American Mineralogist, Volume 86, pages 1506-1512, 2001

The crystal structure of low melanophlogite

TAKESHI NAKAGAWA,^{1,*} KUNIAKI KIHARA,¹ AND KAZUO HARADA²

¹Department of Earth Sciences, Faculty of Science, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan ²Noromachi 1793-214, Wakaba-ku, Chiba, Japan

ABSTRACT

The crystal structure of the low temperature form of natural melanophlogite, $46SiO_2 \cdot 6M^{14} \cdot 2M^{12}$ ($M^{14} = N_2$, CO_2 ; $M^{12} = CH_4$, N_2), was determined using single-crystal X-ray diffraction data at room temperature. The structure is tetragonal with space group $P4_2/nbc$ and unit cell a = 26.818(2) and c = 13.365(1) Å, which is the ($2 \times 2 \times 1$) superstructure of high-temperature cubic melanophlogite and includes four formula units. The structure with 335 variable parameters including anisotropic temperature factors (or atomic displacement factors) was refined to R = 0.0288 for 2706 observed reflections. The main silica framework consists of nearly regular SiO₄ tetrahedra forming large internal voids represented by distorted tetrakaidecahedra and pentagondodecahedra, which accommodate CO_2 or N_2 and CH_4 or N_2 guest molecules, respectively.

This low temperature form is a displacive variant of the cubic high-temperature form. The mean bond length is 1.588(4) Å for Si-O, and the bond angles for Si-O-Si are distributed over a large range from about 145 to 171° with a mean value of $159.4(3)^{\circ}$. The thermal vibrations of Si are nearly isotropic with amplitudes approximately equal to the average mean square displacement of 0.0119(4) Å². The thermal vibrations of the O atoms are highly anisotropic with a wide range of mean square displacements. There is a positive correlation between the Si-O-Si bond angles and the mean-square displacements of the O atoms.