
Wei Zhang*, Yu Zhang, Song-Hao Feng and Jing-Jing Wang

The crystal structure of 5-chloro-2-(quinolin-8-yl) isoindoline-1,3-dione, $C_{17}H_9ClN_2O_2$

https://doi.org/10.1515/ncrs-2021-0256 Received June 22, 2021; accepted July 22, 2021; published online August 6, 2021

Abstract

 $C_{17}H_9ClN_2O_2$, triclinic, $P\overline{1}$ (no. 2), a=7.8944(4) Å, b=8.0678(5) Å, c=12.6285(9) Å, $\alpha=74.627(6)^\circ$, $\beta=78.654(5)^\circ$, $\gamma=63.569(5)^\circ$, V=691.58(8) Å³, Z=2, $R_{gt}(F)=0.0431$, $wR_{ref}(F^2)=0.1309$, T=293(2) K.

CCDC no.: 2098379

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

All of reagents were purchased with analysis grade. 2.82 g 3-chloro-*N*-(quinolin-8-yl)benzamide (10 mmol), 0.38 g anhydrous copper nitrate (2 mmol), 4.15 g 2,2'-azobisiso-butyronitrile (25 mmol), and 1.34 g silver acetate (8 mmol) were added to 40 mL distilled acetonitrile in a borosil sealed tube. The tube was heated at 403 K under oxygen atmosphere for 8 h, then cooled to room temperature and filtered. The filtrate evaporated slowly in air. A few days

Table 1: Data collection and handling.

Crystal:	Colourless block
Size:	$0.21\times0.15\times0.11~\text{mm}$
Wavelength:	Cu <i>K</i> α radiation (1.54184 Å)
μ:	2.52 mm ⁻¹
Diffractometer, scan mode:	SuperNova, ω
$ heta_{max}$, completeness:	73.6°, >99%
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} :	4378, 2684, 0.012
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs}), \ 2519$
N(param) _{refined} :	199
Programs:	CrysAlis ^{PRO} [1], Olex2 [2],
	SHELX [3, 4]

later, colourless crystals were harvested, yield 38% (based on 3-chloro-*N*-(quinolin-8-yl)benzamide).

Experimental details

Single crystal X-ray diffraction data were collected at 293 K using an Agilent Super Nova diffractometer equipped with a Dual source (Cu at Home/Near) and an Atlas S2 detector. The structure was solved by direct methods with the SHELXS-2018 program. All H-atoms attached to C atoms were positioned with idealized geometry and refined isotropically ($U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$) using a riding model with C–H = 0.930 Å. Structural refinement suggests the possible presence of a small amount (< 5%) of disorder

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

X	у	Z	U _{iso} */U _{eq}
-0.09394 (8)	0.82222 (8)	0.74406 (4)	0.0689 (2)
0.09789 (19)	0.6497 (2)	0.21944 (12)	0.0584 (4)
0.51686 (19)	0.6988 (2)	0.39965 (13)	0.0654 (4)
0.34452 (19)	0.6585 (2)	0.28782 (12)	0.0443 (3)
0.5263 (2)	0.2934 (2)	0.24958 (13)	0.0492 (4)
0.0678 (2)	0.7107 (2)	0.40240 (14)	0.0413 (3)
0.1957 (2)	0.7235 (2)	0.45732 (14)	0.0415 (4)
0.5698 (2)	0.4297 (2)	0.17598 (14)	0.0417 (4)
0.1609 (2)	0.6690 (2)	0.29257 (14)	0.0433 (4)
0.3747 (2)	0.6934 (2)	0.38365 (15)	0.0448 (4)
0.4822 (2)	0.6172 (2)	0.19531 (14)	0.0439 (4)
0.7000 (2)	0.3942 (3)	0.08110 (15)	0.0468 (4)
0.1516 (2)	0.7578 (3)	0.56276 (15)	0.0478 (4)
	-0.09394 (8) 0.09789 (19) 0.51686 (19) 0.34452 (19) 0.5263 (2) 0.0678 (2) 0.1957 (2) 0.5698 (2) 0.1609 (2) 0.3747 (2) 0.4822 (2) 0.7000 (2)	-0.09394 (8)	-0.09394 (8)

