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Abstract. An algebraic method is given for a chosen plaintext cryptanalysis of the 
Nippon Telegraph and Telephone Corporation's FEAL-4 block cipher. The 
method given uses 20 chosen plaintexts, but can be adapted to use as few as four 
chosen plaintexts. 
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1. The FEAL-4 Ciphering Algorithm 

The FEAL-N cryptosystem has been developed by N.T.T. as a highly programming- 
efficient block-cipher system, as it does not use look-up tables. It was first presented 
in [2]. It is essentially an N-round Feistel block cipher operating on 64-bit blocks 
and determined by a 64-bit key. FEAL-8 is the standard block cipher, but N.T.T. 
intend that FEAL-4 can be used in cipher block chaining mode when plaintexts are 
not revealed, a cryptogram-only environment, or for data integrity usage. The best 
published attack on FEAL-4 was given by Den Boer [1], who used 10,000 chosen 
plaintexts to recover the key. We give a method that uses at most 20 chosen 
plaintexts to recover the key. Whereas it may be possible to ensure the absence of 
10,000 chosen plaintexts, ensuring the absence of 20 plaintexts may well be too 
restrictive for most uses. 

The functions used to construct FEAL-N are, for i = 0, 1, Si: Z2 a x Z2 a ~ Z2 s. 
These are defined for x, y ~ Z~ by regarding x, y as binary numbers x, y in the range 
0, . . . ,  255, so 

St(x, y) = Rot2(x + y + i (Mod 256)), (1.1) 

where Rot2 is a 2-bit rotation to the left. S O and S t are then used to define 
two functions, fK: Z32 x Z232~ Z232, which is used to process the key, and f :  
Z~ 2 x Z~ 6 ~ Z2 a2, which is used to encipher the plaintext. 

i Date received: January 22, 1990. Date revised: March 29, 1990. This research was supported by 
S.E.R.C. Research Grant GR/E 64640. 
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Suppose ai, bi, ci E Zi for i = 0, 1, 2, 3, and a = (a,, a,, LZ~, a3) E Z;‘, etc., then 

c = .fda, b) (1.2) 

is defined in the following manner: 

d, = a, 0 a,, 

d, = ~2 0 ~3, 

~1 = S,(d,, 4 0 bo), 

~2 = So&, ~10 0, 

co = So@,, Cl 0 b,), 

c3 = &(a,, c2 0 b3). 

(1.3) 

A schematic representation of SK is given in Fig. 1. 
The key is processed by using fK to obtain twelve 6-bit subkeys. This is done by 

splitting the 64-bit key K into its left and right halves to give two 32-bit strings K, 
and K,. We can define 

B-, = 0, B-, = K,, Bo = K,, (1.4) 

and,fori= l,..., 6, 
Bi = fK(Bi-2, Bi-1 0 Bi-3). (1.5) 

The twelve 16-bit subkeys, Ki, i = 0,. . . , 11, used in the enciphering process are then 
just the left and right halves of Bi, i = 1, . . . ,6, SO 

Kz(i-1) = BiL, K,i_1 = Bi”. (1.6) 

fn (a. 8) 

Fig. 1. Functionf,. Y= &(X1, X,) = Rot,((X, + X,)mod 256), Y= S,(X,, X,) = Rot,((X, + X, + 
1) mod 256), Y: output (8 bits); X,/X, (8 bits): inputs. Rot,(Y): a 2-bit left rotation on 8-bit data Y. 
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Fig. 2. Function f. So~S1 are the same as So~S1 offx. 

Now suppose that a~, ci e Z2 s for i = 0, 1, 2, 3, and also that bl, b2 6 Z2 a, with 
b = (bl, b2) e Z216 and a = (ao, al,  a2, a3), c e Za22, etc., then we can define 

c = f(a,  b) (1.7) 
as follows: 

dl = a o ~ a l  t~bl ,  

d 2 - - a  2 ~ ) a  3 ~ ) b 2 ,  

Cl = S l ( d l '  d2)' (1.8) 

C 2 ~-~ S o ( d 2 ,  c 1 ) ,  

Co = So(ao, cl) ,  

c3 = Sl(a3,  c2). 

Figure 2 is a schematic diagram of f. 
Suppose we wish to encode the 64-bit plaintext P. Firstly, we split P into its left 

and right halves to give 32-bit strings PL and PR- From these we can calcualte L o 
and Ro: 

Lo = PL ~ (K4, Ks), (1.9) 

Ro = PL (~ PR (~ (K4, Ks) (~ (K6, KT). 

