Lawrence Berkeley National Laboratory Recent Work

Title
The Crystal Structure of Sodium Superoxide

Permalink

https://escholarship.org/uc/item/5gc399w1

Authors

Templeton, David H.
Daubern, Carol H.

Publication Date

1949-06-15

UNIVERSITY OF CALIFORNIA

 Radiation SaboratoryTWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Page 2

INSTALLATION
Argonne National Laboratory 10

[^0]Armed Forces Special Weapons Project 1
Atomic Energy Commission, Washington 2
Battelle Memorial Institute -1
Brookhaven National Laboratory 10Bureau of Ships
Carbide \& Carbon Chemicals Corporation (K-25) 41
Carbide \& Carbon Chemicals Corporation (Y-12) 4
Chicago Operations Office 1
Columbia University (Dunning) 1
Columbia University (Failla)
General Electric Company, Richland 7
Hanford Operations Office 1
Iowa State College 1
Kellex Corporation 2
Knolls Atomic Power Laboratory 4
Los Alamos 6
Wassachusetts Institute of Technology (Gaudin) 1
Massachusetts Institute of Technology (Kaufmann) 1
LIound Laboratory 8
National Advisory Committee for Aeronautics 2
National Bureau of Standards 2
Naval Kadiological Defense Laboratory 2
NEPA Project 1
New York Operations Office 8
North American Aviation, Inc. 2
Oak Ridge National Laboratory 12
Patent Advisor, Washington 1
Sandia Base 2
Technical Information Branch, ORE 15
UCLA Medical Research Laboratory (Warren) 1
University of Califormia Radiation Laboratory 6
University of Rochester 2
Western Reserve University (Friedell) 4
Sylvania Electric Products, Inc.

 1 7

NO. COPIES
\square 1

UCRL-375
 The CRYSTAL STRUCTURE OF SODIU BUPEROEIDE FQEE 3
 By David H. Templeton and Carol H. Dauben

Abstract

1. The crystal structure of sodium superoxide has a face-centered cubic la tice with $\underset{a}{a}=5.490 \pm 0.005 \AA$. The structure is lile that of sodium chloride with $\mathrm{O}_{2}{ }^{-}$ions occupying halide positions with disorderly orientation.
2. The bond distance in the superoxide ion in this crystal is
$1.33 \pm 0.06 \%$.

THE CRYSTAL STRUCTUR: OF SODIU:: SUPEROXIDE
By David H. Templeton and Carol H. Dauben

Department of Chemistry and Radiation Laboratory University of California, Berkeley, California

The superoxides of potassium, rubidium, and cesium O_{2}, etc.) are readily prepared by reaction of the elements and have long been known. ${ }^{1}$ The
(1) (a) A. V. Harcourt, J. Chem. Soc., 14, 267 (1862); (b) W. Holt and F. E. Sims, J. Chem. Soc., 65, 432 (1894); (c) E. Renmade, Ann. Chim. phys., 11 (8), 348 (1907).
corresponding compound of sodiun has only recently been prepared in a reasonably pure state by the reaction of sodium peroxide (the hichest oxide ordinarily obtained) with oxygen at approximately $500^{\circ} \mathrm{C}$ and 300 atmospheres pressure. ${ }^{2}$
(2) S. E. Stephanou, H. H. Schechter, .. J. Argersinger, and J. Kleinberg, J. Am. Chem. Soc., 71, 1819 (1949).

```
We have determined the crystal structure of this compound from x-ray powder diffraction patterns. \({ }^{3}\)
```

(3) Te are indebted to Dr. S. E. Stephanou and Professor Jacob Kleinberg of the University of Hansas for a number of samples containing sodium superoxide in various amounts, and for analytical data concerning these samples. The crystal structures of $\mathrm{KO}_{2}, \mathrm{RbO}_{2}$, and CsO_{2} are known to be
isomorphous with calcium carbide. ${ }^{4}$ In this structure ${ }^{5}$ a face-centered
(4) (a) M. Kassatoschkin and w. Hotow, J. Chem. Phys., 4, 458 (1936);
(b) A. Helms, Z. Angew. Chem., 51,498 (1938); (c) A. Helms and $: .$. Klemm, 2. anorg, allgem. Chem., 241, 97 (1939).
(5) Cll-type, Strukturbericht, I, 740 (1931).
tetragonal (pseudocubic) lattice of matal ions is interpenetrated by a similar face-centered lattice of $\mathrm{O}_{2}{ }^{-}$ions, to form a distorted NaCl structure. Each pair of oxygen atoms is oriented with the $0-0$ bond parallel to the tetragonal
 The existence of $\mathrm{O}_{2}{ }^{-}$ions is demonstrated by the x -ray studies and is in agroement with magnetic measurements which indicate one unpaired electron for each two oxyeen atoms. ${ }^{6}$
(6) (a) E. T. Neuman, J. Chem. Phys, , 2, 31 (1934); (b) M. Klemm and H. Sodomann, Z. anore. allgem. Chen., 225, 273 (1935).

