

UPCommons
Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Groen, E.C. [et al.] (2017) The crowd in requirements engineering:
the landscape and challenges. IEEE software. Vol. 34, issue 2, pp.44-
52. Doi: http://dx.doi.org/10.1109/MS.2017.33.

© 2017 IEEE. Es permet l'ús personal d'aquest material. S’ha de
demanar permís a l’IEEE per a qualsevol altre ús, incloent la
reimpressió/reedició amb fins publicitaris o promocionals, la creació
de noves obres col·lectives per a la revenda o redistribució en
servidors o llistes o la reutilització de parts d’aquest treball amb drets
d'autor en altres treballs.

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://dx.doi.org/10.1109/MS.2017.33

Groen, E.C. [et al.] (2017) The crowd in requirements engineering:
the landscape and challenges. IEEE software. Vol. 34, issue 2, pp.44-
52. Doi: http://dx.doi.org/10.1109/MS.2017.33.

(c) 2017 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes,
creating new collective works for resale or redistribution to servers or
lists, or reuse of any copyrighted components of this work in other
works.

http://dx.doi.org/10.1109/MS.2017.33

© 2017 IEEE.

Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman, Mahmood Hosseini,
Jordi Marco, Marc Oriol, Anna Perini, Melanie Stade, "The Crowd in Requirements Engineering: The Landscape
and Challenges", IEEE Software, vol. 34, no. 2, pp. 44-52, Mar./Apr. 2017, doi:10.1109/MS.2017.33

Crowdsourcing for Software Engineering

The Crowd in Requirements Engineering
The Landscape and Challenges

Eduard C. Groen, Fraunhofer Institute for Experimental Software Engineering

Norbert Seyff, University of Applied Sciences and Arts Northwestern Switzerland

Raian Ali, Bournemouth University

Fabiano Dalpiaz, Utrecht University

Joerg Doerr, Fraunhofer Institute for Experimental Software Engineering

Emitza Guzman, University of Zurich

Mahmood Hosseini, Bournemouth University

Jordi Marco and Marc Oriol, Polytechnic University of Catalonia

Anna Perini, FBK Center for Information and Communication Technology

Melanie Stade, University of Applied Sciences and Arts Northwestern Switzerland

Performing requirements engineering with the crowd of stakeholders
(CrowdRE) turns it into a participatory effort supported by automation,
leading to better requirements and software quality. Although any
stakeholder can contribute, CrowdRE emphasizes one group whose role is
often trivialized: users.

Engaging a large number of users in requirements engineering (RE) has always been a challenge with
traditional RE methods.1 This is especially true when RE should involve a large number of software
product users (a crowd) who are beyond an organization’s reach.2

Traditional RE approaches usually involve a limited number of representatives in interviews or focus
groups. Advanced RE approaches applied in market-driven RE3 enable companies to directly interact with
key stakeholders using ad hoc feedback-gathering channels.4 However, these approaches miss the
opportunity to continuously involve large, heterogeneous groups of users who express their feedback
through a variety of media.2,5,6 This means developers can’t consider the diverse backgrounds of user
subgroups when they’re developing a product’s next version.7,8 So, valuable resources for RE remain
unused, and software products might not meet users’ needs.

Crowd-based requirements engineering (CrowdRE) is an umbrella term for automated or
semiautomated approaches to gather and analyze information from a crowd to derive validated user
requirements. 9 Normally, the crowd is an undefined group of people.10 But for CrowdRE, the crowd is in
most cases a large group of current or potential users of a software product who interact among themselves
or with representatives of a software company (for example, the product owner or development team).

CrowdRE strives to mobilize as many crowd members as possible to communicate and discuss their
needs regarding the evolution of existing software products. We call the communication from users “user
feedback,” although such feedback can also come from other stakeholders. In addition, our vision of
CrowdRE includes monitoring software application context and usage. It also strongly focuses on a
participatory approach in which intrinsically motivated users become crowd members because they benefit
from software products that meet their needs.

© 2017 IEEE.

Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman, Mahmood Hosseini,
Jordi Marco, Marc Oriol, Anna Perini, Melanie Stade, "The Crowd in Requirements Engineering: The Landscape
and Challenges", IEEE Software, vol. 34, no. 2, pp. 44-52, Mar./Apr. 2017, doi:10.1109/MS.2017.33

The CrowdRE Approach

Figure 1 presents our proposed CrowdRE approach. We consider the crowd the sender of the feedback
and a software company (represented in Figure 1 as a development team) the receiver.

Figure 1. The relationships among the aspects of crowd-based requirements engineering (CrowdRE).
CrowdRE strives to mobilize as many crowd members as possible to communicate and discuss their needs
regarding the evolution of existing software products.

Pull feedback is when the software company explicitly asks the crowd for feedback. Push feedback is
when the crowd initiates feedback.2 For example, a crowd member could send feedback to an app store—
“Hey, what’s wrong with the video quality?”—and rate the app with 2 out of 5 stars.

In this example, the feedback consists of linguistic and nonlinguistic documentation. Linguistic
documentation includes natural-language text and audio messages; nonlinguistic documentation includes
images, emoticons, and star ratings.11 Multimodal feedback combines multiple documentation formats,
as in the previous example.

Ideally, through linguistic analysis, the feedback receiver will classify this feedback as a negative
statement about an apparent performance issue (the video quality). The monitoring of context and usage
data can gather additional information to help developers better understand the problem (for example, to
identify low network bandwidth as the cause). The development team can use this information to resolve
the issue. Next, we discuss in detail each key activity in Figure 1.

Motivating Crowd Members
To a considerable extent, CrowdRE depends on a continuous flow of user feedback. An adequate rate of
flow can be achieved through motivating crowd members such that the amount and quality of their
participation is sufficient. Motivation is intrinsic when crowd members have a genuine interest in
contributing to software evolution; it’s extrinsic when it results from external interventions and incentives
(for example, monetary rewards such as vouchers or nonmonetary rewards such as social recognition and
playfulness).12 Gamification and persuasive technology are two digital-motivation techniques for boosting
task completion and influencing positive behavioral changes.

Regarding attitude and motivation toward giving feedback, we can categorize crowd members as these
types:5

 Privacy-tolerant and socially ostentatious crowd members expect acknowledgment in return for
their feedback.

 Privacy-fanatical but generous crowd members are motivated by respect for privacy.

© 2017 IEEE.

Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman, Mahmood Hosseini,
Jordi Marco, Marc Oriol, Anna Perini, Melanie Stade, "The Crowd in Requirements Engineering: The Landscape
and Challenges", IEEE Software, vol. 34, no. 2, pp. 44-52, Mar./Apr. 2017, doi:10.1109/MS.2017.33

 Passive and stingy crowd members are motivated by seeing others’ feedback and contributing
minimally.

 Loyal and passionate crowd members care about the software’s sustainability and reputation but
give less objective feedback.

 Incentive seekers care about monetary incentives and pay limited attention to feedback quality.
 Perfectionists and complainers are motivated by the self-satisfaction achieved after discovering

and flagging a problem.
 Impact seekers are motivated by seeing their suggested changes implemented.

CrowdRE should cater to this diversity in backgrounds and expectations and avoid a one-size-fits-all
motivation mind-set. For instance, although leaderboards appeal greatly to incentive seekers, privacy
fanatics might get discouraged by seeing their names on one. One platform that takes this into account is
REfine, which employs game elements to motivate users to express requirements and refine them by
commenting, voting, and creating alternative requirements or subrequirements.13

Eliciting Feedback
Crowd members report on a variety of aspects, including software problems (for example, bugs), extension
ideas (for example, feature requests), or new-product ideas. Although many feedback approaches don’t
clearly distinguish between these aspects, RE requires this distinction, which certain research prototypes
readily provide. Some feedback channels also go beyond eliciting feedback; for instance, social networks
such as Facebook can be used to gather, prioritize, and negotiate feedback.14

Crowd members must have easy access to feedback channels. In practice, user feedback appears in
channels such as app stores,5,15 product forums, and social media platforms such as Twitter.8 Software
companies also can build functionality into their software that lets crowd members give feedback in situ.
Such functionality often focuses on (simple) linguistic feedback. However, multimodal approaches are
available (for instance, AppEcho16), and the SUPERSEDE project (see the sidebar) is developing more
advanced approaches. For example, a permanently visible feedback button lets users start the feedback
process themselves. However, we also foresee that development teams will explicitly ask users for
feedback.

