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Abstract. We investigate deep learning autoencoders for the unsupervised recognition of phase transitions
in physical systems formulated on a lattice. We focus our investigation on the 2-dimensional ferromagnetic
Ising model and then test the application of the autoencoder on the anti-ferromagnetic Ising model. We use
spin configurations produced for the 2-dimensional ferromagnetic and anti-ferromagnetic Ising model in zero
external magnetic field. For the ferromagnetic Ising model, we study numerically the relation between one
latent variable extracted from the autoencoder to the critical temperature Tc. The proposed autoencoder
reveals the two phases, one for which the spins are ordered and the other for which spins are disordered,
reflecting the restoration of the Z2 symmetry as the temperature increases. We provide a finite volume
analysis for a sequence of increasing lattice sizes. For the largest volume studied, the transition between
the two phases occurs very close to the theoretically extracted critical temperature. We define as a quasi-
order parameter the absolute average latent variable z̃, which enables us to predict the critical temperature.
One can define a latent susceptibility and use it to quantify the value of the critical temperature Tc(L)
at different lattice sizes and that these values suffer from only small finite scaling effects. We demonstrate
that Tc(L) extrapolates to the known theoretical value as L → ∞ suggesting that the autoencoder can also
be used to extract the critical temperature of the phase transition to an adequate precision. Subsequently,
we test the application of the autoencoder on the anti-ferromagnetic Ising model, demonstrating that the
proposed network can detect the phase transition successfully in a similar way.

1 Introduction

Recent advances in the implementation of Artificial Intel-
ligence (AI) for physical systems, especially, on those
which can be formulated on a lattice, appear to be suit-
able for observing the corresponding underlying phase
structure [1–17]. So far methods such as the Principal
Component Analysis (PCA) [6,10,12,18,19], Supervised
Machine Learning (ML) [2,15,20], Restricted Boltzmann
Machines (RBMs) [21,22], as well as autoencoders [6,13]
appear to successfully identify different phase regions of
classical statistical systems, such as the 2-dimensional
(2D) Ising model that describes the (anti)ferromagnetic-
paramagnetic transition. These techniques were also
applied on quantum statistical systems, such as the Hub-
bard model [4] that describes the transition between
conducting and insulating systems. Very recently, similar
studies have been applied for simulations of quantum fields
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on the lattice, such as the SU(2) gauge theory [23] with
an increased complexity in the data due to the structure
of the SU(2) gauge group.
Trained neural networks can thus help distinguish

phases in simple statistical systems – the structure of
which is known – but, more importantly in more complex
systems where the underlying phase structure is unknown.
In this work, we would like to examine whether the
proposed, fully-connected (Dense), deep learning autoen-
coder, which does not require supervision during training,
can shed light on the phase structure of the 2D-Ising
model and enable the identification of the critical tem-
perature in the thermodynamic limit. Furthermore, we
would like to investigate if deep learning autoencoders can
be used as tools in order to extract physical observables
with better statistical accuracy. This means to define new
observables which demonstrate different features than the
well-known quantities such as the order parameter of the
theory.
As mentioned above, this is not the only work

where autoencoders are used. Autoencoders have been
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previously used for the identification of phase transitions
in references [6,13]. In reference [6] the authors studied the
phase transition of the 2D-Ising model using in addition to
PCA an autoencoder based on Convolutional Neural Net-
works (CNNs) and observed that they could actually “see”
a transition and differentiate the two distinct states of the
2D-Ising model through the latent variable. Nevertheless,
this result has been obtained for one lattice volume and a
finite volume analysis1 has not been carried out. Thus, it
is not clear whether the observed critical point converges
to the known critical temperature in the limit of infinite
volume.

In reference [13] the author used a variational autoen-
coder as well as an autoencoder to demonstrate that
the latent parameters of the autoencoder, resulting by
feeding it with configurations of the 2D-Ising model,
corresponds to the known order parameter, i.e. the mag-
netization. Although this was carried out at one lattice
volume, it is clear that since the latent variable is identified
as the magnetization, the extracted critical temperature
for finite volume will converge to the known, theoreti-
cally extracted, critical temperature at the infinite volume
limit. At this point, it should be made clear that goal
of this work is not to use the autoencoder to reproduce
the order parameter, but as a technical tool enabling to
study particular features of the model and identify new
quantities which might be proven useful for analyzing the
phase behaviour of statistical and possibly gauge theoret-
ical models. It actually turns out that using the proposed
network with the chosen activation functions, the latent
variable we observe is not identified as the magnetiza-
tion but as a different quantity which is affected less by
finite volume effects, leading to faster convergence in the
thermodynamic limit.

Moreover, in the field of Computational Physics,
autoencoders are also used by exploiting their generative
context. In other words, there have been investigations
on how to use variational autoencoders towards the
reconstruction of physically meaningful configurations of
statistical systems such as the 2D-Ising model [24] and the
2D XY model [25]. Although this is a hot and promising
topic since it can potentially reduce the cost of the produc-
tion of such configurations, the successful reconstruction
of 2D-Ising configurations is beyond the scope of this work.

Deep learning autoencoders are frequently used in cases
where data hides interesting structure by processing the
raw datasets. They can, therefore, be used to discover
interesting structure in ensembles produced for a range
of a parameter that characterizes the phase space of the
model (with different sectors having different physical
properties). One such example is the ferromagnetic Ising
model for which at the critical temperature Tc, the sys-
tem undergoes a transition from the ordered phase to
the disordered. A minor variation of this model is the
anti-ferromagnetic Ising model, where the system also
undergoes a similar phase transition.

1 For reasons of clarity, we mention that finite volume analysis has
been applied in the past on results extracted via supervised machine
learning [26] as well as from PCA analysis [27], however not from
autoencoders.