^{*}Corresponding author: Wei Zhang, Department of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou, 451460, Henan, P. R. China, E-mail: zhangwei1970118@163.com. https://orcid.org/0000-0003-1006-7818

Yu Zhang, Song-Hao Feng and Jing-Jing Wang, Department of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou, 451460, Henan, P. R. China

Table 2: (continued)

Atom	х	у	Z	U _{iso} */U _{eq}
H8	0.237623	0.766199	0.599639	0.057*
C9	-0.0294 (3)	0.7790 (2)	0.61070 (15)	0.0483 (4)
C10	-0.1596 (3)	0.7666 (3)	0.55747 (16)	0.0510 (4)
H10	-0.278957	0.781186	0.592914	0.061*
C11	-0.1116 (2)	0.7324 (3)	0.45076 (16)	0.0489 (4)
H11	-0.197367	0.724525	0.413400	0.059*
C12	0.5290 (3)	0.7556 (3)	0.12776 (17)	0.0556 (4)
H12	0.473255	0.876498	0.142816	0.067*
C13	0.7431 (3)	0.5407 (3)	0.01106 (16)	0.0557 (5)
H13	0.827275	0.517372	-0.051652	0.067*
C14	0.7854 (3)	0.2064 (3)	0.06340 (18)	0.0581 (5)
H14	0.869949	0.176299	0.001588	0.070*
C15	0.6128 (3)	0.1211 (3)	0.22912 (19)	0.0581 (5)
H15	0.585777	0.026217	0.278956	0.070*
C16	0.6618 (3)	0.7165 (3)	0.03485 (18)	0.0619 (5)
H16	0.694102	0.811649	-0.010451	0.074*
C17	0.7428 (3)	0.0711 (3)	0.1373 (2)	0.0630 (5)
H17	0.798944	-0.053042	0.127378	0.076*

of the Cl atom between the 5- and 6- positions on the isoindoline ring.

Comment

The aerobic carbonylation of $C(sp^2)$ -H with less toxic 2,2'-azobisisobutyronitrile using transition metal salts as the effective catalysts has attracted a lot of interest. Through this way many N-quinolyl substituted phthalimide derivatives have been studied and some of their crystal structures have also been reported [5-8]. However, the crystal of the title compound, 5-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione (CQDD), has not been reported. CQDD crystalizes in the triclinic space group $P\overline{1}$ (no. 2). The angle subtended by the two aromatic moieties is greater than 90° [the C5-N1-C6-C3 and C5-N1-C6-C12 torsion angles are 107.62(17)° and 107.85(18)°, respectively]. C-H-N and C-H···O hydrogen bonds [namely C8-H8...and C17-H17-O1] link CQDD molecules to generate a three-dimensional structure. All of the bond lenths of CQDD are comparable to those found in its analogues [5, 7, 8].

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

- 1. Rigaku Oxford Diffraction. CrysAlis PRO. Rigaku Corporation: Oxford, UK, 2018.
- 2. Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
- 3. Sheldrick G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112-122.
- 4. Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3-8.
- 5. Mullice L. A., Thorp-Greenwood F. L., Laye R. H., Coogan M. P., Kariuki B. M., Pope J. A. S. The coordination chemistry of fluorescent pyridinyl- and quinolinyl-phthalimideligands with the $\{Au'-PPh_3\}$ cationic unit. *Dalton Trans.* 2009, 38, 6836–6842.
- 6. Wu X., Zhao Y., Ge H. Direct aerobic carbonylation of C(sp²)-H and C(sp³)-H bonds through Ni/Cu synergistic catalysis with DMF as the carbonyl source. J. Am. Chem. Soc. 2015, 137, 4924-4927.
- 7. Khan B., Khan A. A., Kant R., Koley D. Directing group-assisted copper(II)-catalyzed ortho-carbonylation to benzamide using 2,2'-azobisisobutyronitrile (AIBN). Adv. Synth. Catal. 2016, 358,
- 8. Meng Y.-Y., Si X.-J., Song Y.-Y., Zhou H.-M., Xu F. Palladiumcatalyzed decarbonylative annulation of phthalimides with arynes: direct construction of phenanthridinones. Chem. Commun. 2019, 55, 9507-9510.