
 Open access Journal Article DOI:10.1007/S11009-006-9753-0

The Cross-Entropy Method for Continuous Multi-Extremal Optimization
— Source link

Dirk P. Kroese, Sergey Porotsky, Reuven Y. Rubinstein

Institutions: University of Queensland, Technion – Israel Institute of Technology

Published on: 23 Oct 2006 - Methodology and Computing in Applied Probability (Kluwer Academic Publishers)

Topics: Continuous optimization, Discrete optimization, Optimization problem, Random optimization and
Test functions for optimization

Related papers:

 The Cross-Entropy Method for Combinatorial and Continuous Optimization

 Optimization of computer simulation models with rare events

 A Tutorial on the Cross-Entropy Method

The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine
Learning

 Optimization by Simulated Annealing

Share this paper:

View more about this paper here: https://typeset.io/papers/the-cross-entropy-method-for-continuous-multi-extremal-
x7u44e77k3

https://typeset.io/
https://www.doi.org/10.1007/S11009-006-9753-0
https://typeset.io/papers/the-cross-entropy-method-for-continuous-multi-extremal-x7u44e77k3
https://typeset.io/authors/dirk-p-kroese-14wlnry72n
https://typeset.io/authors/sergey-porotsky-1vamruy4st
https://typeset.io/authors/reuven-y-rubinstein-1t5av1lzsd
https://typeset.io/institutions/university-of-queensland-thgar0ub
https://typeset.io/institutions/technion-israel-institute-of-technology-3s7bh4fv
https://typeset.io/journals/methodology-and-computing-in-applied-probability-1drwkuu4
https://typeset.io/topics/continuous-optimization-4qhn708q
https://typeset.io/topics/discrete-optimization-1yl9c901
https://typeset.io/topics/optimization-problem-xnbzp3ib
https://typeset.io/topics/random-optimization-s46r4hef
https://typeset.io/topics/test-functions-for-optimization-16rrrfbo
https://typeset.io/papers/the-cross-entropy-method-for-combinatorial-and-continuous-4bg5rjemch
https://typeset.io/papers/optimization-of-computer-simulation-models-with-rare-events-1e9va2vzia
https://typeset.io/papers/a-tutorial-on-the-cross-entropy-method-545ubv9esv
https://typeset.io/papers/the-cross-entropy-method-a-unified-approach-to-combinatorial-4qgvyym1vy
https://typeset.io/papers/optimization-by-simulated-annealing-1m73u2vpki
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-cross-entropy-method-for-continuous-multi-extremal-x7u44e77k3
https://twitter.com/intent/tweet?text=The%20Cross-Entropy%20Method%20for%20Continuous%20Multi-Extremal%20Optimization&url=https://typeset.io/papers/the-cross-entropy-method-for-continuous-multi-extremal-x7u44e77k3
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-cross-entropy-method-for-continuous-multi-extremal-x7u44e77k3
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-cross-entropy-method-for-continuous-multi-extremal-x7u44e77k3
https://typeset.io/papers/the-cross-entropy-method-for-continuous-multi-extremal-x7u44e77k3

The Cross-Entropy Method for

Continuous Multi-extremal

Optimization

Dirk P. Kroese

Department of Mathematics

The University of Queensland

Brisbane 4072, Australia

Sergey Porotsky

Optimata Ltd.

11 Tuval St., Ramat Gan, 52522

Israel.

Reuven Y. Rubinstein

Faculty of Industrial Engineering and Management

Technion, Haifa

Israel

Abstract

In recent years, the cross-entropy method has been successfully applied to a wide range of

discrete optimization tasks. In this paper we consider the cross-entropy method in the context

of continuous optimization. We demonstrate the effectiveness of the cross-entropy method for

solving difficult continuous multi-extremal optimization problems, including those with non-

linear constraints.

Key words: Cross-entropy, continuous optimization, multi-extremal objective function, dynamic

smoothing, constrained optimization, nonlinear constraints, acceptance–rejection, penalty function.

1

1 Introduction

The cross-entropy (CE) method (Rubinstein and Kroese, 2004) was motivated by Rubinstein (1997),

where an adaptive variance minimization algorithm for estimating probabilities of rare events for

stochastic networks was presented. It was modified in Rubinstein (1999) to solve combinatorial

optimization problems.

The main idea behind using CE for continuous multi-extremal optimization is the same as the

one for combinatorial optimization, namely to first associate with each optimization problem a

rare event estimation problem — the so-called associated stochastic problem (ASP) — and then to

tackle this ASP efficiently by an adaptive algorithm. The principle outcome of this approach is the

construction of a random sequence of solutions which converges probabilistically to the optimal or

near-optimal solution.

As soon as the ASP is defined, the CE method involves the following two iterative phases:

1. Generation of a sample of random data (trajectories, vectors, etc.) according to a specified

random mechanism.

2. Updating the parameters of the random mechanism, typically parameters of pdfs, on the basis

of the data, to produce a “better” sample in the next iteration.

The CE method has been successfully applied to a variety of problems in combinatorial op-

timization and rare-event estimation, the latter with both light- and heavy-tailed distributions.

Applications areas include buffer allocation, queueing models of telecommunication systems, neu-

ral computation, control and navigation, DNA sequence alignment, signal processing, scheduling,

vehicle routing, reinforcement learning, project management and reliability systems. References

and more details on applications and theory can be found in the CE tutorial (de Boer et al., 2004)

and the recent CE monograph (Rubinstein and Kroese, 2004). It is important to note that the

CE method deals successfully with both deterministic problems, such as the traveling salesman

problem, and noisy (i.e., simulation-based) problems, such as the buffer allocation problem.

The goal of this paper is to demonstrate the quite accurate performance of the CE method

for solving difficult continuous multi-extremal problems, both constrained and unconstrained. In

particular we show numerically that typically it finds the optimal (or near-optimal) solution very

fast and provides more accurate results than those reported in the literature.