In this work, we investigate the action of unsupervised
machine learning, namely the deep learning autoencoder
(not variational), towards the identification of the phase
transition of the 2D-Ising (anti)ferromagnetic model.
More specifically, we produce decorrelated configurations
for the 2D-Ising model for a given range of temperatures,
and then we apply the autoencoder trying to understand
what characteristics of the phase structure we can capture.
Hence, technically, this work combines the production of
configurations using Monte Carlo methods as well as the
deep learning autoencoder algorithm. We observe that the
autoencoder can capture the underlying Z2 symmetry and
can indeed find out where the transition occurs by iden-
tifying a relevant, quasi-order parameter: the mean value
of the absolute latent variable. Although this quantity is
not suitable for predicting the order of the transition, it
can determine the critical temperature with small finite
scaling effects.
This article is organized as follows: In Section 2 we

present a brief description of the 2D-Ising ferromagnetic
and anti-ferromagnetic model, explaining the production
of the configurations as well as its phase structure. In Sec-
tion 3, we discuss the deep learning autoencoder, explain
how it works and provide the structure of the network.
Subsequently, in Section 4 we provide our results for the
ferromagnetic 2D-Ising model. Additionally, as a test, we
apply our autoencoder on the anti-ferromagnetic 2D-Ising
model and demonstrate our results in Section 5. Finally,
in Section 6, we present our conclusions.

2 The 2-Dimensional Ising model

One of the most interesting physical phenomena in nature
is magnetism. It is known that the ferromagnetic materials
exhibit a spontaneous magnetization in the absence of an
external magnetic field. Such magnetization occurs only
if the temperature of the system is lower than a known
critical temperature Tc, the so called Curie temperature.
If the temperature of the system is raised so that T > Tc,
then the magnetization vanishes. In principle, the critical
temperature Tc separates the microstates of the system
from being ordered or magnetized for T < Tc to being ran-
domly oriented resulting in zero magnetization; these two
phases correspond to the ferromagnetic and the disordered
phases, respectively.
(Anti)ferro-magnetism has a quantum mechanical

nature and, thus, much effort is invested towards its
understanding. Albeit quantum mechanical, simple clas-
sical models can help to gain insight into this effect. The
2D-Ising model is a classical model that is commonly used
to study magnetism. The 2D-Ising model can be consid-
ered as a lattice with N = Nx×Ny sites, on each of which
a double valued spin si is located, either being in an “up”
orientation denoted by ↑ or si = + or “down” denoted by
↓ or si = −.
The macroscopic properties of the 2D-Ising system are

determined by the nature of the accessible micro-states.
Thus, it is useful to know the dependence of the Hamilto-
nian on the spin configurations. The total energy is given
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by

H = −J

N
∑

i,j=nn(i)

sisj − µh

N
∑

i=1

si , (1)

where J is the self-interaction between neighbouring spins,
h the external magnetic field and µ is the atomic mag-
netic moment. Note that in the first sum, the notation
nn(i) represents nearest-neighbour pairs; the sum is taken
over all nearest-neighbouring pairs. The sign of J deter-
mines whether we have a ferromagnetic(J = 1) or an
anti-ferromagnetic(J = −1) system.
In the case of the canonical ensemble, in other words,

when the system is attached to a thermal reservoir and
kept at a constant temperature T , as the time passes the
spins are left to fluctuate with rates depending on the
reservoir’s temperature. This behaviour can be captured
in a Monte Carlo (MC) simulation in the canonical ensem-
ble. In the ferromagnetic case at T = 0, the system is
frozen with all spins being at one direction either down
or up. On the other hand in the anti-ferromagnetic case
at T = 0, the system gets split into two sub-systems in
a checkerboard pattern, and the difference between the
spins of these two sub-systems points at one direction
either up or down. The orientation of the spins is arbi-
trary, however, the dynamics enforce the system to choose
one of the two directions. This corresponds to the spon-
taneous symmetry breaking of the Z2 global symmetry
group in the ferromagnetic case. In the anti-ferromagnetic
case, the existence of a checkerboard pattern corresponds
to the spontaneous breaking of the translation symme-
try. Although the Hamiltonian of the system is invariant
under Z2 and translation transformations, the degenerate
ground states are not invariant but get interchanged under
such transformations.
For small, nonzero values of the temperature, spins of

the whole system (in the ferromagnetic case), or the sub-
systems (in the anti-ferromagnetic case), still form large
sectors where all spins are correlated and point to one
direction. Above the critical temperature of Tc, the spins
are disordered and Z2 symmetry is restored.
The question that we address in this work is whether

the behaviour described above can be captured by a deep
learning autoencoder when we pass it ensembles for a
sequence of temperatures separated by some δT . More
precisely, we seek to understand if a qualitative description
of the phase structure of the Ising model can be extracted
and whether one can determine the critical temperature
Tc.

2.1 Swendsen-Wang algorithm

The MC simulation for the 2D-Ising model is conven-
tionally performed using the Metropolis algorithm. Since
this algorithm is based on local updates, it faces the
problem of critical slowing down near the critical temper-
ature, where the correlation length diverges. In order to
tackle this problem, we have implemented the Swendsen-
Wang cluster algorithm [28,29], which is based on global
updates of the spin configurations. This algorithm relies

on the formation of bonds between every pair of nearest
neighbours(ij) that are aligned at a given temperature T ,
with a probability pij = 1− exp (−2βJ), where β = 1

kBT

(kB ≡ Boltzmann constant). A single cluster is defined as
all the spins, which are connected via bonds. The global
update is defined as the collective flipping with a prob-
ability of 1/2, on all the spins in each cluster [30,31].
This step works because of the so-called Fortuin-Kasteleyn
mapping of the Ising model on the random-cluster model.
Thus, global updates enable us to produce equilibrium
configurations close to the Tc with a few thermalization
steps.