Providing multiple feedback channels lets developers consider crowd members’ individual
backgrounds and needs regarding feedback communication. Ideally, this will lead to a large number of
users being involved in requirements elicitation, because crowd members can communicate feedback
anytime, even without a requirements engineer performing the elicitation. This makes it possible to gather
requirements on a much larger scale. Such feedback can complement traditional requirements elicitation
approaches such as interviews or workshops in which a limited number of users communicate their needs,
supported by a requirements engineer.

Analyzing Feedback
The rise of Web 2.0 platforms such as social media and app stores has caused a surge in user feedback.
Manually analyzing large amounts of feedback is time-consuming and cognitively demanding, and
potentially suffers from bias (for example, an analyst might unintentionally focus on specific topics).
Techniques to automatically analyze large amounts of feedback are necessary to achieve fast, iterative
innovation cycles. A good basis for this exists; RE approaches to process large amounts of feedback
through computational-linguistics techniques have existed since the early 2000s.4

To analyze the feedback gathered from different channels, CrowdRE predominantly uses linguistic
analysis techniques such as text mining2,15 or speech-act-based analysis.17 This analysis filters out
irrelevant data (for example, statements not discussing the product under analysis) and automatically
classifies the remaining statements. This classification includes sentiment analysis, which assesses how
positive or negative statements are, so that praise and complaints about product features and qualities can
be identified.15

Furthermore, feedback can be classified into categories such as bug reports and feature requests,15,18
using predefined feedback taxonomies11 and topics, and similarities among statements can be identified.19
Automated classification can also help identify whether feedback discusses certain product features or

© 2017 IEEE.

Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman, Mahmood Hosseini,
Jordi Marco, Marc Oriol, Anna Perini, Melanie Stade, "The Crowd in Requirements Engineering: The Landscape
and Challenges", IEEE Software, vol. 34, no. 2, pp. 44-52, Mar./Apr. 2017, doi:10.1109/MS.2017.33

qualities, leading to the identification of functional and nonfunctional requirements.9 Projects such as
PRO-OPT (see the sidebar) and Opti4Apps (opti4apps.de) are developing such functionality. Researchers
are also investigating how to automatically generate models that capture the key elements of natural-
language requirements.20

Developers can apply further textual analyses to determine feedback reliability. For example, a
considerable amount of feedback about a particular issue might indicate a problem’s existence and
importance. Metadata such as time stamps allow for identifying trends over time—for example, to
determine whether a newer version of the product has resolved an issue that received many complaints.15
Furthermore, feedback can help companies compare their products to others—for example, by determining
which product receives more positive feedback.

Researchers are also investigating automated analysis of nonlinguistic feedback, such as screenshots
describing a problem context.

Monitoring Context and Usage Data
Future software-intensive systems as proposed in ubiquitous computing (for example, the Internet of
Things) will deploy multiple sensors in highly distributed environments. This will allow for the
comprehensive monitoring of software products and their context and usage data. This, in turn, will
provide the capability to gather feedback from multiple sources, letting developers better understand the
context and usage data. Such crowd-based monitoring6 can provide user feedback in CrowdRE.

Crowd-based-monitoring systems are extensible and can aggregate new monitors from different
providers at runtime, whereas in traditional monitoring, the monitored entities are usually known and
developed at design time. New requirements can be derived from context and usage data gathered at
runtime. This includes quantifying performance-related requirements and detecting context-dependent
requirements. For instance, monitoring where a software product is used could lead to the requirement
that a specific functionality is disabled because of local regulations on the storage of private data regarding
underage users. Crowd-based monitoring can also help determine whether requirements are met at runtime
(for example, whether a product’s performance and reliability meet user expectations in different
scenarios).

