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The crown-of-thorns starfish genome as a guide for 
biocontrol of this coral reef pest
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The crown-of-thorns starfish (COTS, the Acanthaster planci 
species group) is a highly fecund predator of reef-building corals 
throughout the Indo-Pacific region1. COTS population outbreaks 
cause substantial loss of coral cover, diminishing the integrity and 
resilience of reef ecosystems2–6. Here we sequenced genomes of 
COTS from the Great Barrier Reef, Australia and Okinawa, Japan to 
identify gene products that underlie species-specific communication 
and could potentially be used in biocontrol strategies. We focused 
on water-borne chemical plumes released from aggregating COTS, 
which make the normally sedentary starfish become highly active. 
Peptide sequences detected in these plumes by mass spectrometry 
are encoded in the COTS genome and expressed in external tissues. 
The exoproteome released by aggregating COTS consists largely of 
signalling factors and hydrolytic enzymes, and includes an expanded 
and rapidly evolving set of starfish-specific ependymin-related 
proteins. These secreted proteins may be detected by members of a 
large family of olfactory-receptor-like G-protein-coupled receptors 
that are expressed externally, sometimes in a sex-specific manner. 
This study provides insights into COTS-specific communication 
that may guide the generation of peptide mimetics for use on reefs 
with COTS outbreaks.

COTS (Fig. 1a–c) are extremely fecund mass spawners7, which pre-
disposes them to population outbreaks that result in a pronounced 
loss of live coral cover and associated biodiversity. These outbreaks 
have a higher impact on reef health and resilience than the combined 
effects of coral bleaching and disease, and increase the susceptibility of 
reefs to other potentially detrimental events, such as severe storms2–6 
(Supplementary Note 1).

Although a range of local in situ control measures have been applied 
with some success (Supplementary Note 1), mitigation of COTS 
outbreaks on the necessary regional scale requires mass-deployed,  
species-specific strategies. In this context, genome-encoded COTS-
specific attractants that underpin spawning aggregations have substantial  
potential as biocontrol agents. To identify attractants, we sequenced the 
genomes of two wild-caught individuals separated by over 5,000 km, 
one from the Great Barrier Reef (GBR), Australia and the other from 
Okinawa (OKI), Japan (Fig. 1c, d and Extended Data Fig. 1). We also 
sequenced transcriptomes from external organs, and proteins released 
into the seawater by COTS that were aggregating or were in the pres-
ence of their main predator, the giant triton Charonia tritonis (Fig. 1b).

We generated separate 384 megabase (Mb) draft assemblies for the 
GBR and OKI genomes (Extended Data Table 1 and Supplementary 
Note 2), both of which have unexpectedly low levels of heterozygo-
sity (0.88 and 0.92%, respectively; Extended Data Table 1, Extended 

Data Fig. 2 and Supplementary Note 3). Reciprocal BLAST analysis 
of scaffolds longer than 10 kilobases (kb) revealed 98.8% nucleotide 
identity between GBR and OKI genomes, providing evidence of high 
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Figure 1 | The crown-of-thorns starfish. a, Adult COTS predating  
on coral. White coral skeleton (foreground), unconsumed coral 
(background). Photo by the Australian Institute of Marine Science.  
b, A COTS (foreground) and its predator, the giant triton. Photo by 
Oceanwide Images. c, Global distribution of COTS8 and the collection 
sites of the two individuals sequenced. Blue, yellow, pink and green, 
Pacific Ocean, north Indian Ocean, south Indian Ocean and Red Sea 
clades, respectively. d, Phylogeny of Deuterostomia showing placement 
of Acanthaster. A partially condensed maximum likelihood topology 
is shown. Scale bar, 0.1 substitutions per site. Bootstrap support values 
below 100 are shown. e, Historical effective population sizes inferred from 
OKI and GBR genomes using multiple sequential Markovian coalescent 
analysis9, assuming a generation time of 3 years and a substitution 
mutation rate of 1.0 ×  10−8 per generation.
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similarity in the approximately 24,500 predicted protein-coding genes. 
These results, and our phylogenetic analysis (Fig. 1d, Extended Data 
Fig. 1 and Supplementary Note 4), support that these geographically 
separated populations are the same species, A. solaris, within the A. 
planci species group8 (Supplementary Note 4). Multiple sequential 
Markovian coalescent analysis9 of GBR and OKI genomes suggests that 
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Figure 2 | Exoproteome of aggregating and alarmed COTS. a, Top, Y-maze 
experimental design showing arm dividers and starter zones (yellow). Middle, 
cumulative response of COTS over the first 45 min to seawater conditioned 
with six aggregating COTS (right, n =  22) and ambient seawater (left, control; 
n =  32). Red, the area COTS spent the most time; blue, the least time; black, 
no presence. Y mazes, green outline; starter zones are demarcated with yellow 
lines (see Supplementary Video 1). Bottom, response of COTS in a Y maze to 
water conditioned with aggregating COTS and ambient seawater. Movement 
of COTS out of the starter box (P <  0.05; tested with the Freeman–Halton 
extension of the Fisher’s exact test) and the cumulative duration of movement 
(P <  0.05) over 45 min. Mean ±  s.e.m. b, Detection of 108 secreted proteins 
in triplicate water samples taken around aggregating and giant triton-
alarmed COTS, first three and last three lanes, respectively. EPDRs detected 
exclusively from aggregating COTS are marked with red ovals; EPDRs 
secreted from both aggregating and alarmed COTS, but more prevalent from 
alarmed COTS, are marked with green ovals. c, Tissue expression of genes 
encoding the 108 secreted proteins, divided into general protein classes.
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Figure 3 | Ependymin-related gene expansion and expression. a, Tissue 
expression of the COTS EPDR genes. b, Phylogeny of EPDR proteins. 
COTS genes are labelled and are marked with red lines; other asteroids, two 
shades of orange and yellow lines; sea urchins, dark green; hemichordates, 
light green; molluscs, pink; annelids, purple; cnidarians, black; and 
vertebrates, blue. The three clades to which COTS sequences belong are 
indicated by the outer circle. The asterisk denotes the fish-specific true 
ependymin clade. c, One of the COTS EPDR gene clusters on scaffold 218, 
with exons (grey bars and arrowheads), intergenic regions and introns  
(thin black lines) and direction of transcription (arrowhead at end of 
coding sequence) shown. Scale bar, 10 kb. In all panels, EPDRs secreted by 
COTS into the seawater are highlighted by red or green ovals as in Fig. 2b.
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both populations declined and recovered in a similar manner during 
the late Pleistocene epoch (Fig. 1e and Supplementary Note 4). Given 
that GBR and OKI genomes are nearly identical, we treat them as one 
in subsequent analyses.