2.2 Monte-Carlo simulation setup

In this work we chose to investigate the case of zero exter-
nal magnetic field (h = 0) and for simplicity we have
set J = ±1 and kB = 1. In this case, the theoretically
calculated value of the critical temperature is

Tc =
2

ln
(

1 +
√
2
) = 2.269185 . (2)

To extract experimentally this quantity one has to inves-
tigate the order parameter of theory. The first question
that we address is whether we can get an approximate
estimate of this temperature by using unsupervised
learning. For this purpose, we define a sequence of
different values of temperature. Then, for each one, we
start from a “hot” configuration of spins (where the spins
are oriented randomly), perform a large enough number
of thermalization sweeps and then save the configuration.
For every single temperature, we repeat the procedure
200 times. The same results could be obtained by starting
from a “cold” configuration, letting the Markov chain
evolve, and then sampling configurations along the single
chain, but, the former procedure guarantees a higher
degree of de-correlation within the data.

2.3 Phase structure, observables and order

parameters

The phase structure of the 2D-Ising model can be reduced
to the study of the magnetic order of the system [32,33].
If we suppose that there are N↑ spins pointing upwards
and N↓ spins pointing downwards, then the total mag-
netic moment would be N↑ − N↓ (µ = 1). The largest
possible magnetic moment would, therefore, be N . Thus,
for the ferromagnetic case, we can define the magnetic
order parameter or magnetization per spin configuration
naturally as:

m = (N↑ −N↓)/N , (3)

while the average magnetization M = 〈m〉. M can get
values between −1 and 1, and the average of the abso-
lute magnetization m̃ = 〈|m|〉 is just the magnetic order.
Hence, if m̃ is close to 0, then the system is highly disor-
dered and, thus, not magnetized, with approximately half
of the spins pointing up and the other half pointing down.
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Fig. 1. The detailed structure of the autonecoder network used in this work. The size of the input and the output layer x is
equal to the size of the lattice i.e. x = L× L. This means that while we change the size of the lattice L we keep the number of
neurons and type of activation functions unaltered.

On the other hand, if m̃ is approximately 1, the system
is ordered and, thus, magnetized with nearly all the spins
pointing in the same direction.

In the anti-ferromagnetic case, the relevant magnetic
order parameter is the staggered magnetization per spin
configuration. In the checkerboard lattice, if we label black
sites as (+) and white sites as (−), and we define m+ and
m− using (3), then the staggered magnetization per spin
configuration (ms) can be defined as:

ms = m+ −m− , (4)

while the average staggered magnetization as Ms = 〈ms〉.
Similar to the ferromagnetic case, the magnetic order is
the average of the absolute staggered magnetization m̃s =
〈|ms|〉. Therefore, if m̃s is close to 0, then the system is
highly disordered and approximately not magnetized. On
the contrary, the system has exactly 0 magnetization if m̃s

is close to 1 because in the system every spin is surrounded
by the opposite spin among its neighbours, which makes
it exactly ordered.

The point T = Tc is called the critical point and sep-
arates the ordered T < Tc phase and disordered T > Tc

phase. At T = Tc the system is described by a second
order phase transition, i.e. à la Ehrenfest [34] the first
derivative of the free energy with respect to the exter-
nal field which is the order parameter is continuous while
the second derivative of the free energy is discontinuous.
Since there exists a bijective map between the spin fields
of the ferromagnetic and anti-ferromagnetic cases of the
2D-Ising model, the phase transition in both the cases is
identical.

3 Deep learning autoencoders

The concept of autoencoders exists for decades [35,36],
where conventional autoencoders were used for feature

learning and dimensionality reduction. In recent years,
work has been conducted to join autoencoders and
probabilistic latent variable models: Alternate forms of
autoencoders have become popular for so-called gener-
ative modelling [37,38]. Autoencoders are a variant of
artificial neural networks utilized for learning data cod-
ings in an unsupervised manner, efficiently [39,40]. An
autoencoder aims to define a representation (encoding) for
an assemblage of data, usually performing dimensionality
reduction. An autoencoder encodes the input data ({X})
from the input layer into a latent variable ({z}), and then
uncompresses that latent variable into an approximation
of the original data ({X}). The autoencoder engages in
dimensionality reduction by learning how to ignore the
noise and recognize significant characteristics of the input
data. As Figure 1 shows, an autoencoder consists of two
components, the encoder function gφ and a decoder func-
tion fθ and the reconstructed input is X = fθ(gφ(x)). The
first layer of an autoencoder might learn to encode simple,
identifiable and local features. The second layer by using
the output of the first layer learns to encode more complex
and less local features. This continues for higher-order lay-
ers until the final layer of the encoder learns to identify
and encode the most complex and global characteristics
of the input data. The same process in reverse is true for
the decoder where the goal is to go from the compressed
latent variable to the original input.
The activation functions have been chosen in such a way

so that the latent variable provides as sharp as possible
transition at the assumed critical point. In other words,
we investigated which combination of activation functions
leads to a steeper change on the scattered latent variable
(like for instance Fig. 3), in order to identify with as much
accuracy as possible the critical temperature for a given
lattice volume. Other combinations of activation functions
have also been investigated and will be presented in a
forthcoming work [52].

https://epjb.epj.org/
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In the training phase, the autoencoder learns the
parameters φ and θ together, where fθ(gφ(x)) can approx-
imate an identity function. Various metrics can be used to
measure the error between the original input X and the
reconstruction X̃, but the most simple and most com-
monly used is the Mean Square Error (MSE) as this is
provided in equation (5), where ndata is the number of
data points:

MSE(θ, φ) =
1

ndata

ndata
∑

i=1

(Xi − fθ(gφ(Xi)))
2 . (5)

3.1 Proposed autoencoder model

For the analysis of the proposed method, an eight-layer,
fully connected (Dense), autoencoder is proposed, as
Figure 1 shows, where the encoder compresses the con-
figurations into a single latent variable. Through exper-
imentation, we determine that the best model to detect
the transition consists of the encoder with the input layer,
first, second and third hidden layers having 625, 256, 64
and 1 neurons, respectively. The input layer has size equal
to L × L and, thus, it changes as we alter the lattice
size. The activation function used is ReLu (rectified lin-
ear unit), as shown in equation (6), for all layers except
the third hidden layer, where tanh was used, as shown in
equation (7). For the decoder, the first, second and third
hidden layers use 64, 256, and 625 neurons, respectively.
For the output layers, the number of neurons is set to be
equal to the number of lattice points in the configuration
under investigation. The activation function used is ReLu,
as given in equation (6), for all hidden layers, and for the
output layer, tanh is used, as per equation (7).

ReLu : y = max(0, x) =

{

x, if x > 0
0 if x ≤ 0

}

, (6)

tanh : y =
1− e−2x

1 + e−2x
. (7)

For the proposed autoencoder model, we use the so-
called dropout realization technique [41], on 30% of the
neurons at each layer. The dropout regularization tech-
nique refers to temporarily deactivating neurons from
each layer, randomly, when training. It was successful
at reducing over-fitting in our case. For the training of
the proposed autoencoder model, the data are split into
training (66.66. . .%) and testing (33.33. . .%) sets and the
training is performed for 2000 iterations. For training, the
starting learning rate was set to 0.001 and was reduced
by 20%, when learning stagnates for 30 epochs, with min-
imum learning rate 0.000001. The implementation was
performed using Keras [42] and Tensorflow [43].

Fig. 2. Examples of reconstructed configurations and their
comparison to the actual Monte-Carlo calculations from which
the latent variable originated. The first line corresponds to
T1 = 2.2 and the second line to T2 = 2.27. Blue area corre-
sponds to spin “up” regions and yellow area to spin “down”.

4 Results for the ferromagnetic Ising model

4.1 The latent variable per configuration

In order to identify signals of the phase structure of the
2D-Ising ferromagnetic model, as a first step, we investi-
gate how the latent variable ziconf behaves as a function
of the temperature T for each configuration. We pro-
duce 40 000 configurations, namely 200 configurations for
every single temperature. The produced configurations are
for 200 different values of temperatures within the range
T = 1 − 4.5 and separated by δT = 0.0175. We choose
this range to make sure that we cover the two extreme
cases, the nearly “frozen” at T ≃ 1 and completely disor-
dered T ≃ 4.5. Furthermore, we assume that we have no
prior knowledge of what is happening in between these
two extremes.
After training the proposed autoencoder on configura-

tions of the 2D-Ising model, the reconstruction error was
found to be relatively high (0.6 − 0.7) with both train-
ing and testing sets. We clarify that the autoencoder is
trained for all temperatures together in one dataset for
each lattice size L. Table 1 shows the results. As the con-
figurations consist of spins with values of 1 and -1, the
maximum possible error is 4 based on MSE.
It appears that both training and testing errors increase

with the lattice size. This was expected as the dimension-
ality (the number of configuration components) increases.
Table 1, also provides the average reconstructed accuracy,
which appears to be low and to decrease with the size
of the lattice. This indicates the complexity of the prob-
lem in terms of reconstruction from the encoded variables
as the error increases with the size of the configurations.
A crucial point is the very low number of latent vari-
ables, in this case, only one. This is also demonstrated

https://epjb.epj.org/
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Fig. 3. The latent variable for each configuration as a function of the temperature for four different lattice volumes. These are
scatter plots where no averaging was done for every single input data. The dashed line represents the analytically extracted
value of the critical temperature (Eq. (2)). The red shaded area in the plot for L = 150 is the region where (by fitting to a
constant) we expect to find the Tc(L = 150). The color on the gradient illustrator on the right denotes the temperature T .

in Figure 2, where we present the result of reconstruc-
tion for two configurations at two different temperatures
close to the critical point and for lattice size L = 50.
This result resembles the poor reconstruction accuracy
observed in reference [25] when using variational autoen-
coder to reconstruct configurations for the 2D XY model.
The reconstruction error appears to be small for low
temperatures with an average MSE error of ∼ 0.015 at
T = 1. As the temperature increases, the error rises until
it reaches Tc for which it becomes ∼ 1 and stops changing
further with the temperature. In Figure 3 we show the
latent variable for each different configuration, as a func-
tion of the temperature T , for four different lattice sizes,
L = 25, 35, 50, 150.

Figure 3 has the following features:

– For low temperatures, we obtain two plateaus, one
located at z = 1 and one at z = −1. A first
simplistic explanation for this pattern would be

Table 1. MSE Traning and Testing Errors of the Recon-
structions Based on the Proposed Model as well as the
Average Reconstructed Accuracy (ARA).

L Training Error Testing Error ARA
25 0.6136 0.6189 37.30%
35 0.6346 0.6408 36.70%
50 0.6637 0.6688 35.50%
100 0.6764 0.6822 33.70%
150 0.6946 0.6994 31.90%

that it corresponds to two distinct states that are
not connected through any kind of transformation.
This reflects the spontaneously broken Z2 ≡ {−1, 1}
global symmetry group. One can interpret these two
plateaus as the two cases where all spins are up
or down. This interpretation is confirmed by the
results presented in Figure 4 where we show the
absolute correlation coefficient Cz,m between the

https://epjb.epj.org/
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Fig. 4. The absolute correlation coefficient defined in equa-
tion (8) as a function of the temperature for the five different
lattice sizes.

latent variable z and the magnetization m defined
as

Cz,m =
〈(z − z̄)(m− m̄)〉

√

〈(z − z̄)2〉〈(m− m̄)2〉
. (8)

The fact that at low temperatures the absolute cor-
relation coefficient is 1 demonstrates that the two
different values of the latent variable −1 and 1 cor-
respond to the two orientations of the spins. Finally,
the two plateaus become more distinct as the lattice
size increases.