The monitoring results can then be aggregated with multimodal feedback from users to quantify and
better understand similarities and differences, and to prioritize feedback.21

CrowdRE in Comparison

CrowdRE is similar to several other approaches. Here, we compare it to customer-specific RE (RE for
tailor-made software), market-driven RE (RE for software products), and crowdsourcing.

Customer-Specific RE
Depending on the context, CrowdRE can complement or replace customer-specific RE. In this context,
CrowdRE’s greatest benefits arise when numerous users are involved. This is because customer-specific
RE has difficulties considering the diverse backgrounds of user subgroups when the next version of a
product is being developed.7,8 Conversely, in settings with a limited number of users (for example,
software that’s tailor-made for a small company with some dozens of employees), traditional customer-
specific RE techniques are sufficient because all the stakeholders are easily reached.

Market-Driven RE
Market-driven RE goes beyond the single-customer setting and enables serving a large market of
customers.3 This is typically the case with companies creating products such as office suites, operating
systems, or enterprise-resource-planning systems. In market-driven RE, developers obtain information
from known sets of stakeholders over longer periods of time through questionnaires, focus groups, and
beta tests, which are scheduled at dedicated points in time according to the software release roadmap.

In CrowdRE, feedback comes from a crowd of users or their representatives. This crowd has a weaker
bond with the software company, and its feedback data can be obtained using several unobtrusive

© 2017 IEEE.

Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman, Mahmood Hosseini,
Jordi Marco, Marc Oriol, Anna Perini, Melanie Stade, "The Crowd in Requirements Engineering: The Landscape
and Challenges", IEEE Software, vol. 34, no. 2, pp. 44-52, Mar./Apr. 2017, doi:10.1109/MS.2017.33

automated means, without explicit interaction. So, CrowdRE allows continuous collection of feedback
from a larger group of stakeholders, which makes it a logical upscale form of market-driven RE, just as
market-driven RE is an adaptation that enables customer-specific RE to transcend the organization’s
boundaries.

Crowdsourcing
Crowdsourcing distributes a workload by outsourcing activities in the form of microtasks to an anonymous
crowd that isn’t necessarily intrinsically motivated to participate. The motivation of crowd members is
usually driven by extrinsic motivators such as pay or the prospect of winning a bounty. In contrast,
CrowdRE has a genuine interest in the personal opinion of the users in the crowd. It also aims to provide
benefits for participating crowd members in terms of improved software products, increasing user
satisfaction.

By involving many crowd members and collecting their opinions and usage data, CrowdRE gives a
voice to users. This has been described as a form of social participation,22 which goes beyond outsourcing
simple problem-solving tasks. Moreover, CrowdRE uses automation techniques such as text analysis and
monitoring, and applies crowdsourcing strategically in select phases. This way, it can mitigate several
threats to crowdsourcing scalability.10

Challenges

Although CrowdRE seems promising and practitioners can already use CrowdRE solutions to obtain
information from users regarding feature and quality improvements, certain challenges exist, which we
discuss separately for each key activity in Figure 1.

Motivating Crowd Members
There’s a fine line between motivating crowd members and trivializing their job. Ad hoc introduction of
digital motivation might be seen as undermining the task and might adversely affect feedback’s usefulness
and truthfulness. Therefore, to gather high-quality user feedback, digital-motivation techniques should be
adaptive to the context and adaptable by crowd members. Such adaptation and adaptability seem
promising to sustain crowd members’ motivation and get them to engage in demanding tasks such as
argumentation and negotiation of requirements.

Eliciting Feedback
Key elicitation challenges are privacy and personalization. For all feedback channels, from existing
platforms to novel built-in feedback channels and monitors, users should be able to influence their level
of privacy. For example, a user could allow other users to read a review he or she wrote but not explore
the context data gathered. Users should be supported in their decisions regarding when (push or pull),
where (the feedback channel and device), and how (which feedback functionalities and to what level of
structure) to give feedback. Adaptive approaches addressing this diversity seem promising5 but must be
established and evaluated more.