2

It is out of the scope of this paper to review the huge literature on analytical/deterministic

methods for solving optimization problem. Many of these methods are based on gradient or pseudo-

gradient techniques. Examples are Line Search, Gradient Descent, Newton-Type Methods, Variable

Metric, Conjugate Gradient etc. The main drawback of gradient-based methods is that they, by

their nature, do not cope well with optimization problems that have non-convex objective functions

and/or many local optima. Such multi-extremal continuous optimization problems arise abundantly

in applications. A popular and convenient approach to these type of problems is to use random

search techniques. The basic idea behind such methods is to systematically partition the feasible

region into smaller subregions and then to move from one subregion to another based on information

obtained by random search. Well-known examples include simulated annealing (Aarts and Korst,

1989), threshold acceptance, (Dueck and Scheur, 1990), genetic algorithms (Goldberg, 1989), tabu

search (Glover and Laguna, 1993), ant colony method (Dorigo et al., 1996), and the stochastic

comparison method (Gong et al., 1992).

The rest of this paper is organized as follows. Section 2 presents an overview of the CE method.

In section 3 we give the main algorithm for continuous multi-extremal optimization using multi-

dimensional normal sampling with independent components. A particular emphasis is put on

the issue of different updating procedures for the parameters of the normal pdf, so-called fixed

and dynamic smoothing. In Section 4 we present numerical results with the CE Algorithm for

both unconstrained and constrained programs. We demonstrate the high accuracy of CE using

two approaches to constrained optimization: the acceptance-rejection approach and the penalty

approach.

2 The Main CE Algorithm for Optimization

The main idea of the CE method for optimization can be stated as follows: Suppose we wish to

maximize some “performance” function S(x) over all elements/states x in some set X . Let us

denote the maximum by γ∗, thus

γ∗ = max
x∈X

S(x) . (1)

To proceed with CE, we first randomize our deterministic problem by defining a family of pdfs

3

{f(·;v),v ∈ V} on the set X . Next, we associate with (1) the estimation of

ℓ(γ) = Pu(S(X) > γ) = EuI{S(X)>γ}, (2)

the so-called associated stochastic problem (ASP). Here, X is a random vector with pdf f(·;u), for

some u ∈ V (for example, X could be a normal random vector) and γ is a known or unknown

parameter. Note that there are in fact two possible estimation problems associated with (2). For

a given γ we can estimate ℓ, or alternatively, for a given ℓ we can estimate γ, the root of (2). Let

us consider the problem of estimating ℓ for a certain γ close to γ∗. Then, typically {S(X) > γ} is

a rare event, and estimation of ℓ is a non-trivial problem. The CE method solves this efficiently

by making adaptive changes to the probability density function according to the Kullback-Leibler

CE, thus creating a sequence f(·;u), f(·;v1), f(·;v2), . . . of pdfs that are “steered” in the direction

of the theoretically optimal density f(·;v∗) corresponding to the degenerate density at an optimal

point. In fact, the CE method generates a sequence of tuples {(γt,vt)}, which converges quickly

to a small neighborhood of the optimal tuple (γ∗,v∗). More specifically, we initialize by setting

v0 = u, choosing a not very small quantity ̺, say ̺ = 10−2, and then we proceed as follows:

1. Adaptive updating of γt. For a fixed vt−1, let γt be the (1 − ̺)-quantile of S(X) under

vt−1. That is, γt satisfies

Pvt−1
(S(X) > γt) > ̺, (3)

Pvt−1
(S(X) 6 γt) > 1 − ̺, (4)

where X ∼ f(·;vt−1).

A simple estimator of γt, denoted γ̂t, can be obtained by drawing a random sample X1, . . . ,XN

from f(·;vt−1) and evaluating the sample (1 − ̺)-quantile of the performances as

γ̂t = S(⌈(1−̺)N⌉). (5)

2. Adaptive updating of vt. For fixed γt and vt−1, derive vt from the solution of the program

max
v

D(v) = max
v

Evt−1
I{S(X)>γt} ln f(X;v) . (6)

The stochastic counterpart of (6) is as follows: for fixed γ̂t and v̂t−1 (the estimate of vt−1),

derive v̂t from the following program

max
v

D̂(v) = max
v

1

N

N∑

i=1

I{S(Xi)>γ̂t} ln f(Xi;v) . (7)

4

Remark 2.1 (Smoothed Updating) Instead of updating the parameter vector v directly via

the solution of (7) we use the following smoothed version

v̂t = αṽt + (1 − α)v̂t−1, ∀ i = 1, . . . n, (8)

where ṽt is the parameter vector obtained from the solution of (7), and α is called the smoothing

parameter, with 0.7 < α ≤ 1. Clearly, for α = 1 we have our original updating rule. The reason

for using the smoothed (8) instead of the original updating rule is twofold: (a) to smooth out the

values of v̂t, (b) to reduce the probability that some component v̂t,i of v̂t will be zero or one at the

first few iterations. This is particularly important when v̂t is a vector or matrix of probabilities.

Note that for 0 < α ≤ 1 we always have that v̂t,i > 0, while for α = 1 one might have (even at

the first iterations) that either v̂t,i = 0 or v̂t,i = 1 for some indices i. As result, the algorithm will

converge to a wrong solution.

Thus, the main CE optimization algorithm, which includes smoothed updating of parameter vector

v can be summarized as follows.

Algorithm 1 Generic CE Algorithm for Optimization

1. Choose some v̂0. Set t = 1.

2. Generate a sample X1, . . . ,XN from the density f(·; v̂t−1) and compute the sample (1 − ̺)-

quantile γ̂t of the performances according to (5).

3. Use the same sample X1, . . . ,XN and solve the stochastic program (7). Denote the solution

by ṽt.

4. Apply (8) to smooth out the vector ṽt.

5. Repeat steps 2–4 until a pre-specified stopping criterion is met.

3 Continuous Multi-Extremal Optimization

Here we apply the CE Algorithm 1 to continuous multi-extremal optimization problems (1), for

both (a) unconstrained and (b) constrained problems with non-linear boundaries. We assume

henceforth that each x = (x1, . . . , xn) is a real-valued vector and that X is a subset of R
n.

5

(a) The Unconstrained Case

In this case generation of a random vector X = (X1, . . . ,Xn) ∈ X is straightforward. The easiest

way is to generate the coordinates independently (say from an arbitrary 2-parameter distribution),

such that by applying Algorithm 1 the joint distribution converges to the degenerated distribution

in “close” vicinity to the point x∗ where the global extremum is attained. Examples of such

distributions are the normal, double-exponential and beta distributions.

The parameter updating step (7) translates into the following: Given a random sample of size

N , the parameters are updated based on the N elite = ̺N best performing samples. These are called

the elite samples. The updated parameters are found to be the maximal likelihood estimates (MLEs)

of the elite samples (Rubinstein and Kroese, 2004). In particular, for the normal distribution, the

parameter updating is especially simple. Namely, the parameters µ and σ2 are updated as the

sample mean and sample variance of the elite samples, see formulas (10) and (11) below.