– At some temperature range ∆Ttrans the aforemen-
tioned behaviour collapses to one state, which is
located around z = 0. This reflects the restoration
of Z2 symmetry. In other words, it corresponds to
the case where all the spins are disoriented.

– There is a critical point where there is a change in the
pattern. As the lattice size increases the width of this
transition decreases with Ttrans → 0 and this step
becomes steeper and steeper. At L → ∞ the transi-
tion is localized right on the critical temperature Tc

extracted analytically.

Evidently, plotting the latent variable as a function of the
temperature demonstrates that the autoencoder “notices”
the two phases. Also, it provides a good approximation of
the critical temperature. In fact from Figure 3 the transi-
tion appears to occur right at the critical temperature for
L = 150. We fit the points of the latent variable which,
to a good approximation, behave linearly to a constant
as a function of T . This enables us to restrict that the
collapse of the two states located at 1 and −1 occurs
at T ≃ 2.28(4). This temperature region is denoted in
Figure 3 as the shaded area in red. In Figure 4 we observe
that within this temperature region the value of the abso-
lute correlation coefficient Cz,m starts to decrease from
1. This demonstrates that, although highly correlated,
the latent variable and magnetization are two different
quantities. This result shares similarities with the find-
ings of reference [19] where the authors showed that the

Fig. 5. The average latent variable 〈z〉 as a function of the
temperature T for L = 150. This demonstrates that the latent
variable is equally distributed around zero for all values of the
critical temperature Tc.

latent variable resulting from an autoencoder and a vari-
ational autoencoder has some level of correlation with the
order parameter. The authors used an autoencoder with
one fully connected hidden layer with 256 neurons and
ReLu activation function and a final layer with a sigmoid
activation function. A simple explanation of the ability
of the autoencoder to detect the phase transition is due
to the fact that the variances of data which is fed as
input are becoming maximal at the point of the phase
transition. A possible explanation of the behaviour of the
latent variable of being steeper than that of the magne-
tization close to the critical point is that the choice of
non-linear activation function in the network “distorts”
and possibly enhances certain contributions to the vari-
ances. Namely, we have observed that different choices
of activation functions would affect the steepness of the
average latent variable. As a matter of fact, this combi-
nation of activation functions maximizes the steepness of
the average latent variable close to the critical point. A
comprehensive study of how different choices of layers,
number of neurons and activation functions are affecting
the behaviour of the latent variable is under way [52].

Finally, we observed that for low temperatures the
latent variable is, in a good approximation, equally dis-
tributed between the values of z = 1 and z = −1. This
can be seen in Figure 5 where we present the average
latent variable 〈z〉 for each temperature and L = 150 as a
function of the temperature.
One could also investigate what happens within differ-

ent “temperature windows”. For instance, we can use a
temperature window within the range T = 1−2 and apply
the autoencoder. The outcome would be the behaviour
presented in the left panel of Figure 6, where only the two
ordered states are visible without the presence of a critical
point. Since there is no visible signal for a phase transition
behaviour within this range of T , it is reasonable to use
another temperature window. If we choose T = 3−4.5, for
instance, the corresponding latent variable would be the

https://epjb.epj.org/
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Fig. 6. The latent variable for each configuration as a function of the temperature for L = 100, obtained by applying the
autoencoder on configurations produced within the range of temperatures T = 1−2 (left) and T = 3−4.5 (right). Mind that
the critical temperature Tc = 2.26918 is out of range in the two plots above since no data produced around this temperature
have been included as input in the autoencoder.

one given on the right panel of Figure 6 where no partic-
ular pattern is observed. A sensible next step would be to
investigate what happens within a range of temperatures
located between the two previous temperature windows,
for instance, T = 1− 4.

4.2 The absolute average latent variable

Since the latent variable per configuration is symmetric
with respect to the T axis, it would be reasonable to
define the average absolute latent variable as a parameter
indicating the phase as

z̃ =
1

Nconf

Nconf
∑

i=1

|ziconf
| . (9)

Figure 3 shows that the latent variable resembles the
behaviour of the magnetization per spin configuration
as a function of the temperature. The absolute average
magnetization defines the order parameter of the system
distinguishing the two different phases. For the case of
the autoencoder we can define an additional quasi-order
parameter as the absolute average latent variable.

In the left-hand side of Figure 7 we provide the mag-
netization as a function of the temperature while on the
right-hand side we provide the absolute latent variable.
Indeed the absolute latent variable looks similar to the
magnetization, albeit becoming steeper as the lattice size
increases. Clearly, the magnetization behaves as an order
parameter with the characteristics of a second order phase
transition while the absolute latent variable resembles a
behaviour consistent with a first-order phase transition.
Of course, a more careful study needs to be carried out
in order to understand better whether the latent variable
can actually capture a first-order phase transition. We can,

therefore, conclude that the absolute average latent vari-
able can be used as an order parameter to identify the
critical temperature, but cannot capture the right order
of the phase transition. The fact that z̃ as a function of the
temperature becomes steeper as the lattice size increases
suggest that the critical temperature Tc(L) as a function
of the lattice size L extracted from the autoencoder data
will suffer less from finite-size scaling effects as discussed
in detail in Section 4.3.
Traditionally, Tc(L) can be extracted by probing the

peak of the magnetic susceptibility χ at zero magnetic
field h, where

χ =
L2

T

(

〈m2〉 − 〈m〉2
)