The samples were received in Fyrex capillaries as mixtures of sodium peroxide, sodium superoxide, and hydration products, ranging in color from bright yellow to white. Powder diffraction pictures taken with copper Ka x-rays (filtered with nickel) showed a face-centered cubic phase ($\underline{a}^{=}$ $5.490 \pm 0.005 \mathrm{~A}$) whose relative intensity corresponded with the degree of yellow color. The relative intensity also corresponded to the NaO_{2} content reported for each sample ${ }^{3}$, except in some cases where licht color indicated exposure to moisture.

Table I

Unit-Cell Dimensions of Alkali Superoxides

Compound	$a(\Omega)$	$c(R)$	$p s\left(g . \mathrm{cm}^{-3}\right)$
MaO_{2}	5.49	$-\infty$	2.21
$\mathrm{MO}_{2}{ }^{\mathrm{a}}$	5.71	6.76	14
$\mathrm{RbO}_{2}{ }^{\mathrm{a}}$	6.01	7.04	3.07
$\mathrm{CsO}_{2}{ }^{\mathrm{a}}$	6.29	7.28	3.81

a Dimensions of Helms and Memm, 2. anorg. allgem. Chem., 241, 97 (1939), are multiplied by the factor 1.0020 to correct to the basis CuKa $=$ 1.5405 \&. The densities are recalculated from the resulting numbers.

Exposure of yellow samples to moist air caused them rapidly to become White and destroyed the cubic phase. In a sample containing $70 \% \mathrm{NaO}_{2}$ only the lines of the cubic phase were observed. In all other samples, various complicated patterns were also present. From these observations we deduce that the cubic phase corresponds to sodium superoxide. Te cannot exclude on this basis the possibility that a solid solution range exists corresponding to less oxygen than the ideal NaO_{2}. However, the excellent agreement of observed and calculated intensities noted below makes it unlikely that a large defect in oxygen content exists.

Disordered Structures - The intensities of the lines of the NaO_{2} phase wore ostimated by visual comparison with a set of standard marks made on similar film with CuKa x-rays with exposure times $1,2,4,8$, etc., units. The resulting values, adjusted by a factor to make $\left\{220^{\circ}\right\}=22$, are tabulated in Table II.

Page 7

These intensities can be explained by a structure derived from that of NaCl by substitution of an $\mathrm{O}_{2}{ }^{-}$ion for each chloride ion. To have facecentered symmetry the oxygen pairs must have some kind of disordered orientation. Calculations were made on this basis for four sets of oxysen positions (shown in Figure 1).

Pago 8

Table II
Observed and Calculated Intensitios for Disordered Structures

hkl	obs.	$\begin{aligned} & \text { 1. }(x 00)^{a} \\ & \mathrm{x}=0.119 \\ & \hline \end{aligned}$	2. (Rotation) $x=0.119$	$\begin{aligned} & 3 .(x x x)^{a} \\ & x=0.072 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 4. } \quad(x \times 0)^{2} \\ & x=0.086 \\ & \hline \end{aligned}$
111	<0.8	0.03	0.02	0.02	0.06
200	55	59	57	53	56
220	(22)	22	22	22	22
311	6.3	5.5	6.1	7.8	6.8
222	4.7	3.7	4.8	5.1	5.0
400	1.6	2.6	1.6	0.7	1.3
331	3.6	5.3	3.9	3.4	4.0
-420	2.5	3.6	2.9	2.4	2.6
422	1.1	1.1	1.7	1.9	1.4
333 511	3.0	$\left(\begin{array}{l}1.9 \\ \hline 1.2 \\ 3.1\end{array}\right)$	$\left(\begin{array}{c}1.0 \\ 2.9 \\ 3.9\end{array}\right)$	$\left(\begin{array}{l}0.7 \\ 5.0 \\ 5.7\end{array}\right)$	$\left(\begin{array}{l}0.7 \\ 3.4 \\ 4.1\end{array}\right)$
440	<0.8	0.3	0.5	0.9	0.4
531	1.4	5.0	4.8	4.0	5.1
442 600	0.8	$\left(\begin{array}{l}0.2 \\ 1.0 \\ 1.2\end{array}\right)$	$\left(\begin{array}{c}0.9 \\ 0.2 \\ 1.1\end{array}\right)$	$\left(\begin{array}{l}1.6 \\ 0.1 \\ 1.7\end{array}\right)$	$\left(\begin{array}{c}1.3 \\ 0.2 \\ 1.5\end{array}\right)$
620	\% 0.8	2.7	0.9	0.2	0.6
533	<0.8	5.7	2.6	1.8	1.6