While applying CE algorithm, the mean vector µ̂t should converge to x∗ and the vector of

standard deviations σ̂t to the zero vector. In short, we should obtain a degenerated pdf with all

mass concentrated in the vicinity of the point x∗.

Example 3.1 (Normal Updating) Consider optimization of the function S given by

S(x) = e−(x−2)2 + 0.8 e−(x+2)2 , x ∈ R . (9)

Note that S has a local maximum at point −2.00 (approximately) and a global maximum at

2.00. At each stage t of the CE procedure we simulate a sample X1, . . . ,XN from a N(µ̂t−1, σ̂
2
t−1)

distribution, and update µ̂t and σ̂t as the mean and standard deviation of the elite samples. A

simple Matlab implementation is given in Appendix A. The CE procedure is illustrated in Figure 1,

using starting values µ̂0 = −6, σ̂0 = 100 and CE parameters α = 0.7,N elite = 10 and N = 100.

Algorithm 2 is stopped when the standard deviation becomes smaller than ε = 0.05. We observe

that the vector (µ̂t, σ̂t) quickly converges to the optimal (µ∗, σ∗) = (2.00, 0), easily avoiding the

local maximum.

6

-6 -4 -2 2 4 6
x

0.5

1

S[x]

-6 -4 -2 2 4 6
x

0.5

1

1.5

2

f[x]

Figure 1: Continuous Multi-Extremal Optimization

The normal updating procedure above is easily adapted to the multidimensional case. Specifi-

cally, when the components of the random vectors X1, . . . ,XN are chosen independently, updating

of the parameters can be done separately for each component. The pseudocode for the continuous

CE procedure, using normal updating (with independent components) is given in Algorithm 2. The

n-dimensional normal distribution with independent components, mean vector µ = (µ1, . . . , µn) and

variance vector σ2 = (σ2
1 , . . . , σ

2
n) is denoted by N(µ,σ2).

7

Algorithm 2 CE Algorithm for Continuous Optimization

1: initialize: Choose µ̂0 and σ̂
2
0. Set t := 0.

2: repeat

3: draw: Increase t by 1. Generate a random sample X1, . . . ,XN from the N(µ̂t−1, σ̂
2
t−1)

distribution.

4: select: Let I be the indices of the N elite best performing (=elite) samples.

5: update: for all j = 1, . . . , n let

µ̃tj :=
∑

i∈I

Xij/N
elite (10)

and

σ̃2
tj :=

∑

i∈I

(Xij − µtj)
2/N elite. (11)

6: smooth:

µ̂t := αµ̃t + (1 − α)µ̂t−1, σ̂t := ασ̃t + (1 − α)σ̂t−1 (12)

7: until maxj(σtj) < ε

It is important to note that we found numerically that the smoothing procedure with the fixed

smoothing parameter α works well in many cases, but fails in some other cases. To overcome this

difficulty we shall use two different smoothing schemes for µ and σ. In particular, for µ we shall

use the same fixed smoothing parameter α, (0.5 ≤ α ≤ 0.9) as in (12), while the variance σ2 we

shall use the following dynamic smoothing

βt = β − β

(
1 −

1

t

)q

, (13)

where q is an integer (typically between 5 and 10) and β is a smoothing constant (typically between

0.8 and 0.99).

The reason for using the dynamic smoothing (13) for σ instead of a fixed smoothing can be

explained as follows. With a fixed α as per (12) the convergence to a degenerate distribution will

typically happen too quickly, which will in turn result into a sub-optimal solution. The goal of

(13) is precisely to prevent this. It is readily seen that by choosing for σ the βt smoothed updating

instead of α one, the convergence to the degenerate case will have a polynomial speed instead of

exponential.

8

Examples where the fixed smoothing scheme works perfectly are simple functions such as (9)

or the following trigonometric function

S(x) =
n∑

i=1

8 sin2(η(xi − x∗
i))

2 + 6 sin2(2η(xi − x∗
i))

2 + µ(xi − x∗
i)

2 . (14)

An example where the dynamic smoothing is essential is the Rosenbrock function:

S(x) =

n−1∑

i=1

100 (xi+1 − x2
i)

2 + (xi − 1)2 . (15)

Another example (arising from chemistry) where dynamic smoothing is important is the Hougen

least squares function:

S(x) =
1

13

13∑

i=1

(
ri −

x1 zi2 − zi3/x5

1 + x2 zi1 + x3 zi2 + x4 zi3

)2

, (16)

where the ri and zi are given in Table 1.

Table 1: Data for the Hougen Function

z1 z2 z3 r

470 300 10 8.55

285 80 10 3.79

470 300 120 4.82

470 80 120 0.02

470 80 10 2.75

100 190 10 14.39

100 80 65 2.54

470 190 65 4.35

100 300 54 13.00

100 300 120 8.50

100 80 120 0.05

285 300 10 11.32

285 190 120 3.13

The minimal value for S is 0.02299, which is attained at

x
∗ = (1.2526, 0.0628, 0.0400, 0.1124, 1.1914).

9

This function arises from the following non-linear regression problem (Bates and Watts, 1988):

The reaction rate r of a certain chemical reaction depends on three input variables: quantities of

hydrogen z1, n-pentane z2, and isopentane z3. The functional relationship is given by the Hougen

function:

r =
x1 z2 − z3/x5

1 + x2 z1 + x3 z2 + x4 z3
,

where x1, . . . , x5 are the unknown parameters. The objective is to estimate the model parameters

{xi} from the data, as given in Table 1. The estimation is done via the least squares method. The

objective function in (16) is simply the average sum of the squared deviations, to be used in the

least squares minimization problem.

The graphical representations of the Rosenbrock and the trigonometric functions for η = 7,

µ = 1, x∗
i = x∗ = 0.9 in the two-dimensional case are given in Figures 2 and 3, respectively.

It is not difficult to see that in the n-dimensional case the global minimum for the Rosenbrock

and the trigonometric function is attained at points x∗ = (1, 1, . . . , 1) and x∗ = (0.9, 0.9, . . . , 0.9),

respectively. The corresponding minimal function values are S(x∗) = 0. If not stated otherwise we

assume (as in Rubinstein (1999)) for the trigonometric function that η = 7, µ = 1.

