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Abstract

Cancer with heavily economic and social burden is the hot point in the field of medical research. Some remarkable achievements

have been made; however, the exact mechanisms of tumor initiation and development remain unclear. Cancer is a complex,

whole-body disease that involves multiple abnormalities in the levels of DNA, RNA, protein, metabolite and medical imaging.

Biological omics including genomics, transcriptomics, proteomics, metabolomics and radiomics aims to systematically under-

stand carcinogenesis in different biological levels, which is driving the shift of cancer research paradigm from single parameter

model to multi-parameter systematical model. The rapid development of various omics technologies is driving one to conve-

niently get multi-omics data, which accelerates predictive, preventive and personalized medicine (PPPM) practice allowing

prediction of response with substantially increased accuracy, stratification of particular patients and eventual personalization of

medicine. This review article describes the methodology, advances, and clinically relevant outcomes of different Bomics^

technologies in cancer research, and especially emphasizes the importance and scientific merit of integrating multi-omics in

cancer research and clinically relevant outcomes.
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CAGE Cap analysis of gene expression

CID Collision induced dissociation

CML Chronic myelogenous leukemia

ECD Electro capture dissociation

ETD Electron transfer dissociation

FTICR Fourier transform ion cyclotron resonance

GC Gas chromatography

HCC Hepatocellular carcinoma

HP Fucosylated haptoglobin

HPLC High performance liquid chromatography

IARC International Agency for Research on Cancer

ICGC International Cancer Genome Consortium

lncRNAs Long ncRNAs

LC Liquid chromatography

LSCC Lung squamous cell carcinoma

MALDI Matrix-assisted laser desorption ionization

MDLC Multi-dimensional LC

MPSS Massively parallel signature sequencing

MRM Multiple reaction monitoring

MS Mass spectrometry

MS/MS Tandem mass spectrometry

NANA N-acetylneuraminic acid

ncRNAs Non-coding RNAs

NGS Next-generation sequencing

NMR Nuclear magnetic resonance

NSCLC Non-small cell lung cancer

PPPM Predictive, preventive, and personalized medicine

SAGE Serial analysis of gene expression

SCLC Small cell lung cancer

SCO Small cell osteosarcoma
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SRM Selected reaction monitoring

SWATH Sequential window acquisition of all theoretical

mass spectra

TCGA Cancer Genome Atlas

TOF Time-of-flight

1DGE One-dimensional gel electrophoresis

2DGE Two-dimensional gel electrophoresis

2D-

DIGE

Two-dimensional difference in-gel electrophoresis

WGS Whole genome sequencing

Introduction

The high-mortality cancer [1] experiences a process of complex

and multistep development, malignant cells acquired eight bio-

logical capabilities, including sustaining proliferative signaling,

evading growth suppressors, resisting cell death, inducing angio-

genesis, activating invasion and metastasis, enabling replicative

immortality, reprogramming of energy metabolism and evading

immune destruction, which are regarded as the hallmarks of

cancer [2]. Despite remarkable achievements in cancer research,

the exact mechanism of tumor initiation and development still

remain unclear yet. Since theHumanGenomeProject, the emerg-

ing scientific era of Bomics^ has revolutionized the study of

cancer [3] (Fig. 1). Omics technologies are primarily aimed at

the comprehensive detection of genes (genomics), RNAs (tran-

scriptomics), proteins (proteomics), metabolites (metabolomics),

and quantitative features of medical imaging (radiomics) [4].

Omics technologies have a wide-range application in both basic

research and clinical treatment of cancer. Based on the next-

generation sequencing (NGS), genomics and transcriptomics pro-

vide one with a better understanding of the structure of cancer

genome and discover differentially expressed genes that drive

and maintain tumorigenesis [5–11]. More importantly, this ge-

nome profiling has the potential role in establishing different

molecular subtypes and stratification of different patients, which

is crucial in precisely personalized treatment. High performance

liquid-chromatography (HPLC), mass spectrometry (MS), and

nuclear magnetic resonance (NMR) technologies are widely used

in discovery of new biomarkers and drug targets from cancer

proteome andmetabolome [12–18]. These biomarkers, including
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Prevention

Personal treatment

Fig. 1 Multiomics and PPPM in cancer
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predictive biomarkers for treatment stratification, diagnostic bio-

markers for early detection, and prognostic biomarkers for esti-

mation of patient clinical outcome, are important for the

predicition and prevention of tumors. At the same time, some

key molecules in the pathway and network of tumors such as

proteins and metabolites can be recognized as targets for targeted

therapy. Currently, varieties of kinase inhibitors have beenwidely

used in targeted therapy of a series of tumors and achieved clin-

ical results. Radiomics is the bridge between medical imaging

and personalized medicine. Quantitative analysis of imaging fea-

tures provides not only the tumor phenotype but the underlying

genotype information, which extends the analysis of imaging

from qualitative to quantitative analyses and finds the clinical

significance that cannot be found with the naked eye. The alter-

ations in the levels of DNA, RNA, protein, metabolite, and med-

ical imaging constructed the myriad of dysfunctionally mutually

associated molecular networks making cancer be a complex sys-

tems biology disease [19–21]. Any individual study in a level is

insufficient to clarify the intricate pathogenesis of a cancer. The

integration of multi-omics data plays a pivotal role in elucidation

of the molecular mechanism of tumorigenesis and discovery of

new biomarkers and drug targets [19, 22]. Thus, a radical shift in

cancer treatment is occurring in terms of predictive, preventive,

and personalized medicine (PPPM) [23–25]. This review article

describes basic principle, challenges, advances and clinical appli-

cations of different Bomics^ technologies, and highlights the sig-

nificance of integrating multi-omics data in cancer research and

in evaluating clinically relevant outcomes.

Methodology and application of genomics
in cancer research and clinically relevant
outcomes

Methodology

Since study found that the abnormal chromosome distribution

during cancer cells division suggest a role in malignancy in

1914 [26], ones began to explore the connection between ab-

normal genetic substance and tumorigenesis. The in-depth

studies of chromosome discovered Philadelphia chromosome

that was resulted from the translocation between chromosome

9 and 22 in chronic myelogenous leukemia (CML) cells [27].

Since a seminal discovery of a single point mutation of HRAS

(a guanosine was substituted to thymidine) that was responsi-

ble for the activation of oncogene in T24 human bladder car-

cinoma cells in 1982 [28], more oncogenes such as EGFR [9],

RAS [29], PI3K [30], and ERK [31] have been recognized.

Those findings promote scientists to increasingly understand

cancers that are derived from accumulation of genomic alter-

nations, including base substitutions, small insertions and de-

letions, chromosomal rearrangements and copy number alter-

ations andmicrobial infections [32]. Less than 3 years after the

completion of Human Genome Projects, the National

Institutes of Health has officially launched the pilot stage of

an effort to create a comprehensive catalogue of the genomic

changes related to cancer in 2006, namely the Cancer Genome

Atlas (TCGA) [33]. Moreover, the international Cancer

Genome Consortium (ICGC) and the Cancer Genome

Project of the United Kingdom share the same goals that iden-

tify all genomic alternations significantly associated with

cancer.

The development of cancer genomics is inseparable from

the progress of DNA sequencing technology. From the first-

generation sequencing to the next-generation sequencing,

DNA sequencing technology has developed by leaps and

bounds. Here, the development of technologies in DNA se-

quencing is reviewed.

First, Sanger invented Bthe dideoxy method^ in 1977 [34],

which improved the method of the previous Bplus and minus^

[35, 36] for DNA sequencing. Sanger sequencing based on the

s e l e c t i v e i n c o r p o r a t i o n o f c h a i n - t e rm i n a t i n g

dideoxynucleotides by DNA polymerase during in vitro

DNA replication had been predominant method in this filed

for almost 30 years [34, 37]. With long read lengths (up to ~

1000 bp) and high per-base Braw^ accuracies as high as

99.999% [38], Sanger sequencing achieved a number of mon-

umental accomplishments, including completing of the

Human Genome Project [37]. However, it has the obvious

disadvantages of high cost and low throughput [3, 37]. The

demand for entirely new technologies that deliver fast, inex-

pensive, and accurate genome information catalyzed the de-

velopment of next-generat ion sequencing (NGS)

technologies.