The COTS genome is a noteworthy addition to the existing suite 
of deuterostome genomes10. It shares many gene family and domain 
expansions with hemichordates and the sea urchin, although the 
COTS genome has fewer lineage-restricted gene and domain expan-
sions (Extended Data Fig. 3 and Supplementary Notes 5, 6). The 
genome also has extensive microsynteny with other deuterostomes, 
including conserved Hox (Extended Data Fig. 4), ParaHox and Nkx 
gene clusters11,12.

To identify candidate factors for the development of biocontrol 
mitigation technologies, we targeted genes potentially involved in 
conspecific chemical communication. COTS, like many other marine 
invertebrates, rely primarily on their chemosensory system to detect 
environmental signals including those from prey, predators, and con-
specifics during reproduction13,14. Water-borne signals probably guide 
adults to form aggregations before a synchronised spawning event15,16.

Proteins and peptides released by aggregating or alarmed COTS into 
the surrounding seawater were sequenced using mass spectrometry. By 
mapping these sequences to the genome, we identified gene products 
released by COTS when aggregating (244) or alarmed (77) or in both 
situations (73) (Supplementary Note 7). When exposed in a Y-maze 
assay to seawater containing putative aggregation factors, naive, nor-
mally sedentary COTS become highly active and move in the direction 
of the source of the conditioned seawater (Fig. 2a and Supplementary 
Videos 1, 2). This is consistent with water-borne factors being released 
during aggregation and detected by conspecifics at a distance. These 
released factors provide a potential basis for future biocontrol meas-
ures that include mass attraction to facilitate efficient collection and 
removal of COTS. This starfish also reacts rapidly and adversely to  
C. tritonis-conditioned seawater (Extended Data Fig. 5, Supplementary 
Note 7 and Supplementary Video 3).

Of the exoproteins identified, 108 contain signal peptides and are 
probably secreted in a regulated manner. 71 of these were secreted from 
aggregating COTS, 14 from alarmed COTS and 23 were secreted under 
both conditions (Fig. 2b and Supplementary Note 7). The genes encoding  
these secreted proteins are expressed in external tissues, including the 
spines, body wall and mouth, consistent with their release into the 
surrounding environment (Fig. 2c). Of the secreted proteins, 48 are 
enzymes, of which 83.3% (40) are hydrolyases, including plancitoxin-1, 
a type II DNase present in COTS venom17. In addition, 37 proteins are 
related to known secreted signalling and structural proteins, including 
15 ependymin-related proteins (EPDRs), five lectins and four proteins 
related to deleted in malignant brain tumours 1. There are also 21 
uncharacterized secreted proteins, 14 of which have substantial shared 
identity with proteins in other animals (Extended Data Fig. 6).

The detection of 15 EPDRs in the secretome of aggregating COTS 
(Fig. 2b) suggest that they potentially have a role in conspecific com-
munication; an additional 11 EPDR genes in the COTS genome are also 
highly expressed, mostly in externally connected organs and tissues 
(Fig. 3a). Except for the signal peptide and a small number of spatially 
conserved cysteine residues, these 26 EPDRs share very low sequence 
similarity. Although EPDRs are present in most metazoans18,19, this 
family has uniquely expanded in asteroids into at least eight orthology 
groups comprising two larger clades (Fig. 3b, Extended Data Fig. 7 
and Supplementary Note 8). Identified asteroid orthologues share little 
sequence similarity, suggesting that these EPDRs have rapidly evolved 
to give rise to species-specific repertoires of putative communication 
factors. Nineteen of the COTS EPDR genes comprise two compact 
tandem arrays that vary markedly in sequence and expression (Fig. 3 
and Supplementary Note 8). The concomitant secretion of a variety 
of proteases by aggregating COTS (Fig. 2c) lends support for a role 
of EPDRs in starfish communication; protease-released ependymin 
peptides act as signalling molecules in vertebrates18,20. Thus, EPDRs 
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Figure 4 | Olfactory-receptor-like GPCR genes. a, Organization and 
orientation of single exon genes in clade c (see panel b) on scaffolds 38, 56, 
44 and 148. Genes, grey arrowheads pointing in direction of transcription; 
black lines, intergenic regions. Scale bar, 20 kb. b, Phylogeny of 
ambulacrarian rhodopsin GPCRs, and Branchiostoma and Actinopterygii 
olfactory receptors (OR). The 6 sea urchin GPCRs (surreal) and 11 COTS 
OR-like gene clades are highlighted in blue and red, respectively.  
c, Expression of olfactory-receptor-like and rhodopsin GPCRs (R) in 
COTS tissues, grouped based on clades defined in b.
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provide a potential basis for the development of peptide mimetics for 
COTS biocontrol.