-1
-0.5

0
0.5

1 -1

-0.5

0

0.5

1

0
50

100
150
200
250
300
350
400
450

Figure 2: Rosenbrock’s function in R
2 for −1 6 xi 6 1

10

-1
-0.5

0
0.5

1 -1

-0.5

0

0.5

1

0

5

10

15

20

25

Figure 3: The trigonometric function in R
2 with η = 7, µ = 1, x∗

i = x∗ = 0.9 and −1 6 xi 6 1

(b) The Constrained Case

We consider the case where X in (1) is a (non-linear) region defined by the following system of

inequalities:

Gi(x) 6 0, i = 1, . . . , L . (17)

To solve the program (1) with constraints (17), we can apply two approaches: the acceptance–

Rejection and the penalty approach.

Acceptance–Rejection Approach.

Suppose that the feasible region is simply an n-dimensional rectangle: X = [a,b]n. A straight-

forward method for solving (1) with such simple constraints is use the acceptance–rejection (AR)

method, which works as follows: Generate a random vector X from a normal distribution with

given parameters µ and σ2, then accept or reject it depending on whether the sample falls or not in

the interval of interest. The accepted sample can be viewed as the one generated from the truncated

normal distribution. A pleasant feature of such acceptance–rejection method is that the updating

rules for the CE method remain exactly the same as for the untruncated case, see Rubinstein and

Kroese (2004). In short, sampling from a truncated normal distribution on the interval [a, b] (we

11

write N(µ, σ2, a, b)) incurs the same updating rules (mean and variance of the elite samples) as for

the untruncated case.

It is important to note that the AR method can also be used when X is not a rectangle. We

can simply define a rectangle R that (hopefully) contains the optimal value and sample from R,

e.g., via the AR method, or by sampling directly from the truncated distribution, and by rejecting

samples from R that do not satisfy the constraints. However, R should not be chosen too large

either, because else too many samples are rejected.

Penalty Approach.

This approach is more generally applicable. the idea is to modify the objective function as follows:

S̃(x) = S(x) +

L∑

i=1

Pi(x) , (18)

where the {Pi} are penalty functions. Specifically, the i-th penalty function Pi (corresponding to

the i-th constraint) is defined as

Pi(x) = Hi max(Gi(x), 0) (19)

and Hi > 0 measures the importance (cost) of the i-th penalty. We shall call such penalty approach,

the proportional penalty approach to distinguish it from the so-called constant penalty approach,

where the penalty is constant, i.e., ˜S(x) = S(x) + H I{X/∈X}, for some constant H.

Clearly that as soon as the constrained problem (1), (17) is reduced to the unconstrained one

(1) — using (18) instead of S — we can apply again Algorithm 2.

4 Numerical Results

In this section we present numerical results with the CE Algorithm 2 for both unconstrained and

constrained programs (1) and (1), (17), respectively. As mentioned, the latter case is solved directly

via the AR method, or is translated into an unconstrained problem by using the penalty method

(18). We shall apply the AR approach to several examples where the constrains are relatively

simple.

For each test case we used the following parameters: N = 100n, α = 0.8, β = 0.7. For n < 50,

we set N elite = 10 and q = 5, while for 50 ≤ n ≤ 100, we set N elite = 20 and q = 6. We found that

12

(5–10)% deviation of all the above parameters from result to similar accuracy of the Algorithm 2.

But, more importantly, we did not have to “tweak” each set of parameter to each problem. For

each problem we first attempted the simple (fixed) smoothing, and if this was unsatisfactory we

applied the dynamic smoothing. The CE algorithm is very insensitive to the choice of initial means

and standard deviations, provided that the initial standard deviation is chosen large enough. For

example, on an interval [l, r] the initial standard deviation could be chosen as 5 (r − l) and the

initial mean uniformly in [l, r].

In the tables S∗
t denotes the best (that is, smallest) function value found in iteration t, γ̂t the

worst of the elite performances, and µ̂t the vector of means at the t-th iteration. The experiments

were conducted on a 2.4GHz computer, using a similar Matlab implementation as in appendix B.

4.1 Unconstrained Optimization

Here we present simulation results with the trigonometric and Rosenbrock function. Table 2

presents the evolution of Algorithm 1 (with fixed smoothing) for the trigonometric function with

η = 7, µ = 1 and n = 10. The algorithm was stopped when all standard deviations were smaller

than ε = 10−5. In repeated experiments the global maximum was consistently found in less than

1 second. Different values for the parameters µ and ν had little effect on the excellent accuracy of

the method. The final solution as observed to be accurate to at least 5 digits.

13

Table 2: The Evolution of Algorithm 2 for the Trigonometric Function with η = 7, µ = 1 and

n = 10, Using a Fixed Smoothing Parameter α = 0.8

t γ̂t S∗

t
µ̂

t

1 26217.239 16407.105 -32.34 3.39 -27.24 -7.59 9.50 33.26 1.17 22.70 19.48 -13.05

