
The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links

Jiahao Cao1,2, Qi Li2,3, Renjie Xie1,2, Kun Sun4, Guofei Gu5,

Mingwei Xu1,2, and Yuan Yang1,2

1Department of Computer Science and Technology, Tsinghua University
2Beijing National Research Center for Information Science and Technology, Tsinghua University

3Institute for Network Sciences and Cyberspace, Tsinghua University
4Department of Information Sciences and Technology, George Mason University

5SUCCESS LAB, Texas A&M University

Abstract

Software-Defined Networking (SDN) enables network inno-

vations with a centralized controller controlling the whole

network through the control channel. Because the control

channel delivers all network control traffic, its security and

reliability are of great importance. For the first time in the

literature, we propose the CrossPath attack that disrupts the

SDN control channel by exploiting the shared links in paths

of control traffic and data traffic. In this attack, crafted data

traffic can implicitly disrupt the forwarding of control traffic

in the shared links. As the data traffic does not enter the con-

trol channel, the attack is stealthy and cannot be easily per-

ceived by the controller. In order to identify the target paths

containing the shared links to attack, we develop a novel

technique called adversarial path reconnaissance. Both the-

oretic analysis and experimental results demonstrate its fea-

sibility and efficiency of identifying the target paths. We

systematically study the impacts of the attack on various net-

work applications in a real SDN testbed. Experiments show

the attack significantly degrades the performance of exist-

ing network applications and causes serious network anoma-

lies, e.g., routing blackhole, flow table resetting, and even

network-wide DoS.

1 Introduction

Software-Defined Networking (SDN) becomes increasingly

popular and is being widely deployed in data centers [32],

cloud networks [13], and wide area networks [11]. In SDN,

the control plane and data plane are decoupled. A logically

centralized controller communicates with SDN switches to

exchange control messages, e.g., routing decisions, via the

control channel built upon a southbound protocol, e.g.,

OpenFlow [47]. SDN enables diversified packet processing

and drives network innovation. A large number of network

services and applications [26, 40, 33] benefit from it.

Unfortunately, the SDN control channel between the con-

trol plane and data plane is not well protected and can be

exploited though the confidentiality and integrity of the com-

munication over the channel are protected by the TLS/SSL

protocol. We find that the control channel is under the risk

of the Denial-of-Service (DoS) attack. In particular, a small

portion of traffic may tear down the communication over

the control channel. Existing studies focus on many secu-

rity aspects of SDN, including malicious or buggy applica-

tions [63, 48], attacks on crashing controllers [60, 49, 65], at-

tacks on disrupting switches [22, 51], and information leak-

age in SDN [25, 56, 19, 45] , but the security of the SDN

control channel is still an open problem.

In this paper, we propose a novel attack named CrossPath

Attack, which disrupts the SDN control channel by exploit-

ing the shared links between paths of control traffic and data

traffic. Our attack is stealthy and cannot be easily perceived

by the controller since it does not directly send a large vol-

ume of control traffic to the controller. Instead, it generates

well-crafted data traffic in the shared links to implicitly in-

terfere with the delivery of the control traffic while the data

traffic does not reach the controller. Thereby, real-time con-

trol messages delivered between the SDN controller and the

switches are significantly delayed or dropped. In particular,

since the controller performs centralized control over all net-

work switches via the control channel, an attacker can easily

break down all network functionalities enabled by various

SDN applications running on the controller. The root cause

of the vulnerability is the side effect incurred by shared links

between paths of control traffic and data traffic in SDN. Such

link sharing is a common practice in SDN with in-band con-

trol [21, 65], which can greatly reduce the cost of building

a dedicated control network and simplify network mainte-

nance, especially for large networks. However, it also opens

the door for an attacker to disrupt the control channel by

sending malicious data traffic to the shared links.

It is challenging to construct the attack in real networks.

Unlike traditional IP networks where almost all links deliver

both control traffic (e.g., OSPF or BGP updates [1, 2]) and

data traffic at the same time, only a few number of links for-

ward control traffic in SDN. For instance, an SDN network

with m switches can have O(m2) links. However, there may

be m links forming a spanning tree connecting m switches

with a controller to deliver the control traffic. Thus, an at-

tacker needs to find a target path that contains the shared

links between control and data traffic to send the attack traf-

fic. However, it is difficult to know since the network topol-

ogy and the routing information are invisible to end users.

Moreover, none of the information can be inferred by scan-

ning tools used in traditional IP networks due to different for-

warding actions in SDN. For example, Traceroute [17] can-

not work well because SDN switches usually do not decrease

the time-to-live (TTL) values in packet headers.

To address the above challenge, we present a probing tech-

nique called adversarial path reconnaissance to find a tar-

get path of data traffic that contains the shared links. The

key observation is that the delays of control messages on the

SDN control channel will become higher if a short-term burst

of data traffic passes through the shared links. Meanwhile,

such delays that indicate the path of the current data traf-

fic has shared links with control traffic can be measured by

a host. The reason one host can measure the delays is that

the first packet of a new flow will be sent to the controller

to query forwarding actions, which incurs extra delays of

control messages other than that of the following packets di-

rectly processed in the data plane. Thus, by crafting timing

packets to measure the latency variation of the control mes-

sages with/without injecting a short-term burst of data traffic,

a path containing the shared links can be correctly identified.

By conducting the above reconnaissances on each possible

path, a target path can finally be found.

We note the probing technique may fail to identify a tar-

get path in rare cases. We study the conditions of successful

probing, and our experiments with 261 real network topolo-

gies [4] demonstrate that these conditions can be easily met

in practice. Moreover, we analyze the expected number of

paths that need to be explored for an attacker to find a tar-

get path. Both theoretical analysis and experimental results

show the high efficiency of our probing technique. For ex-

ample, it only needs to explore less than 50 paths on average

if there are 1,000 paths and only 2% of them contains shared

links. Experimental results in a real SDN testbed show our

reconnaissances can achieve more than 90% accuracy.

In order to ensure the stealthiness of the attack, we lever-

age the low-rate TCP-targeted DoS [41] to generate data traf-

fic consisting of periodic pulses in the shared links, instead

of directly flooding shared links to disrupt the network. The

low-rate TCP targeted DoS incurs repeated TCP retransmis-

sion timeout for TCP connections of the control channel.

Compared with direct link flooding on the shared links, it

significantly reduces the volume of attack traffic. Note the

TCP-targeted DoS cannot effectively disrupt SDN networks

without the knowledge of shared links obtained by our prob-

ing technique. Moreover, our attack is significantly different

from the packet-in flooding attacks [55, 60] that trigger a

huge volume of control traffic with bogus packets to saturate

the SDN control channel. Instead, it leverages low-rate data

traffic to disrupt the control channel and can thus succeed

even in the presence of state-of-the-art SDN defenses, such

as FloodGuard [60], FloodDefender [52], and SPHINX [27].

We systematically study the impacts of the attack on dif-

ferent SDN applications that achieve diversified network

functionalities. We find that almost all SDN applications can

be affected by our attack since our attack targets at disrupt-

ing the core services in SDN controllers that support these

applications. In order to understand the impacts, we conduct

experiments with four typical applications that have been

widely deployed in SDN controllers, i.e., ARP Proxy [5],

Learning Switch [6], Reactive Routing [9], and Load Bal-

ancer [7]. The results show (1) the performance of ARP

Proxy can be significantly degraded, such as 10 times in-

crease in the response delays and 95% reduction in the num-

ber of the ARP replies; (2) Learning Switch cannot success-

fully install forwarding decisions in the data plane and thus

the throughput of the data plane is reduced to 0 Mbps; (3)

Reactive Routing cannot update routing information in time

and obtain incorrect topology information, which incurs var-

ious routing anomalies, e.g., routing loop, routing blackhole,

routing path eviction, and flow table resetting; and (4) Load

Balancer generates wrong decisions, resulting in link over-

loading.

In summary, our paper makes the following contributions:

• We present the CrossPath attack to significantly disrupt

the SDN control channel by exploiting the shared links

between paths of control traffic and data traffic.

• We develop a probing technique called adversarial path

reconnaissance that can find a target path containing the

shared links with a high accuracy.

• We prove the conditions of successful probing, analyze

the expected number of explored paths to find a target

path, and validate our analysis with experiments.

• We perform a systematical study and conduct exten-

sive experiments on four typical SDN applications to

demonstrate the impacts of the attack on various SDN

network functionalities.

The rest of the paper is organized as follows. Section 2

provides background information about SDN and threat

model. Section 3 presents the CrossPath attack along with

an effective probing technique. Section 4 evaluates the fea-

sibility and effectiveness of the attack both in large-scale

simulations and real SDN testbeds. Section 5 further stud-

ies the impacts of the attack on different SDN applications

by detailed analysis and extensive experiments. Section 6

discusses defense mechanisms that can be immediately de-

ployed in practice to mitigate the attack. Section 7 reviews

related work. Section 8 concludes the paper.

2 Background and Threat Model

2.1 Background

In this section, we briefly review the SDN architecture and

a typical protocol of SDN, i.e., the OpenFlow protocol [47].

SDN enables network innovations by decoupling the control

and data planes and provide programmability as well as flex-

ibility. The control plane is logically centralized and can be

deployed on commodity servers. The SDN architecture can

be divided into three layers. The control layer and the appli-

cation layer constitute the control plane, which runs as a net-

work operating system, a.k.a. a controller. Various network

applications can be deployed in the application layer to en-

able diversified network functions, such as routing, network

monitoring, anomaly detection, and load balancing. The data

plane layer, which consists of “dumb” SDN switches, per-

forms low-level packet processing and forwarding based on

the decisions generated by the control layer.

The dominant communication protocol between the con-

trol and data planes is OpenFlow, which has been stan-

dardized by the Open Networking Foundation (ONF) [14].

OpenFlow allows a controller to dynamically specify SDN

switches’ forwarding behaviors by installing flow rules.

Each flow rule contains match fields to match against in-

coming packets, a set of instructions that describe how to

process the matched packets, and counters that count the

number and the total bytes of matched packets. OpenFlow

also defines how to handle packets in a switch. When a

switch receives a packet, it processes the packet based on

the rule that matches the packet with the highest priority. If

no rules match the packet, the switch sends the packet to the

SDN controller through the control channel with a packet in

message. Applications running on the controller analyze the

packet and make decisions. Once the decisions are made,

the packet will be sent back to the switch with a packet out

message. The corresponding flow rules will be installed into

all switches forwarding the packet with flow mod messages.

Such a packet processing procedure is called reactive rule

installation, which has been widely used in OpenFlow net-

works [60, 52]. Moreover, to reduce the cost of building a

dedicated control network and operating networks, in partic-

ular in large-scale networks [21, 65], OpenFlow allows the

control and data traffic to share some links in the network,

which is called in-band control.

2.2 Threat Model

In this paper, we consider an SDN network deployed with

the OpenFlow protocol. The network uses a reactive ap-

proach to install flow rules, which is widely adopted in prac-

tice [60, 52], over an in-band control channel [21, 65]. We

assume that an attacker has or compromises at least one host

attached in the network, which can be easily achieved, e.g.,

by renting a virtual machine in an SDN-based cloud network.

The goal of the attacker is to craft data traffic to disrupt the

SDN control channel that delivers control traffic.

An attacker does not need to have prior knowledge on

the network and any privileges of network operation. The

CrossPath attack does not require the attacker to compro-

mise the controllers, applications, and switches, or to con-

struct man-in-the-middle attacks on the control channel to

manipulate the control messages. The control channel can be

protected with TLS/SSL. Furthermore, we assume that con-

trollers, switches, and applications are well protected. For

example, the network applies strict access control policies to

prevent communication between controllers and attackers.

3 The CrossPath Attack

In this section, we present the CrossPath attack on disrupting

the SDN control channel. Particularly, we develop a probing

technique called adversarial path reconnaissance to accu-

rately find a target path containing shared links.

3.1 Overview

The CrossPath attack aims to disrupt the SDN control chan-

nel by exploiting the shared links between paths of control

traffic and data traffic. An attacker interferes with the trans-

mission of control traffic by generating data traffic pass-

ing through the shared links. Thereby, the real-time con-

trol messages delivered in the control channel are delayed or

dropped. As the SDN controller performs centralized control

over all switches via the control channel, an attacker can al-

most break down all network functionalities enabled by SDN

by constructing the attack. To achieve this, an attacker needs

to use a host attached in the network to generate probing traf-

fic so as to identify which path of data traffic (i.e., a target

path) shares links with paths of control traffic. Then, the at-

tacker can send attack traffic to the target path to disrupt the

control channel. In order to decrease the attack rate, the at-

tack utilizes the low-rate TCP-targeted DoS (LDoS) [41] to

generate periodic on-off “square-wave” traffic, which leads

to repeated TCP retransmission timeout for the TCP connec-

tions of the control channel.

Now let us use a simple example to illustrate the attack.

For the ease of explanation, we use data path to denote the

path where the data traffic is delivered and control path to de-

note the path where the control traffic is delivered. As shown

in Figure 1, the network has five switches {s1, s2, s3, s4, s5}.

Host h1 and h3 communicate with each other via the data

path h1 → s2 → s3 → s4 → h3, while the control path be-

tween s2 and the controller is s2 → s3 → s5 → c. We can ob-

serve that the link between s2 and s3 is shared by the control

and data path. Assume host h1 compromised by an attacker

sends crafted LDoS traffic to h3. Since the link and corre-

sponding queues of switch ports are also used by the control

user

Data Path

Control Path

shared link

affected

switches

attacker

Link

s1

c SDN Controller

user

h1 h2

h3

s2

s3

s4

s5

Figure 1: An example of disrupting the SDN control channel.

paths of s2 and s1, the control messages delivered between

the switches and the SDN controller can be significantly de-

layed or dropped, resulting in abnormal network behaviors.

In order to successfully launch the attack, an attacker

should correctly choose a target path that contains shared

links. However, it is challenging to find target paths in SDN.

Different from traditional IP networks that almost each link

delivers data and control traffic at the same time, there are

only a few number of links delivering control traffic in SDN.

For instance, given an SDN network with m switches, there

may be m2/2 links. m links may be used to deliver control

traffic so that the connectivity between the controller and all

SDN switches can be ensured. Thus, only a limited number

of data paths include the links shared with control paths. To

identify such data paths, the attacker needs to know the net-

work topology and routing information. Nevertheless, they

are stored in the SDN controller and are invisible to the at-

tacker. Moreover, existing scanning tools cannot be used in

SDN to infer the network topology and routing information

because SDN has different forwarding behaviors compared

to traditional IP networks. For example, Traceroute [17] can-

not infer the routing path of the packets, as SDN usually does

not decrease the time-to-live (TTL) values in packet headers.

3.2 Adversarial Path Reconnaissance

To address the challenges above, we develop a probing tech-

nique called adversarial path reconnaissance to find target

data paths that have links shared with control paths. The

technique inspired by the key observation that the delay of

a control path is higher if a short-term burst of the data traf-

fic passes through the shared links. Thus, an attacker can

use a host in SDN to identify the key data paths by gener-

ating data traffic and measuring the delay variations of the

control paths. To achieve the goal, our adversarial path re-

connaissance consists of two phases: measuring the delays

of control paths and identifying a target data path.

Measuring Delays of Control Paths. In SDN, packets that

cannot be matched in a switch will experience long forward-

ing paths and high delays, since they will be forwarded to the

controller to request flow rules. We can analyze the delays

of these packets to calculate the delays of control paths that

share links with data paths. Assume there are two hosts hi

and h j, and the data path between them is a sequence of con-

secutive links P
i, j
d =< lhi→s1

, ls1→s2
, ... , lsω→h j

>. Figure 2a

shows the forwarding path and delay for a packet that is sent

from hi to h j. The packet cannot be matched by flow rules in

s1. We can know the end-to-end delay for the packet is:

di, j = dhi
prop +

ω+1

∑
k=1

dk
trans +

ω

∑
k=1

(dk
queue +dk

proc)+δi, j, (1)

where d
hi
prop is the propagation delay at host hi, dk

trans is the

transmission delay at the kth link, dk
queue is the queuing delay

at the kth switch, and dk
proc is the processing delay at the kth

switch. δi, j is the delay of the control path, which is caused

by querying controllers for rule installation. The delay pat-

tern of such packet is shown in Figure 2a. However, if we

send the same packet after the rule installation, the path and

delay will become shorter, as shown in Figure 2b. The end-

to-end delay can be expressed as follows:

d′
i, j = dhi

prop +
ω+1

∑
k=1

dk
trans +

ω

∑
k=1

(d̂k
queue +dk

proc). (2)

Here, we change dk
queue to d̂k

queue because the queuing delay

depends on the current network traffic and is time-varying.

Based on equation (1) and (2), the delay of the control path

is:

δi, j = di, j −d′
i, j +

ω

∑
k=1

(d̂k
queue −dk

queue) (3)

However, if we send two packets with a short time inter-

val, e.g., sending the same packet immediately once we re-

ceive a response to the last packet, the queuing delay dk
queue

and d̂k
queue can be approximately equal. Thus, we have

δi, j ≈ di, j −d′
i, j. Similarly, we have δ j,i ≈ d j,i −d′

j,i. We use

δ to denote the sum of δi, j and δ j,i. We have the following

equation:

δ ≈ (di, j +d j,i)− (d′
i, j +d′

j,i). (4)

Note that, di, j + d j,i is the round-trip-time (RTT) of the

packet that is not matched by rules, and d′
i, j +d′

j,i is the RTT

of the same packet matched by rules. Thus, we can infer

the delay of control paths between two hosts by subtracting

RTTs of these two crafted packets.

Identifying a Target Data Path. An attacker needs to send

two packet streams for each possible data path in order to

find a target data path crossing with some control paths, i.e.,

a data path containing shared links. The first packet stream

is a timing stream, which aims to measure the delay δ shown

in equation (4). The timing stream must trigger responses

from the destination host in the current data path. Fortu-

nately, many types of packets meet the requirement, such as

ICMP packets, TCP SYN packets, and HTTP request pack-

ets. Moreover, each timing stream must contain a pair of

...

hi s1 c s1 s2 sω hj

The latency caused by

querying the controller

(a) A packet matches no rules in s1.

...

hi s1 s2 sω hj

(b) A packet matches

rules in all switches.

Figure 2: Different forwarding paths and delays for packets

sent from hi to h j. c denotes the controller and si denotes the

ith switch in the packet path.

packets. The first packet must trigger new rule installation

and the second packet must match the newly installed rules.

This can be achieved by waiting a long enough time before

sending the first timing packet to the destination, and then

immediately sending another same packet after receiving a

response from the first packet. The first packet can guaran-

tee new rule installation, since old rules will be expired due

to timeouts as we mentioned in Section 2. According to the

previous study [44], the timeouts are usually configured as

small values in order to save space of flow table and waiting

for 30 seconds is enough for most cases.

The second packet stream is a testing stream. It contains

a short-term burst of packets sent to the destination host in

the current data path. These packets in the stream can be

typically UDP packets. TCP packets can also be chosen if

we send them with raw sockets [15] to eliminate the auto-

matic rate control in TCP. The testing stream can be used

to test whether the current data path crosses with some con-

trol paths or not in collaboration with the testing stream. An

attacker can first measure the delay δ by the timing stream

without transmitting the testing stream to the destination. Af-

ter waiting enough time to ensure that old flow rules expire,

an attacker can measure the delay again (denoted by δ ′) with

the testing stream being transmitted at the same time. By

comparing these two delays, an attacker can obtain:

(i) If δ ′ is significantly higher than δ , the short-term burst

of packets affects the delays of some control paths.

Thus, the data path currently being explored crosses

with some control paths.

(ii) If δ ′ is similar to δ , no available evidence indicates that

the data path crosses with some control paths.

Thus, we are able to find a target path by testing each path if

it exists.

3.3 Improved Reconnaissance

In order to efficiently and accurately find a target data path,

we apply two methods to improve our reconnaissance.

1
st

Timeout Period
Time

2
nd

Timeout Period

...

k
th

Timeout Period

(a) Serial Reconnaissance.

Time

1
st
 ~ k

th

...

Timeout Period

1
st
 ~ k

th

...
Reduce to Two Timeout Periods

(b) Parallel Reconnaissance.

Figure 3: Two different reconnaissances of finding a target

data path. Each arrow denotes a timing packet and the height

of it denotes the RTT of a timing packet. A dashed arrow

denotes testing packets are sent at the same time. The red

arrows denote a target path is found when conducting a re-

connaissance on the kth data path.

Improving Accuracy with T-test. Although our reconnais-

sance allows an attacker to know whether a data path crosses

with control paths by sending only four packets, it may

achieve low accuracy in practice. Various network noises

can affect the reconnaissance. For example, a burst of be-

nign traffic can also cause high latencies of control paths,

which makes a non-target data path misidentified as a tar-

get data path. We find that t-test [20] can be a straightfor-

ward approach to eliminate the influences of network noise

as much as possible. T-test is a statistical method that com-

pares whether two groups of samples with random noises be-

long to the same distribution. It produces a p value to denote

the likelihood that the two groups of samples belong to the

same distribution. Typically, if p is less than a predetermined

value, i.e., the significance level α [20], the two groups are

considered significantly different. Thus, we can collect two

groups of latencies with or without a testing stream for a

data path, and apply t-test to determine whether a data path

crosses with control paths according to the p value.

Improving Efficiency with Parallelization. Basically, an

attacker can try to test each data path one-by-one, which is

shown in Figure 3a. However, it is time-consuming. An

attacker has to wait for at least a timeout value before con-

ducting next round of testing, as obtaining the latencies of

control paths with testing stream requires that the old rules

have been removed. Suppose that a network has 100 data

paths and the timeouts in flow rules are configured to 10s.

Moreover, we assume 10 repeated reconnaissances are con-

ducted for each path in order to apply t-test. We can cal-

culate that finding a target path needs approximate 10,000s

at the worst case, which is unbearable in practice. Fortu-

nately, different flow rules matching specific packets make

up different data paths in SDN, which means the installation

and expiration of rules in two different paths are indepen-

dent. Thus, the reconnaissance can be parallelized to reduce

the time. As shown in Figure 3b, an attacker can choose k

pending paths. The latencies of their crossed control paths

can be measured in turn by sending two timing packets for

each data path. After waiting for only one timeout value, an

attacker can measure the latencies again in turn while trans-

mitting corresponding testing streams, since the old rules of

each data path will expire in turn. The parallel reconnais-

sance allows an attacker to explore k data paths within two

timeout values, which significantly improves efficiency. The

maximal k depends on the maximal timeout values of flow

rules and the maximal RTT of timing packets. In order to

find a target data path as fast as possible, k should be subject

to the inequation: 2 · k ·RT Tmax < timeoutmax. It ensures that

an attacker can check whether there is a target path among k

data paths within two timeout periods. If the maximal RTT

of the timing packets is 20 ms in the target SDN, the parallel

reconnaissance can dramatically reduce the time used by the

previous example from 10,000s to less than 100s.

Based on the above designs, the algorithm of improved

adversarial path reconnaissance can be easily implemented.

Due to space constraints, for further details, we refer the

reader to see the pseudo-code in Appendix A.

3.4 Theoretical Analysis

To understand the feasibility and efficiency of the adversarial

path reconnaissance in SDN, we perform theoretical analysis

to answer the following two questions:

• If there exists target data paths crossing with control

paths in the network, which conditions the network

must meet so that our reconnaissance can identify a tar-

get data path?

• How many data paths should be explored in order to

find a target data path?

Firstly, we use an example to illustrate the network condi-

tions that must meet for identifying a target data path be-

fore presenting the theory results. Figure 4 shows the tar-

get network where an attacker conducts reconnaissances.

Each switch connects the controller through the shortest

control paths. Switch s2 and s3 both have two differ-

ent shortest control paths that can be chosen. We first

consider the case where s2 connects the controller via <
ls2→s5

, ls5→s6
, ls6→c > and s3 connects the controller via <

ls3→s2
, ls2→s1

, ls1→s6
, ls6→c >. Obviously, the data path from

h1 to h2 crosses with the control path of s3. However, an at-

tacker cannot identify it. Measuring the delay of the crossed

control paths is infeasible, since an adversary cannot trigger

rule installation into s3. If we consider another case where s2

connects the controller via < ls2→s1
, ls1→s6

, ls6→c > and s3

connects the controller via < ls3→s2
, ls2→s5

, ls5→s6
, ls6→c >,

the target data path from h1 to h2 crossing with the control

path of s2 can be identified. The main difference between

Data Path

Control Path

Link s1 s2 s3

s6

c

attacker user

SDN

Controller

h1 h2

s5 s4

Figure 4: The target network where an attacker conducts re-

connaissances.

the two cases is whether the target data path crosses with a

control path of a switch belonging to the data path.

We consider a set of all the hosts in the target network

H = {h1, h2, ..., hn}, a set of compromised hosts H̃ =
{h̃1, h̃2, ..., h̃q}, and a set of all the switches in the net-

work S = {s1, s2, ..., sm}. Let p
i, j
d be the data path from

host i to host j, let pi
c be the control path of switch i, and let

Si, j = {s1, s2, ..., sr} be the set of switches belonging to the

data path from host i to host j. Here, H̃ ⊂ H and Si, j ⊂ S. p
i, j
d

and pi
c both is a set that contains a sequence of consecutive

links. In fact, we have the following theorem:

Theorem 1. If and only if the target SDN network meets

the condition: ∃(pi
c ∩ p

j,k
d �= /0), where i ∈ S j,k, j ∈ H̃, k ∈

H and j �= k, then there exists a target data path which can

be identified by the adversarial path reconnaissance.

Proof. We prove the theorem in two steps. We first prove

the sufficient condition, i.e., if the target network meets the

conditions in Theorem 1, then a target data path can be iden-

tified by the adversarial path reconnaissance. According to

the conditions, we can know that a data path p
j,k
d from a com-

promised host h̃ j to another host hk crosses with a control

path pi
c. The crossed control paths belong to the switches

S j,k along the data path. An attacker can conduct the adver-

sarial path reconnaissance on the data path. Basically, four

timing packets will be sent to the data path. The first timing

packet will trigger rule installation into all switches along

the data path. Only after all switches finished installing rules

according to the messages of the controller, the packet can

reach the destination and a response packet will be sent to

the compromised host. Thus, the RTT of the timing packet

contains total latencies of control paths of all switches in S j,k.

The second timing packet will be sent after rule installation.

The total latencies of control paths can be obtained by sub-

tracting the RTTs of these two timing packets. After waiting

at least a timeout value, another two timing packets can be

sent to the data path with testing stream. The total laten-

cies of control paths can be obtained again in a similar way;

however, crossed control path pi
c will be affected by the test

stream. The reconnaissance will notice that the total laten-

cies will be significantly higher than the previous latencies.

Thus, a target data path p
j,k
d is identified.

We next prove the necessary condition, i.e., if a target data

path can be identified by the adversarial path reconnaissance,

then the target network meets the conditions in Theorem 1.

We assume that a target data path p
j,k
d is identified. Since p

j,k
d

is a target data path, it at least crosses with a control path pi
c.

Obviously, the reconnaissance can only be launched by the

compromised hosts. Thus, j ∈ H̃, k ∈ H, and j �= k. We

only need to prove that the crossed control path belongs to a

switch along with the data path p
j,k
d , i.e., i ∈ S j,k. Let us con-

sider the opposing case i /∈ S j,k. Note that the timing packets

in our reconnaissance trigger rule installation into switches

S j,k along the data path. Thus, only the latencies of con-

trol paths belonging to the switches in S j,k can be measured.

When i /∈ S j,k, the delay variation of pi
c cannot be noticed by

our reconnaissance. Thus, there must be i ∈ S j,k if a target

data path can be identified.

Theorem 1 indicates that our reconnaissance can find a tar-

get data path only if the network meets the conditions. For-

tunately, it only requires at least one data path which crosses

with a control path of switches that are in the data path. Such

conditions can be easily met in practice. We will show that

our reconnaissance can find a target data path with various

real network topologies for most cases in Section 4.1.

In order to estimate the average number of explored data

paths for finding a target data path, we introduce a parameter

γ denoting the total number of target data paths which can

be identified in a network. In addition to the notations we

used in Theorem 1, let ρ be the total number of data paths

between a compromised host in H̃ and a host in H, and let X

be a random variable denoting the number of explored data

paths for finding a target data path. Obviously, if we find a

target data path at the kth exploration, then we have already

failed to find a target data path for k − 1 times. Thus, the

probability of finding a target data path at the kth exploration

for the first time is:

P(X = k) =
γ

ρ − (k−1)

k−2

∏
j=0

ρ − γ − j

ρ − j
, (5)

where 1 ≤ k ≤ ρ − γ +1. Here, we define ∏
y
j=x a = 1, when

x > y. The average number of explored data paths can be

calculated as:

E(X) =
ρ−γ+1

∑
k=1

k ·P(X = k)

=
ρ−γ+1

∑
k=1

kγ

ρ − (k−1)

k−2

∏
j=0

ρ − γ − j

ρ − j
.

(6)

If we consider the case where there is only one compromised

host in the network and each of the data paths between two

hosts is different, then ρ = n−1. n is the number of hosts in

the network. Equation (6) can be simplified as:

E(X) =
n−γ

∑
k=1

kγ

n− k

k−2

∏
j=0

(1− γ

n−1− j
). (7)

Equation (7) indicates the average number of explored

data paths E(X) totally depends on n and γ . We will show

that E(x) gets small values with proper parameters and the

theoretical values are consistent with our experimental val-

ues in Section 4.1. In reality, our reconnaissance can quickly

find a target data path by exploring several data paths (see

Figure 6 in Section 4.1).

4 Attack Evaluation

In this section, we perform large-scale simulations to demon-

strate that the CrossPath attack can be launched with various

network topologies. Moreover, we conduct experiments to

evaluate the feasibility and effectiveness of the attack in a

real SDN testbed.

4.1 Large-Scale Simulation Experiments

Simulation Setup. We perform simulations with 261 real

network topologies [4] around the world. As these network

topologies do not contain hosts and routing information, we

generate 100 hosts 1 in each topology and apply Dijkstra’s al-

gorithm [28] to generate the shortest data path between two

hosts. Note that shortest path forwarding is commonly used

in the intra-domain routing system. We add another host in

each network topology as the SDN controller. The controller

can connect switches via shortest paths (SP) to minimize de-

lays, a minimum spanning tree (MST) to minimize costs, or

randomly searching available paths (RS). We conduct exper-

iments with different types of connection in turn. Moreover,

for simplicity and without loss of generality, we assume that

the attacker only controls one host in the network and we

attach such a host to each network topology.

We note that the positions of hosts in a network will affect

our experimental results. Thus, we conduct 1,000 experi-

ments for each network topology and randomly changes the

positions of all hosts in each experiment. We show the aver-

age results over 1,000 experiments for each topology.

Average Percentage of Identified Target Paths. Figure 5a

shows the CCDF of the average percentage of identified tar-

get paths with 261 various network topologies. From the

results, we can see all the network topologies have at least

5% identified target paths among total data paths in a net-

work regardless of types of connections. More than 98%

of the network topologies have at least 30% identified target

paths. Moreover, the network tends to have more identified

data paths when the controller connects switches via MST.

1In reality, we also conduct our experiments with 50, 500, 1000 hosts,

respectively. The results are similar to those in Figure 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
C
D

F

Identified Target Paths (%)

SP

MST

RS

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
C
D

F

Affected Switches (%)

SP

MST

RS

(b)

Figure 5: Complementary Cumulative Distribution Function

(CCDF). (a) shows the CCDF of the average percentage of

identified target paths with 261 real topologies; (b) shows

the CCDF of the average percentage of affected switches by

attacking a target path with 261 real topologies.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

E
(X

)

n = 100 theoretical

n = 100 experimental

n = 500 theoretical

n = 500 experimental

n = 1000 theoretical

n = 1000 experimental

Figure 6: Comparison of theoretical values and experimental

values of E(X) with different n and γ .

The results demonstrate that the conditions in Theorem 1 can

be easily met. An attacker can use our reconnaissance to find

some target data paths to launch the CrossPath attack.

Average Percentage of Affected Switches. As attacking

different target paths will affect the average percentage of

switches in a network topology, we randomly attack a target

path in the 1,000 experiments for a network topology and

calculate the average percentage of affected switches. Fig-

ure 5b shows that more than 20% of the switches can be af-

fected by attacking a target path for 90%, 99% and 99% of

the 261 network topologies with SP, MST and RS connec-

tions, respectively. For some network topologies, attacking a

target path can even affect half of the whole switches. Thus,

it is possible for an attacker to attack multiple target paths

to cause damages for the whole switches and incur network-

wide DoS.

Average Number of Explored Data Paths. Equation (7)

denotes the average number of explored data paths E(X) for

finding a target path totally depends on the number of data

paths γ containing shared links and the number of hosts in a

network n. We draw the theoretical values of E(X) in Fig-

ure 6. We can see that E(x) declines quickly when γ in-

creases from 0 to 20. When there are 1,000 hosts and 40 data

paths (2% of the 1,000 total data paths) containing shared

links, E(X) is less than 50. Moreover, E(x) tends to be the

same with the growth of γ . The results demonstrate that our

reconnaissance can fast find a target data path and has a good

scalability with a different number of hosts in the network.

The experimental values of E(x) are also plotted in Figure 6.

Each experimental value with different n and γ is obtained by

conducting 1,000 experiments to get the average number of

explored data paths. The results show that the experimental

values are consistent with the theoretical values.

4.2 Experiments in a Real SDN Testbed

Experiment Setup. Our testbed contains a popular SDN

controller Floodlight [12], five hardware SDN switches

(AS4610-54T [10]), and three physical hosts. The controller

is deployed on a server with a quad-core Intel Xeon CPU

E5504 and 32GB RAM. Each physical host has a quad-core

Intel i3 CPU and 4GB RAM. All hosts run Ubuntu 14.04

server LTS. The network topologies, control paths and data

paths are illustrated in Figure 1. An attacker first compro-

mises host h1 to conduct the algorithm of adversarial path re-

connaissance (see Appendix A for details) for the data paths

of the other hosts. The burst rate of short-term testing pack-

ets is 1 Gbps, which is the maximal rate the host can send.

The attacker then generates LDoS data traffic to disrupt

the control channels of switches s1 and s2 by attacking the

data path between h1 and h3. Basically, there are three pa-

rameters for the LDoS flows: burst length, inter-burst period,

and peak magnitude. The previous study [42] has conducted

comprehensive experiments on how different parameters de-

termine the attack impacts of LDoS flows and how to bet-

ter choose these parameters. As our paper mainly focus on

studying the impacts for the SDN functionalities after the

control channel is attacked by the data traffic, we apply fixed

parameters in our attack. We choose the burst length as 100

ms, inter-burst period as 200 ms, and peak magnitude as the

maximal speed 1 Gbps that the host can send for our all ex-

periments in the paper. These parameters show how an at-

tacker can affect the SDN functionalities to the maximum

extent by generating data traffic to disrupt the control chan-

nel. Moreover, compared to simply flooding the target paths,

which needs to send traffic with 1 Gbps all the time, the rate

of our LDoS flow is only approximate 0.33 Gbps on average.

Accuracy of Reconnaissances. We first collect the delay

variations in delivering control messages. The delay vari-

ation is defined as the absolute difference between the de-

lays of control messages measured with and without testing

stream. We collect 5,000 records both for two data paths

in the network. We wait up to 20 seconds for each timing

packet to get a response in order to obtain possible maximum

delays. Figure 7 shows the distribution of the probability of

the delay variation. The results demonstrate that the target

data path has a significantly different probability distribution

compared with the non-target data path. In particular, most

delay variations with the non-target data path are less than 2

ms, while most delay variations are much larger for the tar-

get data path. These results illustrate that the discrimination

 0

 0.2

 0.4

 0.6

 0.8

 1 10 100 1000 10000

P
ro

b
a
b
ili

ty

Delay (ms)

the target path

the non-target path

Figure 7: Probability distri-

bution of delay variations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.03 0.05 0.07 0.09

A
cc

u
ra

cy

 = 10

 = 20

 = 30

 = 40

 = 50

Figure 8: Accuracy of recon-

naissances with different pa-

rameters.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

(p
p
s)

Time (s)

without attack

with attack

Figure 9: Throughput of

control packets.

 100

 101

 102

 103

 104

 105

without attack with attack

D
e
la

y
 (

m
s)

Figure 10: Delays of control

packets.

between target data paths and non-target data paths can be

easily identified according to the delay variations.

We then calculate the accuracy of our reconnaissance by

conducting 1,000 repeated experiments with different set-

tings of η and α . Here, η denotes the number of measured

delays for each data path, which is also the size of each group

in the t-test used to identify a target path. α is the signif-

icance level used in the t-test. As shown in Figure 8, the

accuracy increases with the increase of η . Moreover, we

can observe that the accuracy increases with the increase of

α when η is smaller, e.g., 10 or 20. However, the accu-

racy tends to be stable when η becomes large. The reason

is that two different groups will statistically different from

each other and two similar groups will be statistically closer

to each other with more data. It is easier to distinguish the

two types of paths if we have enough data, which is not sig-

nificantly impacted by the setting of α . The accuracy always

reaches more than 90% with different settings of α when η
is 40 or 50.

Effectiveness of the Attack. To evaluate the impact of the

attack on the control packets, we configure the controller

to generate 1,000 control packets per second2 to the switch

s2. Figure 9 shows the throughput of control packets. The

throughput can achieve 1,000 packets per second. However,

it almost drops to 0 under the attack though there are short-

term peaks of throughput. The reason is that our attack trig-

gers TCP of control flows to periodically enter the phase of

retransmission timeout. In this case, no packets will be sent

within the retransmission timeout. Figure 10 shows the delay

2There can be thousands of control packets per second [29]. For sim-

plicity but without loss of generality, we choose a practical value, 1,000.

 0

 0.2

 0.4

 0.6

 0.8

 1

DC1 DC2 IB UNIV LAB

A
cc

u
ra

cy

Background Traffic

(a) Accuracy of Reconnaissances.

 0

 0.2

 0.4

 0.6

 0.8

 1

DC1 DC2 IB UNIV LAB

D
e
g
ra

d
a
ti
o
n
 R

a
ti
o

Background Traffic

(b) Degradation Ratio of Control

Traffic.

Figure 11: Robustness of the attack with different back-

ground traffic.

of control packets. The median value of delays for control

packets under the attack is 687 ms, which is more than about

100 times higher than that in absence of the attack. More-

over, the delays under the attack vary within a large range

from below 10 ms and to more than 10,000 ms. Note that,

most delays without the attack are less than 10 ms. The re-

sults above demonstrate our attack can significantly degrade

the throughput of control packets and incur high delays.

Robustness of the Attack. As background traffic may affect

the reconnaissances and attack effects, we inject different

background traffic into our network with TCPReplay [16]

in turn. Such traffic traces comes from two Data Centers

(DC1 and DC2) [3], an Internet Backbone (IB) [8], a Uni-

versity (UNIV) [18] and our Laboratory (LAB). Moreover,

due to the limited flow table capacity in switches, we ran-

domly choose flows from the trace to ensure that the number

of rules generated by flows do not exceed the table capacity.

Figure 11a shows the accuracy of reconnaissances with

different background traffic. The parameters of reconnais-

sances α and η are set to 0.01 and 50, respectively, which

are the best parameters to get the highest accuracy (93% in

Figure 8) without background traffic. When the background

traffic is injected, the accuracy drops to below 90%, ranging

from 85% to 89%. However, such accuracy is still satisfac-

tory for an attacker to conduct reconnaissances. Figure 11b

shows the degradation ratio of control packets. The degrada-

tion ratio is the fraction of the control packets reduced by the

attack over the total control packets without the attack. We

can see that the attack always causes more than 90% degra-

dation ratio with different background traffic. Above results

demonstrate that our attack achieves high robustness.

5 Attack Impacts on Network Functionalities

In this section, we perform a systematical study on the im-

pacts of the attack on various network functionalities. We

first review the common core services enabled in SDN con-

trollers that generate different types of OpenFlow control

messages and are used by various SDN applications. We

then study four typical SDN applications, which use these

common core services, so that we measure the impacts of

Service Layer

SDN Data Plane

Packet
Service

Flow Rule
Service

Flow
Metrics
Service

Link
Discovery

Host
Tracking

Device
Discovery

Topology Service

Load BalancerARP Proxy
Learning
Switch

Reactive
Routing

packet_in

packet_out

flow_mod
stats_request

& stats_reply

packet_in
(ARP\DHCP payload)

SDN Controller

packet_out
(LLDP payload)

echo_request

 & echo_reply

handshake

App Layer

Other
Apps

packet_in

(LLDP Payload)

Figure 12: The core services of SDN controllers.

the attack on SDN functionalities.

5.1 Core Services of SDN

SDN controllers can be abstracted as a two-layer architecture

though different controllers have different implementations.

Applications can be deployed in the top layer to enable dif-

ferent network functionalities, while the low layer provides

different core services that interact with switches and provide

basic functionalities for the top-tier applications. As shown

in Figure 12, there are four major core services:

Packet Service. The service manages packets exchanged be-

tween the control and data planes. It paraphrases packet in

messages containing data packets received from switches

and dispatch them to applications. Meanwhile, it sends data

packets back to switches via packet out messages.

Flow Rule Service. The service manages flow rules. It in-

stalls or updates rules in switches via f low mod messages

according to the results computed by applications.

Topology Service. The service maintains the topology of

end hosts, links, and switches. It discoveries new hosts and

tracks their locations via packet in messages embedded with

an ARP or DHCP payload. It periodically sends and receives

LLDP packets encapsulated in packet in or packet out mes-

sages to maintain link information. Besides, it establishes

the control channel between switches and controllers via sev-

eral handshake messages. The liveness of switches is peri-

odically checked via echo request and echo reply messages.

Applications obtain network topologies through the service.

Flow Metrics Service. The subsystem is responsible for col-

lecting flow statistics. It periodically queries the flows on

network devices via stats request and stats reply messages,

and then provides various statistics to applications.

We note that almost all applications enabling network

functionalities in SDN is built on at least one of the four

services. Our attack thus can affect various SDN functional-

ities by disrupting the transmission of control messages ex-

changed between these core services and switches. We will

choose four typical applications that are widely deployed in

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

A
R
P
 R

e
p
ly

 R
a
te

 (
p
p
s)

ARP Request Rate (pps)

without attack

with attack

(a) ARP Throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Delay (ms)

without attack

with attack

(b) CDF of ARP Query Delay.

Figure 13: Attack impacts on ARP Proxy.

SDN controllers to show the impacts of the attack on various

network functionalities. The implementations of the four ap-

plications [5, 6, 9, 7] are from Floodlight [12].

5.2 ARP Proxy

SDN enables Address Resolution Protocol (ARP) similar to

IP networks, which finds the association between a destina-

tion IP address and its corresponding hardware (MAC) ad-

dress so that hosts can correctly send and receive IP pack-

ets. In IP networks, layer two switches flood an ARP request

sent from a host to get an ARP reply. If the target IP ad-

dress in the ARP request is not in the local network, a router

acts as an ARP proxy to send back an ARP reply with the

hardware address of its own interface. In SDN, ARP pack-

ets are handled by an ARP proxy application [5] in the SDN

controller. When an ARP request sent by a host arrives at

a switch, it will be sent to the controller via packet in mes-

sages. The packet service extracts the ARP request packet

from packet in messages and dispatches the packet to the

ARP proxy application. The application extracts the sender

IP address and the source MAC address to store them into

the ARP table. Meanwhile, it finds an entry that the IP ad-

dress matches the target IP address in the ARP request. A

corresponding ARP reply packet is created and will be sent

back to the ingress switch via packet out messages. Thus,

the original host obtains an ARP reply.

Our attack can completely disrupt the functionality of

ARP proxy by interfering with the exchange of the messages

between the packet service and switches. Figure 13a shows

the ARP throughput. The ARP reply rate is proportional to

the ARP request rate in absence of the attack. However, un-

der the attack, the ARP reply rate falls below 10 pps when

the ARP request rate exceeds 100 pps. The reason is that the

TCP flows of control traffic frequently enter the retransmis-

sion timeout phase under the attack due to the congestion.

Figure 13b shows the CDF of ARP delays. More than 90%

delays are less than 10 ms without the attack, while more

than 70% delays are higher than 10 ms and more than 50%

delays are higher than 1,000 ms with the attack. Delays un-

der attacks significantly increase. Particularly, some delays

exceed 10,000 ms, which can cause connection failures be-

tween two hosts because hosts cannot get MAC addresses.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

S
u
cc

e
ss

 R
a
ti
o

New Flows (Flows/s)

without attack

with attack

(a) Success Ratio of Rule Installa-

tion for a Switch.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Time (s)

without attack

with attack

(b) Throughput for a Switch with

250 Flows/s.

Figure 14: Attack impacts on Learning Switch.

5.3 Learning Switch

The learning switch application [6] allows SDN switches act

as normal switches in IP networks. The application exam-

ines a packet matching no rules in a switch and looks up

the recorded mapping between the source MAC address and

the port. If the destination MAC address has already been

associated with a port, the packet will be sent to the port

and corresponding rules will be installed to match subse-

quent packets. Otherwise, the packet will be flooded on

all ports. As shown in 12, the application relies on two

services. The packet service sends the packet to the con-

troller via packet in messages and back to the switch via

packet out messages, and the flow rule service installs rules

in the switch via f low mod messages.

Our attack can effectively block installation of forward-

ing decisions generated by the application by disturbing the

messages exchanged between the core services and switches.

Figure 14 shows the impacts of the attack on the functional-

ities of learning switch. Here, we define the success ratio

of rule installation as the number of successfully installed

rules over the number of rule requests within a second. As

shown in Figure 14a, the success ratio of rule installation in

a switch always maintains over 90% with various numbers

of new flows without our attack. However, it drops signifi-

cantly in presence of our attack. When the rate of new flows

reaches 250 flows per-second, the success ratio reduces to

below 20%. Thus, learning switch cannot work correctly. As

shown in Figure 14b, the throughput of a switch is 0 Mbps

for a long time with attack when there are 250 flows/s.

s2

h1

h2

h3

10.0.0.3:1111, to s
3

10.0.0.3, to s2

10.0.0.3:1111, to s
1

10.0.0.3, to s3

s1

s3

c

h4

SDN

Controller

Figure 15: The network topology used in Reactive Routing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

L
in

k
 U

ti
liz

a
ti
o
n

Time (s)

without attack

with attack

(a) Increasing link utilization due

to long-term routing rule inconsis-

tency.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Time (s)

without attack

with attack

(b) Long-term routing blackhole due

to delayed messages when a host is

migrated.

(c) Eviction of a routing path due to a deactivated link.

(d) Cleaning of flow tables due to the reset of a switch.

Figure 16: Attack impacts on Reactive Routing.

5.4 Reactive Routing

The reactive routing [9] application enables flexible and fine-

grained routing decisions for different flows, which is en-

abled in almost all controllers. When a new flow matching

no rules is generated, the first packet of the flow will be sent

to the reactive routing application. The application analyzes

the packet and calculates routing paths for the new flow. Be-

sides depending on the packet service processing data pack-

ets and flow rule service installing rules, the application also

queries the topology service that provides the information of

the locations of hosts, the state of switches and links.

In order to demonstrate the effectiveness of our attack, we

build a network topology with four hosts and three switches,

as shown in Figure 15. The IP addresses of the four hosts h1,

h2, h3 and h4 are 10.0.0.1, 10.0.0.2, 10.0.0.3, and 10.0.0.4,

respectively. The hosts h1 and h2 send packets to the host

h3. The default routing path of packets from h1 to h3 is <
lh1→s1

, ls1→s2
, ls2→s3

, ls3→h3
>. The default routing path of

packets from h2 to h3 is < lh2→s2
, ls2→s3

, ls3→h3
>. Also, a

flow with TCP port 1111 from h2 to h3 has a different path

due to a QoS requirement. Here, the compromised host h4

sends attack (i.e., LDoS) traffic to h3 in order to exploit the

control path of switch s2.

Figure 16 shows the impacts of the attack on reactive

routing. As shown in Figure 16a, our attack incurs long-

term routing rule inconsistency, which makes the link uti-

lization reach 100%. The reason is that SDN exists transient

rule inconsistency [36] which can be leveraged by our at-

tack. In the network shown in Figure 15, packets with an

IP destination address 10.0.0.3 and a destination port 1111

loop between s1 and s2 when the application deletes rule

“10.0.0.3 : 1111, to s3” while rule “10.0.0.3 : 1111, to s1”

remains. The rule inconsistency normally lasts for a very

short period before all the commands of deleting correspond-

ing rules of the flow are issued. However, our attack can de-

lay the commands exchanged between the flow rule service

and s2 for tens of seconds. Thus, the packets loop between

s1 and s2 for a long period and the link utilization between

the two switches increases with more packets injected.

Figure 16b shows the long-term routing blackhole when

h3 is migrated from s3 to s2. The migration is finished

within five seconds without the attack, as the topology ser-

vice can track the new location via packet in messages con-

taining the DHCP payload when the host moves to s2. How-

ever, the messages are significantly delayed under our attack,

and thereby the routing between other hosts and h3 cannot

be updated in time, causing more than 10 seconds routing

blackhole. Moreover, by blocking LLDP packets between

the topology service and switches, our attack can deactivate

links in the topology database and thus the corresponding

routing paths will be removed. In the Floodlight controller,

a link will be deactivated if no LLDP packets pass through

the links within 35s. Figure 16c shows the original routing

path from h2 to h3 is removed since our attack deactivates

the link from s2 to s3. Moreover, our attack can reset the

connections between switches and the controller by delay-

ing control messages. Figure 16d shows the connection of

switch s2 is reset and all the flow tables are cleaned.

5.5 Load Balancer

Load balancing has been widely used to improve resource

usage and throughput as well as reduce response delays,

which balances the workload among multiple nodes. SDN

controllers deploy the load balancer [7] application to

achieve the goal. The application in the Floodlight controller

can balance requests of clients in two way, i.e., round robin

and statistics-based scheduling. Round robin scheduling ran-

domly chooses a server from a server pool to serve a new

request each time. The statistics-based scheduling chooses a

server that has the lowest utilization to serve a new request,

where the utilization is calculated according to the real-time

statistics of the switch ports. The load balancer application

relies on the flow metrics service to collect the statistics.

We configure the load balancer application in Floodlight

to enable statistics-based scheduling, as it can provide better

load balancing under different flow distribution of clients. In

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
o
rt

 U
ti
liz

a
ti
o
n

Time(s)

Server 1

Server 2

(a) Port Utilization of Servers with-

out Attack.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

overloaded

P
o
rt

 U
ti
liz

a
ti
o
n

Time(s)

Server 1

Server 2

(b) Port Utilization of Servers with

Attack.

Figure 17: Attack impacts on Load Balancer for misallocat-

ing the workloads across servers.

our experiments, two hosts consist of a server pool and an-

other two hosts send flows to the servers. Figure 17a shows

the utilization of switch ports connecting the two servers

over time without our attack. Initially, two different elephant

flows are sent to the servers, which causes the port utiliza-

tion to increase to 40% and 10%, respectively. At the 7th

second, the rate of the two flows exchanges. The utiliza-

tion of one server reduces from 40% to 10% while another

server increases from 10% to 40%. At the 14th second, a

new elephant flow starts, and the application directs the flow

to server #1 that has the lowest port utilization. The port uti-

lization of server #1 reaches 70%. Unfortunately, the appli-

cation will mistakenly direct the flow to server #2 under our

attack. As shown in Figure 17b, the port utilization of server

#2 reaches 100%. The reason is that our attack can signifi-

cantly delay the stats request and stats reply messages ex-

changed between the flow metrics service and switches, and

thus the applications cannot know the port utilization in time.

Actually, the application considers that the port utilization of

server #2 is still 10% when the new flow comes.

6 Defense Schemes

In this section, we discuss possible countermeasures that net-

work administrators can be used to mitigate the attack.

Delivering Control Traffic with High Priority. To defend

against the attack, one way is to ensure forwarding con-

trol traffic with high priority, which thus can protect con-

trol traffic from being congested by malicious data traffic.

According to our analysis, such a defense scheme can be

enforced by carefully configuring Priority Queue (PQ) or

Weighted Round Robin Queue (WRR) in switches. We note

that many commercial SDN switches support at least one

of the two queueing mechanisms (see Appendix C). We im-

plement the defense scheme based on PQ and WRR in our

hardware switches to deliver control traffic with high prior-

ity. The evaluation shows it can effectively protect control

traffic against malicious data traffic. The detailed implemen-

tations and evaluations can be found in Appendix B.

Proactively Reserving Bandwidth for Control Traffic.

Another way to defend against the attack is to proactively

reserve proprietary bandwidth for control traffic. Such a

defense scheme is suitable for SDN switches that do not

support PQ and WRR mechanisms. We implement the de-

fense scheme with OpenFlow meter table in our hardware

switches. We have demonstrated that control traffic can be

well protected by reserving enough bandwidth. We refer the

reader to Appendix B for details. The main disadvantage of

the defense scheme is that the reserved bandwidth cannot be

used by other traffic even there is massive free bandwidth.

Our future work will focus on how to dynamically reserve

the bandwidth for control traffic to make full use of it.

Disturbing Path Reconnaissances. The necessary condi-

tion to successfully launch the CrossPath attack is to find a

target path containing shared links. Thus, we can prevent

the attack by disturbing path reconnaissances. One way is to

deliberately add random delays when installing flow rules,

which may result in incorrect delay measurements of control

paths when conducting path reconnaissances. Our evaluation

shows that the accuracy of path reconnaissances can drops to

less than 30% by adding random delays ranging from 100

ms to 1,000 ms. However, adding random delays affects the

rule installation of all flows in the network. It is especially

harmful to mice flows that are delay-sensitive [30]. Design-

ing a scheme to effectively disturb path reconnaissances and

reduce the impacts on network flows is worth more future

research.

7 Related Work

In this section, we review related security research in SDN

and legacy networks, respectively.

Reconnaissances in SDN. SDN reconnaissances has been

extensively studied. Shin et al. [54] designed an SDN scan-

ner to determine whether a network is SDN by measuring

response delays of pings. Cui et al. [25] further conducted

experiments in real SDN testbed to demonstrate its feasibil-

ity. Klöti et al. [39] presented a reconnaissance technique to

determine if an SDN has rules for aggregated TCP flows by

timing the TCP setup time. Achleitner et al. [19] designed

SDNMap to reconstruct composition of flow rules by ana-

lyzing probing packets with specific protocols. Liu et al. [45]

developed a Markov model to reveal rule distribution among

switches. John et al. [56] presented a sophisticated inference

attack to learn host communication patterns and ACL entries

even if injected packets do not trigger replies. However, none

of the methods can be applied to find target paths containing

shared links with control paths.

Attacks on SDN and Related Defenses. SE-Floodlight [48]

and SDNShield [63] are developed to provide permission

control for malicious SDN applications. Some studies fo-

cus on the security of controllers, including network poison-

ing [31], identifier binding attacks [35], subverting SDN con-

trollers [49], and exploiting harmful race conditions in SDN

controllers [65]. Other studies focus on data plane security,

including low-rate flow table overflow attacks [22], SDN

teleportation, and detection on abnormal data plane [51].

Our paper focuses on the security of control channel, which

is orthogonal to the existing work. Particularly, we uncover

a new type of attack, which has not been discovered by ex-

isting automatic attack discovery tools [34, 43, 59] in SDN.

The packet in flooding attack [55, 60] is mostly closest to

ours. It saturates the control channel with a large amount

of packet in messages. To trigger the control messages, the

attack requires generating massive bogus packets matching

no rules in switches. Different from it, our attack generates

low-rate data traffic to implicitly disrupt control traffic in the

shared links instead of directly generating massive control

traffic. Our attack can bypass the previous defenses [55, 60,

52, 27] against packet in flooding attacks since they detect

attacks by identifying and throttling malicious control traffic.

LDoS Attacks in Traditional IP Networks. Kuzmanovic

et al. [41] developed low-rate TCP-targeted DoS attacks to

disrupt TCP connections. Zhang et al. [66] demonstrated

the attack has severe impact on the Border Gateway Pro-

tocol (BGP) by conducting real experiments. Schuchard et

al. [50] extended the attack developed by Zhang et al. and

designed the Coordinated Cross Plane Session Termination

attack (CXPST) that allows an attacker to attack the Internet

control plane by using only data traffic. Our attack differs

from the previous work in three aspects. First, our attack

focuses on disrupting the SDN control channel that shares

a limited number of links with data paths. Second, probing

techniques are required in the attack to identify target data

paths containing shared links, which is necessary to ensure

the effectiveness of the attack. Third, our attack in SDN has

more significant impacts on diversified network functionali-

ties including layer 2, 3 and 4 functions.

To defend against LDoS, some countermeasures have

been provided in traditional IP networks, such as random-

izing RTO [42] and complex signal analysis [58, 53, 23, 64,

46, 24] . However, randomizing RTO cannot fully mitigate

the attack [66], and none of the methods are shown to be

sufficiently accurate and scalable for deployment in real net-

works. Besides, they are general defenses against LDoS in

traditional IP networks and are not designed to protect the

SDN control channel. Defenses against LDoS attacks on

BGP was described in [50], such as BGP Graceful Restart.

However, it is not suitable to protect the SDN control channel

with “dumb” SDN switches.

Link Flooding Attacks in Traditional IP Networks.

Studer et al. [38] and Kang et al. [57] introduced link flood-

ing attacks, which generate large-scale legitimate low-speed

flows to flood and congest network critical links. They use

traceroute to find critical links in traditional IP networks.

Our crosspath attack also congests the critical links that de-

liver control traffic and data traffic in SDN at the same time.

However, one major difference is that our crosspath attack

identifies the critical links with the unique SDN reconnais-

sance technique. Moreover, the crosspath attack can incur

various damages in the whole network by disrupting the con-

trol channel due to the centralized control in SDN. Though

there exist some SDN defense systems [67, 61, 62, 37] that

detect link flooding attacks, they cannot defend the crosspath

attack that disrupts the control channel, which these SDN de-

fense systems depend on.

8 Conclusions

In this paper, we present a novel attack in SDN. It disrupts

the control channel by crafting data traffic to implicitly in-

terfere with control traffic in the shared links. We develop

the adversarial path reconnaissance to find a target data path

containing shared links for the attack. Both theoretic anal-

ysis and experimental results show that our reconnaissance

works in real networks. We demonstrate that the attack can

significantly disrupt various network functionalities in SDN.

We hope this work attract more attention to SDN security,

especially the possible attacks on the SDN control channel

when deploying SDN to innovate network applications.

Acknowledgments

The research is partly supported by the National Key

R&D Program of China under Grant 2017YFB0803202,

the National Natural Science Foundation of China (NSFC)

under Grant 61625203, 61572278, 61832013, 61872209,

and U1736209, the U.S. ONR grants N00014-16-1-3214

and N00014-16-1-3216, and the National Science Founda-

tion (NSF) under Grant 1617985, 1642129, 1700544, and

1740791. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors

and do not necessarily reflect the views of NSFC, NSF, and

other sponsors. Qi Li and Mingwei Xu are the corresponding

authors of the paper.

References

[1] RFC 2328. OSPF Version 2. https://tools.ietf.

org/html/rfc2328/, 1998. [Online].

[2] RFC 4271. Border Gateway Protocol 4 (BGP-4).

https://tools.ietf.org/html/rfc4271/, 2006.

[Online].

[3] Data Set for IMC 2010 Data Center Measure-

ment. http://pages.cs.wisc.edu/~tbenson/

IMC10_Data.html, 2010. [Online].

[4] The Internet Topology Zoo. http://www.

topology-zoo.org/dataset.html, 2011. [Online].

[5] Floodlight ARP Proxy. https://github.com/

mbredel/floodlight-proxyarp/, 2013. [Online].

[6] Floodlight Learning Switch. https://github.

com/floodlight/floodlight/blob/master/

src/main/java/net/floodlightcontroller/

learningswitch/, 2014. [Online].

[7] Floodlight Load Balancer. https://github.

com/floodlight/floodlight/tree/master/

src/main/java/net/floodlightcontroller/

loadbalancer, 2014. [Online].

[8] CAIDA Passive Monitor: Chicago B. http:

//www.caida.org/data/passive/trace_stats/

chicago-B/2015/?monitor=20150219-130000.

UTC, 2015. [Online].

[9] Floodlight Reactive Routing. https://github.

com/floodlight/floodlight/tree/master/

src/main/java/net/floodlightcontroller/

routing/, 2016. [Online].

[10] AS4610-54T Data Center Switch. https:

//www.edge-core.com/productsInfo.php?

cls=1&cls2=9&cls3=46&id=21, 2018. [Online].

[11] AT&T SD-WAN. https://www.business.att.

com/solutions/Family/network-services/

sd-wan/, 2018. [Online].

[12] Floodlight Controller. http://www.

projectfloodlight.org/, 2018. [Online].

[13] Microsoft Azure and Software Defined Network-

ing. https://docs.microsoft.com/en-us/

windows-server/networking/sdn/azure_and_

sdn/, 2018. [Online].

[14] Open Networking Foundation (ONF). https://www.

opennetworking.org/, 2018. [Online].

[15] Raw Sockets. https://en.wikipedia.org/wiki/

Network_socket#Raw_socket, 2018. [Online].

[16] TCPReplay. http://tcpreplay.synfin.net,

2018. [Online].

[17] Traceroute. https://en.wikipedia.org/wiki/

Traceroute/, 2018. [Online].

[18] Traffic and Tools. http://traffic.comics.unina.

it/Traces/ttraces.php, 2018. [Online].

[19] ACHLEITNER, S., LA PORTA, T., JAEGER, T., AND

MCDANIEL, P. Adversarial network forensics in soft-

ware defined networking. In Proceedings of the Sym-

posium on SDN Research (2017), ACM, pp. 8–20.

[20] BOX, J. F., ET AL. Guinness, gosset, fisher, and small

samples. Statistical science 2, 1 (1987), 45–52.

[21] BRAUN, W., AND MENTH, M. Software-defined net-

working using openflow: Protocols, applications and

architectural design choices. Future Internet 6, 2

(2014), 302–336.

[22] CAO, J., XU, M., LI, Q., SUN, K., YANG, Y., AND

ZHENG, J. Disrupting sdn via the data plane: a low-

rate flow table overflow attack. In Proceedings of Inter-

national Conference on Security and Privacy in Com-

munication Systems (2017), Springer, pp. 356–376.

[23] CHEN, Y., HWANG, K., AND KWOK, Y.-K. Collab-

orative defense against periodic shrew ddos attacks in

frequency domain. ACM Transactions on Information

and System Security 30 (2005).

[24] CHEN, Z., YEO, C. K., LEE, B. S., AND LAU, C. T.

Power spectrum entropy based detection and mitiga-

tion of low-rate dos attacks. Computer Networks 136

(2018), 80–94.

[25] CUI, H., KARAME, G. O., KLAEDTKE, F., AND BI-

FULCO, R. On the fingerprinting of software-defined

networks. IEEE Transactions on Information Forensics

and Security 11, 10 (2016), 2160–2173.

[26] DENG, J., LI, H., HU, H., WANG, K.-C., AHN, G.-

J., ZHAO, Z., AND HAN, W. On the safety and ef-

ficiency of virtual firewall elasticity control. In Pro-

ceedings of Network and Distributed System Security

Symposium (2017).

[27] DHAWAN, M., PODDAR, R., MAHAJAN, K., AND

MANN, V. Sphinx: Detecting security attacks in

software-defined networks. In Proceedings of Network

and Distributed System Security Symposium (2015).

[28] DIJKSTRA, E. W. A note on two problems in connex-

ion with graphs. Numerische mathematik 1, 1 (1959),

269–271.

[29] DIXIT, A., HAO, F., MUKHERJEE, S., LAKSHMAN,

T., AND KOMPELLA, R. Towards an elastic distributed

sdn controller. In ACM SIGCOMM computer commu-

nication review (2013), vol. 43, ACM, pp. 7–12.

[30] HE, K., ROZNER, E., AGARWAL, K., FELTER, W.,

CARTER, J., AND AKELLA, A. Presto: Edge-based

load balancing for fast datacenter networks. In ACM

SIGCOMM Computer Communication Review (2015),

vol. 45, ACM, pp. 465–478.

[31] HONG, S., XU, L., WANG, H., AND GU, G. Poi-

soning network visibility in software-defined networks:

New attacks and countermeasures. In Proceedings of

Network and Distributed System Security Symposium

(2015), vol. 15, pp. 8–11.

[32] JAIN, S., KUMAR, A., MANDAL, S., ONG, J.,

POUTIEVSKI, L., SINGH, A., VENKATA, S., WAN-

DERER, J., ZHOU, J., ZHU, M., ET AL. B4: Experi-

ence with a globally-deployed software defined wan.

ACM SIGCOMM Computer Communication Review

43, 4 (2013), 3–14.

[33] JANG, R., CHO, D., NOH, Y., AND NYANG, D.

Rflow+: An sdn-based wlan monitoring and manage-

ment framework. In Proceedings of IEEE Conference

on Computer Communications (2017), IEEE, pp. 1–9.

[34] JERO, S., BU, X., NITA-ROTARU, C., OKHRAVI, H.,

SKOWYRA, R., AND FAHMY, S. Beads: automated

attack discovery in openflow-based sdn systems. In

Proceedings of International Symposium on Research

in Attacks, Intrusions, and Defenses (2017), Springer,

pp. 311–333.

[35] JERO, S., KOCH, W., SKOWYRA, R., OKHRAVI, H.,

NITA-ROTARU, C., AND BIGELOW, D. Identifier

binding attacks and defenses in software-defined net-

works. In Proceedings of USENIX Security Symposium

(2017), USENIX Association, pp. 415–432.

[36] JIN, X., LIU, H. H., GANDHI, R., KANDULA, S.,

MAHAJAN, R., ZHANG, M., REXFORD, J., AND

WATTENHOFER, R. Dynamic scheduling of network

updates. ACM SIGCOMM Computer Communication

Review 44, 4 (2014), 539–550.

[37] KANG, M. S., GLIGOR, V. D., SEKAR, V., ET AL.

Spiffy: Inducing cost-detectability tradeoffs for persis-

tent link-flooding attacks. In NDSS (2016).

[38] KANG, M. S., LEE, S. B., AND GLIGOR, V. D. The

crossfire attack. In Proceedings of Symposium on Se-

curity and Privacy (2013), IEEE, pp. 127–141.

[39] KLÖTI, R., KOTRONIS, V., AND SMITH, P. Openflow:

A security analysis. In Proceedings of International

Conference on Network Protocols (2013), IEEE, pp. 1–

6.

[40] KREUTZ, D., RAMOS, F. M., VERISSIMO, P. E.,

ROTHENBERG, C. E., AZODOLMOLKY, S., AND UH-

LIG, S. Software-defined networking: A comprehen-

sive survey. Proceedings of the IEEE 103, 1 (2015),

14–76.

[41] KUZMANOVIC, A., AND KNIGHTLY, E. W. Low-

rate tcp-targeted denial of service attacks: the shrew vs.

the mice and elephants. In Proceedings of the confer-

ence on Applications, technologies, architectures, and

protocols for computer communications (2003), ACM,

pp. 75–86.

[42] KUZMANOVIC, A., AND KNIGHTLY, E. W. Low-

rate tcp-targeted denial of service attacks and counter

strategies. IEEE/ACM Transactions on Networking 14,

4 (2006), 683–696.

[43] LEE, S., YOON, C., LEE, C., SHIN, S., YEG-

NESWARAN, V., AND PORRAS, P. Delta: A security

assessment framework for software-defined networks.

In Proceedings of Network and Distributed System Se-

curity Symposium (2017), vol. 17.

[44] LENG, J., ZHOU, Y., ZHANG, J., AND HU, C. An

inference attack model for flow table capacity and us-

age: Exploiting the vulnerability of flow table over-

flow in software-defined network. arXiv preprint

arXiv:1504.03095 (2015).

[45] LIU, S., REITER, M. K., AND SEKAR, V. Flow recon-

naissance via timing attacks on sdn switches. In Pro-

ceedings of International Conference on Distributed

Computing Systems (2017), IEEE, pp. 196–206.

[46] LUO, J., YANG, X., WANG, J., XU, J., SUN, J., AND

LONG, K. On a mathematical model for low-rate shrew

ddos. IEEE Transactions on Information Forensics and

Security 9, 7 (2014), 1069–1083.

[47] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN,

H., PARULKAR, G., PETERSON, L., REXFORD, J.,

SHENKER, S., AND TURNER, J. Openflow: enabling

innovation in campus networks. ACM SIGCOMM

Computer Communication Review 38, 2 (2008), 69–74.

[48] PORRAS, P. A., CHEUNG, S., FONG, M. W., SKIN-

NER, K., AND YEGNESWARAN, V. Securing the soft-

ware defined network control layer. In Proceedings of

Network and Distributed System Security Symposium

(2015).

[49] RÖPKE, C., AND HOLZ, T. Sdn rootkits: Sub-

verting network operating systems of software-defined

networks. In Proceedings of International Workshop

on Recent Advances in Intrusion Detection (2015),

Springer, pp. 339–356.

[50] SCHUCHARD, M., MOHAISEN, A., FOO KUNE, D.,

HOPPER, N., KIM, Y., AND VASSERMAN, E. Y. Los-

ing control of the internet: using the data plane to attack

the control plane. In Proceedings of the conference on

Computer and communications security (2010), ACM,

pp. 726–728.

[51] SHAGHAGHI, A., KAAFAR, M. A., AND JHA, S.

Wedgetail: An intrusion prevention system for the data

plane of software defined networks. In Proceedings

of the Asia Conference on Computer and Communica-

tions Security (2017), ACM, pp. 849–861.

[52] SHANG, G., ZHE, P., BIN, X., AIQUN, H., AND KUI,

R. Flooddefender: protecting data and control plane

resources under sdn-aimed dos attacks. In Proceed-

ings of IEEE Conference on Computer Communica-

tions (2017), IEEE, pp. 1–9.

[53] SHEVTEKAR, A., ANANTHARAM, K., AND ANSARI,

N. Low rate tcp denial-of-service attack detection

at edge routers. IEEE Communications Letters 9, 4

(2005), 363–365.

[54] SHIN, S., AND GU, G. Attacking software-defined

networks: A first feasibility study. In Proceedings of

the second ACM SIGCOMM workshop on Hot topics

in software defined networking (2013), ACM, pp. 165–

166.

[55] SHIN, S., YEGNESWARAN, V., PORRAS, P., AND GU,

G. Avant-guard: Scalable and vigilant switch flow

management in software-defined networks. In Pro-

ceedings of the ACM SIGSAC conference on Computer

& communications security (2013), ACM, pp. 413–

424.

[56] SONCHACK, J., DUBEY, A., AVIV, A. J., SMITH,

J. M., AND KELLER, E. Timing-based reconnaissance

and defense in software-defined networks. In Proceed-

ings of Conference on Computer Security Applications

(2016), ACM, pp. 89–100.

[57] STUDER, A., AND PERRIG, A. The coremelt attack.

In European Symposium on Research in Computer Se-

curity (2009), Springer, pp. 37–52.

[58] SUN, H., LUI, J. C., AND YAU, D. K. Defending

against low-rate tcp attacks: Dynamic detection and

protection. In Proceedings of International Conference

on Network Protocols (2004), IEEE, pp. 196–205.

[59] UJCICH, B. E., THAKORE, U., AND SANDERS,

W. H. Attain: An attack injection framework for

software-defined networking. In Proceedings of Inter-

national Conference on Dependable Systems and Net-

works (2017), IEEE, pp. 567–578.

[60] WANG, H., XU, L., AND GU, G. Floodguard: A dos

attack prevention extension in software-defined net-

works. In Proceedings of International Conference

on Dependable Systems and Networks (2015), IEEE,

pp. 239–250.

[61] WANG, J., WEN, R., LI, J., YAN, F., ZHAO, B., AND

YU, F. Detecting and mitigating target link-flooding

attacks using sdn. IEEE Transactions on Dependable

and Secure Computing, 1 (2018), 1–1.

[62] WANG, L., LI, Q., JIANG, Y., JIA, X., AND WU,

J. Woodpecker: Detecting and mitigating link-flooding

attacks via sdn. Computer Networks 147 (2018), 1–13.

[63] WEN, X., YANG, B., CHEN, Y., HU, C., WANG,

Y., LIU, B., AND CHEN, X. Sdnshield: Reconcili-

ating configurable application permissions for sdn app

markets. In Proceedings of International Conference

on Dependable Systems and Networks (2016), IEEE,

pp. 121–132.

[64] XIANG, Y., LI, K., AND ZHOU, W. Low-rate ddos at-

tacks detection and traceback by using new information

metrics. IEEE Transactions on Information Forensics

and Security 6, 2 (2011), 426–437.

[65] XU, L., HUANG, J., HONG, S., ZHANG, J., AND GU,

G. Attacking the brain: Races in the sdn control plane.

In USENIX Security Symposium (2017), USENIX As-

sociation, pp. 451–468.

[66] ZHANG, Y., MAO, Z. M., AND WANG, J. Low-rate

tcp-targeted dos attack disrupts internet routing. In Pro-

ceedings of Network and Distributed System Security

Symposium (2007), Citeseer.

[67] ZHENG, J., LI, Q., GU, G., CAO, J., YAU, D. K.,

AND WU, J. Realtime ddos defense using cots sdn

switches via adaptive correlation analysis. IEEE Trans-

actions on Information Forensics and Security 13, 7

(2018), 1838–1853.

A The Algorithm of Adversarial Path Recon-

naissance

Algorithm 1 shows the pseudo-code of improved adversarial

path reconnaissance, which can be performed by any host in

the network. The input η is the number of repeated recon-

naissances for each data path and is also the number of data

in each group used in the t-test. The input twait is the wait-

ing time for rules to expire. The input tmax is the maximal

waiting time for each timing packet to get a response in the

target network, and α is the significance level used in the t-

test. Here, twait must be larger than the timeouts of flow rules

and tmax must be large enough so that most RTTs in the net-

work do not exceed it. Step 1 gets all hosts in the network

in order to explore the data paths between the compromised

host and them. Step 2 initializes the maximal number of data

paths that can be explored within two timeout values. The

main loop is from Step 4 to Step 29. In each loop iteration,

the algorithm tests kmax data paths. Step 5 to Step 20 collects

2η latencies of the crossed control paths for each of the kmax

data paths. The delay of crossed control paths when the test-

ing stream is not transmitted is obtained in Step 7 to Step 10.

Step 13 to Step 18 obtain the delay while transmitting the

testing stream. Step 11 and Step 19 both make the program

paused for enough time so that old rules can expire before

conducting the next reconnaissance. After obtaining all the

latencies of possible crossed control paths for the kmax data

Algorithm 1 Adversarial Path Reconnaissance

Input: η , twait , tmax, α
Output: h;

1: H ← ScanAllHosts()
2: kmax ← twait/(2 · tmax)
3: i ← 0

4: while i < |H| do

5: for j = 0 → η −1 do

6: tstart ← time()
7: for k = i → min(i+ kmax, |H|) do

8: d1 ← sendTimingStreamTo(H[k])
9: δ1[k].add(d1)

10: end for

11: sleep(twait − (time()− tstart))
12: tstart ← time()
13: for k = i → min(i+ kmax, |H|) do

14: startSendTestingStreamTo(H[k])
15: d2 ← sendTimingStreamTo(H[k])
16: stopSendTestingStreamTo(H[k])
17: δ2[k].add(d2)
18: end for

19: sleep(twait − (time()− tstart))
20: end for

21: for k = i → min(i+ kmax, |H|) do

22: if tTest(δ1[k],δ2[k]) < α and sum(δ1[k]) <
sum(δ2[k]) then

23: /* The data path from the compromised host to

H[k] crosses with control paths. */

24: out put(H[k])
25: exit()
26: end if

27: end for

28: i ← i+ kmax

29: end while

paths, the t-test is applied to determine whether a data path

crosses with control paths in Step 21 to Step 27. If the group

of latencies with testing stream is dramatically higher than

the other group, the algorithm outputs the destination host

of the data path and terminates. Otherwise, the algorithm

prepares for the next round of iteration in Step 28.

In our experiments on a real SDN testbed, twait is set as

30s which is larger than the default values of timeouts in the

Floodlight controller in order to leave enough time for rules

to be expired, and tmax is set to 1s for each timing packet to

get a response. The settings of η and α are varied.

B Defense Against the CrossPath Attack

We explore two defense schemes to mitigate the CrossPath

attack. The first is delivering control traffic with high pri-

ority. Hence, any malicious data traffic cannot disturb the

delivery of control traffic. Such a defense scheme can be en-

forced with Priority Queue (PQ) or Weighted Round Robin

Table 1: The Settings for Flow Rules to Enforce Defense Strategies.

Defense Strategy Rule Match Actions

Control traffic delivery with high priority 1 #1 control flows OutPort(x), . . . , SetQueue(ID=highPriQueue)

#2 data flows OutPort(x), . . . , SetQueue(ID=lowPriQueue)

Proactive bandwidth reservation for control traffic 2 #1 data flows OutPort(x), . . . , SetMeter(ID=RateLimit)

1 It requires SDN switches to support PQ or WRR queuing mechanism.
2 It is used when SDN switches fail to enable PQ or WRR mechanism.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

T
h
ro

u
g
h
p
u
t

(p
p
s)

Time (s)

PQ

WRR

Without Defense

(a) Throughput of Control Packets

with Queuing Policies.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Delay (ms)

PQ

WRR

Without Defense

(b) CDF of Delays of Control Pack-

ets with Queuing Policies.

Figure 18: Evaluation on the defense scheme of delivering

control traffic with high priority via PQ or WRR mechanism.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

T
h
ro

u
g
h
p
u
t

(p
p
s)

Time (s)

BW 4 Mbps

BW 8 Mbps

BW 16 Mbps

BW 32 Mbps

Without Defense

(a) Throughput of Control Packets

with Bandwidth Reservation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Delay (ms)

BW 4 Mbps

BW 8 Mbps

BW 16 Mbps

BW 32 Mbps

Without Defense

(b) CDF of Delays of Control Pack-

ets with Bandwidth Reservation.

Figure 19: Evaluation on protecting control traffic with the

defense scheme of proactive bandwidth (BW) reservation.

(WRR) 3 scheduling mechanism in SDN switches. Specif-

ically, network administrators can inform controllers to add

SetQueue actions to flow rules associated with switch ports

in the control paths. Packets matching a flow rule with the

SetQueue action will be directed to a queue with an ID set

by the action. As shown in Table 1, we can set a flow rule

matching control flows with a high priority queue and set a

flow rule matching data flows with a low priority queue. In

this way, the control traffic will always be forwarded in ad-

vance with no disturbances of other traffic.

We note that some switches in the market do not support

PQ or WRR mechanisms. However, we can still mitigate

the CrossPath attack by proactive bandwidth reservation for

control traffic with OpenFlow meter table. A meter entry be-

longing to a meter table associates with various flow rules so

that it can measure the total rate of packets matching the flow

rules and enforce rate limiting. We can assign each flow rule

3By configuring different weighted values to queues with WRR, similar

results like PQ can be achieved.

matched by the data traffic a meter entry with the SetMeter

action (see Table 1). Therefore, by limiting the maximal rate

of the total data traffic, we reserve proprietary bandwidth for

control traffic.

We evaluate above two defense schemes with AS4610-

54T commercial hardware SDN switches in our testbed. For

simplicity, we trigger 1,000 new flows per second to gener-

ate the control traffic and generate the attack traffic to dis-

rupt the transmission of control packets. Figure 18a and 18b

shows that defense schemes with PQ or WRR mechanism

effectively protect the control traffic. The throughput always

reaches approximate 1,000 pps over time even with the at-

tack. The delays of more than 99% of the control packets

are less than 10 ms with either of the two queuing mecha-

nisms. Figure 19a and 19b show that proactive bandwidth

reservation with meter table can also protect control traffic.

The larger the reserved bandwidth is, the higher the through-

put is, and also the better the delay is. In our experiments,

16 Mbps reserved bandwidth is enough to ensure forwarding

control traffic. Note that compared with the queuing mecha-

nism, it requires proactively reserving enough bandwidth for

control traffic. In a large network, it may require reserving

bandwidth in the order of several Gbps.

Table 2: SDN Switches with PQ or WRR Support.

Brand Model
Queue Support

PQ WRR

Pica8 All switches loaded with PicOS
√ √

Cisco Catalyst 4500 Series Switches
√ ×

Brocade NetIron XMR Series, MLX

Series, CES 2000, and CER

2000 Series

× √

Dell S4810, S4820T, S6000, Z9000,

Z9500, and MXL switches

× √

Huawei CloudEngine 8800 Series
√ √

C SDN Switches with Queue Support

We investigate mainstream SDN switches and find that many

switches support PQ or WRR mechanism. Table 2 shows the

switches with PQ or WRR support.