UCRL-375

1. Each pair of oxygen atoms is oriented parallel to one of (the three cubic axes.)
2. The pairs are rotating with no preferred orientation.
3. Each pair is parallel to one of the four body diagonals.
4. Each pair is parallel to one of the sir face diagonals.

Intensities were calculated for each arrangement for several values of the oxygen parameter, according to the equation:

$$
\begin{equation*}
I=\frac{1+\cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta} p|F|^{2} 10^{-4} \tag{1}
\end{equation*}
$$

where θ is the Brage angle, p is the permutation factor, F is tho structure factor, and 10^{-4} is introduced to reduce the numbers to a convenient scale. The atomic scatterine power of each oxygen was taken as $\left(f_{0}=+3 f_{0}\right) / 4$ and values of $\mathrm{f}_{\mathrm{O}}, \mathrm{f}_{\mathrm{O}}=$ and $\mathrm{f}_{\mathrm{Na}}+$ were taken from Internationale Tabellen. ${ }^{7}$
(7) "Internationalc Tabellen zur Bestimming von Kristallstrukturen", Borntracerer, Berlin, 1935, II, p. 571.
It was found that the ratios of $\{31\}$ to $\{22\}$ and $\{33\}$ to $\{420\}$
are a sensitive function of the oxycen parameter, and that in each of the
four cases these two ratios are satisfied for practically the same oxygen
parameter. The best set of intensities calculated for each case is listed in
Table II. The final oxygen parameters and $0-0$ bond distances, obtained by
graphical interpolation, are listed in Table III. The agrecment of observed
and calculated intensities is reasonably good in cvery case, and one cannot
make a definito choice betwecn the structures. The ratios of the higher order
planes are perhaps more favorable to arrangement 3 .

It will be of interest to obtain heat capacity and x-ray diffraction data at low temperatures to soe if disorder persists to low temperature, and
to attempt to determine the degrec of frecdom of rotation of the $\mathrm{O}_{2}{ }^{\text {" }}$ ions.
Table III
OTYGN EARASTEAS AMD 0-0 BOHD
DIS TATCES IN NaO_{2}

Oxycen Positions	x_{0}	$j-0, \AA$
1. x00, ctc.	0.118 ± 0.003	1.30 ± 0.03
2. Froo rotation	0.121 ± 0.003	1.33 ± 0.03
3. xxx, ctc.	0.071 ± 0.003	1.35 ± 0.06
4. xxO, ctc.	0.085 ± 0.003	1.32 ± 0.05
		1.33 ± 0.06
$0-0$ Bond in $\mathrm{KO}_{2}{ }^{a}$		1.28 ± 0.07

${ }^{2}$ Fassatochkin and Kotow, J. Chem. Phys. 4, 458 (1936).
Ordered Structures - One must consider the case of ordored structures not havine the facc-contered cubic symmetry ($\mathrm{O}_{\mathrm{h}}^{5}$ - Fm3m) of the above disordered structures. Parallel orientation of the oxygen pairs, like in the tetragonal KO_{2} structure or the rhombohedral NaFF_{2} structuro (molecules directed alone one body diaronal) would certainly distort the unit coll an obscrvablo amount from its cubic shape. Other non-cubic ordered structures we consider unlikely, because of distortion and, also, because other meak lines shovid be obscrved since the structure can be face-centered only if the $\mathrm{O}_{2}{ }^{-}$ions are equivalent. The orientation of one $\mathrm{O}_{2}{ }^{-}$ion per unit cell along each of the four body diagonals provides in two ways oubic symmetry with an ordered structure. Onc such arrangement is the pyrite structure ${ }^{8}$ (Figure 2) which has symmetry
(8) C2-typc, Strukturbericht, I, 150 (1931).
T_{h}^{6}-Pa3. This is the most economical structure with regard to space, because if the unit call is subdivided into 8 smallor cubes, oach such cube contains one oxyen atom. The other ordered cubic structure is that incorrectly proposod for calcium carbide ${ }^{9}$, with symmotry $0_{h}{ }^{4}-\mathrm{Pn} 3 \mathrm{~m}$.
(9) Strukturboricht, I, 174 (1931).

In this case two of the small cubcs each contain four oxyens, while the other sizt have none. Intensities for planes having hkl all evon or all odd are the same for these structures as for disordered structure 3 above. An examination of the intensitios of other plenes, however, shows at least four in occh case which should be observed (Table IV), and so those ordered structures are both ruled out. There may be short-range order corresponding to the economical packing of the pyrite structure, without long-range order. This is reasonable because sodium lacks the directional valence'properties of the iron in FeS_{2}, and stacking disordor can be had with this structure without putting two oxyeens in the same small cube.

*Theso roflections should bo obsorved.

The difforence betroen the structures of sodium and potassium superoxido is reasonable on the following basis: For largcr cations, the dumbbellshaped anion has relatively more room. If it has enough room, its coulombic cation-attraotion will be dominant, and it can be expectod to oriont in the direction of the nearcst cations (i.c. along on axis) as it does in K_{2}. Howere, if the cation is vary small, the repulsive forcos will determino the oxyeon oriontation, and it is plasiblo that this will lead to some other tyo of structure. For exmmale, body diagonal orientation of the pyrite typo (with or (thout order) eives reater atomic distances on the average.

Oxycen Bond Distance - Althourh we cannot definitely describe the oxyeon positions in the disordorly NaO_{2} structure, we can say that the oxygenoxycen distanco is probably in the rance 1.33 ± 0.06 A. (Table III) which includes the probable crror ranges of the four structures considered. The agreomont of the four structuros is due largely to tho fact that the finite size of the oxygen atom makes the electron density appreciablo throughout tho spherical shell in which tho oxygons aro located. Also for this reason it is not necessary to consider any more complicated sot of oxygen positions. If one divides the observed intonsities of $\{333\}+\{51\}$ and $\{442\}+\{600\}$ in an arbitrery mannor, electron densitios can be calculated, because the sodium atoms control the signs of all F values which are observed. An electron density seotion was calculatcd for the ryo plane splitting these intensities to fit structure 1, with the result shown in Figure 3. This shows the O_{2}. ion as a hollow and more or less spherical shell of electron density, with relatively small peaks at the altermato sites of oxygen nuclci. It also gives confirmation to the value of the oxygen paramotor.

If the superoxide ion is considered to have a sincle bond and a three electron bond in the Pauline sense, ${ }^{10}$ then it may be expected to be
(10) L. Pauling, "The Nature of the Chemical Bond", Cornell University Pross, Ithaca, 1945, p. 264.
intermediate in bond distance betwoen the oxygen molecule with a single bond and two throe-electron bonds and the hydrogen peroxide molecule which has a normal single bond. These molccules have the distances $1.2076 \mathrm{R}^{11}$ and 1.47 $\pm 0.02 \AA^{12}$ respectively, of which the average is 1.348 , in execllent agreemont with our value.
(11) G. Herzberg, "Iolccular Spectra and Molecular Structurc, I. Diatomic Noloculcs", Frontico-Hall. Inc., Now York, 1939, p. 491. Cnlculated from spectroscopic moment of incrtia.
(12) P. A. Giguère and V. Schomaker, J. Am. Chom. Soc., 65, 2025 (1943). Moasured by electron diffraction.

Aeknowledement - The x-ray diffraction pattorns were taken by
Nirs. L. Jackson. We wish to thenk Professor Kleinberg for the samples of sodium oxides and for his interost in the problem. This resoarch was supported in part by the Atomic Energy Commission.

anm

\qquad

FIG. 3
ELECTRON DENSITY MAP xyO PLANE OF NaO2, CALCULATED WITH AMBIGUOUS TERMS ADJUSTED TO FIT STRUCTURE 1. THE CONTOUR INTERVAL IS 1 ELECTRON / \AA^{3}. THE SHADED. AREAS ARE NEGATIVE. THE FOUR SMALL CIRCLES IN EACH O_{2}^{-}GROUP ARE MAXIMA; THE CENTRAL CIRCLE, A MINIMUM.

[^0]:

