunotherapy, should pay closer attention to the TME to awake

or reawake immune cells and/or to redirect such a microenviron-

ment from a pro-tumor to an anti-tumor state. Given its central

role in tumor progression and resistance to therapy, the hypoxic

TME should be considered as a new critical therapeutic target in

oncology. We believe that a better characterization of the TME can

provide important prognostic and predictive values independent

of the tumor phenotype.
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