The COTS genome encodes approximately 950 G-protein-coupled 
receptor (GPCR) genes, similar to other deuterostomes21,22 (Extended 
Data Table 2 and Supplementary Note 9). Many of the approxi-
mately 750 COTS rhodopsin-class GPCRs—the class comprising  
chemoreceptors23—are organized in species-specific tandem arrays of 
unique, single exon genes, akin to putative olfactory receptors in other 
deuterostomes21,22 (Fig. 4a, b and Extended Data Fig. 8). The enrich-
ment of COTS olfactory-receptor-like GPCR transcripts in external and 
sensory tissues, including the radial nerve, spine and body wall (Fig. 4c),  
is consistent with their role in the detection of water-borne signals. A 
similar enrichment is observed in sea urchins, which also appear to 
change behaviours because of olfactory signals13,14,21. The COTS radial 
nerve is in direct contact with the external environment13,14,24 and  
displays sexually dimorphic expression of rhodopsin GPCRs (Fig. 4c),  
suggesting that conspecific signals are perceived differently by male 
and female starfish.

Sequencing of the COTS genome and proteomic analyses have 
enabled the identification of species-specific secreted factors associ-
ated with aggregating starfish, such as EPDRs, which can lead to the 
development of peptide mimetics for biocontrol measures. The high 
similarity of GBR and OKI genomes indicates that genome-based miti-
gation strategies developed for one locale can be applied throughout the 
species’ range. These genomic data will also be useful in ecological and 
population studies into the causes of COTS outbreaks, contri buting to  
regional-scale management of this coral reef pest. Further, this study  
suggests that species-specific secreted factors involved in conspecific 
communication in marine animals25—identified through combined 
genomic and proteomic approaches—have the potential to revolutionise  
mitigation technologies for aquatic pests more generally.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Genome sequencing and assembly. Genomic DNA was extracted from testes and 
sperm of two individuals. One was collected from Rudder Reef on the northern 
Great Barrier Reef (GBR), Australia (16° 11′  46.4′ ′  S 145° 41′  48.7′ ′  E) and the 
second from Motobu, Okinawa (OKI), Japan (26° 40′  46.1′ ′  N 127° 52′  46.1′ ′  E) 
(Fig. 1c). These two genomes were sequenced, assembled and annotated separately 
using standard methods11,26 (Extended Data Table 1, Supplementary Fig. 2.1 and 
Supplementary Note 2). Paired-end libraries of 40×  (GBR) and 46×  (OKI) cov-
erage were sequenced on an Illumina MiSeq sequencer, generating 250 nucleotide 
reads. An approximately 800 bp paired-end library for GBR was sequenced in three 
MiSeq runs, and two paired-end libraries of around 600 bp and around 1,000 bp for 
OKI were each sequenced in two MiSeq runs. For the GBR genome, 3 mate-pair  
libraries with insert sizes of 3, 8 and 12 kb were sequenced by Macrogen, Inc. 
For the OKI genome, 4 mate-pair libraries with insert sizes of 1.5–4, 4–6, 6–8 
and 8–12 kb were sequenced on an Illumina HiSeq 2500 sequencer. Overall read  
coverage including both mate-pair and paired-end libraries was 152×  for GBR and 
139×  for OKI (Extended Data Table 1 and Supplementary Note 2).

Paired-end reads were assembled by GS De novo Assembler version 2.3 
(Newbler, Roche) and mate-pair sequencing data were scaffolded with SSPACE 
3.0 (ref. 27).
Genome size estimation. COTS genome size was estimated by three methods 
(Extended Data Table 1 and Extended Data Fig. 2). (1) Genome size was estimated  
using kmergenie28 to determine the optimal k-mer length, and JELLYFISH29 
to estimate genome size (http://koke.asrc.kanazawa-u.ac.jp/HOWTO/kmer- 
genomesize.html). (2) DNA from COTS sperm was compared with DNA from 
Takifugu rubripes and Danio rerio sperm26,30 by flow cytometry. All nuclei were 
treated with a DAPI flow cytometry kit and a BD Cycletest Plus DNA Reagent Kit  
(BD Biosciences), and analysed on a BD FACSAria II cell sorter (BD Biosciences)31 
(Supplementary Note 2). (3) Genome length was estimated on the basis of total 
scaffold length of the assembled genomes.
Transcriptome sequencing and assembly. RNA was extracted from testes, podia, 
spines and stomach/mouth tissues from the same individuals from which GBR 
and OKI genomic DNA was obtained; RNA from the other tissues was isolated 
from different OKI and GBR individuals (Supplementary Note 2). Tissue-specific 
RNA-seq libraries were generated and sequenced on an Illumina HiSeq 2500 
using standard methods26. De novo transcriptomes were assembled using Trinity  
version r20131110 (ref. 32). Genome-guided RNA transcripts were generated using 
Tuxedo33 (Supplementary Note 2).
Gene modelling and annotation. Both GBR and OKI genomes were masked using 
RepeatMasker version 4.0.3 (parameters: -qq -pa 8 -gff -species ‘fungi/metazoa 
group’ -no_is). Assembled transcripts were then mapped back to either the GBR 
or the OKI masked genome and used to generate a consensus transcript set via 
PASA (version 20140417). Only transcripts with over 90% transcript coverage 
(parameter: min_percent_aligned) and 95% identity (parameter: min_avg_per_id) 
were merged. Open reading frames (ORFs) predicted from PASA-assembled tran-
scripts using TransDecoder (https://sourceforge.net/p/transdecoder/) were used 
to train Augustus to generate gene predictions for each genome (Supplementary 
Note 2). Additionally, all core eukaryotic genes were mapped to each genome using 
CEGMA (version 2.4). CEGMA predictions were used to train SNAP (version 
2013-11-29). Unsupervised genes were also predicted using GeneMarkES (version 
20120203).

Final gene predictions were generated using EVM34 by combining (1) ab initio  
predictions by Augustus, SNAP and GeneMarkES, (2) consensus transcripts 
generated by PASA based on combined transcriptomes of both populations and 
(3) TransDecoder best ORF predictions based on PASA consensus transcripts.  
A genome browser is available at: http://marinegenomics.oist.jp/cots/.
Estimation of intra- and inter-genome heterozygosity. Overall genome hete-
rozygosity was estimated by single-nucleotide polymorphism (SNP) analysis, by 
mapping paired-end reads onto the scaffolds using BWA35. SNPs were called and 
analysed using Stools36. Further SNP analysis was done by mapping OKI reads to 
the GBR genome, and vice versa. OKI and GBR COTS genomic assemblies were 
aligned by reciprocal BLASTN+ 37. Scaffolds > 10 kb or alignments with E values 
< 1 ×  10−5 were analysed. SNP distribution across each genome was also compared 
(Supplementary Note 3).
LiftOver analysis between GBR and OKI genomes. Comparison of OKI and 
GBR gene models was performed using batch coordinate conversion (LiftOver) 
from the UCSC Genome Browser Utilities38. LiftOver settings were optimised to 
generate the maximal number of significant gene model matches between the two 
genomes (Supplementary Note 3).

Phylogenomic analysis. Phylogenomic methods followed the general approach 
of ref. 39 (Supplementary Note 4). Transcriptomes from refs 40 and 41 were 
assembled as described previously. Other publicly available Illumina transcrip-
tomes were digitally normalized and assembled using the 13April 2014 release of 
Trinity42. Contigs were translated with TransDecoder (https://sourceforge.net/p/ 
transdecoder/) using Pfam 27 as a guide. Predicted proteins and translated tran-
scriptomes were combined for each of the COTS.

For orthology inference, we employed HaMStR 13 (ref. 43) using the 1,032 
‘model organisms’ profile hidden Markov models (pHMMs). Sequences matching  
the pHMM of an orthology group were then compared to the proteome of Homo 
sapiens using BLASTP with the default settings implemented by HaMStR. If the  
H. sapiens amino acid sequence contributing to the pHMM was the best BLASTP 
hit in each of these back-BLASTs, the sequence was then assigned to that orthology  
group.

Sequences in orthology groups that were shorter than 50 amino acids were 
discarded. Redundant identical sequences were removed with UniqHaplo  
(http://raven.iab.alaska.edu/∼ ntakebay/) leaving only the most complete, unique 
sequences for each taxon. In cases where one of the first or last 20 characters of an 
amino acid sequence was an X (corresponding to a codon with an ambiguity, gap 
or missing data), all characters between the X and that end of the sequence were 
deleted and treated as missing data. Each orthology group was then aligned with 
MAFFT (mafft–auto–localpair–maxiterate 1000)44. Alignments were trimmed 
with Aliscore45 and Alicut46 to remove ambiguously aligned regions. Subsequently, 
any putatively mistranslated sequence regions were deleted; these were regions of 
20 or fewer amino acids in length surrounded by ten or more gaps on either side. 
Next, alignments that were shorter than 50 amino acids in length were discarded. 
Last, we deleted sequences that did not overlap with all other sequences in the 
alignment by at least 20 amino acids, starting with the shortest sequences. Finally, 
orthology groups, which were sampled for fewer than 15 taxa after these filters, 
were discarded.

To screen putative orthology groups or evidence of paralogy, an ‘approximately- 
maximum likelihood’ tree was inferred for each remaining alignment using 
FastTree 2 (refs 47, 48) with the ‘slow’ and ‘gamma’ options. PhyloTreePruner48 
was then used to generate a tree-based approach to screen each candidate  
orthology group for evidence of paralogy. Nodes with support values below 0.95 
were collapsed into polytomies and the maximally inclusive subtree was selected 
where all taxa were represented by no more than one sequence or, in cases where 
more than one sequence was present for any taxon, all sequences from that taxon 
formed a monophyletic clade or were part of the same polytomy. Putative para-
logues (sequences falling outside of this maximally inclusive subtree) were then 
deleted. In cases where multiple sequences from the same taxon formed a clade 
or were part of the same polytomy, all sequences except the longest were deleted.