We then perform four rounds of Feistel cipher defined by f and the keys Ko, K1, 
K2, Ks. Thus, for i = 1, 2, 3, 4, we calculate 

Li : Ri-~, 
(1.10) 

R i = Li_ 1 ~ ) f ( R H ,  Ki-1).  

Finally, the enciphered message is C = (C L, CR), where 

C L = R4 (~ (Ks, K9), 
(1.11) 

CR = R4 ~ L4 ~ (Klo, Kll) .  
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Similarly, if we know the key, we can decode any cryptogram simply by following 
the above procedure in reverse. 

2. Reformulation of FEAL-4 Algorithm 

In order to attack the algorithm, we reformulate it by the method given by Den 
Boer [1]. Firstly, we define a function G: Z 3z ~ Z232 that expresses the linear nature 
off .  Suppose at, ci ~ Z2 a for i = 0, 1, 2, 3, and a = (ao, a~, a2, a3), c ~ 2232, etc., then 
we can define 

c = G(a) (2.1) 

by 

so clearly 

dx = ao ~) al ,  

d2 = a2 ~ a3, 

cl =Sl (d l ,  d2), 

c2=So(d2, cO, 

Co =So(ao, cl), 

C3 = S l ( a 3 ,  r 

(2.2) 

f (a ,  h) = G(a o, a 1 ~ b 1, a2 �9 b2, a3). (2.3) 

Therefore Fig. 2 is a schematic diagram of G if we take flo = fll = 0. The cryptanaly- 
sis of FEAL-4 will depend upon the fast solution of linear equations involving G. 
This is considered in the next section. 

We finally need to define two further simple functions, 0L, OR: 2232 ~ 2 32, by 

OL(ao, al, az, a3) = (0, ao, al ,  0), 
(2.4) 

0~(ao, al ,  a2, a3) = (0, a2, a3, 0), 

where a t e Z2 a, so 
0c(Bt) = (0, K2tt_l~, 0), 

(2.5) 
oR(n,) = (o, K2, -1 ,  0). 

These two functions can be used to define the following six 32-bit key-dependent 
constants: 

M 1 = B s ~ 0R(B1), 

N1 = 83 ~ B4 ~) 0L(BI), 

M 2 = 0L(B1) (~ 0L(B2), 
(2.6) 

N2 = 0~(B1) ~ 0R(B2), 

M3 = B5 ~ B6 O 0R(Bx), 

N 3 = B 5 (~ 0L(B1 ). 

Note that the outer 16 bits in both M2 and N2 are zero. 
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We are now in a position to rewrite the FEAL-4 algorithm in the following 
manner: 

X0 = PL (~ M1 = Lo • 0R(B1), 

Yo = PL ~) PR C~) N 1 = R o ~) 0L(/1)  = L 1 0) 0L(B1), 

x1 = Xo �9 6(go) = R1 ~ OR(BI) = L2 ~ O~(B1), 

Y1 = Yo ~ G(X1) = R2 �9 0L(B1) "~" L3 ~) 0L(B1), 
(2.7) 

x2 = x1 ~ G(Y~ ~ m2) = R3 D 0R(B~) = L,  ~ 0~(n0, 

Y2 = rl �9 6(x2 ~ U2) = R4 ~ OL(BO, 

CL = Y2~N3,  

CR = Xg ~ M3 ~ CL. 

Again, we can decode a cryptogram by following the above procedure in reverse. 
Thus, if we can caluclate the 160 unknown bits in the constants MI, M2, M3, N~, 
N2, N3, we can decipher any cryptogram, and also use the key processing equations 
to recover the key. 

3. The Fast Solution of Linear Equations Involving G 

In order to find the constants Ma, M2, M3, N~, N2, N3 we need to solve equations 
involving the function G. The simplest such problems involve solving 

G(x ~ a) = b (3.1) 

for x, where a and b are known. We can solve this directly, since Si is an invertible 
function in the sense that we can solve Si(x, a) = b uniquely for x. We can however 
give a general method to solve (3.1), irrespective of whether Si is an invertible 
function. There are two reasons for doing this, firstly to show that FEAL-4 is weak 
cipher no matter how S~ is defined, and secondly to motivate the solution of linear 
equat iom involving G. Thus, suppose G were not invertible, then the most naive 
method to solve (3.1) would be to calculate G(x ~9 a) for every x e Z232. However 
this would require 232 evaluations of G, that is 234 S~ evaluations. However, suppose 
we check whether 

S I ( Z  1 ~) a o ~ ax, Z 2 (~) a 2 ~) a3) = b 1 (3.2) 

for each zl, z 2 e Z~. This will require 216 S 1 evaluations. For  most values ofz  x and 
z 2, (3.2) will be false. For  those values for which (3.2) is true, we can check whether 

So(ba,z 2 t~ a 2 ~ a3) = b2, 

So(b1, Xo @ ao) = bo, (3.3) 

Sl(b2,x3 ~) a3) = b 3 

for values of Xo, x3 ~ Z2 a, stopping when one of the equalities is false. If all the 
equations in (3.2) and (3.3) are true, then we can recover x 1 and x2 by 

xx = za 0) Xo, x2 = z2 0) x3 (3.4) 

to obtain solutions for x. 



150 S. Murphy 

Another equation we need to solve is 

G(x <~ a) 09 G(x ~) b) = d, (3.5) 

where a, b, d are known constants. We can amend (3.2) and (3.3) to give the following 
equations to be checked for Zl, z2, x0, x3 e Z28: 

sl(Zl ~ ao ~ al,  z2 ~) a 2  ~) a3) = Ctt, SI(Z 1 O) bo ~) bl, Z2 (~ b2 ~ b3) = ill, 

Gtl 0 ill = dl, 

So(0C1, Z 2 I~ a 2 (~ a3) = 5 2 ,  So(ill, z2 ~ b2 ~) b3) = il2, 
(3.6) 

52 @ il2 = d2, 

So(a1, Xo 0 ao) 0 So(ill, Xo ~ bo) = do, 

S1(~2, X3 ~) a3) ~ St(il2, x3 0 b3) = d3. 

Equation (3.4) then gives us solutions for x. In this case, we need 217 evaluations of 
$1 to check the truth of~l  ~) ill = dl for each Zl, z2 e Z2 a. 

Solving (3.5) will often give us too many solutions for x than we can efficiently 
handle, so instead we often solve simultaneous equations of the form: 

G(x �9 a) �9 G(x ~ b) = d, 
(3.7) 

G(x ~ a) 0 G(x ~ c) = e. 

We can do this efficiently by checking whether the analagous pairs of simultaneous 
equations to (3.6) hold at every stage. This will require only 2 la evaluations of S~ to 
check the first pair of simultaneous equations. 

4. Choosing the Plaintexts 

Let P~ denote the ith plaintext, i = 0 . . . . .  19, with P~ and P~ being the left and right 
halves of P~. Similarly suppose C i denotes the ith coded plaintext havir~g left and 
right halves C~L and C~. We can then define 

Q' = P~L O) P~ (4.1) 
and 

D'  = C~. �9 C~. (4.2) 

The 20 plaintexts are then chosen according to the following rules: 

(1) Choose pO, p12, pX4, pl6, p17, plS, e l9  randomly. 
(2) Choose PL 5, p6, p7, pL s, pg, pLlO, pd:, pL13, pL15 randomly. 
(3) Define 

Pd = pO ~ 80800000, 

p2 = pL o ~ 00008080, 
(4.3) 

pea = pO t~ 40400000, 

p4 = pL o @ 00004040. 
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(4) Define 
p~=p[,(gQO, i =  1 , . . . ,  11, 

pal3 = p13 (9 Q12, (4.4) 

pd5 = pd5 (9 

Thus we have chosen seven plaintexts and nine half-plaintexts at random, that 
is 736 random bits out of a total of 1280 bits. 

5. Cryptanalysis of FEAL-4 

Referring to (2.7), we see that 

Y1 = Yo (9 G(Xt) = Yo (9 G(Xo (9 G(Yo)) = Yo (9 G(PL (9 M1 (9 G(Yo)) 
(5.1) 

= Y2(gG(X2(gN2)= CL(gN3(gG(D(gM3(gN2) , 

and hence 

CL (9 (Yo (9 N3) (9 G[PL (9 (MI (9 G(Yo))] (9 G[D (9 (M 3 (9 N2) ] = 0. (5.2) 

Thus, for a particular plaintext pi, i = 0, .. , 19, we can define 

v '  = (g N3, 

l / =  M1 (9 G(~) ,  (5.3) 

W =  M3 (g N2, 

so (5.2) becomes 
CL (9 U' (9 G(P~L (9 V') (9 G(D' (9 W) = 0. (5.4) 

However, for i = 0 . . . . .  l l ,  Yo = Q~ (9 N1 and G(Yo) is constant, and hence U ~ = U ~ 
and V ~ = V ~ and so we can rewrite (5.4) as 

C~ (9 V ~ (9 G(P~, (9 V ~ (9 G(D'(9 W) = 0, i = 0 . . . . .  11. (5.5) 

In order to solve (5.5) for U ~ V ~ and W, we can first eliminate U ~ by adding two 
copies of (5.5) to obtain 

C~ (9 CL (9 G(P ~ (9 V ~ (9 G(P~. (9 V ~ (9 G(D ~ (9 W) (9 G(D' (9 W) = 0. (5.6) 

Thus, if we knew the value of G(PL ~ (9 V ~ (9 G(P~ (9 V~ (5.6) would give us an 
equation for W alone. Consider G(a) and G(a (9 80800000). It is easy to see that in 
both eases, dl and d2 in (2.2) are the same, and hence only co differs, a o and ao (9 80 
differ only in the first place, so co differs only in the seventh place. By a similar 
reasoning we can evaluate other sums, and so we have 

G(a) (9 G(a (9 80800000) = 02000000, 

G(a) (9 G(a (9 00008080) = 00000020, 
(5.7) 

G(a) (9 G(a (9 40400000) = 01000000, 03000000, 

G(a) (9 G(a (9 00004040) = 00000001, 00000003. 
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Hence, from (4.3), we have 

G(D ~ ~ W) (~ G(D 1 (~ W) = C ~ ~ C~ ~ 02000000, 
(5.8) 

G(D ~ (~ W) ~ G(D 2 ~ W) = C ~ ~ C 2 ~ 00000002. 

This is an equation of the form of(3.7), so we can solve it efficiently and get solutions 
for W. We can eliminate many of these solutions by checking to see whether they 
satisfy 

G(D ~ ~ W) ~ G(D 3 ~ W) ~ C ~ ~ C3L = 01000000, 03000000, 
(5.9) 

G(D ~ ~ W) (~ G(D 1 (~ W) (~ C ~ (~ C~ = 00000001, 00000003. 

This typically gives us up to ten different values for W. For  each value of W, we 
can find values of V ~ by solving 

G(P~ (~ V ~ ~ G(P~ ~ V ~ = C ~ (~ C~ ~ G(D ~ (~ W) (~ G(D s ~ W), 
(5.10) 

G(P ~ �9 V ~ ~ G(P~ �9 V ~ = C ~ (~ C~ (~ G(D ~ ~ W) ~ G(D 6 ~ W), 

which is again of the form of (3.7). Equation (5.5) then gives us U ~ We can then 
check each triplet (W, V ~ U ~ to see if it satifies (5.5) for the other plaintexts with 
Q~ = QO, that is to say i = 7, 8, 9, 10, 11. This will usually give us less than 20 triplets 
(W, V o, uO). 

For each triplet, we can try and solve for the key constants M1, M2, M3, NI, N2, 
N 3. Now, 

U12 = U13 = U 0(~ QO(~ Ql2, 
(5.11) 

U14 = U15 = U 0 (~ QO (~ Q14, 

and so (5.4) gives us 

G(P~ 2 ~ V ~2) = G(D ~2 ~ W) ~ C~ 2 ~ V 12, 
(5.12) 

G(Pd'* ~ V 14) = G(D ~" (~ W) (~ C~'* (~ U '4. 

These are two equations of the form (3.1), so we can solve them for V x2 = V 13 and 
V 14 = V ~5. These two values can then be checked with (5.4) for i = 13, 15. 

If we obtain solutions for V 12 and V 14, we can attempt to calculate the key 
constant N1. Equation (5.3) gives us 

G(Q ~ ~ N1) ~ G(Q 12 ~ N1) = V ~ ~ V 12, 
(5.13) 

G(Q ~ ~ Ni) ~ G(Q 14 0 511) = V ~ ~ V 14, 

which is again of the form (3.7), so it can be efficiently solved for N 1. For  each 
possibility for N1, we can calulate V 16, and see if (5.4) is satisfied. Knowing possible 
solutions for N1 immediately gives us corresponding possible solutions for M1 and 
N3. 

We now proceed by finding M 2. We can do this by calculating the values of X 1 
and Y1 in (2.7) for plaintexts po, piT, and p18, and noting that 

G(YI @ M2) = X~ ~ X 2 = X 1 ~ O ~ M 3. (5.14) 
Hence, 

~ ( ~  ~ Ms) ~ ~(y:7 ~ Ms) = X ~ ~ X~ 7 ~ D O ~ D ' ,  
(5.~5) 

G(Y~I ~ M2) (~ G(Y~ s ~ Ms) = X ~ (~ X~ s (~ D O ~ D ~s, 
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which is of the form of (3.7). However, the outer 16 bits of M2 are zero, so we have 
to solve (5.15) for M2 allowing for this. For each possible value of M2, we can 
calculate X ~ X2 ~7, and X2 is, and hence three values for M3, which should of course 
agree. If not, we can reject M2. Finally, we can calculate N2, checking that the outer 
16 bits are zero. 

Thus, we have calculated M1, M2, M3, 3/1, N2, N3, and we can do a last check 
by coding all 20 plaintexts with (2.7), including the previously unused p19. 

If we need to recover the key, we can use a method given by Den Boer [1]. The 
knowledge of M1, N1, M3, N3 and (2.6) gives us the outer 16 bits of B3, B 4, B 5, n 6. 
If we know the outer 16 bits of both the output and the two inputs to fx,  we can 
determine all the input and output bits offK. We can thus solve the final iteration 
of the key scheduling, 

B 6 = fK(B,, B 5 ~ B3), (5.16) 

to find the values of B4, B6, and B3 @ Bs. We can also now caluclate B ~ ~) B22 and 
B~ ~ B23. Therefore, if we knew B 2, we would know all the bits of B2, and hence 
B~, . . . ,  B6. We can thus simply try all 256 possibilities for B 2 in 

B s = fK(B3, B, ~ B2). (5.17) 

Having solved (5.17), we thus have sufficient information to determine B~, . . . ,  B 6. 
We can now recover the key by first solving B3 = fK(B1, B2 �9 Ks) for K R, and then 
solving B 2 = fK(KR, B 1 t~ KL) for K L. The key, K, is then given by K = (KL, KR). 

Of course, we do not need all 20 plaintexts to recover the key. We could dispense 
with some of the plaintexts that are only used to check possibilities for the various 
constants. This would of course mean that we would have to compute more pos- 
sibilities for the various constants until later in the algorihm, and consequently 
computing time would be increased. For example, we could cut the number of 
plaintexts to seven, using pO, p1, p2, pS, p6, p12, p14, and taking p17 = p~2 and 
p1 a = p14. If we are prepared to handle equations of the form of (3.5) rather than 
(3.7), we could only use four plaintexts, pO, p1, pS, p12, with p17 _- p12. 

It may be possible to extend this method of attack to a known plaintext attack. 
The idea is to take similar pairs of plaintext P~ and PJ and predict the value of some 
of the bits of V i ~ V i with high probability, and hence the value of certain bits 
of G(P~L �9 V ~) �9 G(PJL �9 V j) with high probability. We can thus write down an 
equation for certain bit positions of the form of (5.8), which we may be able to solve 
for some of the bits of W. We could solve many such equations and hence find 
W. We then proceed as before, solving equations in certain bit positions as best we 
can by using similar pairs of plaintext and predicting the evaluation of the function 
G in certain bit positions with high probability. 

6. Conclusions 

This method of attack, with 20 plaintexts takes up to 4 hours computing on a Sun 
3/60 Workstation, not a particularly powerful computer. The length of time depends 
on the key, most keys having been found in less than an hour. 

However the function G is defined, any four round cipher is vulnerable to the 
type of attack based on (5.4) that is outlined above. Obviously, the more easily 
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equations involving G are solved, the quicker the attack. The problem is not so 
much the Si transformation, since the methods of Sections 3 would work for any 
function Si with a 16-bit input and 8-bit output, as that the two inner 8-bit blocks 
of the output of G, cl and c2 in (2.2), both depend only on the same 16 bits, dl and 
d 2. We are therefore easily able to find al and d 2 by exhaustive search, and hence 
invert G. G would be much harder to invert if it was redesigned so that every output 
block of 8 bits depended on 16 different input bits and an exhaustive search became 
infeasible. A further improvement would be to redesign the function f so as to 
remove the linear connection between a and b in (1.7). This would make the 
definition of a funcion like G impossible and ensure that every output block of 8 
bits o f f  depended on all 48 input bits. 

Whilst FEAL-4 is not intended for use in a chosen plaintext environment, a cipher 
that falls so quickly to so few plaintexts must be too weak for most practical 
putposes. If the protocol for the use of a cipher system has to be such so as to 
preclude any possibiltiy of less than 12 chosen plaintexts, then the advantages of 
using a fast ciphering algorithm like FEAL-4 are less important and it would be 
better to use a more secure cipher. Such a protocol would seem to be too restrictive 
for most data integrity uses. Even if such a protocol could be guaranteed, data 
integrity usage would give rise to many pairs of similar plaintexts, so a known 
plaintext attack of the type outlined above might well succeed. 
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