. (10)

According to finite size scaling theory, close enough to Tc,
magnetic susceptibility χ scales as

χ ∝ (t)
−γ

, (11)

where t = (T −Tc)/Tc is the reduced temperature and γ =
7/4 a critical exponent [33]. The magnetic susceptibility
measures the ability of a spin to respond due to a change
in the external magnetic field. In the same manner we
define the latent susceptibility as

χz̃ =
L2

T

(

〈z̃2〉 − 〈z̃〉2
)

. (12)

Another conventional route to obtain the Tc is by com-
puting the fourth-order cumulant of the order parameter,
also known as the Binder cumulant [47,48], defined as

U4 = 1− 〈m4〉
3〈m2〉2 . (13)

https://epjb.epj.org/


Eur. Phys. J. B (2020) 93: 226 Page 9 of 15

Fig. 7. The average absolute magnetization (left) compared to the average latent variable (right) as a function of the temperature
for five different lattice volumes. Magnetization has a behaviour in accordance with a second order phase transition while the
average latent variable appears to have behaviour resembling a first order phase transition. The data presented on the right
plot stem from testing data. Each data point has been extracted as an ensemble average of the observable for fixed volume and
temperature.

Fig. 8. The Binder cumulants U4 and Ũ4 plotted as a func-
tion of temperature for L = 150. The dotted line indicates the
theoretical Tc for infinite volume.

This quantity aims at capturing the non-trivial fluctu-
ations of higher order in the spin, thus, excluding the
trivial Gaussian fluctuations. In the thermodynamic limit
(L → ∞), the cumulant becomes 2

3 for T < Tc and 0 for
T > Tc.

We define a similar quantity with respect to the latent
variable z̃, as

Ũ4 = 1− 〈z̃4〉
3〈z̃2〉2 . (14)

Binder cumulants U4 and Ũ4 have been plotted for the
largest volume in Figure 8. The U4 obtained from Monte
Carlo simulations is consistent with the thermodynamic
limit. On the other hand, the Ũ4 obtained using the latent

Fig. 9. The Binder cumulant ratios U4(L)
U4(L′)

and Ũ4(L)

Ũ4(L′)
are

plotted with T .

variable exhibits a plateau below 0 which makes it ambigu-
ous to comment on the order of the phase transition using
autoencoders.
Binder cumulants can be further utilised in the cumu-

lant ratio intersection method to extract the Tc [49],
independently of the critical exponents. In Figure 9, we
have demonstrated the application of this method to pin-
point the Tc using U4 and Ũ4. The weak dependence of the
Binder cumulant U4 on L, keeps it close to the (univer-
sal but nontrivial) fixed-point U∗

4 .
2 Therefore at T = Tc,

the cumulant ratios for all finite volumes intersect the
y = 1 line. The Ũ4 Binder cumulant ratio exhibits a more

2 U∗

4 = limL→∞ U4(T = Tc, L).
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Fig. 10. The red points show the predicted latent variable for the configurations produced around the critical point Tc while
in black the latent variable extracted from the first set of temperatures on which we have trained the encoder, nevertheless on
test data sets. The blue vertical line corresponds to the analytically extracted critical temperature Tc. The figure shows that
the synaptic weights extracted by training the autoencoder on the initial set of temperatures can successfully predict the latent
variables for the new set of temperatures demonstrating there is no over-fitting occurring.

noisy behaviour while crossing y = 1, which is the prime
reason we resorted to the latent susceptibility method
discussed in the next section to extract the Tc.

For the extraction of Tc one realizes, by looking at
Figure 7, that more data points close to the critical
behaviour are needed to extract the critical temperature
from the latent susceptibility. Hence, we produce configu-
rations for a grid of temperatures near the critical regime.
More specifically, we produce 200 configurations per tem-
perature, for 200 different values of T in the range of T =
2−2.8 and δT = 0.004 for all the volumes considered. In
addition, for L = 100 and L = 150 we produce 200 config-
uration for each value of T , in the range of T = 2.22−2.34
with δT = 0.0006. These new configurations, however, are
not used to train the autoencoder. Instead, we use the
synaptic weights extracted and predict the latent vari-
able for the new configurations. Hence, this serves as a
confirmation that our data do not suffer from over-fitting.

In Figure 10, we present the results of applying the
autoencoder weights on the new configurations produced
in the region close to the critical point. We compare with
results extracted using configurations produced in the
range T = 1−4.5. Both datasets agree, and there is a
nice continuation of the behaviour of the absolute average
latent variable within the critical regime. This serves as a
confirmation that the execution of the encoder does not
suffer from any over-fitting occurrence and at the same
time, more data points can be used for the extraction of
χz̃. To avoid any confusion, we state that all generated
data which are presented in figures have been extracted
exclusively from the test datasets. Furthermore, the plot
for L = 150 behaves nearly as a step function with the
step being right on the theoretically extracted Tc. By fit-
ting the second moment of the latent variable, as this
is described in Section 4.3, one sees that the transition

occurs at Tc(L = 150) = 2.2779(3); this value is very close
to the theoretically extracted value Tc = 2.26918.
In the following section, we present the analysis of

our data in order to investigate the latent susceptibility
χz̃ and, to subsequently, extract the critical temperature
Tc(L) from the corresponding peak.

4.3 The latent susceptibility and the critical

temperature

In the previous sections, we provided strong evidence that
the latent variable, resulting from the proposed autoen-
coder, demonstrates the underlying phase transition and
that it can also be used as a rough estimate for the criti-
cal temperature Tc. Nevertheless, as the finite lattice size
L increases we need to make sure that Tc(L) tends to
the right limit, i.e. it convergences to the theoretically
extracted value given in equation (2) as L → ∞.

To investigate the convergence of Tc(L), we first extract
Tc(L) for each different lattice size and then extrapolate
to infinite L. Tc(L) can be extracted by probing the peak
of the latent susceptibility for each L. The latent suscepti-
bility as a function of the temperature for the five different
lattice sizes, is presented on the left-hand side of Figure 11.
Unlike the magnetic susceptibility, presented on the right-
hand side of Figure 11, the latent susceptibility is much
sharper with peaks being closer to the known critical tem-
perature Tc. This means that the critical temperature for
each L is influenced by less finite-size scaling effects.
Our temperature grid is fine enough and enables an

adequate extraction of the Tc(L) from the coordinates of
Figure 11. Hence, there is no need to use multi-histogram
reweighting [5] techniques. The latent variable behaves
to a large extent as a step function, and thus, tends
to ∝ δ(T − Tc) as L → ∞. In addition, the derivative

https://epjb.epj.org/
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Fig. 11. The latent susceptibility (left) and magnetic susceptibility (right) as a function of the temperature for five different
lattice volumes. The blue vertical line denotes the analytically extracted value for the critical temperature (Eq. (2)). Each data
point has been extracted as an ensemble average of the observable for fixed volume and temperature.

Fig. 12. The critical temperature Tc(L) extracted from fitting
the magnetic (red) and the latent (blue) susceptibilities as a
function of 1/L to equation (15). The error bands are estimated
using the jackknife fit errors on the fit parameters.

of the latent susceptibility appears to be continuous. So
we can also use a Gaussian fit to estimate the critical
temperature.

In Figure 12 we present Tc(L) extracted from fitting
the latent susceptibility and the magnetic susceptibility
as a function of 1/L. Results obtained using the latent
susceptibility suffer less from finite-size scaling effects as
compared to those when using the magnetic susceptibility.
Adopting, the usual finite-size scaling behaviour

Tc(L)− Tc(L = ∞) ∝ L−1/ν , (15)

we fit both susceptibilities to the ansatz Tc(L) = Tc(L =
∞) + αL−1/ν . Our findings are listed in Table 2.
As expected, fitting the data for Tc(L) resulting from

the magnetic susceptibility yields values of Tc(L = ∞) and

Table 2. The results for Tc(L = ∞) and ν extracted by
fitting the magnetic as well as the latent susceptibilities
to the ansatz Tc(L) = Tc(L = ∞) + αL−1/ν .

Susceptibility Tc(L = ∞) ν χ2/dof
Magnetic 2.265(8) 1.08(20) 0.15
Latent 2.266(4) 1.60(14) 0.41

ν which are consistent with the analytically extracted val-
ues Tc = 2.269184 and ν = 1. Turning now to the case of
the latent variable, it appears that the results of Tc(L)
when fitted with a form of the known scaling behaviour
of equation (15), yield a value for Tc(L = ∞), which is
in accordance with the theoretical expectation. One can
observe that the Tc curves in the infinite volume limit
intersect with the theoretical value in the thermodynamic
limit. This provides good evidence that the deep learning
autoencoder does not only predict the phase regimes of the
2D-Ising model as well as give an estimate for the critical
temperature but can also lead to a precise evaluation of
the critical temperature.

5 Results for the anti-ferromagnetic Ising

model

Having demonstrated the use of the autoencoder on the
2D-Ising ferromagnetic model, we turn now to the anti-
ferromagnetic where we simply test the application of the
network on the produced configurations. We investigate
how the latent variable ziconf behaves as a function of
the temperature T for each configuration. We generate
6000 configurations, namely 200 configurations for every
single temperature. The configurations are for 30 differ-
ent values of temperatures within the range T = 1− 4.5.
Once more, we make sure that we cover the whole range
of temperatures between the two extreme cases of the
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Fig. 13. The latent variable for each configuration as a function of the temperature for three different lattice volumes for the
anti-ferromagnetic Ising model. These are scatter plots where no averaging was done for every single input data. The dashed
line represents the analytically extracted value of the critical temperature (Eq. (2)). The color on the gradient illustrator on the
right denotes the temperature T .

anti-ferromagnetic Ising behaviour, the nearly “frozen” at
T ≃ 1 and completely disordered at T ≃ 4.5. We choose
the temperature grid to be dense close to the theoreti-
cal, critical temperature. Our assumption is that since the
ferromagnetic is connected to the anti-ferromagnetic via
a bijective map between the spin fields, the autoencoder
should be able to “notice” the phase transition. Hence, we
tempted to check whether one can approximately detect
the critical temperature using the latent variable on a
small number of configurations.

For the case of the anti-ferromagnetic Ising model we
restrict the analysis to lattice volumes of L = 50, 100 and
150. After training the autoencoder on configurations of
the anti-ferromagnetic 2D-Ising model the reconstruction
error was found to range from MSE of 0.68, MSE of 0.69
and MSE of 0.705 for L = 50, 100 and 150 respectively.
In Figure 13 we demonstrate the latent variable for each
different configuration, as a function of the temperature
T , for three different lattice sizes, L = 50, 100 and 150.
The behaviour of the latent variable ziconf

in these plots
resembles the features of the latent variable ziconf

for the
ferromagnetic 2D-Ising model presented in Figure 3.

It is markedly observed upon representing the latent
variable as a function of temperature that the autoen-
coder “notices” the two phases also for the case of the
anti-ferromagnetic 2D-Ising model and provides a good
approximation of the critical temperature. This reflects
the spontaneously broken Z2 ≡ {−1, 1} symmetry group
for the bijectively mapped sub-lattices as well as the
spontaneously broken translation symmetry for the anti-
ferromagnetic model. In Figure 13 the plot for L = 150
indicates that the transition occurs right at the critical
temperature. One can fit the points of the latent variable
which behave linearly to a constant as a function of the
temperature and can restrict that the collapse of the two
states located at 1 and −1 occurs at T = 2.288(21). This
is in good agreement with the theoretical prediction.

On the left-hand-side of Figure 14 we present the stag-
gered magnetization as a function of the temperature
while on the right-hand side we provide the absolute

latent variable for the anti-ferromagnetic model. As for
the case of the ferromagnetic model, the absolute latent
variable looks similar to the staggered magnetization,
albeit becoming steeper as the lattice size increases. This
demonstrates that the absolute latent variable and as a
consequence the latent susceptibility can enable an extrac-
tion of the critical temperature with smaller scaling effects
compare to the staggered magnetization and susceptibil-
ity respectively. Further analysis of the anti-ferromagnetic
Ising model will be presented in [52].

6 Conclusions and outlook

In this work, we apply a deep learning auto-encoder on
configurations produced for the 2D (anti)ferromagnetic
Ising model for performing classification in an unsuper-
vised manner. Hence, with no prior knowledge on the
system, we demonstrate that we can predict the phase
structure of this system qualitatively as well as quantita-
tively by determining both phase regions and the critical
temperature.
For the ferromagnetic model, at low temperatures, by

making use of the latent variable per configuration, the
autoencoder predicts two states reflecting to the broken
Z2 symmetry. As the temperature increases, these two
states appear to collapse at one state, located around
zero, and the underlying symmetry is restored. This
behaviour becomes more distinct as the volume of the lat-
tice increases, and the point where the two states collapse
is getting more and more local; this corresponds to the
critical point of the phase transition.
One can define the average absolute latent variable

z̃ that displays partially the characteristics of an order
parameter; namely, it can identify the phase but cannot
capture the order of the phase. Although it resembles
the behaviour of the magnetization, it becomes steeper
as the size of the volume increases, tending to a step
function. The second moment of the absolute latent vari-
able defines a susceptibility, named latent susceptibility,
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Fig. 14. The average absolute staggered magnetization (left) compared to the average latent variable (right) as a function of
the temperature for the anti-ferromagnetic Ising model and three different lattice volumes. The data presented on the right
plot stem from testing data. Each data point has been extracted as an ensemble average of the observable for fixed volume and
temperature.

the peak of which can determine the critical temperature
Tc(L). By extrapolating the values of Tc(L) to L → ∞ for
the sequence of lattice sizes L = 25, 35, 50, 100, 150, we
obtain for Tc(L = ∞) = 2.266(4) in agreement with the
exact value of Tc = 2.26918 calculated analytically. This
suggests that the proposed deep learning (fully-connected)
autoencoder can identify, in an unsupervised manner, the
phase structure of the 2D ferromagnetic Ising model but
can also lead to a precise extraction of the critical tem-
perature at the limit of the infinite volume. As shown in
Figure 12 the values of Tc(L) suffer with less finite size
effects compared to those usually extracted by using the
peak of the magnetic susceptibility, and one would thus
expect that the autoencoder could give a more precise pre-
diction for Tc. Of course to test this hypothesis we need
to extract Tc(L) for larger volumes, for instance up to
L = 1024 similarly to reference [5], and obtain the extrap-
olated value of Tc(L = ∞). This requires the usage of a
different autoencoder with more layers since memory limi-
tations make the current autoencoder insufficient to work.
This is a future extension of this work.

Applying the deep learning auto-encoder on configura-
tions produced for the 2D anti-ferromagnetic Ising model,
we observe that the results resemble to an adequate extent
those for the ferromagnetic model. Namely, by using the
latent variable per configuration, the autoencoder pre-
dicts two states reflecting to the broken Z2 symmetry of
the two bijectively connected sub-lattices as well as the
broken translation symmetry. Once more, this behaviour
becomes more distinct as we increase the lattice size with
the collapse of the two states becoming steeper. This spe-
cial point corresponds to the critical point of the phase
transition. In the same manner as for the ferromagnetic
case, we can make use of the average absolute latent
variable which behaves similarly to the average stout
magnetization, albeit becoming steeper with the lattice
size.

This work provides a good indication that, with the
right choice of parameters, deep learning autoencoders can
be used as tools to define new quantities which are affected
less by finite scaling effects and lead to more precise eval-
uation of observables related to the phase structure of
statistical models. This could be proven beneficial for the-
ories in which the production of thermalized uncorrelated
configurations requires a large number of computational
resources.
There are other several related directions in which this

work can be extended. Since our proposed autoencoder
has been tested only on the 2D-Ising model, it would
be important to investigate its generalization to other
physical systems with non-trivial phase structure. An
important question, which could be answered is whether
this neural network is capable of identifying the phases for
cases in which an order parameter is either not known or
not existing; such an example is the Hubbard model [44]
describing the transition between conducting and insu-
lating systems. Another relevant question is how this
particular autoencoder behaves in cases where the phase
transition is of a different order, or an infinite order such
as in the 2D XY 3 spin model where the relevant phase
transition is the Kosterlitz-Thouless which is of infinite
order [45]. Finally, our future plans involve the testing of
the autoencoder as a tool for the unsupervised extraction
of the phase structure of physical systems with contin-
uous symmetries. These involve quantum field theories
formulated on the lattice such as the 3D φ4 with O(2)
symmetry [46] where the phase transition is of second
order and belongs to the same universality class as the
2D-Ising model, the 3D U(1) gauge theory [50] for which
the phase transition is of infinite order and belongs to the

3 Autoencoders have already been applied to the 2D XY
model [25], albeit as a generative procedure in order to sup-
port the Monte-Carlo simulation of the system and production of
configurations.
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same universality class as the 2D XY model, as well as
the 3D SU(N) gauge theory [51] which has a second-order
phase transition for N ≤ 3, a weakly first order for N = 4
and the first order for N ≥ 5.
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