2 9547.867 7301.766 8.64 -12.50 -10.70 -8.59 -1.07 -7.05 2.16 13.70 15.84 -23.97

3 3223.558 1728.216 -4.19 -4.65 2.23 0.55 -1.91 -0.26 -4.65 -3.57 1.96 0.31

4 945.186 461.574 1.69 -3.18 -1.84 1.46 -0.21 -3.15 0.00 -1.68 3.82 -2.01

5 394.990 248.219 -2.62 -2.10 1.04 3.88 1.89 0.23 1.08 -0.49 -0.84 -0.63

6 167.775 116.924 0.77 0.92 -0.81 1.23 1.03 1.14 2.30 0.80 1.04 -0.02

7 87.474 66.761 0.16 0.09 0.80 0.38 0.91 1.02 0.95 0.50 0.71 1.53

8 56.999 41.834 0.56 0.57 1.15 0.13 0.90 0.64 1.15 0.60 0.24 0.99

9 44.042 27.412 0.43 0.56 0.59 0.32 1.05 1.54 0.66 1.00 0.09 1.27

10 40.506 27.386 0.80 0.83 0.72 0.47 0.82 1.33 1.34 0.88 0.41 0.80

11 35.428 21.344 0.62 0.96 0.66 0.58 0.97 1.03 0.92 0.87 0.63 0.86

12 28.879 22.246 0.60 0.81 0.76 0.46 1.01 0.91 1.15 0.81 0.31 0.76

13 23.012 14.374 0.98 0.81 0.63 0.69 0.97 0.91 1.18 0.91 0.48 0.97

14 15.462 3.787 0.82 0.91 0.72 0.77 0.88 0.90 1.07 0.92 0.94 0.95

15 7.937 1.510 0.89 0.91 0.90 0.84 0.85 0.91 0.97 0.93 0.91 0.97

16 1.823 0.731 0.90 0.90 0.84 0.90 0.90 0.92 0.90 0.85 0.91 0.99

17 0.342 0.080 0.92 0.90 0.89 0.92 0.90 0.92 0.91 0.88 0.89 0.91

18 0.041 0.015 0.90 0.91 0.89 0.91 0.91 0.91 0.88 0.89 0.90 0.90

19 0.005 0.003 0.89 0.90 0.90 0.90 0.91 0.90 0.90 0.90 0.89 0.90

20 0.001 0.001 0.90 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

21 0.000 0.000 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

22 0.000 0.000 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

23 0.000 0.000 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

Table 3 presents the evolution of Algorithm 2 (with fixed smoothing) for the minimization of

the Rosenbrock function. The tolerance ε is taken to be 10−5. In contrast to the Trigonometric

case, the standard (constant α) implementation does not work. Note that in this case the algorithm

happens to gets stuck near function value 7.5; repeated experiments gave other sub-optimal values.

14

Table 3: The Evolution of Algorithm 2 with Fixed Smoothing, for the Rosenbrock Function with

n = 10

t S∗

t µ̂
t

1 4356855562.857 29.68 15.70 -8.65 -7.49 -12.20 20.56 -2.68 18.48 25.82 28.04

2 230125218.080 9.25 -6.33 -9.58 6.75 11.89 3.50 -1.10 0.72 4.54 58.64

3 9907244.594 -2.18 -8.36 2.14 -0.26 2.13 4.20 5.14 0.69 0.12 84.64

4 1455485.756 2.50 -1.53 -1.61 0.96 3.04 2.32 0.77 3.04 -1.12 81.56

5 239936.836 0.40 -1.99 -0.91 -1.02 3.06 0.24 -0.39 1.90 1.00 128.16

6 91115.542 0.71 -1.07 -0.16 -0.20 0.13 0.22 -0.68 0.97 -4.05 71.74

7 24308.911 -0.32 -0.78 0.74 0.33 0.07 0.00 -0.24 0.61 0.63 37.18

8 3122.847 0.02 -0.26 0.38 0.17 -0.10 0.18 -0.36 1.28 2.93 15.13

9 1510.490 0.14 0.33 -0.07 0.05 0.21 0.15 -0.47 1.43 1.94 8.83

10 293.475 0.13 0.33 0.19 0.04 0.39 -0.19 -0.23 0.85 1.20 2.55

11 166.794 0.01 0.36 0.19 0.15 0.25 -0.08 -0.17 0.89 1.15 1.80

12 101.828 0.13 0.24 0.11 0.19 0.30 0.01 0.07 0.71 0.57 0.66

13 39.909 0.06 0.16 0.05 0.15 0.12 0.10 0.19 0.54 0.51 0.32

14 40.796 0.03 0.20 0.11 0.13 0.13 0.00 0.04 0.43 0.36 0.23

15 23.482 0.05 0.17 0.03 0.11 0.07 0.00 0.10 0.32 0.25 0.10

16 18.294 0.21 0.16 0.05 0.09 0.05 0.04 0.02 0.23 0.16 0.08

17 12.354 0.28 0.11 0.05 0.05 0.04 0.01 0.03 0.14 0.12 0.06

18 9.127 0.35 0.13 0.04 0.03 0.03 0.01 0.03 0.08 0.07 0.05

19 8.724 0.39 0.15 0.04 0.03 0.02 0.02 0.04 0.05 0.02 0.02

20 8.047 0.44 0.19 0.04 0.02 0.01 0.03 0.02 0.03 0.03 0.01

21 7.820 0.47 0.22 0.05 0.01 0.01 0.02 0.02 0.02 0.02 0.01

22 7.726 0.50 0.25 0.06 0.01 0.01 0.01 0.01 0.02 0.02 0.01

23 7.634 0.51 0.26 0.07 0.01 0.01 0.01 0.01 0.01 0.02 0.01

24 7.578 0.52 0.27 0.07 0.02 0.01 0.01 0.01 0.01 0.01 0.01

25 7.555 0.52 0.27 0.07 0.02 0.01 0.01 0.01 0.01 0.01 0.00

26 7.519 0.53 0.28 0.08 0.02 0.01 0.01 0.01 0.01 0.01 0.00

27 7.521 0.53 0.28 0.08 0.02 0.01 0.01 0.01 0.01 0.01 0.00

28 7.512 0.53 0.28 0.08 0.02 0.01 0.01 0.01 0.01 0.01 0.00

29 7.503 0.53 0.28 0.08 0.02 0.01 0.01 0.01 0.01 0.01 0.00

However, with dynamic smoothing the CE algorithm finds the the global maximum consistently,

in less than 3 seconds, using ε = 10−3. It is interesting to note that always the first component

15

converges first, then the second, third etc.

Table 4: The Evolution of Algorithm 2 with Dynamic Smoothing for the Rosenbrock Function with

n = 10

t γ̂t S∗

t µ̂
t

100 21.097 16.287 0.31 0.15 0.06 -0.06 0.01 0.02 -0.00 -0.07 0.11 0.03

200 7.219 6.391 0.86 0.74 0.53 0.29 0.10 0.04 0.00 -0.00 0.02 -0.00

300 3.403 3.002 0.98 0.96 0.93 0.86 0.74 0.54 0.30 0.10 0.03 -0.01

400 1.063 0.864 1.00 0.99 0.99 0.97 0.94 0.88 0.77 0.59 0.35 0.12

500 0.418 0.312 1.00 0.99 0.99 0.98 0.97 0.94 0.88 0.77 0.59 0.35

600 0.249 0.193 1.00 1.00 1.00 0.99 0.98 0.96 0.93 0.85 0.73 0.52

700 0.115 0.070 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.92 0.84 0.69

800 0.063 0.043 1.00 1.00 1.00 1.00 0.99 0.99 0.97 0.95 0.90 0.81

900 0.037 0.023 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.91

1000 0.024 0.012 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.95

In this case the final mean vector is (1.0013, 1.0002, 0.9995, 1.0002, 0.9980, 0.9969, 0.9929, 0.9865,

0.9738, 0.9466), with a function value of 0.014.