Phylogenetic analysis was conducted using ML with RAxML 7.7.6 (ref. 49). 
Matrices were partitioned by gene and the PROTGAMMALG model was used 
for all partitions. For each analysis, the tree with the best likelihood score after  
10 random addition sequence replicates was retained and topological robustness  
(that is, nodal support) was assessed with 100 replicates of nonparametric  
bootstrapping (the -f a command line option was used).
Multiple sequential Markovian coalescent analysis. The multiple sequential 
Markovian coalescent analysis method9, using default parameters, was used 
to infer the historical effective population sizes of the OKI and GBR COTS. 
All paired-end reads were aligned to each soft-masked genome using Bowtie 2  
(ref. 50). SAMtools(version 1.19)36 was used to filter the unmapped reads and reads 
with minimum base and mapping quality scores of 20. Bcftools (version 1.19)36, 
of the SAMtools package, was then used to call genotype for each position. Real 
historical time and effective population size were estimated assuming a generation 
time of 3 years and a substitution mutation rate of 1.0 ×  10−8 per generation, which 
was based on an estimated genome size of 431 Mb51 (Supplementary Note 4).
Protein domain annotations. Protein domains were downloaded from 
Mnemiopsis leidyi, Amphimedon queenslandica, Trichoplax adhaerens, Nematostella 
vectensis, Lottia gigantea, Lingula anatina, Capitella teleta, Caenorhabditis  
elegans, Drosophila melanogaster, Brachiostoma floridae, Ciona intestinalis,  
D. rerio, Xenopus tropicalis, H. sapiens, Saccoglossus kowalevskii, Ptychodera flava, 
Stronglyocentrotus purpuratus and A. planci (Supplementary Note 5) and annotated 
using HMMER of all known protein domains in the Pfam database (version 29.0)52. 
If a domain occurred multiple times in a protein sequence, it was counted only once 
(Supplementary Note 5). To exclude transposon-derived domains, mispredictions 
or unknown domains, we removed Pfams that were categorised as ‘unknown’, ‘not 
named’, ‘uncharacterized’, ‘transposase’, ‘helitron’, ‘helicase’, ‘DUF’, or ‘DDE_Tnp’. We 
then iteratively conducted a Fisher exact test using R53, comparing the number of 
counts in Pfam families found in species, to the background, defined as the average 
of the counts in the remaining species (Supplementary Note 5).
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To assess differences in protein domains across metazoan genomes, we exam-
ined protein domain expansion and contraction in each species, based on the total 
number of unique genes that each Pfam domain contained. We used the scaled 
value for each individual Pfam domain as a proxy for expansion, whereby any value 
greater than the mean was considered a domain expansion (Extended Data Fig. 3).
Analysis of tissue transcriptomes. Seven and ten tissue transcriptomes were 
sequenced from GBR and OKI, respectively (Supplementary Notes 2 and 6). 
Trimmed reads from all transcriptomes were mapped to GBR and OKI gene models,  
and fragments per kb of transcript per million mapped reads (FPKM) were  
calculated for all genes in all transcriptomes. Relationships between tissue-type and 
geographic location (that is, GBR versus OKI) were determined using Euclidean 
distance and principle component analyses (PCAs) of FPKM values for all genes 
shared between the two genomes based on the LiftOver analysis using the R package,  
DESeq2 (ref. 54). On the basis of the PCAs, we selected the following eight  
tissue transcriptomes for further analysis: male and female radial nerves, tube foot 
(podia), spine, body wall, stomach, mouth and spent testes (Supplementary Note 6).  
The presented order of these tissues was derived from the Euclidean distance54 
of these transcriptomes on the basis of both expression and Pfam52 similarity 
(Supplementary Note 6).
In silico prediction of secreted and cleaved proteins. A. planci protein N-terminal 
signal sequences were predicted using SignalP 4.1 (ref. 55) (neural network and 
hidden Markov model algorithms), Predisi56 and Phobius57, while transmembrane 
domains were determined using TMHMM58 and HMMTOP59. A protein was  
designated as secreted only when it met the criteria of both SignalP and Predisi, 
and did not have a transmembrane domain. Proteolytic cleavage sites and post- 
translational modifications (PTMs) were determined on the basis of homology 
to other known proteins and predicted with the Neuropred tool (http://neuropro 
teomics.scs.illinois.edu/neuropred.html) with a cleavage probability > 0.8.
Collection of samples and exoproteome analysis. COTS aggregation- 
conditioned seawater was produced from three adult COTS (300–350 mm diameter)  
that were kept in a single 60 l flow-through glass tank (780 ×  380 mm) for 24 h. 
Water flow was stopped for 1 h before draining 51 l; the COTS remained in situ 
to minimise release of alarm-related chemistry. Conditioned water was acidified 
with 0.1% trifluoroacetic acid (TFA), then filtered through a 0.45-µ m PVDF 
membrane (Millipore) and absorbed onto a C18 Sep-Pak, 5 g sorbent per car-
tridge, 37–55 µ m particle size (Waters). Filter cartridges were washed with 100% 
methanol between samples to remove any carryover. Biomolecules were eluted 
with 70% acetonitrile:0.5% acetic acid, and then lyophilised and stored at − 20 °C. 
COTS alarm-conditioned seawater was produced when a single adult COTS  
(300–350 mm diameter)—kept in a single 60 l flow-through glass tank for 24 h 
before the water flow was stopped for 1 h—was then exposed to a giant triton (sepa-
rated by a mesh divider) for 1 h. The giant triton was removed and 51 l was drained; 
the COTS remained in situ. Conditioned seawater was acidified (0.1% TFA), then 
biomolecules purified and lyophilised as described above. Procedures for collection 
of both treatments were repeated three times (n =  3). Reconstituted samples con-
taining about 1 mg exoproteins (evaluated by NanoDrop 2000, Thermo Scientific) 
in 100 µ l extraction buffer (8 M urea, 0.8 M NH4HCO3, pH 8.0), were processed 
by reduction, alkylation, trypsin digestion, SCX-HPLC and then NanoHPLC-
ESI-Triple Time-of-Flight mass spectrometry (see Supplementary Note 7  
for details).
Protein identification and quantification. The protein database used for MS/MS  
data analysis was derived from both GBR and OKI, (Supplementary Note 2, 
Supplementary Table 7.2a–n). A composite target− decoy database was built with 
the forward and reverse sequences for calculating the false discovery rate (FDR). 
MS/MS data were imported to the PEAKS studio (Bioinformatics Solutions Inc., 
version 7.0) with the assistance of the MS Data Converter (Beta 1.3, http://sciex.
com/software-downloads-x2110). De novo sequencing of peptides, database search 
and characterization of unspecified PTMs were used to analyse the MS/MS data; 
the FDR was set to ≤  1%, and (− 10logP) was calculated accordingly where P is 
the probability that an observed match is a random event. The PEAKS studio 
parameters are defined in Supplementary Note 7.

The quantitative analysis of proteins was carried out using the label-free quanti-
fication module (PEAKS Q60) of PEAKS studio version 7.0, which is based on the 
relative intensities of featured peptides detected in multiple samples. The detection  
of features was separately performed on each sample and the expectation– 
maximisation algorithm61,62 was used to identify overlapping features. Then, an align-
ment algorithm63 was used to align the features of the same peptide from different  
samples. The extracted proteins in different replicate samples were quantified as 
described above; for each sample, 1.5 µ g of protein was analysed using LC–MS/MS. 
Biological triplicate samples of aggregation and alarm were used in tandem repeats 
for LC–MS/MS procedure as described above, and the relative concentrations  
of proteins were compared and presented as the final results. The mass shift 

between different runs was set to 50 p.p.m., and 1.0 min was used for evaluating  
the retention time shift tolerance. Featured peptides with a FDR threshold of 1%, 
including PTMs mentioned above, were included in the quantitative analysis. 
Validation of quantitative analysis was performed as described in Supplementary 
Note 7.
Behavioural response of COTS to signals from starfish aggregations. Adult 
COTS were collected from various regions of the central GBR by the Australian 
Marine Parks Tourist Operators (AMPTO) Crown-of-Thorns Starfish Control 
Program and transported to the Australian Institute of Marine Science (AIMS) 
SeaSim aquarium precinct (www.aims.gov.au/seasim). COTS were housed in 
outdoor flow-through seawater aquaria at ambient conditions with temperatures 
of 26–29 °C and salinity averaging 35 p.p.t. When moved to indoor experimental 
systems, water temperature and photoperiod were simulated as per ambient natural 
outdoor conditions. COTS were not fed in captivity; therefore they were replaced 
fortnightly with freshly collected specimens to minimise behavioural changes 
owing to partial starvation.

Behavioural responses of starfish were examined in black fibreglass tanks 
(4.4 ×  2.3 m) containing 6,070 l of seawater and a Y-maze (main channel 1.75 m 
long, channel width of 0.6 m, each arm 2.35 m long) to test for behavioural changes, 
such as motivation for, or direction of, movement. Seawater supply to each arm 
of the Y-maze was balanced to give a flow of 5 cm s−1 moving towards the main 
channel, and a 0.8 m divider at the base of the arms ensured no backflow from one 
arm into the other. One arm of the Y-maze was fed with ambient seawater directly 
from a pipe (control). The water to the second arm passed through a 250 l header 
tank (1 ×  0.5 ×  0.5 m) that was either empty (control) or contained six adult starfish 
that had been in place a minimum of 24 h before the experiment. The COTS in the 
header tank formed aggregations. At the start of the experiment, a test subject star-
fish was placed into the distal end of the main channel in a ‘starter box’, which was 
0.6 m2, and its movement recorded for up to 8 h on video. As COTS are primarily 
nocturnal, experiments were conducted at the end of the daylight illumination 
period and filmed during the nocturnal period. As the aggregating starfish were in 
an inaccessible header tank, the test subject could not visually detect or physically 
join the aggregation.

The tanks were illuminated with a bank of 850 nm infrared LED lamps (CMVision, 
Model IR-200LF/WF) filmed with an infrared acA1300-60gmNIR camera  
(Basler AG) fitted with a 4.4− 11 mm/F1.6 1/1.8′ ′  manual C-mount CCTV lens 
(Kowa Optical Products Ltd) and 850 nm cut-off filter (Helipan ES43). The infrared 
spectrum is beyond the detection range of starfish photoreception (425–580 nm)  
and therefore does not interfere with overlying photoperiod lighting64,65. The tanks 
were exposed to regional photoperiod changes (19.25° S, 146.8° E) with full sunlight 
spectrum plasma units (Luxim Model GRO-41-01, Luma America) with crepuscular  
twilight ramping. In this arrangement, only the reflection of infrared from the body 
of the starfish is detected by the infrared sensitive camera. Video footage was cap-
tured and analysed with Ethovision XT (http://www.noldus.com/animal-behavior- 
research/products/ethovision-xt). The experiments were conducted for n ≥  10. The 
results were summed to determine the overall typical behaviour. Statistical analyses 
were performed using Ethovision XT and SPSS (version 20, IBM)66.

Motivation was determined if the test subject moved out of the original starter 
box. Changes in motivation were graphically represented in heat maps where the 
frequency of a specific position in a 2D space was visualized as a colour repre-
senting the minimum and maximum per-pixel frequency over the duration of the 
experiment. The spectrum variation was set from dark blue (minimum) to dark 
red (maximum); heat maps are primarily qualitative. Activity, how long and how 
frequent a subject has been active, was determined by the number of changed pixels 
for a current sample divided by the total number of pixels in the arena. Activity is 
not necessarily an indication of total distance moved, as anxiety movement will 
be detected as activity and such behaviour is typically triggered by a stimulus. 
A threshold of > 60% active time was imposed as a measure of ‘highly active’. 
For example, test subject starfish were clearly agitated when exposed to seawater  
conditioned with aggregated COTS and their behaviour was indicative of searching 
for the source; even though starfish entered a particular Y-maze arm, few remained 
or settled within that arm but rather exhibited continued mobility.
Analysis of EPDR genes. Potential COTS EPDR genes were identified from  
(1) transcriptomes via BLAST searches using partial exoprotein sequences, (2) the 
genome assembly via HMMER3.1 (ref. 67) searches using the ependymin pHMM 
(Pfam52 accession PF00811.14), and (3) HMMER searches on ORFs exceeding 
50 nucleotides extracted from genome scaffolds using the getorf tool from the 
EMBOSS package 6.5.7 (ref. 68). EPDR transcripts were then used as queries to 
identify the correct intron/exon architecture of the genes in the genome assemblies 
(schematic created using FancyGene69). An alignment of the manually curated 
GBR EPDRs was created using AliView70 (see Supplementary Note 8) and assessed 
for the possession of signal peptides using SignalP 4.1 (ref. 55) (sequences with 
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a HMMER E-value greater than 1 ×  10−5 were found to align poorly and were 
removed). Sequence logos were created using WebLogo71.

EPDR pHMM searches were performed on predicted protein datasets from 
whole-genome data from select species and on ambulacrarian transcriptomes 
used in the phylogenomic analyses (see above) using an E-value cutoff of 1 ×  10–5 
(Supplementary Note 8). Sequences were aligned and identical or very similar 
sequences within a species were removed (Supplementary Note 8). Maximum 
likelihood trees were performed as described above using RAxML 7.7.6, automatic  
model selection (VT) and 1,000 bootstrap replicates. Bayesian analysis was  
performed using MrBayes 3.2.6, with automatic (mixed) model selection 
(BLOSUM) and sampling every 10,000 generations until convergence (standard 
deviation of split frequencies < 0.01, 2.3 million generations). Topologies of the 
resulting phylogenetic trees were largely congruent. A sequence logo was created 
for each subclass of EPDRs using WebLogo71.
Identification and analysis of GPCRs and olfactory receptor-like genes. 
Methods for GPCR identification followed the general approach of ref. 72. We 
screened the protein models of both OKI and GBR genomes, B. floridae, H. sapiens, 
S. kowalevskii, P. flava, and S. purpuratus using PFAM-scan.pl (ftp://ftp.sanger.
ac.uk/pub/databases/Pfam/Tools/) against version 27 of the Pfam-A database. 
Sequences annotated by PFAM_scan.pl with domains in the GPCR_A Pfam clan 
(CL0192), and with at least 5 transmembrane regions according to HMMTOP59, 
were considered to be GPCRs and were further annotated with InterProScan 
5.8–49.0 (ref. 73).

Many sequences were annotated as rhodopsin-like and therefore sequences 
annotated with PFAM 00001 were trimmed specifically to the region annotated as 
‘7 transmembrane receptor (rhodopsin family)’ by InterProScan and subsequently 
parsed into subfamilies using FastOrtho (http://enews.patricbrc.org/fastortho/), a 
modified version of OrthoMCL74 with an inflation parameter of 1.5. This resulted 
in the identification of 957 groups of at least two GPCRs in the rhodopsin family 
(7tm_1) (Supplementary Note 9). The number of rhodopsin genes in each group 
for each species was visualized using Pretty Heatmap (https://cran.r-project.org/
web/packages/pheatmap) in R53.

Other GPCRs were similarly trimmed to the transmembrane receptor region 
for phylogenetic analysis. The annotations used for trimming each of these 
GPCRs were as follows: 7TM_3/Glutamate (PF00003); Dicty_CAR (PF05462) 
‘G-protein coupled receptors family 2 profile 2’; Frizzled (PF01534) ‘Frizzled/
Smoothened family membrane region’; GpcrRhopsn4 (PF10192) ‘rhodopsin-like 
GPCR transmembrane domain’; Lung_7-TM_R (PF06814) ‘Lung seven trans-
membrane receptor’; and Ocular_alb (PF02101) ‘Ocular albinism type 1 protein’. 
Phylogenetic analyses were conducted on the transmembrane receptor region for 
each GPCR family using FastTree 2 (ref. 56) with the slow and gamma model 
options (Supplementary Note 9).

To identify putative olfactory-receptor-like genes in the COTS genomes, we 
followed the approach of refs 75 and 76 with modifications to incorporate the 
approaches of ref. 21 (Supplementary Note 9). We built 13 distinct pHMMs from 
previously curated olfactory-receptor repertoires comprising fishes (fugu, medaka, 
pufferfish, zebrafish and stickleback), amphioxus, sea urchin (‘Specific rapidly 
expanded lineages of rhodopsin family’ GPCRs (surreal GPCRs) groups 1–6) and 
manually curated olfactory receptors from Swiss-Prot. All non-redundant hits 
were retrieved from the combined results of all pHMM searches (Supplementary 
Note 9).

To distinguish olfactory receptors from the other 12 rhodopsin subfamilies 
(non-olfactory receptors), we conducted a BLASTP search (default settings) against 
a local database containing all class A or rhodopsin-like GPCRs from the Swiss-Prot 
database, followed by an all-against-all BLASTP comparison of COTS rhodopsin- 
like GPCRs. To determine if these COTS paralogue clusters of class A GPCRs 
are species-specific, and to resolve their relationship to other class A deuteros-
tome GPCRs, we conducted a phylogenetic analysis. The dataset included class A  
rhodopsin-like GPCRs from S. purpuratus, which includes the surreal GPCRs, 
and two hemichordates (P. flava and S. kowalevskii), as well as olfactory receptors 
from fish (fugu, medaka, pufferfish, zebrafish and stickleback) and amphioxus. All 
sequences that contained 5 to 7 transmembrane helices were considered complete 
and were included in the phylogenetic analysis. The final dataset (2,615 sequences) 
was aligned using MAFFT version 7 with the FFT-NS-2 progressive method77 
and the alignment was manually trimmed to conserved blocks of transmembrane 
regions for phylogenetic tree reconstruction. The maximum likelihood phylogenetic  
tree was built using MEGA7 using a Poisson model with rate uniformity across 
sites78.
Data availability. The Acanthaster planci genome sequence can be accessed at 
DDBJ and Bioproject (NCBI) as PRJDB3175, which links to the Sequence Read 
Archive for all genome raw and assembled scaffold (nucleotide) data for GBR 
and OKI, under BioSamples SAMD00020546 and SAMD00054104, respectively. 

All tissue transcriptome data are available in the NCBI Sequence Read Archive  
database under accession DRA005145. A genome browser is available at 
http://marinegenomics.oist.jp/cots/. Proteomic data are available through 
ProteomeXchange with identifier PXD005409 (http://proteomecentral.proteom-
exchange.org/cgi/GetDataset?ID= PXD005409). Data files for EPDRs, olfactory 
receptors and phylogenomic analyses are on FigShare https://figshare.com/s/
f3b5caefbba303b99349, https://figshare.com/s/8418f468219eb598a306 and https://
figshare.com/s/b58c9a71fbea8ed7268d, respectively.
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Extended Data Figure 1 | Deuterostome phylogeny showing placement 
of Acanthaster within asteroids. A concatenated supermatrix of 427 genes 
(95,585 amino acids, 45.16% missing data) recovering a fully resolved 
tree. With exception of support for hemichordate monophyly (bootstrap 
support value =  98%), we found maximal support for all phylum- and 
class-level taxa. Species sampled, annotations and characteristics of each 
gene analysed are presented in Supplementary Note 4. Bootstrap support 
values below 100 are shown. Scale bar: 0.1 substitutions per site.
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Extended Data Figure 2 | Acanthaster planci heterozygosity. a, Single-
nucleotide polymorphism (SNP) analysis showing the number of SNPs 
identified within and between OKI and GBR genomes. Percentage 
heterozygosity within these genomes and the level of nucleotide variance 

between genomes are shown. See Supplementary Note 2 for further details.  
b, k-mer (17-mer) plot. The GBR (green) and OKI (red) genomes were 
estimated to be 441 and 421 Mb, respectively.
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Extended Data Figure 3 | Pfam enrichment in the genomes of selected metazoans displayed as relative abundance heat maps. a, Comparison of 
metazoans. b, Comparison of deuterostomes. c, Comparison of ambulacrarians. See Supplementary Note 5 for further details of methods and analyses.
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Extended Data Figure 4 | Comparison of Hox clusters. a, Genome 
browser views of the Hox cluster on GBR scaffold 27 and OKI scaffold 
15. Stylised Hox clusters are shown below each scaffold with the 
corresponding gene model for each Hox gene identified on the scaffold.  
b, Table of OKI and GBR Hox gene models. Prefix corresponds to scaffold. 
c, Micro-synteny of Hox cluster-containing OKI scaffold 15 and GBR 
scaffolds 27, 51 and 25. d, Mapping of OKI and GBR scaffolds containing 

the Hox cluster to each other. e, Molecular phylogenetic analysis of select 
bilaterian Hox genes by the maximum-likelihood method. Bootstrap 
support values over 50% are shown. Scale bar: 0.2 substitutions per site. 
Species abbreviations: Bfl, Branchiostoma floridae; Dme, Drosophila 
melanogaster; oki.scaffold.genemodel, A. planci OKI; Pfl, Ptychodera flava; 
Sko, Saccoglossus kowalevskii; and Spu, Stronglocentrotus purpuratus.
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Extended Data Figure 5 | Response of crown-of-thorns starfish to 
seawater conditioned with its predator the giant triton, Charonia 
tritonis. a, Top, diagram showing Y-maze experimental design showing 
arm dividers and starter zones (yellow). Middle, heat maps showing the 
cumulative response of COTS over 45 min to water conditioned with 
a giant triton (left) and ambient seawater (right) (n =  18). Red, area in 
which COTS spent most of the time with descending time to blue; black, 
no presence. Green outline represents the Y-maze and arm divider that 
prevents recirculation of water into the opposite arm; starter zones are 
demarcated by yellow lines. b, The duration of movement (highly active 
threshold set at > 60%; t =  − 2.936, P =  0.006, 2-tailed t-test). c, The 
meander (change in direction of movement) of active animals over 45 min 
(t =  4.437, P =  0.000, 2-tailed t-test). Control, ambient seawater only; 
giant triton, ambient seawater conditioned with giant triton exudate. 
Mean ±  s.e.m. See Supplementary Video 3 and Supplementary Note 7 for 
further details.
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Extended Data Figure 6 | Protein classes in the crown-of-thorns starfish secretome. a, Overall distribution of characterized secretome. b, Distribution 
of structural, signalling and unclassified proteins. c, Distribution of enzyme types.
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Extended Data Figure 7 | Extended phylogeny of the EPDR proteins. 
a, Phylogenetic tree of EPDRs incorporating those identified from 
ambulacrarian transcriptomes. COTS genes are indicated in red, those 
from non-COTS taxa within the order Valvatida in orange, from  
non-valvatid taxa within the class Asteroidea in yellow, and from  
non-asteroid taxa within the phylum Echinodermata in green. Branches 
with maximum-likelihood bootstrap values > 70 and Bayesian posterior 
probability values > 0.9 are indicated by a solid line; those with lower 
values are indicated by a dashed line. The scale bar indicates the number 

of substitutions per site. Major EPDR clades are indicated by numbers 
on the outer circle. Sequences used in the alignment can be found in 
Supplementary Note 8. b, Sequence logos constructed from the conserved 
region of sequences from each of the seven clades identified in a. The 
height of the amino acid residues indicates the level of conservation, 
residues highlighted in blue are highly conserved across all clades. Clade 
1 is the most highly conserved EPDR clade (ultraconserved motifs are 
boxed). Clades 3–7 show much lower sequence conservation overall, and 
possess an extra pair of cysteine residues (highlighted in red).
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Extended Data Figure 8 | GPCR abundance, structure and expression 
in crown-of-thorns starfish. a, Abundance of GPCR genes in 
ambulacrarians and amphioxus, showing the distribution of the five GPCR 
classes in each species. See Supplementary Note 9 for further details on 
genes and analyses. b, Tissue expression of each non-rhodopsin class 

GPCRs in COTS tissues. c, Additional examples of GPCR gene clusters in 
COTS, with genes in clades b, and f–h shown in Fig. 4b. All genes have  
one exon and are depicted as grey arrowheads that point in the direction of 
transcription. GBR scaffold numbers are shown above the line; scale bar, 
20 kb.
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Extended Data Table 1 | Summary of GBR and OKI COTS genomes and transcriptomes
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Extended Data Table 2 | The GPCR gene familiy in ambulacrarians and amphioxus
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