The second-and third-generation technologies are referred

to as NGS [37]. By now, several commercially available plat-

forms such as Roche/454, Illumina/Solixa, Life/APG, and

Helicos BioSciences are all characterized by cyclic array se-

quencing summarized as the sequencing of a dense array of

DNA features by iterative cycles of enzymatic manipulation

and imaging-based data collection [38]. Parameters of partial

platforms were summarized (Table 1). The advantages of

second-generation sequencing relative to Sanger sequencing

include the higher speed and throughput, cyclic array sequenc-

ing to provide with > 106 reads/per-array and lower cost, the

relatively easier gene library construction, higher degree of

parallelism, and more efficient use of reagents [38, 39]. The

disadvantage that limited the application of these platforms

are shorter read lengths with an average read length range

from 32 to 330 bp [37]), which creates challenges for genome

alignment and assemble [3, 37, 38, 40, 41]. In the aspect of

raw accuracy, the NGS platforms are at least tenfold less ac-

curate than Sanger sequencing [38]. In addition, the overall

cost is still high, 1–60 dollar/megabase [38], although the cost

per base is lower by several orders of magnitude compared to

Sanger sequencing [39].

EPMA Journal (2018) 9:77–102 79



The third generation of sequencing technology such as

PacBio RS and Oxford Nanopore sequencing is developed

to solve the shortcomings of the second-generation [42], with

fundamental feature of the single molecule sequencing but not

requirement of any PCR process, which effectively avoids the

PCR bias caused by the system error, improve the read length,

and maintain the advantages of high-throughput and low cost

of the second-generation technology.

Application

All cancers arise as a result of changes that have occurred in

the DNA sequence of the genomes of cancer cells [43]. Thus,

discovery of new somatic mutations, especially the Bdriver

gene^ mutations, has been at the heart of cancer research for

more than a century. With the application of the NGS, identi-

fication of all genomic abnormalities in cancers has been

turned from fantasy into reality. TCGA research network has

showed the comprehensive genomic characterization of squa-

mous cell lung cancers [44], gastric adenocarcinoma [45],

human colon and rectal cancer [46], human glioblastoma

[47], and ovarian carcinoma [48]. The study of lung squamous

cell carcinoma (LSCC) found a mean of 360 exonic muta-

tions, 165 genomic rearrangements, and 323 segments of copy

number alteration per tumor, and loss-of-function mutations

that are not reported previously. Besides, a potential therapeu-

tic target was identified to offer new avenues of investigating

the treatment of LSCCs [44]. Up to date, many types of can-

cers have been sequenced with whole genome sequencing

(WGS) or targeted genome sequencing (Table 2) [7, 49–58].

The application of high-speed and high-throughout NGS

technologies improves significantly the analysis of cancer ge-

nome, and reveals the full repertoire of mutated cancer genes,

which not only can be used to guide the discovery of new

targeted drugs, but also have an overwhelming impact on

understanding of cancer biology and accelerate strategies in

PPPM in cancer. For example, gene fusions resulting from

chromosome translocations have an important role in the

initial steps of tumorigenesis with evidence of discovery of

gene fusions in all malignancies [59]. Functionally recurrent

gene fusions provide more precisely clinical-related subclas-

sifications of traditionaly morphological classification of tu-

mors and accelerate the development of specific targeted ther-

apies. Previously, because of lacking systematic approaches,

this type of molecular abnormality has been regarded as a

fundamental mechanism in haematological and soft-tissue

malignancies. Recent years, with the application of NGS, nov-

el recurrent chromosomal rearrangements have been discov-

ered in many kinds of solid tumors, such as TMPRSS2-ETS

fusion oncogenes in prostate cancer (Pca) [60], EML4-ALK

fusion oncogenes in non-small cell lung cancer (NSCLC)

[61], ETV6-NTRK3 fusion oncogenes in secretory breast can-

cer [62], BRAF and RAF1 fusion oncogenes in melanoma

[63], BRAF gene fusions in pilocytic astrocytomas, pancreatic

acinar and papillary thyroid cancers [64]. By July 2017, the

Tumor Fusion Gene Data Portal (http://www.tumorfusions.

org/) has presented 33 tumor types and a total of 20731

fusion genes information. The common fusion genes are

kinase and transcription factors, which play an important

role in tumorigenesis and metastasis and shed light on the

PPPM practice in cancer [65]. Some clinical studies have

evaluated the diagnostic and prognostic values of

TMPRSS2-ERG gene fusion for Pca, which demonstrated

that TMPRSS2-ERG had prognostic value and its combina-

tion with prostate cancer antigen 3 (PAC3) can increase the

precision of PSA-based diagnosis [66, 67]. More importantly,

the character that TMPRSS2-ERG gene fusion could be mea-

sured in the urine makes it an ideal biomarker supplementing

the PSA test [67, 68]. ETV6-NTRK3 fusion oncogene was

discovered in 90% secretory breast carcinoma (SBC), a rare

subtype of infiltrating ductal carcinoma, but not in other ductal

carcinomas [62]. In addition, ETV6-NTRK3 fusion oncogene

was also reported in a rare salivary gland tumor similar to SBC

leading to a newly described type of salivary carcinoma-

secretory carcinoma (SC) [69]. Studies demonstrated that

ETV6-NTRK3, a chimeric protein tyrosine kinase, depended

Table 1 Parameters of partial platforms

Platform Method Read length (bp) Throughput Reads Runtime

SOLiD 5500xl Sequencing by ligation 2 × 60 95 Gb 800 M 6 d

SOLiD 5500xl Wildfire 2 × 50 240 Gb 2.4 B 10 d

Illumina HiSeq2500 HT v3 Sequencing by synthesis (cyclic reversible

termination)

2 × 100 600 Gb 3 B 11 d

Illumina HiSeq2500 HT v4 2 × 125 1 Tb 4 B 6 d

454 GS Junior Sequencing by synthesis (single-nucleotide

addition)

Up to 700 35 Mb 0.1 M 10 h

454 GS FLX Tianium XL+ Up to 1000 700 Mb ~ 1 M 23 h

Pacific BioSciences RSII Single molecule real time long reads

(phospholinked fluorescent nucleotides)

10–15 Kb 500 Mb–1 Gb ~55,000 K 4 h

Oxford Nanopore MK1 MinlON Single molecule real time long reads

(phospholinked fluorescent nucleotides)

Up to 200 Kb Up to 1.5 Gb > 100,000 K Up to 48 h
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on insulin-like growth factor 1 receptor signaling and induced

insulin-receptor substrate-1 (IRS-1) constitutively tyrosine

phosphorylated and consequently activated Ras-Erk1/2 and

PI3K-AKT signaling pathways during transformations [70,

71]. Functional studies suggest these cells and cancers may

sensitive to kinase inhibitors. A pan-NTRK as well as ALK

and ROS1 tyrosine kinase inhibitor, entrectinib, has been

found useful in treating a single patient with SC, which dem-

onstrated the potential role of kinase inhibitor in treating of

ETV6-NTRK3 fusion gene-associated cancers [72]. EGFR

mutants were the most common genomic alteration underly-

ing NSCLC, and patients with EGFR mutants were routinely

treated with EGFR kinase inhibitor. Recent years, new recur-

rent fusion oncogenes EML4-ALK and FGFR3-TACC3 have

been identified in NSCLC [61, 73]. These forms of molecular

abnormalities have distinct mechanisms of tumorigenesis

from EGFR mutants. The former is sensitive to ALK tyrosine

kinase inhibitors such as crizotinib (approved by FDA in

2011) and the latter to fibroblast growth factor receptor

(FGFR) kinase inhibitors such as BGJ398 (under clinical tri-

als) [73, 74]. These findings complement the genotyping di-

agnosis of NSCLC and will benefit specific types of patients,

ultimately enabling personalized medical treatment.

Methodology and application
of transcriptomics in cancer research
and clinically relevant outcomes

Methodology

The genetic central rule shows that genetic information is

transferred from DNA to protein through RNA (mRNA) un-

der precise regulation. The mRNA is regarded as a Bbridge^ in

the process of biological information transfer from DNA to

protein. Transcriptome is whole intracellular transcripts and

their quantity in a given time and environmental condition.

Transcriptome is an essential objective to address the func-

tions of genome, uncover the molecular constituents of cells,

and reflect the occurrence and development of a disease. The

key aims of transcriptomics are to catalogue all species of

transcripts, denote the transcriptional structure of gene, and

quantify the expression level of each transcript during devel-

opment and under different conditions [75]. Unlike genome

that is a relatively static entity, transcriptome is dynamic, and

modulated by external and internal factors. Therefore, tran-

scriptome serves as a dynamic link between an organism’s

genome and its phenotype characteristics [76].

Up to now, various methods have been developed to study

transcriptome, including hybridization-or sequence-based ap-

proaches [75]. The former is based on hybridization between

nucleic acids, which typically involves incubation of fluores-

cently labeled-cDNA derived from reverse transcription ofT
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different mRNAs with microarrays that are consisted of genes

of interest, followed by digitalization with the specialized

scanner and image analysis. Information is achieved such as

gene name, clone identifier, and intensity values [77].

Recently, tiling microarrays derived from the standard gene

expression microarray are composed of oligonucleotide

probes that span the entire genome of an organism to provide

a more unbiased view of the transcriptional activities within a

genome [78]. However, several shortages of these methods

include the reliance on existing knowledge of genome se-

quence, high background levels owing to cross-hybridization,

and a limited dynamic range of detection due to both back-

ground and saturation of signals. Sequence-based approaches

determine cDNA sequence but not rely on the probes. The

sequences of cDNA or EST libraries were initially detected

by Sanger sequencing approach; however, it is relatively ex-

pensive, low throughput, and generally no quantitative infor-

mation. Afterwards, tag-based methods were developed to

overcome those limitations, including serial analysis of gene

expression (SAGE), cap analysis of gene expression (CAGE),

and massively parallel signature sequencing (MPSS), which

can provide high throughput, and precise gene expression

levels, but are still based on Sanger sequencing technology

that results in an analysis of only a portion of the transcripts

and indistinguishing isoforms. The emergence and develop-

ment of NGS provides a new approach, RNA-seq, for this

high-throughput DNA sequencing technique in mapping and

quantifying transcriptome (Fig. 2). The advantages of RNA-

Seq include (1) high throughput, namely RNA-seq can

achieve several to hundred billion of base sequences, which

can cover the entire genome or transcriptome; (2) high

sensitivity, namely RNA-seq can detect only a few copies of

rare transcripts in a cell; (3) high resolution, namely RNA-Seq

can achieve single-base resolution with good accuracy and

avoid the level of high background; and (4) no reconstruc-

tions, namely RNA-seq can be used for the analysis of whole

transcriptome of any species, including detection of unknown

genes or transcripts, and accurate identification of the cleav-

age site, and a variable SNP or UTR region.

Application

Alternative splicing of precursor messenger RNA from a sin-

gle gene was first discovered about 30 years ago, which pro-

duces multiple different functional messenger RNAs, and the

corresponding proteins derived from the a single gene [79].

Splicing abnormalities are a common characteristics of cancer

[80], occurring in every category of cancer hallmarks [81].

Abnormal splicing could result in aberrant protein variants

to involve different functions such as transcription factors, cell

signal transducers, and components of the extracellular matrix

[82]. The nature of the altered gene products is usually con-

sistent with an active role in cancer. RNA-seq can directly and

readily detect RNA splicing events relative to standard gene

expression microarray, so it is a power tool in discovering

cancer-related alternative splicing, which might be a diagnos-

tic or prognostic marker and potential personalized therapy

target.

In the research of NSCLC, a comprehensive study of

prognosis-related alternative mRNA splicing using RNA-seq

data identified a large number of alternative splicing events

that are associated with the prognosis of NSCLC.

Furthermore, prognostic predictors based on alternative splic-

ing events were established for risk stratification with excel-

lent performance [83]. RNA-seq also allows quantitative

study of alternative splicing. Owing to alternative splicing,

the insulin receptor has two isoforms: insulin receptor isoform

A (IR-A) and insulin receptor isoform B (IR-B) [84]. Another

study used bioinformatics methods to analyze RNA-seq data

of both isoforms found that downregulated IR-B level and

increased IR-A/IR-B mRNA ratio correlated with lower

epithelial-mesenchymal transition and longer survival time.

In addition, this phenomenon has been found in other 18 types

of cancers, which suggests this ratio could be used as a marker

of prognosis and treatment response assessment [85]. In breast

cancer, several EMT-associated alternative splicing events

have been identified and most of these alternative splicings

are regulated by one or more members of splicing factor clas-

ses such as PBFOX and ESRP, which may provide new diag-

nostic and prognostic markers and personalized treatment tar-

gets of a breast cancer [86].

Compared to the analysis of DNA sequencing-based struc-

tural variations, transcriptomics can provide with an analysis

of DNA functional characteristics in the RNA level to link the

AAAAAAA
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RNA fragments

mRNA

cDNA

EST library with 

adaptors

Deep sequencing

Readers

Align reads to genome Assemble transcripts

de novo

Fig. 2 The general workflow of RNA-seq. EST: expressed sequence tag
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gene structural feature to its functions and easier discover the

causal of physiological or pathological conditions [87, 88].

RNA-seq has been proved to be a useful tool for the discovery

of new gene fusions in cancer transcriptome. For example,

one rather common and tumor-specific novel fusion gene

SYT8/TNNI2 was discovered in analysis of three bladder car-

cinomas with high-throughput RNA-seq, which has potential

clinical relevance [89]. Also, oncogenic gene fusions were

revealed systematically in primary colon cancer with

IIumina RNA-seq, with a result of a relevant gene fusion

occurring 2.5% of all specimens; of them, USP9X-ERAS

formed by chromothripsis was considered as highly oncogen-

ic, with the ability to activate AKT signaling [90]. The analy-

sis of ovarian cancer RNA-seq data with a novel computation-

al method for fusion discovery—deFuse provides the first

gene fusion discovery of ovarian cancer, which may contrib-

ute to the study of tumor initiation, development and treatment

[91].

Micro RNAs are short (~ 22 nucleotides in length) non-

coding RNAs (ncRNAs) that regulate gene expressions by

binding to specific mRNA targets and promoting their degra-

dation and/or translational inhibition [92]. Recent studies sug-

gest that miRNAs play roles in cancer [93–97]. RNA-seq is a

powerful tool to uncover unannotated ncRNA species. The

abundant expression of miRNA-1323 and its distinct associa-

tion in tumors arising from a cirrhotic background were dis-

covered in hepatocellular carcinomas (HCCs) [98], and over-

expression of miRNA-1323 in cirrhotic-HCCs was correlated

with poorer disease-free and overall survivals of patients. In

the study of myelodysplatic syndromes, the analysis of RNA-

seq data demonstrated that the expression of miRNAwas as-

sociatedwith the progression of the disease [99]. ThemiRNA-

mRNA regulatory network was studied in peripheral blood

mononuclear cells of small cell osteosarcoma (SCO) with

RNA-seq [100], which identified 37 dysregulated miRNA

(27 upregulated and 10 downregulated) and 1636 dysregulat-

ed mRNAs (555 upregulated and 1081 downregulated), two

important signaling pathways including mTOR signaling and

cell cycle signaling, and dysregulation of three miRNAs (has-

miR-26b-5p, has-miR-221-3p, and has-miR-125b-2-3p) that

might be involved in SCO tumorigenesis.

In addition to miRNAs, a large proportion in a tran-

scriptome is long ncRNAs (lncRNAs) with longer than 200

nucleotides, which are often polyadenylated and are devoid of

evident open reading frames these [101]. Studies demonstrate

that lncRNAs are able to regulate gene expressions at the

levels of chromatin modification, transcription, and post-

transcriptional processing [101, 102], especially in some hu-

man cancers with tissue-specific expressions [103], demon-

strating their potential roles in both oncogenic and tumor-

suppressive pathways [104, 105]. Currently, the study of

lncRNAs is still in its initial stage with studies of only a small

part of lncRNAs such as HOTAIR [102, 106], and MALAT1

[107, 108]. However, IncRNAs demonstrate its big potential

in PPPM practice, and RNA-Seq is maximizing the coverage

of cancer-related lncRNAs in a transcriptome. For example,

among 121 unannotated prostate cancer-associated ncRNA

transcripts, PCAT-1 was discovered as a prostate specific reg-

ulator of cell proliferation and a transcriptional repressor in a

subset of prostate patients [109]. RNA-seq systematically

identified quintuple-negative lung adenocarcinoma-related

IncRNAs [110], including 90 upregulated and 153 downreg-

ulated lncRNA transcripts. The functions of 14 predicted

lncRNAs such as vasculature development and cell cycle are

closely related to the process of cancer development. Another

study [111] identified a signature of five lncRNAs

(CYP4F26P, RP11-108M12.3, RP11-38M8.1, RP11-54H7.4

and ZNF503-AS1), which might act as an independent prog-

nostic indicator for LUSC with RNA-seq data from TCGA.

Similarly, a signature of eight lncRNAs was identified to strat-

ify and predict survival in esophageal cancer [112].

Methodology and application of proteomics
in cancer research and clinically relevant
outcomes

Methodology

Proteins are the effectors of DNAs in a biological system, and

the expression levels of all proteins in a proteome would in-

arguably provide the most relevant phenotype characteristics

of that biological system [113]. The goal of proteomics is to

characterize information flow with protein pathways and net-

works to eventually understand the function relevance of pro-

teins in a cell or organism [4]. The proteome has many unique

features that distinguish from other omics approaches, and is

much more complex than genome and transcriptome. The

number of human proteins and their variants or protein species

is estimated up to over billions [19]. Also, one gene corre-

sponds to multiple proteins, namely one gene-multiple pro-

teins model but not one gene-one protein model [114, 115].

In addition, variations in a proteome are more measureable

than variations in genome and transcriptome [116]. It seems

that genome contains all information; however, except for the

sequence and copy number of DNAs and RNAs, other infor-

mation in a genome is difficultly measured with current tech-

nologies. Proteome as an important component of a phenome

is the final performer of genome functions; much information

in a proteome is measurable such as amino acid sequence,

splicing, copy number, post-translaitonal modifications

(PTMs), variants, spatial conformation, and spatial re-distri-

bution. In the last decade, numerous proteomics studies have

focused on protein profiling and protein expression alterna-

tions that associate different given conditions.
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Proteomics method commonly includes protein prepara-

tion, separation, and identification (Fig. 3). Protein separation

is to reduce the complexity of the proteome sample, mainly

includes gel- and liquid chromatography (LC)-based ap-

proaches. The gel methods include one-dimensional gel elec-

trophoresis (1DGE), two-dimensional gel electrophoresis

(2DGE) [117], and two-dimensional difference in gel electro-

phoresis (2D-DIGE) [118]. The specific antibody must be

used in combination with those gel methods if variants of a

given protein [118], or a kind of PTM [119–121] need to be

detected. The LC methods as proteomic separation technique

are extensively used in the field of current proteomics, mainly

include 2DLC and multi-dimensional LC (MDLC), and a sta-

ble isotope (e.g. iTRAQ and TMT) labeling coupled with

2DLC can quantify the component of a proteome. Moreover,

some LC methods in combination with MS are developed to

identify protein variants, and protein species [122–126].MS is

the key protein identification technique, which can determine

amino acid sequence of a protein [115], and PTM-sites [120].

Different types of mass spectrometers are commercially

available, including matrix-assisted laser desorption

ionization-time of flight-time of flight (MALDI-TOF-

TOF)[127], Fourier transform ion cyclotron resonance

(FTICR) [128, 129], triple TOF 5600 or 6600 systems [130],

and LTQ orbitrap system [131, 132] with different ion frag-

mentation models such as collision induced dissociation

(CID) [133], electron transfer dissociation (ETD) [134], and

electro capture dissociation (ECD) [128, 135], which provides

the optimal strategies to identify protein expressions, PTMs,

protein variants and protein species. However, one must real-

ize that each mass spectrometer has its own sensitivity and

resolute capability, an enrichment strategy is needed prior to

MS in analysis of low abundance protein, PTMs, or protein

variants [126, 136].

MS-based proteomics includes top-down and bottom-up

approaches. Top-down proteomics is able to identify and

quantify unique proteoforms through feeding intact full pro-

teins directly into MS, which is capable of providing distinct

characteristics of each kind of proteoform with more precise

and more abundant biological information [137]. Bottom-up

Proteins

(tissue, cell

and liquid

biopsy)

2D Gel

Peptide mixtures

Peptide mixtures
LC

MS

/MS

Fig. 3 TheMS-based proteomics workflow. 2DGE: two-dimensional gel electrophoresis; MS: mass spectrometry; MS/MS: tandem mass spectrometry;

and LC: liquid chromatography
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proteomics digests firstly protein components with enzyme,

followed by LC fractions andMS-identification, which is able

to identify and quantify proteins expressed differentially, and

PTMs [138]. Recently, middle-down method that combined

top-down and bottom-up strategies receives attentions in that

this method not only can avoid redundant peptides sequences

but also can analyze large protein fragments [139].

Quantitative proteomics plays very important roles in un-

derstanding the biological significance, mainly including

2DGE-based quantitative methods [140, 141], stable

isotope-labeled quantitative methods such as isobaric tags

for relative and absolute quantification (iTRAQ) [142, 143],

and label-free quantitative methods [144, 145] such as

selected/multiple reaction monitoring (SRM/MRM) [146,

147], and sequential window acquisition of all theoretical

mass spectra (SWATH) [148, 149]. Furthermore, structural

proteomics benefits in-depth understanding of the biological

functions of a protein in a biological system [150, 151].

Application

Discovery of new tumor biomarkers is the hot point in the

field of cancer research with high-throughput MS-based pro-

teomics. For example, glycosylated proteins represented 50%

of the secreted proteome and abnormal glycosylation of pro-

teins has been implicated to play a critical role in cancerous

progression [152]. Since more than half of the proven cancer

biomarkers are glycosyla ted proteins, MS-based

glycoproteomics can analyze qualitatively and quantitatively

thousands of glycosylated proteins with detailed information,

which shows a great potential in discovery of novel cancer

biomarkers. Thus, glycoproteomics has extensively used in

cancer research. Several examples are taken here.

Quantitative proteomics analysis of fucosylated glycopro-

teins in small cell lung cancer (SCLC) patients [153] found a

significant decrease of PON1 protein expressions in the sera

of SCLC patients, but a significant increase of PON1

fucosylation. The altered fucosylated glycan patterns and

levels of PON1 were used as potential diagnostic and prog-

nost ic biomarkers for SCLC. Another MS-based

glycoproteomics identified the significantly increased

fucosylated haptoglobin (HP) with three α-2, 6-linked sialic

acids, in serum of each subtype of lung cancers (19 lung ad-

enocarcinoma, 8 LSCC, 11 SCLC and 7 unknown types) rel-

ative to controls [154]. This specific glycan of Hp from the

serum can serve as a potential diagnostic glycobiomarker for

lung cancer.

Glycoprotein biomarkers were also studied in HCCs.

Compared to liver cirrhosis patients, an integrated approach

analyzing glycoproteins and their glycosylations in HCC sera

found the significantly increased levels of 5 fucosylated gly-

coproteins, which can be regarded as early diagnostic bio-

marker candidates with excellent performance [155]. Also,

AFP-L3, which is an isoform of AFP, and binds strongly to

lens culinaris agglutinin (LCA) by an additional α1-6 fucose

residue at the reducing terminus of N-acetylgucosamine, has

been determined as an early and highly specific biomarker for

HCC with sensitivity 56% and specificity 95% [156].

Quantitative glycoproteomics has been used to study Pca

with a high incidence and low mortality [157–159]. Prostate-

specific antigen (PSA) was an FDA approved serum biomark-

er for Pca diagnosis and prognosis with low specificity, and

cannot distinguish aggressive Pca from non-aggressive Pca,

which might result in overtreatment of non-aggressive Pca

patients. To obtain the urgently needed novel biomarker for

Pca patients, SWATH-based glycoproteomics discovered and

validated two glycoproteins (N-acylethanolamine acid

amidase, and protein tyrosine kinase 7) in Pca tissues as Pca

aggressive biomarkers [160], which provides a basis for the

precise treatment of Pca patients, and reduces side effects of

Pca overtreatment.

In addition to glycosylation of proteins, other types of

PTMs in proteins also constitute a large number of diagnostic

and prognostic biomarker candidates. For example, phospho-

protein secretomics studies provided a set of novel breast can-

cer subtype specific phosphopeptide candidates in plasma

[161]. PGRMC1 is a membrane-related progesterone receptor

and an important biomarker for breast cancer progression.

Since phosphorylated PGRMC1 will active a series of intra-

cellular signaling, it is a potential therapeutic target [162].

Based on tissue phosphoproteomics method in NSCLCs,

PTRF/cavin-1 and MIF have been regarded as new potential

biomarkers [163]. Protein tyrosine nitration is another impor-

tant PTM, which changes the chemical properties of that ty-

rosine residue and protein functions [151, 164]. 2DGE-based

nitroproteomics [119] identified 18 nitroproteins and 20

nitrotyrosine sites in human high-grade astrocytomas, which

are associated with a series of biological processes such as

drug assistance and signal transduction, provide new insights

into pathogenesis of astrocytomas, and benefit the discovery

of new biomarkers for its early diagnosis and effective thera-

peutic targets [165].

Besides biomarkers, proteomics approach is also a guiding

tool for the discovery of more potential therapeutic targets, for

example, BIRC6 in colon cancer stem cells [166], bone mar-

row stromal antigen 2 and cyclophilin A in endometrial can-

cers [167, 168], phosphoglycerate mutase 1 in HCCs [169],

anaplastic lymphoma kinase in ovarian cancer [170], and

hypusination of eukaryotic initiation factor 5A in BCR-

ABL-positive leukemias [171].

Above examples are only windows for the use of proteo-

mics in cancer research. Here, one must realize that the initi-

ation and development of each types of tumor are related to a

distinct series of molecular pathogenic defects. Personalized

treatment of cancer requires dynamic monitoring the whole

abnormal molecular events and interaction among them.
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MS-based proteomics and pathway network analysis tools

have become an essential approach in accelerating personal-

ized treatment. For example, pathway network analysis based

on multiple sets of pituitary adenoma proteomics data (DEP

data, nitroproteomics data, and protein mapping data) re-

vealed mitochondrial dysfunction, oxidative stress, cell cycle

dysregulation, and MAPK-signaling abnormality were signif-

icantly associated with pituitary adenoma pathogenesis [172],

wich provides new clues to in-depth investigation of pituitary

adenoma and discovery of effective biomarkers. Another

protein-protein interaction (PPI) analysis of HCCs depicted

the molecular portrait and revealed the relationship among

metabolism, cytoskeleton biological processes, and HCC me-

tastasis [173].

Methodology and application
of metabolomics in cancer research
and clinically relevant outcomes

Methodology

Metabolism is one of the key components of life. Studies have

shown that the physiological state of cells and tissues is deter-

mined by both the cell’s regulatory systems and its state of

intermediary metabolism [174]. Metabolites are small mole-

cules (< 1 KDa) derived from metabolism, and provide func-

tional information that cannot be directly obtained from ge-

nome and proteome of the cellular and tissue states [175, 176].

These metabolic profiles are associated with totally biochem-

ical processes as beginning, intermediate, or end products and

provide information on complex interactions between genes

and environment of a given condition [177, 178]. Also, me-

tabolites can feed back on other physiological and pathologi-

cal processes [179–182]. Metabolome contains all endoge-

nous metabolites and is divided into primary metabolome

(governed by the host genome) and co-metabolome (depen-

dent on the microbiome) [175]. Metabolome-wide association

is able to uncover the etiology decided by the intricate inter-

action of genes, environment and lifestyles in the general pop-

ulation [183]. Metabolomics is the methodology and theory to

comprehensively and dynamically study metabolome [184],

including identification biochemical and molecular character-

istics of metabolome, characterization of interactions among

different metabolites or between metabolites and genetic/

environmental factors, and evaluation of biochemical mecha-

nisms related to a given condition such as different pathophys-

iological processes [185]. In general, metabolomics can be

divided into targeted metabolomics and untargeted metabolo-

mics. Targeted metabolomics refers to a method where a spec-

ified list of metabolites is measured, typically focusing on one

or more related pathways of interest. Targeted metabolomics

is commonly driven by a specific biochemical question or

hypothesis that motivates the investigation of a particular

pathway [176]. Untargeted metabolomics is a globally and

simultaneously measurement of as many metabolites as pos-

sible from biological samples without bias [176].

NMR spectroscopy (mostly proton NMR, 1H-NMR) and

chromatography coupled to MS (LC-MS and GC-MS) are

two leading spectroscopic techniques used in metabolomics

[186]. Numerous favorable characteristics make NMR a ben-

eficial tool in metabolomics research. NMR-based methods

have high reproducibility in the laboratory and between labo-

ratories [187–189]. NMR enables the identity of structures for

unknown metabolites [190–192] and possesses the ability to

non-constructively analyze samples that do not need to sepa-

rate and elaborately prepare samples, which could be analyzed

subsequently with other platforms [193–196]. Moreover, with

isotope labeling, NMR provides a window to observe the

dynamic changes of metabolite formation and metabolic path-

ways, which could be used to follow the perturbation of me-

tabolites before and after intervention treatment [197, 198].

Since the 1970s, chromatographic methods have been used

to separate complex mixture of metabolites and improve anal-

ysis and identification [199]. GC and GC-MS methods have

been used to quantify metabolic profiling, but GC-MS is

largely limited to volatile compounds [199]. LC-MS has sig-

nificantly improved the capability of MS-based metabolomics

because it is more sensitive than 1HNMR and can identify and

quantify a few hundred metabolites within a single extract

[199, 200]. However, each method has its own advantages

and disadvantages. NMR is less sensitive than MS by up to

100-fold, and the instrument is expensive. LC-MS is highly

sensitive, but it is necessary to separate and prepare samples,

which might potentially modify metabolite structure to in-

crease the difficulty in analysis. None of them alone can ef-

fectively identify and quantify, with sufficient sensitivity and

precision, the diverse range of metabolites and their dynamic

changes in cells. An integrated method of these methods is

necessary to increase the accuracy and efficiency of identifi-

cation of those metabolites and benefit the development of

metabolomics [201]. The characteristics of NMR, GC-MS,

and LC-MS, and the examples of applications in cancer re-

search were presented (Table 3).

Application

Cancer is involved in a range of metabolic process changes.

Metabolites are the products of the interactions between genes

and environment. The metabolites are closer to the phenotype

of the organism than genes and proteins. Early diagnosis is

critical to improve the survival of cancer patients.

Metabolomics is considered as a relatively rapid, accurate

and noninvasive method, it is becoming an increasingly pop-

ular tool in discovery of diagnostic biomarkers of cancers

[209, 210]. Many enthusiastic metabolomic markers have
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been reported for diagnosis and prognosis in lung cancer [205,

208, 211], breast cancer [204, 212], pancreatic cancer [206],

Pca [213–215], bladder cancer [216–218], and epithelial ovar-

ian cancer [219, 220].

For example, metabolomics has been used to discover non-

invasive diagnostic biomarkers for lung cancer with high in-

cidence and mortality. The unbiased LC-MS analysis of the

metabolic profiling of urines from 469 lung cancer patients

and 536 controls [208] revealed creatine riboside and N-

acetylneuraminic acid (NANA) were the powerful urinary

clinical metabolomic biomarkers for putative diagnosis and

prognosis, which was further confirmed in an independent

population with 80 patients and 78 controls. Also, sweat meta-

bolomics was used to discover noninvasive biomarkers for

diagnosis and prognosis of cancers. LC-MS analysis of me-

tabolome of lung cancers relative to normal smokers identified

trisaccharide phosphate as an individual metabolite biomarker

to discriminate lung cancer from controls with the specificity

of 80% and sensitivity of 72.7% [211], and a panel of five

metabolites (trihexose, tetrahexose, suberic acid, monoglycer-

ide MG (22:2), and nonanedioic acid) significantly improved

the specificity (80%) and sensitivity (79%). Moreover, the

sputum metabolomics analysis [205] between 34 lung cancer

patients and 33 healthy controls found that ganglioside GM1

might be a reliable candidate for biomarker and showed that

sputum metabolomics method could help ones to screen the

high-risk population of lung cancer.

Metabolomics has also been used in breast cancer research.

UPLC-MS/MS analysis of saliva metabolite profiling of

breast cancer patients identified the ratios of polyamines, eight

polyamines, as noninvasive diagnostic biomarker to effective-

ly discriminate breast cancer patients from healthy controls

[212]. GC-MS analysis [204] of serum metabolomes of 152

pre-operative breast cancer patients and 155 healthy controls

identified seven metabolites (tetradecane, alpha-D-

glucopyranoside, methylstearate, dodecane, 1-4-benzene, D-

galactose, and octadecanoic acid) that were significantly asso-

ciated with breast cancers, found metabolic content differs

between cancer and benign tissues, and also identified differ-

entiated metabolites for grading, staging and determination of

neoadjuvant status.

MS-based metabolomics [206] revealed four metabolites

(oleanoic acid, taurochenodeoxycholate, palmitic acid, and

d-sphingosine) as highly discriminative potential prognostic

markers for pancreatic cancer, a poor prognostic cancer with

5-year survival rate < 5%, demonstrated that palmitic acid has

a better discriminating ability compared to the CA19-9 that is

only biomarker routinely used for the clinical management of

pancreatic cancer, and recommended simultaneous assess-

ment of palmitic acid and CA19-9 to reduce false positives

and improve prognosis of patients. It suggests metabolomics

plays an important role in prognosis research of pancreatic

cancer.T
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The increase of efficiency and decrease of the side effects

in cancer therapy have always been the focus of cancer re-

search, which is actually consistent with the goal of precise

medicine that is to use advanced multiomics testing to cus-

tomize a personalized medical treatment according to their

specific biomarker profiling. Cancer genomic profiling is

now routinely used to guide the cancer precision medicine,

and made some achievements. However, the heterogeneities

of cancer tissues and cancer genomes make it impossible

alone to guide precise treatment of cancer. Genomic profiling

is a powerful tool to provide the information what will happen

in tumor, whereas metabolomics can provide the information

what has happened and is happening in cancer. Metabolomics

has the ability to measure the sum of all these genotypic,

environmental and physiological effects, thus it is a very

promising method for the use of metabolomics to predict

and assess responses to anticancer treatments in cancer re-

search, and it is possible for the use of metabolic profiles to

predict the response of individual patients to a class of

treatments.

For example, the untargeted serum metabolomics of lung

adenocarcinoma patients before chemotherapy identified and

constructed a metabolite pattern model to predict the response

of pemetrexed and platinum treatment demonstrating the

metabolomics-based method is an effective approach to iden-

tify appropriate patients who are more likely to a special treat-

ment [221].Metabolomics analysis of human xenograft model

of gastric cancer established a prediction model containing 1-

acyl-lysophosphatidycholines, polyunsaturated fatty acids and

their derivatives, which can predict the chemosensitivity of

cisplatin plus 5-fluorouracil with an accuracy of 90.4%

[178]. Similar metabolomics-based predictive studies were

also carried out in other types of cancers [209, 219, 220].

Those examples clearly demonstrated that metabolomics is

an effective method to stratify patients, establish reliable pre-

dictive models to predict the response of cancer patients be-

fore the treatment, and improve the efficacy and survival time

of patients. Moreover, the immediately measurable metabolic

perturbations are occurring in a large number of tissues after

exposure to a particular antitumor agent, these metabolic

changes represent a biomarker of efficacy or toxicity, which

is easily detected by metabolomics methods. A 1H MRS-

based metabolomics analysis of Degarelix that decreases se-

rum androgen levels in human advanced Pca found that the

degree of concentration decline of two metabolites (lactate

and t-choline) was able to monitor noninvasively the response

of castration [202]. The use of hyperpolarized MRI-based

metabolomics to study of targeting PI3K/mTOR pathway in

sarcomas found lactate was a biomarker to assess the treat-

ment response to rapamycin [222]. Metabolomics also plays

important roles in monitoring radiotherapy toxicity. The 1H

NMR-based serum metabolomics analysis found the in-

creased N-acetyl-glycoprotein and acetate was the biomarkers

to reflect the acute radiation sequelae (ARS) in head and neck

squamous cell carcinoma patients [203].

Those evidences clearly demonstrate that metabolomics

method is more accurate and faster in assessment of treatment

response compared to the traditional method such as imaging

examination in evaluation of anticancer effects.

Currently the understanding of cancer is gradually shifted

from a genetic disease to a metabolic disorder [223, 224]

because metabolites not only reflect the metabolic state of

cancer but also feedback the information on the occurrence,

development, and consequence of cancer. With the extensive

application of metabolomics technology in cancer research, a

new term Boncometabolites^ are proposed and defined as en-

dogenous metabolites and their accumulation that initiates or

sustains growth and metastasis of cancer [225]. A series of

oncometabolites have been identified, including 2-

hydroxyglutarate and glucose in gliomas and acute myeloid

leukemia [226–228], fumarate in papillary kidney cancer

[229], succinate in pheochromocytoma [230], sarcosine and

choline in Pca [231, 232], glutamine in pancreatic [233, 234],

asparagine in ovarian cancer [235], and lactate in breast cancer

[236, 237]. Those oncometabolites are leading to identity of

novel drug targets and therapeutics.

For example, isocitrate dehydrogenase 1 and 2 (IDH1 and

IDH2) are critical metabolic enzymes that catalyze isocitrate

to α-ketoglutarate. Mutated IDH1/2 was found a neomorphic

enzymatic activity to catalyze α-ketoglutarate to (R)2-

hydroglutarate [(R)2-HG] in gliomas [238, 239]. The accumu-

lation of 2-HG inhibits 2-oxoglutarate-dependent oxygenases

[240], impairs histone demethylation [241], blocks cell differ-

entiation [242], and promotes tumorigenesis [243]. Tumor

with IDH mutation constructs a distinct clinical subset in both

leukemia and gliomas. IDH mutations were also identified in

multiple cancers, including chondrosarcoma [244], sarcoma

[245], and cholangiocarcinoma [246]. IDH mutants become

promising candidates of therapeutic targets. A selective R

132H-IDH1 inhibitor (AGI-5198) demonstrated that mIDH1

inhibitor was able to block the production of R-2HG, and

induce demethylation of histone and the expression of

gliogenic differentiation associated genes, but it did not influ-

ence the functions of IDH1 wild-type in a glioma [247]. This

inhibitor AGI-5198 also demonstrated the similar effects in

human chondrosarcoma cells [248]. The IDH2 inhibitor

AGI-6780 also induced di ffe ren t ia t ion of TF-1

erythroleukemia and primary human acute myelogenous leu-

kemia cells [249]. More and more IDH inhibitors are being

developed such as AG-120 [250] and AG-221 [251, 252] in

cancers. Those studies clearly indicated that IDH mutations

are targetable by small molecules, which provides a promising

cancer therapeutic strategy, namely inducible differentiation

therapy [253]. Inducible differentiation therapy is to reactivate

endogenous differentiation programs, elicit tumor cell matu-

ration, and transit cancer to normal tissue without cytotoxic

90 EPMA Journal (2018) 9:77–102



effects, which can overcome drawbacks of traditional cytotox-

ic chemotherapy that is to inhibit and kill tumor cells with

serious side effects [254]. The initial clinical application of

IDH inhibitors, inducible differentiation agents, has demon-

strated the strong potential in cancer therapy with minimal

toxicity.

Therefore, those oncometabolites, IDH inhibitors and their

clinical applications are the strong evidences in support of the

importance of metabolomics technology in discovery of new

anticancer drugs and therapeutics.

Methodology and application of radiomics
in cancer research and clinically relevant
outcomes

Methodology

Medical imaging technologies such as CT, PET/CT, and MRI

play an irreplaceable role in the diagnosis and prognosis of

tumors. In general, medical images are regarded as pictures.

Physicians visually interpreted these Bpictures^ solely and

draw qualitative and preliminary quantitative conclusions of

tumors, including the location of tumor, internal heterogene-

ity, the overall and marginal morphology of the lesion, the

relationship with surrounding tissues, rough measurements

of diameter, the volume of tumor, CT and PET/CT values,

MRI signal height and other values. This type of information

is crucial for the diagnosis of tumors, but it does not accurately

reflect the morphological and behavioral complexities of a

tumor, with limited benefits in the judgment of treatment sen-

sitivity and prognosis [255]. Whether one could further ex-

ploit the medical imaging to obtain the broader characteristics

of tumor? In the past decade, medical imaging analysis and

recognition technology has developed rapidly [256], which

made it possible to extract and quantitatively analyze the en-

tire information and spawned a new discipline-radiomics

[257]. Radiomics, based on computer-aided diagnosis and de-

tection systems, is defined as high-throughput extraction and

conversion of quantitative features from medical imaging into

mineable data and applied the analysis of these data within

clinical decision support systems [256–258]. Since medical

imaging is routinely used in clinical decision, radiomics, ex-

tending the imaging analysis from qualitative to quantitative

and finding the clinical significance that cannot be found with

the naked eye, may have a clinical impact on cancer research.

The general workflow of radiomics includes 4 steps (Fig. 4):

(a) acquisition of high quality and standardized imaging, (b)

identification of volumes of interest (VOI) and segmentation,

(c) feature extraction and qualification, and (d) analysis and

modeling. High quality and standardized imaging is the basic

of radiomics. Unlike qualitative analysis, variations in acquisi-

tion and image reconstructionwill jeopardize the ability to detect

biological differences. So standardized imaging is important to

eliminate unnecessary confounding variability. Segmentation

determines which voxels within an image are analyzed, so it is

Genomic profiling

Stage

Survival

Distant metastasis

Treatment response

Clinical outcome

Imaging Segmentation Feature extraction

Analysis

Histogram based Texture based

Shape and size based Filtered based

Fig. 4 The general workflow of radiomics
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the most critical and challenging component of radiomics. The

ideal segmentation method should provide accurate and repro-

ducible boundaries and should be time efficient, which means

the entire process should be as automated as possible with min-

imum operator interaction. Myriad imaging features can be ex-

tracted and divided into tumor intensity histogram-based fea-

tures, shape-based features, and texture-based features. Only

those task-specific features have been selected and analyzed.

Ideally, the final model based on selected features and method-

ology must be internally and externally validated.

Application

Radiomics, like the other omics, has equivalent potential role

in PPPM of cancer. Several studies suggested the potential

associations between certain radiomics features and tumor

phenotypic patterns [259–261]. Analysis of radiomics-based

features, comprehensive quantification information relating to

the tumor phenotypes could be obtained [262, 263].

Moreover, potential noninvasive imaging biomarkers for pre-

diction of treatment response and outcomes could also be

provided. For example,a PET/CT imaging study in NSCLC

showed that abnormal texture as measured by coarseness,

contrast, and busyness is associated with nonresponse to che-

moradiotherapy and with poorer prognosis [264]. Another

study exploring a set of 635 CT-derived imaging features,

including intensity, shape, texture, Laplacian of Gaussian,

and wavelet filters, found that 35 and 12 features were related

to distant metastasis and survival, respectively [265]. The util-

ity ofMRI texture features in glioblastoma demonstrated good

performance (area under ROC curve > 0.7) in distinguishing

different molecular subtypes and predicting 12-month overall

survival status (area under ROC curve = 0.69) [266].

Similarly, based on a series of MRI imaging features of 81

patients, a prognostic model was established that has a poten-

tial role in guiding personalized treatment selection [267]. In

Pca, Haralick texture analysis of prostate MRI has the ability

to detect the tumor lesions and differentiating Pca with differ-

ent Gleson scores [268]. Another study assessed T2-weighted

MRI-derived textural features demonstrated that these features

corrected significantly with Gleason score and could distin-

guish Gleason score 3+4 from 4+3 cancers with high sensitive

to the pathological difference [269]. There are similar re-

searches in esophageal cancer [270, 271], rectal cancer

[272], breast cancer [273, 274] and head and neck cancer

[275, 276]. In addition, radiomics could be used to predict

radiotherapy-related side effect and guide personalized radio-

therapy treatment. For example, the intensity and textural fea-

tures based on CT of pre- and post-radiation therapy was an-

alyzed in the study of the relationship between radiation dose

and the development of radiation pneumonitis. As a result, 12

features showed a significant correlation with pneumonitis

[270]. A similar study also found that texture features

extracted from CT of nasopharyngeal cancer could be used

in predicting parotid shrinkage at the end radiation therapy.

Furthermore, radiomics has distinct characteristics. In the

era of precision medicine, genotype of tumor is an important

basis for personalized treatment. Due to the high heterogene-

ity of tumor, the genomic profiling obtained from clinical

biopsy is insufficient to reflect the real genomic state of a

tumor. Simultaneously, not all cancer patients can undergo

biopsy that may induce serious complications. In contrast,

almost every cancer patient has radiologic images and

radiomics could objectively and precisely provide detailed

quantitative features of intra- and intertumoural heterogeneity

in a non-invasive manner. Based on the hypothesis that geno-

typic variation is the source of a proportion of radiomic fea-

tures variance, a new interdisciplinary radiogenomics mining

of radiomics data to detect correlations with genomic patterns

has been proposed. Radiogenomics facilitates an in-depth un-

derstanding of tumor biology and captures the intrinsic tumor

heterogeneity and could provide diagnostic and prognostic

imaging biomarkers to guide the precisely personalized treat-

ment [277, 278]. For example, a study of 10 glioblastoma

MRI features discovered that the ratio of enhancing to

nonenhancing volume was correlated with EGFR overexpres-

sion. The enhancing phenotype was correlated with angiogen-

esis and tumor hypoxia-related genes [259]. Another glioblas-

toma study based on MRI-derived tumor imaging features

demonstrated that TP53 mutant tumors had smaller enhancing

and necrotic volumes (p = 0.012 and 0.017, respectively) and

RB1 mutant tumors had smaller edema volumes (p = 0.015)

[279]. A study of HCC found that microvascular invasion

(MVI), an independent predictor of poor outcomes that cannot

be adequately determined before operation, has very impor-

tant clinical decision significance. In a study of contrast-

enhanced computered tomography features of 157 HCC pa-

tients, venous invasiveness based on three features (internal

arteries, hypodense halo and tumor-liver difference) was iden-

tified as a radiogenomic biomarker of MVI derived from a 91-

gene HCC Bvenous invasion^ gene expression signature. This

biomarker has a good performance in detecting MVI with

diagnostic accuracy of 89%, sensitivity of 76%, and specific-

ity of 94%, respectively. Patients with a positive RVI score

were associated with low overall survival than patients with

negative RVI score in the overall cohort [280]. A study of

cholangiocarcinoma in exploring of the relationship between

imaging feature and hypoxia markers suggested that both

qualitative and quantitative imaging features (based on texture

analysis of CT) were correlated with a few hypoxia markers,

such as VEGF, EGFR, and CD24 [281]. A study of breast

cancer by combining radiogenomics with RNA-seq identified

the enhancing rim fraction score, a quantitative dynamic con-

trast material-enhanced MR imaging IncRNA radiogenomic

biomarker, which was associated with metastasis and expres-

sion of the known predictor of metastatic progression,
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HOTAIR [282]. Another potential advantage of radiomics is

to identify breast cancer molecular subtypes that are crucial in

personalized treatment and no low-cost genetic testing is read-

ily available. For example, a multivariate analysis of relation-

ship between 56 routine MRI-based imaging features (includ-

ing morphologic, texture, and dynamic features) and molecu-

lar subtype demonstrated a strong association between the

collective imaging features and both luminal A and Iuminal

B molecular breast cancer subtypes. No association was found

for either HER2 or basal molecular subtype and the imaging

features [283]. Similarly, using the computer-extracted MRI

image-based features of 91 biopsy-proven invasive breast can-

cers from TCGA/TCIA, a classifier model was established

and evaluated with receiver operating characteristic analysis,

which shown the ability to distinguish between molecular

prognostic indicators. This study shows promise for high-

throughput discrimination of breast cancer subtypes and may

yield a quantitatively predictive signature of advancing preci-

sion medicine [284].

The integration of multi-omics data in cancer
research and clinically relevant outcomes

Cancer is a complex disease and involves deregulation in dif-

ferent levels of DNA, RNA, protein, andmetabolite; and those

different levels of molecules are mutually associated [19, 22,

23, 116]. Any individual study in a different level is insuffi-

cient to clarify the intricate pathogenesis of a cancer.

Integration of multiple omics data is essential to cancer re-

search and fits the reality of a cancer [19], which will provide

a holistic view of what really happened during normal cell

malignant transformation and tumor progression, and have

the potential in improvement of targeted therapy and the ef-

fectiveness of traditional therapies, in clarification of molecu-

lar mechanisms of cancer therapeutic resistance, and in dis-

covery of novel biomarkers and targeted drugs.

Integrated omics has been widely used in cancer research.

For example, an integrated analysis of genomic and

transcriptomic data and long-term clinical outcomes analyzing

the changes of gene expression based on somatic gene copy

number aberrations revealed some potentially important

targeted therapeutic response-related events and proposed a

new molecular classification of breast cancer patients [285].

Another integrative analysis of genomic and proteomic data

demonstrated that PI3K pathway aberrations are particularly

common in hormone receptor-positive breast cancer, which

might be important in clinical selection of targeted therapies

[286]. The integrated analysis of tissue transcriptomics and

urine metabolomics identified four urinary biomarkers that

are more credible compared to biomarkers derived from single

omics [287]. The integrative analysis of transcriptomics, pro-

teomics, and clinical outcome in HER2-positive breast

cancers who acquired resistance to lapatinib revealed EGFR/

HER2 signaling was still blocked, and the blocked intensity

was weakened by the upregulation of glucose metabolism and

endoplasmic reticulum stress pathways [288]. An integral

analysis of transcriptomic and proteomic data in glioblatomas

revealed a highly significant enrichment of gonadotropin-

releasing hormone (GnRH) signaling pathway that was not

deciphered with single omics datasets, which demonstrated

the promise of multi-omics research and analyses to better

understand complex cancers [289]. Moreover, an integrated

quantitative proteomics and phosphoproteomics analysis was

also used in sorafenib-treated failure HCCs and revealed that

this targeted drug can indeed effectively inhibit its target ki-

nase in Raf-Erk-Rsk pathway, but the downstream targets of

Rsk-2 (eIF4B, filamin-A and so on) were not influenced,

which suggests another alternative pathways might have been

active and contribute to the treatment failure [290].

Outlook

The development of multiomics technologies benefits in-

depth understanding of tumor biology. However, it is still very

challenging in translating those multiomics techniques into

patient and healthcare. These benefits include short-term and

long-term benefits. Multiomics approaches have provided a

large number of potential biomarkers and targets, which have

produced short-term benefits with clear examples described

above. Nevertheless, it will take a long time to fulfill the

long-term benefits such as sensitive early diagnosis and sig-

nificantly improved overall survival.

Multiomics technologies have generated an enormous

amount of information critical to expanding our understanding

of cancer biology and benefited the treatment of tumor pa-

tients. For example, in addition to analyzing tissue biopsy,

whole genome sequencing could also be used in the circula-

tion of cancer patients. Several studies have demonstrated the

ability of whole genome sequencing in detecting chromosom-

al copy number changes, rearrangements, DNA hypomethy-

lation, SNP and tumor heterogeneity [291–293]. This ap-

proach represents a useful method for noninvasive dynamic

detection and monitoring of human tumors that is not depen-

dent on the availability of tumor biopsies, which will bring

benefits to patients who do not fit to biopsy. NGS benefits

greatly to patients with rare cancers and cancer of unknown

primary site, for detailed genomic profiling could be used to

identify the main drivers of malignant transformation and to

cover the shortage of diagnosis and treatment strategies [294,

295]. Linking genomic and proteomic data for biomarker and

therapeutic target at the protein levels accelerate the drug de-

velopment and benefit special subgroups of cancer patients

[296]. Recent years, many novel targeted drugs have been

developed and their clinical outcomes have been evaluated.
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Imatinib mesylate is highly efficacious in chronic myeloid

leukemias and gastrointestinal stromal tumors [297, 298].

Non-squamousNSCLC patients with EGFRmutation benefit-

ed from gefitinib and afatinib with increased tumor response

rate and prolonged progression-free survival compared to cy-

totoxic chemotherapy [299], while sorafenib may derive clin-

ical benefit to NSCLC patients with wild-type EGFR [300].

Although a series of potential biomarkers generated by prote-

omics, metabolomics, and radiomics have not been approved

in the clinical application, some of these candidates (such as

AFP-L3 and des-γ-carboxyprothrombin in HCC [156, 301,

302], and sarcosine in Pca [232]) show better sensitivity and

specificity compared to the FDA-approved biomarkers. More

cancer patients will benefit from these biomarkers, if these

biomarkers be validated in follow-up studies.

Conclusions and expert recommendations

The development of high-throughput and cost-effective mul-

tiple omics technologies have extensively used in in-depth

understanding of the initiation, progression, and efficacious

treatment of a cancer. DNA sequencing technologies, espe-

cially the NGS technologies, can detect a more comprehensive

character of each major alternation in cancer genome. RNA-

seq is a powerful tool to analyze gene expression profiles, and

discovers novel intragenic fusion, somatic nucleotide muta-

tions, transcripts, alternative splice forms, and non-coding

RNAs. This genome profiling has the potential role in estab-

lishing different molecular subtypes and stratification of dif-

ferent patients, which is crucial in precisely personalized treat-

ment. DNA and RNA are vectors of genetic information, and

could reflect what will happen in the cells. Proteins encoded

by the genes are ultimately the functional performer and could

reflect what is really happening in real time or has happen in a

given condition. MS-based proteomics demonstrate the pow-

erful role in discovery of new biomarkers, driver events, and

personalized therapeutic target, with access to a wide range of

protein information from tissues and body fluids of cancer

patients. Metabolomics not only provides results from com-

plex gene-environment interactions under any conditions but

also can feedback information on physiological and patholog-

ical processes. NMR- and MS-based metabolomics can effec-

tively address scientific problems of a cancer, and have made

obviously achievements in cancer diagnosis, assessment of

response to traditional therapy, and discovery of novel drugs

and therapeutics. Radiomics is the bridge between medical

imaging and personalized medicine and could objectively

and precisely provide detailed quantitative features of

intratumoural and intertumoural heterogeneity in a non-

invasive manner. Moreover, cancer is essentially a complex

disease. Integrative multi-omics data provide a holistic view

of the complexity in tumorigenesis, and benefit selection of

right patients for targeted therapies and evaluation of tradition-

al treatment strategies for improvement of its therapeutic ef-

fects. The multi-omics technologies have make significant

achievements in cancer research and clinically relevant out-

comes, and will surely accelerate the cancer research with the

breakthrough of technical limitations and ultimately benefit

more cancer patients in the world.

We recommend this review article to promote the education

program regarding the roles of multi-omics in cancer research

and clinically relevant outcomes, and emphasize the scientific

importance of multi-omics in PPPM in a cancer, especially in

discovery of multi-omics-based biomarkers for predictive di-

agnosis and prognosis assessment of a cancer, and in

systematical clarification of molecular mechanisms to discov-

er effectively therapeutic targets for a cancer.
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