4.2 Acceptance–Rejection

We use the AR method to minimize the Hougen least squares function, constrained to the 5-

dimensional rectangle [0,2]. Table 5 depicts the evolution of the Algorithm 2 (with dynamic

smoothing). The tollerance was set to ε = 10−7. In repeated experiments the global minimum was

reliably found. The initial parameter vectors are µ̂0 = 1 and σ̂0 = 2. The simulation time for 8000

iterations was 30 seconds.

16

Table 5: The Evolution of Algorithm 2 for the Hougen Least Squares Function Using Constant

Smoothing

t S∗

t µ̂
t

500 0.02311 1.45482 0.07294 0.04723 0.12983 1.02368

1000 0.02304 1.37263 0.06881 0.04431 0.12277 1.08589

1500 0.02301 1.32930 0.06663 0.04277 0.11903 1.12177

2000 0.02300 1.30294 0.06531 0.04184 0.11676 1.14476

2500 0.02300 1.28579 0.06444 0.04123 0.11528 1.16019

3000 0.02299 1.27412 0.06386 0.04081 0.11427 1.17098

3500 0.02299 1.26619 0.06346 0.04053 0.11359 1.17843

4000 0.02299 1.26092 0.06319 0.04034 0.11314 1.18341

4500 0.02299 1.25739 0.06302 0.04022 0.11283 1.18677

5000 0.02299 1.25526 0.06291 0.04014 0.11264 1.18881

5500 0.02299 1.25406 0.06285 0.04010 0.11254 1.18996

6000 0.02299 1.25339 0.06282 0.04008 0.11248 1.19061

6500 0.02299 1.25303 0.06280 0.04006 0.11245 1.19095

7000 0.02299 1.25278 0.06279 0.04005 0.11243 1.19120

7500 0.02299 1.25269 0.06278 0.04005 0.11242 1.19128

8000 0.02299 1.25264 0.06278 0.04005 0.11242 1.19132

Below we consider two more examples, where the AR method has been successfully applied.

Example 4.1 The following optimization test problem is selected from Hock and Schittkowski

(1981), Problem 112 on page 121, which uses optimization methods from Schittkowski (1980), such

as line-search algorithms, unconstrained optimization, quadratic programming, penalty methods,

multiplier methods and the generalized reduced gradient methods. Some other references (that

indicate where this problem is originally from and where additional information or test results can

be found) are Bracken and McCormick (1968); Himmelblau (1972); White (1992).

The nonlinear programming problem is to find x so as to minimize the objective function

S(x) =

10∑

j=1

xj

(
cj + ln

xj

x1 + · · · + x10

)
,

17

subject to the following set of constraints:

x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0,

x4 + 2x5 + x6 + x7 − 1 = 0,

x3 + x7 + x8 + 2x9 + x10 − 1 = 0,

xj ≥ 0.000001, j = 1, . . . , 10,

where the constants {ci} are given in Table 6.

Table 6: Constants for Test Problem 112

c1 = −6.089; c2 = −17.164; c3 = −34.054; c4 = −5.914; c5 = −24.721;

c6 = −14.986; c7 = −24.100; c8 = −10.708; c9 = −26.662; c10 = −22.179.

The best known solution in Hock and Schittkowski (1981) was

x∗ = (0.01773548, 0.08200180, 0.8825646, 0.0007233256, 0.4907851,

0.0004335469, 0.01727298, 0.007765639, 0.01984929, 0.05269826),

with S(x∗) = −47.707579. However, using genetic algorithms (Michalewicz, 1996) finds a better

solution:

x∗ = (0.04034785, 0.15386976, 0.77497089, 0.00167479, 0.48468539,

0.00068965, 0.02826479, 0.01849179, 0.03849563, 0.10128126),

with S(x∗) = −47.760765. A single run of 1000 iterations took 56 seconds of CPU time. Using the

CE method — with constant smoothing — we can find an even better solution (using a comparable

amount of time as Michalewicz (1996)):

x∗ = (0.04067247, 0.14765159, 0.78323637, 0.00141368, 0.48526222,

0.00069291, 0.02736897, 0.01794290, 0.03729653, 0.09685870)

and S(x∗) = −47.76109081 (using ε = 10−8).

18

We now explain in more detail how the CE method is applied to this problem. The first step is

to reduce the search space by expressing x1, x4, x8 in terms of the other seven variables:

x1 = 2 − (2x2 + 2x3 + x6 + x10),

x4 = 1 − (2x5 + x6 + x7),

x8 = 1 − (x3 + x7 + 2x9 + x10).

Hence, we have reduced the original problem of ten variables to that of a function of seven variables,

which are subject to the following linear constraints:

x2, x3, x5, x6, x7, x9, x10 ≥ 0.000001,

2 − (2x2 + 2x3 + x6 + x10) ≥ 0.000001,

1 − (2x5 + x6 + x7) ≥ 0.000001,

1 − (x3 + x7 + 2x9 + x10) ≥ 0.000001.

The next step is to choose an appropriate rectangular search space R. The samples are drawn

from a truncated normal distribution (with independent components) on this space. Thus, each

component is drawn independently from a truncated normal distribution on some interval, either

by sampling directly from this distribution, or by sampling from the ordinary normal distribution

followed by the acceptance–rejection method. The rectangle R does not have to be a subspace of

the 7-dimensional search space given above. In this particular case we choose R such that

0.000001 ≤ x2 ≤ 0.5,

0.5 ≤ x3 ≤ 0.9,

0.000001 ≤ x5 ≤ 0.5,

0.000001 ≤ x6 ≤ 0.001,

0.000001 ≤ x7 ≤ 0.05,

0.000001 ≤ x9 ≤ 0.05,

0.000001 ≤ x10 ≤ 0.5.

We now apply Algorithm 2 on the multi-dimensional rectangle R, rejecting samples that do not

satisfy the constraints.

19

Example 4.2 This test example with non-linear constraints is taken from Hock and Schittkowski

(1981), Problem 63 on page 85. Other sources of reference are Himmelblau (1972); Paviani (1969);

Sheela and Ramaoorthy (1975). The objective function is:

S(x) = 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3,

subject to the constraints:

8x1 + 14x2 + 7x3 − 56 = 0,

x2
1 + x2

2 + x2
3 − 25 = 0,

xj ≥ 0, j = 1, 2, 3.

Similar to the previous test example, we eliminate two variables x2 and x3 and express them in

terms of x1, which we constrain to an interval. For the latter we choose 0 6 x1 6 5. For x2 and x3

we have either

x2 =
224 − 32x1 − 2

√
2989 + 896x1 − 309x2

1

70
,

x3 =
2
(
28 − 4x1 +

√
2989 + 896x1 − 309x2

1

)

35
,

or

x2 =
224 − 32x1 + 2

√
2989 + 896x1 − 309x2

1

70
,

x3 =
2
(
28 − 4x1 −

√
2989 + 896x1 − 309x2

1

)

35
.

Each vector X in the CE algorithm is now drawn as follows: First, we draw X1 according to a

truncated normal distribution on [0,5]. Then, we choose either the first or the second solution for

(X2,X3) above, with equal probability. The best known global solution in Hock and Schittkowski

(1981) is

x∗ = (3.512118414, 0.2169881741, 3.552174034),

with S(x∗) = 961.7151721.

20

Table 7 shows the progress of the CE algorithm (using dynamic smoothing). The initial param-

eters are: mean µ̂0 = (0, 0, 0) and standard deviation σ̂0 = (1, 1, 1). It took less than 1 second to

find the solution

x∗ = (3.512120196, 0.216988032, 3.552172282),

with S(x∗) = 961.715172130054, using a tolerance of ε = 10−6. Fixed smoothing is somewhat less

accurate, giving typically only the first 3 significant digits.

Table 7: Evolution of the CE Method for Problem 63, Using Dynamic Smoothing

t S∗
t xt

3 961.715568341919 3.496826535945 0.218483551317 3.566659713430

6 961.715172566952 3.511034947979 0.217074975981 3.553238678918

9 961.715172130248 3.512301551911 0.216973631926 3.551993819679

12 961.715172130932 3.512049391288 0.216993664593 3.552241937912

15 961.715172130091 3.512143711972 0.216986164164 3.552149143705

18 961.715172130114 3.512117071139 0.216988281388 3.552175355923

21 961.715172130124 3.512126761278 0.216987510817 3.552165822620

4.3 Penalty Method

Here we apply the proportional penalty approach to the constrained minimization of the Rosenbrock

function of dimension 10.

Table 8 displays the results of 8 experiments, listing for each experiment the constraints, the

minimal value obtained by Algorithm 2 (with dynamic smoothing), and the CPU time. In all

experiments we used ε = 10−3 and H = 1000, except in the third one, where H = 2000. Repeated

experiments found consistently the same values, indicating that the true global minimum was

reached in each case.

21

Table 8: Constrained Rosenbrock Problems

Constraints S∗
T secs

∑10
j=1 xj 6 −8 1517.8 20

∑10
j=1 xj 6 −10 2677.4 14

∑10
j=1 xj 6 −15 7489.4 20

∑10
j=1 xj > 15 1.32 4

∑10
j=1 xj 6 −8,

∑10
j=1 x2

j > 8 1517.8 27

∑10
j=1 xj 6 −8,

∑10
j=1 x2

j > 15 1764.0 4

∑10
j=1 xj 6 −8,

∑10
j=1 x2

j > 22.5 2337.6 5

∑10
j=1 xj > 15,

∑10
j=1 x2

j 6 22.5 0.241 4

We note that results using constant penalty approach, that is, using performance function

S̃(x) = S(x) + H I{x∈X}, were not as good as the ones listed above. The reason is that with the

constant penalty approach it can happen that (almost) all samples fall outside X and therefore

incur a (large) penalty. This is very similar to the AR approach when (almost) all samples are

rejected.

We have repeated Example 4.1 with the penalty approach. Specifically, x1, x4 and x8 are again

expressed in terms of the other seven variables, but now the latter ones are generated according to

an ordinary (untruncated) normal distribution; and a proportional penalty is added to the objective

function, for each of the 10 constraints. Actually, because of the occurrence of the logarithm in the

objective function, many samples yield complex values. For this reason we only consider the real

part of the modified function. We found that the penalty approach with constant smoothing works

even better than the AR approach, provided that the smoothing parameter for σ is chosen not too

22

large, say 0.2. Setting ε = 10−8 and Hi = 1000, the penalty approach yielded the solution

x∗ = (0.0406680568, 0.1477303255, 0.7831533568, 0.00141421020.4852466432

0.0006931926, 0.0273993108, 0.0179472407, 0.0373143529, 0.0968713859),

with S(x∗) = −47.7610908594, in 12 seconds. This is the best known solution thus far.

5 Conclusions and Directions for Future Research

We applied the CE method for continuous multi-extremal unconstrained and constrained optimiza-

tion problems with linear and nonlinear constraints. We demonstrated its high accuracy and gave

an example where CE finds a better solution than reported in the literature. We have focused on

two different updating schemes — called fixed and dynamic smoothing — for the parameters µ and

σ2 of the normal pdf. Fixed smoothing is typically significantly faster than dynamic smoothing,

and should be attempted first. We have showed that dynamic smoothing consistently gives accu-

rate answers, in cases where the fixed smoothing approach fails. We have deliberately refrained

from “tuning” the parameters. Undoubtedly this will further improve the accuracy and speed of

the algorithm, but by using the same CE parameters for all problems, and by employing the (in

essence) same simple Matlab implementation throughout, we emphasized the robustness, elegance

and versatility of the CE method.

We believe that the CE method for continuous optimization is especially useful for tackling

problems with complicated constraints. We have focused on two approaches: the acceptance-

rejection and the proportional penalty approach for the constrained optimization. Both methods

have their merits, although the constant penalty approach is more generally applicable.

The theoretical convergence properties of the CE method are not yet fully understood. A few

results on this can be found in Rubinstein and Kroese (2004) and Margolin (2004). Although

this will be an important topic for future research, we believe that from a practical point of view

the merit of the CE method has been demonstrated clearly by the increasing body of numerical

evidence. However, the CE method is still evolving, and many new modifications and applications

are being developed. An extensive numerical study on the various CE modifications and the choice

of parameters, for a large range of test problems, is another topic for future research.

23

A Matlab Example Code

An example Matlab CE program, to find the global maximum of the function S in (9).

S = inline(’exp(-(x-2).^2) + 0.8*exp(-(x+2).^2)’);

mu = -6;

sigma = 10;

Nel = 10;

N = 100;

eps = 1E-8;

tic

t=0;

while sigma > eps

t = t+1;

x = mu + sigma*randn(N,1);

SX = S(x);

sortSX = sortrows([x SX],2);

Xel = sortSX((N - Nel + 1):N,1);

mu = mean(Xel);

sigma = std(Xel);

fprintf(’%g %6.9f %6.9f %6.9f \n’, t, S(mu),mu, sigma)

end

mu

toc

B Main CE Program

All the Matlab programs used for this paper we based on the program below.

clear all

format long g

n=10; % select dimension

Nel = 10, N = 100*n, alpha = 0.8 , beta = 0.7, q = 5;

eps = 1e-3;

mu = -2 + 4*rand(1,n); % select initial mu

sigma = 100.0*ones(1,n); % select initial sigma

24

mu_last = mu;

sigma_last = sigma;

X_best_overall = zeros(1,n);

S_best_overall = 1E10;

t = 0

tic

while sigma > eps

t = t+1;

mu = alpha*mu + (1-alpha)*mu_last;

B_mod = beta - beta*(1-1/t)^q;

sigma = B_mod*sigma + (1-B_mod)*sigma_last ; % dynamic smoothing

% sigma= alpha*sigma + (1-alpha)*sigma_last; % fixed smoothing

X = ones(N,1)*mu + randn(N,n)*diag(sigma); % generate samples

SA = Rosen(X); % select performance function

[S_sort,I_sort] = sort(SA);

gam = S_sort(Nel);

S_best = S_sort(1);

if (S_best < S_best_overall)

S_best_overall = S_best;

X_best_overall = X(I_sort(1),:);

end

mu_last = mu;

sigma_last = sigma;

Xel = X(I_sort(1:Nel),:);

mu = mean(Xel);

sigma = std(Xel);

if mod(t,100)==0 % print each 100 iterations

fprintf(’%d %5.4f’,t,S_best);

fprintf(’ %5.4f’,mu)

fprintf(’\n’)

end;

end

toc

fprintf(’%d %9.8f\n’,t,S_best_overall);

25

fprintf(’ %9.8f’,X_best_overall)

fprintf(’\n’)

C Functions

Below we list three test functions (the trigonometric, the Rosenbrock, and the Hougen least squares

function) that can be used in conjunction with the main CE program above.

function out = Trigo(X) %trigonometric function

r = [];

for i = 1:size(X,2) ,

r = [8*sin(7*(X(:,i)- 0.9).^2).^2 + ...

+ 6*sin(14*(X(:,i)- 0.9).^2).^2 + (X(:,i) - 0.9).^2, r];

end;

out = sum(r,2);

function out = Rosen(X)

r=[];

for i = 1:size(X,2)-1

r = [100*(X(:,i+1)-X(:,i).^2).^2+(X(:,i)-1).^2,r];

end

out = sum(r,2);

function out = Hougen1(X)

r = [8.55, 3.79, 4.82, 0.02, 2.75, 14.39, 2.54, 4.35, 13.00, 8.50, ...

0.05, 11.32, 3.13];

z = [470, 300, 10;

285, 80, 10;

470, 300,120;

470, 80,120;

470, 80, 10;

100, 190, 10;

100, 80, 65;

26

470, 190, 65;

100, 300, 54;

100, 300,120;

100, 80,120;

285, 300, 10;

285, 190,120]’;

s = 0;

for i = 1:13

s = s + (r(i) - ((X(:,1)*z(2,i) - z(3,i)./X(:,5))./(1 + X(:,2)*z(1,i) ...

+ X(:,3)*z(2,i)+ X(:,4)*z(3,i)))).^2 ;

end

out = (s + 10*sum(max(-X(:,:),0),2) + 10*sum(max(X(:,:)-2,0),2))/13;

Acknowledgment: We would like to thank Jenny Liu and Thomas Taimre for conducting various

CE experiments on constrained optimization. This Research was supported by the Israel Science

Foundation (ISF) Grant No. 191-565.

References

Aarts, E. H. L. and Korst, J. H. M. (1989). Simulated Annealing and Boltzmann Machines. John

Wiley & Sons.

Bates, D. and Watts, D. (1988). Nonlinear Regression Analysis and Its Applications. Wiley.

Bracken, J. and McCormick, G. P. (1968). Selected Applications of Nonlinear Programming. John

Wiley & Sons, Inc., New York.

de Boer, P. T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y. (2004). A tutorial on the

cross-entropy method. Annals of Operations Research. To appear.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system: optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics—Part B, 26(1),

29–41.

27

Dueck, G. and Scheur, T. (1990). Threshold accepting: a general purpose optimization algorithm

appearing superior to simulated annealing. Journal of Computational Physics, 90.

Glover, F. and Laguna, M. L. (1993). Modern Heuristic Techniques for Combinatorial Optimization,

chapter Chapter 3: Tabu search. Blackwell Scientific Publications.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison

Wesley.

Gong, W. B., Ho, Y. C., and Zhai, W. (1992). Stochastic comparison algorithm for discrete

optimization with estimation. In Proceedings of the 31st IEEE Conference on Decision and

Control, pages 795–800.

Himmelblau, D. M. (1972). Applied Nonlinear Programming. McGrawHill Book-Comapany, New

York.

Hock, W. and Schittkowski, K. (1981). Test Examples for Nonlinear Programming Codes, volume

197. Springer-Verlag, New York.

Margolin, L. (2004). On the convergence of the cross-entropy method. Annals of Operations

Research.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer,

3rd edition.

Paviani, D. A. (1969). A New Method for the Solution of the General Nonlinear Programming

Problem. Ph.D. thesis, The University of Texas, Austin, Texas.

Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare events. European

Journal of Operational Research, 99, 89–112.

Rubinstein, R. Y. (1999). The cross-entropy method for combinatorial and continuous optimization.

Methodology and Computing in Applied Probability, 2, 127–190.

Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross-Entropy Method: A Unified Approach to

Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag,

New York.

28

Schittkowski, K. (1980). Nonlinear Programming Codes, volume 183. Springer-Verlag, New York.

Sheela, B. V. and Ramaoorthy, P. (1975). Swift - a new constrained optimization technique.

Computer Methods in Applied Mechanics and Engineering, 6(3), 309–318.

White, D. (1992). Markov Decision Process. J. Wiley & Sons.

29