Analyzing Feedback
The input, processing, and output of the feedback data all introduce challenges to feedback analysis.
Because feedback comes from online platforms with anonymous users, it’s hard to identify user subgroups
(for example, by age) and prevent minority groups from being overlooked. Current techniques have
difficulties identifying all the relevant data, automatically analyzing multimodal feedback, and estimating
the quality of the (text-based) analysis. Because crowd interaction often isn’t aimed at achieving
consensus, the analysis results require careful interpretation. In addition, exclusively focusing on the
frequency of, for example, certain topics can cause important results to be overlooked. Early comparisons
with traditional RE and crowdsourcing show promising results, although further analysis must prove that
users from minority groups are being heard.

© 2017 IEEE.

Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman, Mahmood Hosseini,
Jordi Marco, Marc Oriol, Anna Perini, Melanie Stade, "The Crowd in Requirements Engineering: The Landscape
and Challenges", IEEE Software, vol. 34, no. 2, pp. 44-52, Mar./Apr. 2017, doi:10.1109/MS.2017.33

Monitoring Context and Usage Data
The adaptation of monitors to the (changing) characteristics of the crowd and software products constitutes
a main challenge. Monitors and sensors must be reconfigurable at runtime and automatically replaced
when failing, and the context can be better understood through distributed pluggable sensors.23 Interpreting
contradictory monitoring data (for example, only some users might struggle with a feature) is difficult, but
a comprehensive understanding can be obtained by aggregating the data with user feedback from other
sources. If the users’ privacy is considered, crowd monitoring promises benefits for the industry, including
the ability to gather feedback from a large number of representative users.

Introducing CrowdRE in Practice
An overarching challenge is setting CrowdRE up. Companies who plan to apply CrowdRE must first tailor
and fine-tune it to their particular usage context. Furthermore, little is known about CrowdRE’s successful
application in industry. Through user participation and automation, CrowdRE could result in an early
return of investment, but unforeseeable issues might exist that prevent its successful application in a
particular context. So, more empirical research and case studies are needed to validate CrowdRE and show
that it provides the promised benefits.

We expect to see more elaborate solutions in the coming years as researchers and companies adopt
CrowdRE. We’re currently investing in CrowdRE tools and techniques to validate their potential in real-
world settings (see the sidebar).

References
1. V. Dheepa, D.J. Aravindhar, and C. Vijayalakshmi, “A Novel Method for Large Scale Requirement Elicitation,”

Int’l J. Eng. and Innovative Technology, vol. 2, no. 7, 2013, pp. 375–379.

2. W. Maalej, H.-J. Happel, and A. Rashid, “When Users Become Collaborators: Towards Continuous and

Context-Aware User Input,” Proc. 24th ACM SIGPLAN Conf. Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA 09), 2009, pp. 981–990.

3. B. Regnell and S. Brinkkemper, “Market-Driven Requirements Engineering for Software Products,”

Engineering and Managing Software Requirements, Springer, 2005, pp. 287–308.

4. J. Natt och Dag et al., “A Feasibility Study of Automated Natural Language Requirements Analysis in Market-

Driven Development,” Requirements Eng., vol. 7, no. 1, 2002, pp. 20–33.

5. M. Almaliki, C. Ncube, and R. Ali, “Adaptive Software-Based Feedback Acquisition: A Persona-Based

Design,” Proc. IEEE 9th Int’l Conf. Research Challenges in Information Science (RCIS 15), 2015, pp. 100–

111.

6. M. Arlitt et al., “Passive Crowd-Based Monitoring of World Wide Web Infrastructure and Its Performance,”

Proc. IEEE Int’l Conf. Communications (ICC 12), 2012, pp. 2689–2694.

7. E.C. Groen, “Crowd Out the Competition: Gaining Market Advantage through Crowd-Based Requirements

Engineering,” Proc. 1st Int’l Workshop Crowd-Based Requirements Eng. (CrowdRE 15), 2015, article 3.

8. E. Guzman, R. Alkadhi, and N. Seyff, “A Needle in a Haystack: What Do Twitter Users Say about Software?,”

Proc. 24th IEEE Int’l Requirements Eng. Conf. (RE 16), 2016, pp. 96–105.

9. E.C. Groen, J. Doerr, and S. Adam, “Towards Crowd-Based Requirements Engineering: A Research Preview,”

Requirements Engineering: Foundation for Software Quality, LNCS 9013, 2015, pp. 247–253.

10. K.-J. Stol and B. Fitzgerald, “Two’s Company, Three’s a Crowd: A Case Study of Crowdsourcing Software

Development,” Proc. 36th Int’l Conf. Software Eng. (ICSE 14), 2014, pp. 187–198.

11. I. Morales-Ramirez, A. Perini, and R.S.S. Guizzardi, “An Ontology of Online User Feedback in Software

Engineering,” Applied Ontology, vol. 10, nos. 3–4, 2015, pp. 297–330.

12. M. Hosseini et al., “The Four Pillars of Crowdsourcing: A Reference Model,” Proc. IEEE 8th Int’l Conf.

Research Challenges in Information Science (RCIS 14), 2014, pp. 1–12.

13. R. Snijders et al., “REfine: A Gamified Platform for Participatory Requirements Engineering,” Proc. 1st Int’l

Workshop Crowd-Based Requirements Eng. (CrowdRE 15), 2015, pp. 1–6.

© 2017 IEEE.

Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman, Mahmood Hosseini,
Jordi Marco, Marc Oriol, Anna Perini, Melanie Stade, "The Crowd in Requirements Engineering: The Landscape
and Challenges", IEEE Software, vol. 34, no. 2, pp. 44-52, Mar./Apr. 2017, doi:10.1109/MS.2017.33

14. N. Seyff et al., “Using Popular Social Network Sites to Support Requirements Elicitation, Prioritization and

Negotiation,” J. Internet Services and Applications, vol. 6, no. 1, 2015;

jisajournal.springeropen.com/articles/10.1186/s13174-015-0021-9.

15. W. Maalej and H. Nabil, “Bug Report, Feature Request, or Simply Praise? On Automatically Classifying App

Reviews,” Proc. 23rd IEEE Int’l Requirements Eng. Conf. (RE 15), 2015, pp. 116–125.

16. N. Seyff, G. Ollmann, and M. Bortenschlager, “AppEcho: A User-Driven, In Situ Feedback Approach for

Mobile Platforms and Applications,” Proc. 1st IEEE/ACM Int’l Conf. Mobile Software Eng. and Systems

(MOBILESoft 14), 2014, pp. 99–108.

17. I. Morales-Ramirez, A. Perini, and M. Ceccato, “Towards Supporting the Analysis of Online Discussions in

OSS Communities: A Speech-Act Based Approach,” Information Systems Engineering in Complex

Environments, Springer, 2014, pp. 215–232.

18. S. Panichella et al., “How Can I Improve My App? Classifying User Reviews for Software Maintenance and

Evolution,” Proc. 31st Int’l Conf. Software Maintenance and Evolution (ICSME 15), 2015, pp. 281–290.

19. L.V. Galvis Carreño and K. Winbladh, “Analysis of User Comments: An Approach for Software Requirements

Evolution,” Proc. 35th Int’l Conf. Software Eng. (ICSE 13), 2013, pp. 582–591.

20. M. Robeer et al., “Automated Extraction of Conceptual Models from User Stories via NLP,” Proc. 24th IEEE

Int’l Requirements Eng. Conf. (RE 16), 2016, pp. 196–205.

21. D. Pagano, PORTNEUF: A Framework for Continuous User Involvement, Verlag Dr. Hut, 2013.

22. R. Ali et al., “Social Adaptation: When Software Gives Users a Voice,” Proc. 7th Int’l Conf. Evaluation of

Novel Approaches to Software Eng. (ENASE 12), 2012, pp. 75–84.

23. A. Kumar, H. Kim, and G.P. Hancke, “Environmental Monitoring Systems: A Review,” IEEE Sensors J., vol.

13, no. 4, 2013, pp. 1329–1339.

Eduard C. Groen is a researcher at the Fraunhofer Institute for Experimental Software Engineering. His
research interests include deriving functional and nonfunctional requirements from natural-language
texts and developing task-oriented development practices. Groen received a master’s in psychology
with a specialization in engineering psychology from the University of Twente. Contact him at
eduard.groen@iese.fraunhofer.de.

Norbert Seyff is a professor of requirements engineering at the University of Applied Sciences and Arts
Northwestern Switzerland and a senior research associate at the University of Zurich. His research
focuses on requirements engineering and software modeling. Seyff received a PhD in computer science
from Johannes Kepler University Linz. Contact him at norbert.seyff@fhnw.ch.

Raian Ali is an associate professor of computing at Bournemouth University. His research focuses on the
engineering of social informatics. Ali received a PhD in software engineering from the University of
Trento. Contact him at rali@bournemouth.ac.uk.

Fabiano Dalpiaz is an assistant professor of software systems at Utrecht University. He’s the principal
investigator at the university’s Requirements Engineering Lab, and his research focuses on the
development and use of semiautomated techniques that help stakeholders improve software
requirements. Dalpiaz received a PhD in software engineering from the University of Trento. Contact
him at f.dalpiaz@uu.nl.

Joerg Doerr is the head of the Information Systems division at the Fraunhofer Institute for Experimental
Software Engineering and a lecturer at the University of Kaiserslautern. His research interest is software
engineering for information systems, focusing on requirements engineering, especially nonfunctional
requirements. Doerr received a PhD in computer science from the University of Kaiserslautern. He’s a
member of the German Informatics Society. Contact him at joerg.doerr@iese.fraunhofer.de.

Emitza Guzman is a postdoctoral researcher at the University of Zurich. Her research focuses on
increasing user involvement during software evolution. Guzman received a PhD in informatics from
Technische Universität München. Contact her at guzman@ifi.uzh.ch.

Mahmood Hosseini is a lecturer in business computing at Bournemouth University. His research interests
include crowdsourcing in requirements engineering and the analysis of transparency requirements.

© 2017 IEEE.

Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman, Mahmood Hosseini,
Jordi Marco, Marc Oriol, Anna Perini, Melanie Stade, "The Crowd in Requirements Engineering: The Landscape
and Challenges", IEEE Software, vol. 34, no. 2, pp. 44-52, Mar./Apr. 2017, doi:10.1109/MS.2017.33

Hosseini received a PhD in engineering social informatics from Bournemouth University. Contact him
at mhosseini@bournemouth.ac.uk.

Jordi Marco is an associate professor in the Computer Science Department at the Polytechnic University
of Catalonia (UPC). His research interests include service-oriented computing, quality of service, cloud
computing, and monitoring. Marco received a PhD in informatics from UPC. Contact him at
jmarco@cs.upc.edu.

Marc Oriol is a postdoctoral researcher of the GESSI research group at the Polytechnic University of
Catalonia (UPC). His research interests include service-oriented computing, quality of service, cloud
computing, and monitoring. Oriol received a PhD in computing from UPC. Contact him at
moriol@essi.upc.edu.

Anna Perini is a researcher in the Software Engineering research unit of the Center for Information and
Communication Technology. Her research interests include goal-oriented requirements engineering,
regulatory compliance, decision support systems, and collaborative requirements engineering. She’s
the project coordinator of the SUPERSEDE project. Perini received her Dr. degree in physics from the
University of Trento. Contact her at perini@fbk.eu.

Melanie Stade is a doctoral candidate in the Cognitive Psychology and Cognitive Ergonomics research
group at Technical University Berlin and works in the SUPERSEDE project at the University of Applied
Sciences and Arts Northwestern Switzerland. Her research interests include longitudinal usability and
user experience assessment, and user behavior during feedback acquisition. Stade received a Diplom
in psychology from Humboldt University Berlin. Contact her at melanie.stade@fhnw.ch.

Examples of Application Potential

Crowd-based requirements engineering (CrowdRE) has application potential in almost all domains in which
software products have many stakeholders from whom usage data and user feedback are obtainable. For
example, in the information systems domain, enterprise-resource-planning systems have many users
within organizational reach. Furthermore, mass markets exist in which a software product’s users are
unknown to the software company (for example, mobile apps). In the embedded-systems domain, vehicle
manufacturers can exploit monitoring and log data and analyze feedback provided by service personnel
and car drivers. In emerging smart domains (for example, smart cities, smart health, and smart energy),
the targeted group of stakeholders is very large.

Here, we give examples of CrowdRE in practice and describe two projects that develop and use
CrowdRE techniques.

In industry, one platform for gathering and discussing feedback with the user crowd is the Requirements
Bazaar (requirements-bazaar.org). Another platform called StakeSource illustrates how stakeholder
analysis can directly benefit from crowdsourcing—for example, by predicting ratings of requirements on the
basis of similarities in crowd members’ voting behavior.1 By using more classic crowdsourcing instruments,
CrowdRE provides the potential to

 obtain user feedback on features scheduled to be incorporated into a new product and
 validate the user requirements derived from this feedback through the crowd’s social

participation.2
The PRO-OPT (Big Data Production Optimization in Smart Ecosystems; pro-opt.org) project aims to

enable companies to effectively analyze large business datasets across company boundaries, thereby
improving their current and future products, including embedded systems. PRO-OPT uses CrowdRE in a
market-oriented setup with automotive manufacturers and suppliers. Reports of car drivers in user portals
are analyzed by natural-language analysis and compared to diagnostic data (reflecting context and usage
data) obtained at automobile service stations. Through the aggregation of these data, potential root causes
of systematic problems (for example, an engine problem occurring sooner in landscapes that tax the
engine’s performance) can be revealed or even anticipated. The car manufacturer can then fix the problem
to prevent the failure, at least in other vehicles of the same model. Also, the requirements derived from this
analysis can be used for later models, ultimately benefiting current and future drivers.

The SUPERSEDE (Supporting Evolution and Adaptation of Personalized Software by Exploiting
Contextual Data and End-User Feedback; supersede.eu) project is developing multimodal-feedback
functionalities that will let a crowd of users provide unobtrusive in situ feedback on software products.

© 2017 IEEE.

Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza Guzman, Mahmood Hosseini,
Jordi Marco, Marc Oriol, Anna Perini, Melanie Stade, "The Crowd in Requirements Engineering: The Landscape
and Challenges", IEEE Software, vol. 34, no. 2, pp. 44-52, Mar./Apr. 2017, doi:10.1109/MS.2017.33

Furthermore, the project is establishing comprehensive techniques to monitor software products and obtain
environmental and context data through sensors. The obtained feedback and data will be analyzed to
identify relevant information to support decision making during software evolution. Informed decisions
based on the feedback and monitoring data will lead to products that better meet user needs and improve
the user experience.

References
1. S.-L. Lim and A. Finkelstein, “StakeRare: Using Social Networks and Collaborative Filtering for Large-Scale

Requirements Elicitation,” IEEE Trans. Software Eng., vol. 38, no. 3, 2012, pp. 707–735.

2. R. Ali et al., “Social Adaptation: When Software Gives Users a Voice,” Proc. 7th Int’l Conf. Evaluation of

Novel Approaches to Software Eng. (ENASE 12), 2012, pp. 75–84.

Section Title: Crowdsourcing for Software Engineering
Article Title: The Crowd in Requirements Engineering: The Landscape and Challenges
Abstract: Crowd-based requirements engineering (CrowdRE) could significantly change RE.

Performing RE activities such as elicitation with the crowd of stakeholders turns RE into a participatory
effort, leads to more accurate requirements, and ultimately boosts software quality. Although any
stakeholder in the crowd can contribute, CrowdRE emphasizes one stakeholder group whose role is often
trivialized: users. CrowdRE empowers the management of requirements, such as their prioritization and
segmentation, in a dynamic, evolved style through collecting and harnessing a continuous flow of user
feedback and monitoring data on the usage context. To analyze the large amount of data obtained from
the crowd, automated approaches are key. This article presents current research topics in CrowdRE;
discusses the benefits, challenges, and lessons learned from projects and experiments; and assesses how
to apply the methods and tools in industrial contexts.

Keywords: crowd-based requirements engineering, CrowdRE, user feedback, requirements
engineering, software requirements, crowdsourcing, software development, software engineering

Content Type: orig-research

	caratulaIEEEC.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints

