# International Union of Crystallography 

# Commission on Crystallographic Data Commission on Journals <br> Working Party on Crystallographic Information 

# The Crystallographic Information File (CIF): a New Standard Archive File for Crystallography* 

By Sydney R. Hall<br>Crystallography Centre, University of Western Australia, Nedlands 6009, Australia<br>Frank H. Allen<br>Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

and I. David Brown
Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
(Received 8 April 1991; accepted 28 June 1991)


#### Abstract

The specification of a new standard Crystallographic Information File (CIF) is described. Its development is based on the Self-Defining Text Archive and Retrieval (STAR) procedure [Hall (1991). J. Chem. Inf. Comput. Sci. 31, 326-333]. The CIF is a general, flexible and easily extensible free-format archive file; it is human and machine readable and can be edited by a simple text editor. The CIF is designed for the electronic transmission of crystallographic data between individual laboratories, journals and databases: it has been adopted by the International Union of Crystallography as the recommended medium for this purpose. The file consists of data names and data items, together with a loop facility for repeated items. The data names, constructed hierarchically so as to form data categories, are self-descriptive within a 32 -character limit. The sorted list of data names, together with their precise definitions, constitutes the CIF Dictionary (Core Version 1991). The CIF Core Dictionary is presented in full and covers the fundamental and most commonly used data items relevant to crystal structure analysis. The Dictionary is also available as an electronic file suitable for CIF computer applications. Future extensions to the Dictionary will include data items used in more specialized areas of crystallography.


[^0]0108-7673/91/060655-31\$03.00

## Introduction

There is an increasing need in many branches of science for a uniform but flexible method of archiving and exchanging data in electronic form. Rapid advances in computer technology, coupled with the expansion of local, national and international networks, have fuelled the need for such a facility. The variety and relative inflexibility of existing data exchange formats have inhibited their effective use. This is true even in fields where the basic data requirements are well defined. Problems of data exchange are further exacerbated if the number and nature of data types change rapidly and continuously. Under these conditions specialized and local file formats have proliferated. This diversity was tolerable when electronic data transfer was infrequent, or when data processing speeds required file formats finely tuned to specific applications. The developments cited above signal an end to this rationale. A general, flexible, rapidly extensible and universal file format protocol is now essential. It must be machineindependent and portable so that accessibility to data items is independent of their point of origin. It must allow new data items to be incorporated without the need to modify existing files.

In addition to archiving data, the use of a universal file would facilitate data exchange between software within a laboratory; between different laboratories; between authors and journals, providing electronic input to the publication process; and between researchers or joumals and computerized databases.

Crystallography is not excepted from the need for a universal exchange file. Its activities are dominated by advanced computer-controlled equipment and sophisticated
software systems which measure and process data. In most cases, especially for small and medium-sized molecules, these data are clearly defined and standardized, and are generated in machine-readable form. The problem is, however, that there are too many different forms and, despite the fundamental role that computing plays in our discipline, only limited effort has been directed at devising a general and common format.
In the late seventies the IUCr Commissions on Crystallographic Data and Crystallographic Computing promoted the development of the Standard Crystallographic File Structure (Brown, 1983, 1988). The SCFS is based on the concept of formatted lines and keywords that identify blocks of data containing items in a specific order. The SCFS format satisfies some but not all of the requirements of a universal data exchange file.

At the XIV IUCr Congress in Perth it was proposed that Acta Crystallographica promote the submission of data in machine-readable form. This was seen as being particularly beneficial for Section C, which publishes about 1000 small-molecule and inorganic crystal structures a year. Each paper is currently prepared as a typed manuscript and converted to machine-readable text for computer typesetting. Some of this work is carried out by Acta Crystallographica staff. All steps involve more manual effort than is desirable. Both the data and text are prone to transcription errors in their passage from the computer and the author to the printed page. Machinereadable submissions would reduce input errors, minimize labour-intensive data entry and check procedures, and speed the publication process. The submitted data could also be transmitted directly to the relevant crystallographic databases. An IUCr Working Party on Crystallographic Information (WPCI) was set up to investigate the feasibility of such a submission process, and to coordinate the input of various IUCr Commissions that were involved in these types of activities.

It was soon recognized that submission of text and data to journals and databases required the use of a universal exchange file, some of whose properties could not be reconciled with the constraints imposed on the SCFS by its format. At a meeting of the IUCr WPCI, held in conjunction with the XI European Crystallographic Meeting (1988) in Vienna, it was decided to develop a universal file based on the Self-Defining Text Archive and Retrieval (STAR) procedure of Hall ( $1991 a$ ). The STAR File is intended for the electronic exchange of data and provides for text and numerical data in any order.

The WPCI commissioned the authors to develop a universal exchange file to be called the Crystallographic Information File (CIF). A preliminary report on this development was presented at the XV IUCr Congress and General Assembly (1990) in Bordeaux as part of the Open Meetings of the IUCr Commissions on Crystallographic Data and Computing. This paper is a detailed description of the CIF development.

A major feature of this work has been the development of a comprehensive Dictionary (Core Version 1991) of crystallographic data items. Each data item has been assigned a self-explanatory name for use in a CIF and each

Table 1. STAR File syntax and terminology

| text string | string of characters bounded by blanks, single <br> quotes (') double quotes ("), or by semi-colons (; ) <br> as the first character of a line |
| :--- | :--- |
| data name | a text string starting with an underline (_) character |
| data item | a text string not starting with an underline, but <br> preceded by a data name to identify it |
| data loop | a list of data names, preceded by loop__ and <br> followed by a repeated list of data items |
| data block | a collection of data names (looped or not) and data <br> items that are preceded by a data_code record. A <br> data name must be unique within a data block. A <br> data block is terminated by another dat a .. <br> statement or the end of file |
| data file | a collection of data blocks: the block codes must be <br> unique within a data file |

item is precisely defined within the Dictionary which appears in this paper as Appendix 1. The Core Dictionary defines only those fundamental data items that are commonly used in a single-crystal structure analysis. Future extensions will encompass data items that are relevant to specialized areas of crystallography. The Core Dictionary is also available as an electronic file suitable for use with CIF computer applications.

To aid the description of the CIF a brief introduction to the underlying concepts of the STAR File, on which the CIF application is based, will be given. Full details of STAR File specifications are available in the literature (Hall, 1991a).

## STAR File concepts and syntax

A STAR File is composed of ASCII text that can be edited with a simple text editor. When viewed, its contents are easy to read and can be stored or transmitted electronically without conversion. The construction of a STAR File is simple. Each file contains a sequence of data blocks. Each data block contains a sequence of individual data items. There may be any number of data blocks and any number of data items within each data block. The data block represents the logical grouping of data that crystallographers normally associate with a 'data set', but it may be used for any other purpose. The identity of each data item within a data block is determined by a unique data name which precedes it in the file. Data items may be repeated in lists by placing them within a simple data loop structure.

An important property of a STAR File is that its syntax is defined by a few simple rules (see Table 1). This ensures maximum flexibility for data exchange and wide applicability. No assumptions are made about the order of the data blocks or data items, other than the requirement that the character strings which identify data blocks, or data names within a block, must be unique. There are no restrictions regarding the placement of data names or data items within a data block, other than the requirement that
the name must precede the item. Data in a STAR File are accessed simply by requesting a specific data name within a specific data block. Prior knowledge about data type (i.e. text or numbers), whether the item is looped, or whether the item exists in the file at all, is unnecessary.

The basic syntax of a STAR File is best illustrated by examples. Each data block is identified by a unique character string starting with 'data_'. The string data_compound_B523 specifies the start of a data block identified by the block code 'compound B523'.

Each data item is identified by a unique data name composed of a character string starting with an underline character ' '. Three examples of data names and their associated data items are:

```
cell_volume 2310(2)
_chemical_formula_moiety'C23 H36 O7'
    publ_contact_autror
;
    Prof Barry O'Connell
    Department of Chemistry
    Building #5?-M5
    University of Kalamazoo
    Michigan USA.
;
```

The data items above are of different types: numeric, character and text, respectively. The STAR File syntax makes no distinction between the type of data item. Each item is treated simply as a contiguous character string delimited by matching blanks, single quotes, double quotes, or semicolons as the first character of a line. The order and format of these strings in the file are irrelevant, except for the requirement that the data name precede the data item. Data on a line following a hash character '\#' is considered to be a comment, except if it is contained within a text string. Examples of a hash character used as part of a data item and as a comment precursor are given above and below.

A data item, or a set of data items, may be repeated in a list. Such data items are preceded by a 'loop_' string. Here is a list of data items specifying the habit of a crystal.

```
IOOP
    _exptl_crystal_face_index_h
    _exptl_crystal_face_index_k
    exptl_crystal_face_index_i
    _exptl_crystal_face_perp_dist
    exptl_crystal_face_name # not std name
_exptl_crystal_face_description # not std name
            0 0 -1 0.012 A 'well formed'
        0 0 1 0.012 B *
        -1 0 0 0.023 C uneven
        10 0 0.027 D 'needs further grinding'
        0 1 00.015 E *
        0-1 0 0.015 F pitted
```

Any data item, independent of its type, may be included in a loop. The only requirement is that the number of data items in a loop must be an exact multiple of the number of data names in the loop definition.

## The CIF syntax

The archival facilities provided by the STAR File process are general and open-ended. There is no restriction on the number of loop levels, the length of the file records (i.e. the lines of data) or on the length of data names. Syntax of this generality is unlikely to be needed in crystallography. It was therefore considered reasonable to impose restrictions on the STAR File syntax which will simplify the software required to generate or access a CIF. The advantages offered by these restrictions were considered to be sufficiently important from a computing standpoint to compensate for a loss of generality in file attributes not critical to crystallography.

The CIF restrictions to the STAR File syntax are:

1. Lines may not exceed 80 characters.
2. Data names and block codes may not exceed 32 characters. All data names and block codes are case insensitive, i.e. _ABS and _abs are treated identically.
3. In a STAR File, a data item may be of any data type. However, it simplifies processing if data types are known in advance. The CIF Dictionary identifies whether a CIF data item is a number or a character. The character and text fields are considered interchangeable.
4. A data item is assumed to be a number if it starts with a digit ' 0 '-' 9 ', plus ' + ', minus ' - ' or a period ' $\because$ ' and it is not bounded by matching single or double quotes or semicolons as the first character on a line.
5. A number may be supplied as an integer, as a floating-point number, or in scientific notation. When concatenated with an integer in parentheses, that integer is assumed to be the estimated standard deviation in the final digit(s) of the number. For example: 34.5, 3.45 E 1 , $34.5(12), 3.45 \mathrm{El}(12)$ are all versions of 34.5 with and without an e.s.d. of 1-2.
6. A data item is assumed to be of data type text if it extends over more than one line, i.e. it starts and ends with a semicolon as the first character of a line.
7. A data item is assumed to be of data type character if it is not a number or text.
8. Only one level of loop_ is permitted. Additional levels of repeated data must be stored as lists within a text field.
9. Many numeric fields contain data for which the units must be known. Each CIF data item has a default units code which is stated in the CIF Dictionary. If a data item is not stored in the default units, the units code is appended to the data name. For example, the default units for a crystal cell dimension are ångströms. If it is necessary to include this data item in a CIF with the units of picometres, the data name of cell_length_a is replaced by _cell_length_a_pm. Only those units defined in the CIF Dictionary are acceptable. The default units, except for the angström, conform to the SI Standard adopted by the IUCr. These default units should be used whenever possible.

Although the CIF data name and block code definitions are restricted to 32 characters, this is adequate for the construction of self-explanatory names. Data names
defined for use in a CIF are separated into components to represent an internal hierarchy of data categories. The concept of data name categories is not explicit in the STAR File process, but it arises naturally as part of data name design. Thus data names of the form _<category>_<topic>_<subtopic> provide for hierarchical classifications and are used throughout the CIF definitions. Sorting on the basis of hierarchical names generates a logical ordering for data names in the Dictionary.

Certain abbreviation conventions have been adopted in this paper, and in the CIF Dictionary, when referring to groups of data names. Use of only the <category> or _<category>_<topic>_ components of a data name, while retaining the trailing underline character, refers to a category or subcategory of data names. For example, _refln_ refers to all data items which have data names starting with this text string. Another commonly used abbreviation replaces the leading components of a data name with an asterisk. This provides a convenient shorthand method for referring to specific members of a category of data names. For example, when discussing data items in the _chemical_formula category, one can refer simply to the *_moiety and *_sum items rather than the full data names. This abbreviation aids in the identification of individual data names.

## CIF Dictionary

Each data item in a data block is identified by a unique data name. The currently accepted CIF data names are listed and defined in Appendix I as the CIF Dictionary (Core Version 1991). These are the IUCr 'standard' data items currently accepted for the submission of machinereadable documents to the IUCr and to the crystallographic databases. The data items in the Core Dictionary are intended primarily for use in the description of most smallmolecule and inorganic structures. Future extensions to this Dictionary will define data items used in more specialized areas of crystallography, such as powder diffraction and macromolecular studies. Appendix II contains an example of a CIF employing data names from the Core Dictionary in the submission of a manuscript and data to Acta Crystallographica Section C (Willis, Beckwith \& Tozer, 1991).

The Dictionary (Core Version 1991) is also available $\dagger$ as an electronic file cifdic.C91. This file, which has been constructed using the STAR Dictionary Definition Language (DDL) proposal of Cook (1991), contains more information about the data items than the printed Dictionary in Appendix I. It represents the current master reference file for checking the application of CIF data items. The CIF applications programs CIFER (Allen \& Edgington, 1992) and CYCLOPS (Hall, 1991b), which are described later, employ this Dictionary for the validation and manipulation of standard data names.

[^1]It must be emphasized that the CIF Dictionary only contains the definitions of data items recognized by the IUCr as standard crystallographic data. In the future, data items will be added to the Dictionary but the definitions of existing standard items must never be changed. This ensures perpetual access in long-term archive files. In the passage of time it can be expected that some data items will fall into disuse and be replaced by more useful data names, but the connection between a standard data name and its definition, once it has been entered into the CIF Dictionary, must remain sacrosanct.

The contents of a CIF are not restricted to data items defined in the standard Dictionary. The presence of nonstandard data does not affect the logical integrity of a CIF nor the access to the standard data. A fundamental property of a STAR File is that its logical integrity is quite independent of the order or nature of the data items. This means that local and standard data can be mixed in the same file. The only potential problem that could arise is if a local data name is subsequently adopted as a standard data name. Careful choice of local data names, perhaps containing a unique code, should avoid this possibility.

A CIF need not contain every data item listed in the Dictionary. All data items are optional and should be included only if required. A list of data items that are essential for submissions to IUCr journals is included in a new Notes for Authors [Acta Cryst. (1991), C47, 2266-2275] which includes rules for machine-readable manuscripts. Although the CIF allows data items to be in any order, it is good practice to group the items according to the data categories described below. Thus, all _expt 1 items would be entered together to simplify the task of visual searching and editing.

## Data name categories

The definition of data categories has been given above. Each category represents a major logical group of crystallographic data, such as crystal symmetry, associated chemistry, diffraction data, manuscript text, and so on. Here is a brief introduction to the current CIF data categories. More detailed descriptions are given in the Dictionary (Appendix I).
_audit_ data provide a record of the CIF creation and subsequent updating. These items usually precede all others in the CIF.
_atom_data are in two separate categories: those that describe atom sites in a crystal structure (i.e. _atom_site_data names) and those that describe the properties of the atom types that occupy these sites (i.e. _atom_type_ data names).
_cell_data record the cell parameters, method of measurement, conditions etc.
_chemical_data specify the composition and chemical properties of the compound. The _chemical_formula_ items must agree with those that specify the density, unit-cell and $Z$ values.
chemical_conn_data specify the 2D chemical structure for molecular species.
_computing_ data record the computer programs used in the crystal structure analysis.
_database_data are only specified by database managers and should only appear in a CIF if they originate from this source.

```
_diff:m_ data are the diffraction measurements.
expt : data record the crystal measurements, such as density, shape,
    size etc.
_geom_d data describe the standard molecular and crystal geometry,
    as calculated from the contents of the ..atom, _cell_ and
    _symmetry_ data.
    journa! data are entries used by the journals` staff in processing a
        CIF.
_p!abl_data are used when submitting CIF data to a journal for pub
    lication.
_refine_ data describe the structure refinement parameters.
_reflr and refins data specify the reflection items used to deter.
    mine the _aton__ data items. They are in two categories: _refln_
    and _refir.s_items. The _zeflns_data specify the parameters
    that apply to all reflections. The refln_data refer to individual
    reflections and must be included in looped lists. The _reflns_
    data items are not looped.
_symme-ry_ data specify the space-group symmetry.
```


## Looped and non-looped data items

The STAR File format permits any data item to be included in a loop_ list. This is also the case in a CIF. However, only data items which need to be repeated should appear in a looped list. Looped lists are composed of data items with common properties. For example, atom site information (represented by _atom_site_items) may appear in one list and reflection data (represented by _refln_ items) in another, but they cannot be mixed together. Appendix II should be consulted for examples of looped lists.

Note that it is essential to loop repeated data items, rather than declaring them as a series of single data items. This is because the STAR format prohibits a data name from appearing more than once in a data block. The Dictionary identifies which individual data items will normally appear in looped lists. In most cases this is obvious from the nature of the data and its definition. Those data categories where individual items often appear in looped lists are summarized below:

```
_atom_site_
_atom_site_aniso_
_atom_type_
_cell_measurement_refln_
_chemical_conn_
_diffrn attenuator_
_diffrn_orient_reflr_
```

atomic site parameters
atomic site anisotropic $U$ values
atom species
reflection data used in the unit-cell measurement
chemical properties in connectivity table
diffraction attenuator scales
reflections that define the diffractometer orientation matrix
_diffrn_radiation_wavelength
discrete wavelengths used in diffraction measurements
_diffrn_refln_
diffraction intensity data

| _diffrn_scale_group.. | scale factors for groups of diffraction intensities |
| :---: | :---: |
| _diffrn_standard_refin_ | standard reflections for scaling diffraction intensities |
| _exptl_crystal_ | separate loops for crystals and crystal faces |
| _geom_angle_ | interatomic angles |
| _geom_bond_ | bond distances |
| _geon_contact | contact distances |
| _geom_torsion_ | torsion angles |
| _pabl_author_adress | authors' addresses |
| _pubi... author name | authors' names |
| _refin | structure-factor reflection data |
| _reflns_scale_ | scale factors for groups of structure-factor data |
| _symmetry_equiv_pos_as_xyz | space-group equivalent positions |

## CIF standard codes

It is particularly important that certain data items be specified in a CIF as standard codes. These codes aid in the simple and unambiguous interpretation of a data item, and should be used wherever applicable. For example, the data item which describes the method by which hydrogen atoms are treated in the least-squares refinement process is associated with the data name refine_ls_hydrogen_treatment and is assigned the $\overline{\text { CIF }}$ standard codes:

$$
\begin{array}{ll}
\text { refall } & \text { refined all H parameters } \\
\text { refxyz } & \text { refined } \mathrm{H} \text { coordinates only } \\
\text { reft } & \text { refined } \mathrm{H} \mathrm{U} \text { 's only } \\
\text { noref } & \text { no refinement of H parameters }
\end{array}
$$

If an assigned CIF standard code is inappropriate, it is normal practice to add a text field of the type *_special_details. A complete list of the currently defined CIF data names with standard codes is given in Section 3 of Appendix I.

## Atomic site identification

The identification and labelling of atomic sites is vital in crystallography, both for the structure determination process, and for the description and interpretation of the final results. The atom labelling scheme adopted in the CIF embraces a very wide range of the common styles and conventions in current use. The scheme is fully detailed in Section 4 of the CIF Dictionary (Appendix I), but short introductory notes are also given here.

The labelling of atoms in most crystallographic studies serves two distinct purposes: (a) to identify a site in the crystal, and (b) to identify the chemical element that occupies that site. The former is used, for example, to link the site to the corresponding set of scatteringfactor coefficients, whilst the latter is used in descriptions
of the structure which are related to its chemistry, e.g. lists of geometrical data. The CIF Dictionary makes this distinction clear by defining _atom_site_ and _atom_type_ as separate data categories. The connection between the two is made through the identical data items _atom_site_type_symbol and _atom_type_symbol. However, normal crystallographic practice is to use a single label to define both the site and the chemical species occupying it. The CIF definition also makes provision for this. Thus, the atom_site_label has a structure (described in detail in Section 4 of Appendix I) that can start with an element symbol (optionally followed by an oxidation state) followed by an identifier. Together these two parts uniquely define each site, with the first part, termed component 0 , identically matching one of the _atom_type_symbol codes.

The _atom_site_label may contain up to six further components, in addition to component 0 described above, to provide for full and explicit site identification. Component 1 , the atom number code, would normally be present and is simply concatenated with component 0 . Other components, e.g. the residue code, the sequence code etc., permit the construction of specialist _atom_site_label codes. These additional components are linked to previous ones by the underline character.

The link between the _atom_site_ and _atom_type_ data items can be given in two ways: (a) if the _atom_site_type_symbol is given, then it must match identically one of the _atom_type_symbol values, or (b) if it is not given, then the first part (component 0 ) of the atom_site_label must match one of the _atom_type_symbol codes. In this way, the common practice of identifying atom sites as e.g. C1, $\mathrm{Hg} 7, \mathrm{H}: \mathrm{Cl}$ etc. is preserved.

This site labelling scheme can also be used for sites that are occupationally disordered, either by defining _atom_type_ items with the appropriate average properties, or by defining two atom sites that have identical coordinates, but which point to different atom types.

## Creating a CIF

A large proportion of the data included in a CIF will be generated by crystallographic software packages. The CIF example shown in Appendix II was created for publication in Acta Crystallographica Section C by the program CIFIO (Hall, 1990). However, it also contains data added manually by the authors (Willis, Beckwith \& Tozer, 1991). The majority of data items in this example were requested specifically (from CIFIO) for a test Acta Crystallographica submission. Note that the missing items in this example are flagged with a '?'. Programs such as CIFIO can only output the data items present in their internal files and the '?' flag represents a simple mechanism for identifying missing items.

The use of a '?' as a missing data flag is important for two reasons: it signals the inaccessibility of a data item to the generating software, and it satisfies the STAR File requirement that each data name must be matched with a data value. The use of a '?' enables data items
from other sources to be added later either manually or by software. For example, most _publ_items will be entered manually. Manuscripts can be entered by the authors either as ASCII text or as word-processed modules (see _publ_manuscript_ fields in Appendix I). Journal staff will also, in consultation with authors, make changes in response to the detection of incorrect numerical data or to the comments of referees or Co-editors.

The provision for transmitting graphical publication data within a CIF is being investigated. The inclusion of ASCII graphical modules suitable for producing direct laser or plot diagrams (e.g. using HPGL or PostScript) has already been tested. It will also be possible for some diagrams to be generated directly from the _atom_ and _chemical_conn_ data by the journal staff. In the future it is expectē that a CIF may contain encapsulated PostScript or $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ modules of text that can be transferred directly to the journals' word processing facility.

Apart from the generation of CIF's by crystallographic packages, specific standalone software has been developed to update, check and access CIF's. The Cambridge Crystallographic Data Centre is developing a program CIFER (Allen \& Edgington, 1992) to facilitate the update and creation of a CIF via a menu-driven interface. This will enable a CIF to be upgraded interactively with 2D diagrams and other missing data. The program EDCIF-J (Osaki, 1991) is also designed for the interactive creation of a publication CIF. Another program, CYCLOPS (Hall, 1991b), uses the Dictionary file cifdic.C91 to validate data names in any text file, including program source code. This is an essential requirement for software developers wishing to adhere to the standard data names. Finally, the program $Q U A S A R$ (Hall \& Sievers, 1990) is designed to extract requested data items from a CIF in the form of another STAR File (further details of this program are given below).

It should be emphasized that CIF's are not intended solely for publication purposes. They are well suited to local archiving and data exchange. Which data are stored in a CIF, and in what order, is very much up to the user. Any CIF, whether for local or global applications, may contain a mixture of standard (IUCr defined) and non-standard (locally defined) data. This will not affect access to either category of data.

It is possible to check or to extract data from a CIF using a text editor. However, a more systematic approach is to use specific software for these purposes, such as provided by the programs CYCLOPS and QUASAR. In the next section the program $Q U A S A R$ is used to illustrate a typical approach to accessing data in a CIF.

## Accessing a CIF: the program QUASAR

A data file conforming to the STAR File syntax is accessed by locating the appropriate data names. That is, search procedures rely on the grammatical rules of the STAR format to find the relevant data. This method of searching a file, referred to as parsing, is used by QUASAR (Hall \&

Table 2. Accessing a CIF using QUASAR
(a) The $Q U A S A R$ request file.

```
star_arc_toz.cif
star_out_toz.out
data_TOZ
_audit_creation__date
_chemical_name_systematic
_chemical_formula_sum
_ceil_length_a
cell_lergth_b
--ceil_length_c
_cell_angle_alpha
_cell_argle_beta
._ cell__argle_gamma
_reflns_scaie_grodp_code
_ref!ns_scale_meas F
_symmetry_equiv_pos_as_xyz
```

atom_type_symbol
atom_type_number_in_celi
_atom_type_scat _dispersion_real
atom type_scat_dispersion_imaq
atom site label
atom site fract $x$
atom_site_fract_y
ator site fract z
atom site test ruboisr. \#<<< ask tor item not there
ator__site_thermal_displace_亡ype
_atom_site-U iso_or_equiv
refin index ri
refln_index_k
refln_index_1
refln_E_meas
refln F sigria
reflriobserved status
reflr_sca_e_group_code
(b) The QUASAR output file toz.out.


Sievers, 1990). It is described here as a suitable template for other CIF manipulation software.

QUASAR retrieves those data items contained in a request list of data names. As part of the access procedure it (a) outputs data items and data blocks in the order requested, (b) automatically checks the input file for logical

```
loop
    atom_site_iabe:
    atom-sive-frace %
    atom site fract Y
atom site fract z
_atom_site_test runbisi # zeruested sterm no: present
_atom_site_thermal_displace_type
atom site U iso or eguiv
    O: . 4% 5\overline{4}(4) -. .599(1) . 3026(1) ? Ua!1 . .062(1)
```



```
    Cj .b350(5) .4926(2) .3997(:) ? Vanl .048(1)
    N4 .3570(3) . 5558(1) .4.67(i) ? Vari . .39(1)
    C5 . 3000(5) .6122(2).3582(2) ? Uar. .045(1)
    021 . 6958(5).4738(2) . 2874(1) ? Jani .090(2)
    C31 .4869(6).3929(2).4143(2) ? Jani .059(2)
    032 . 2552(7) . 3558(2) . 3953(2) ? Ua!1: .0)3(2)
    C321 . 209(1) . 3542(4) . 3211(3) ? Uan! .111(4)
    C322 . 230(1) .2626(3) .4264(3) ? Jan: .149(5)
    C4: . 2034(4) .5476(2) .4682(1) ? Uani .041(i)
    H321C .04(1) .318(3) . 32C(2) ? Uiso . . 4000
    H322A . 25(1) . 272(4) .475(3) ? Uiso . .9000
```



```
    #322C .08(i) .234(4) .397(3) ? Uiso . . %900
    H412 -.0C:(6) .447(2)
    H513C .329(6) .827(2) .430(2) % Uiso .09000
loop_
_ref:m_index_h
    Trefin-index-k
    refln_1rdex_l
    _refln_F meas
    refln-F-sigma
_reflr_observed_status
    _refln-scale_grobu_code
    ? ? ? ? ? ? ?
```

integrity, (c) outputs the requested items in STAR File format (i.e. it spawns another CIF containing requested items), (d) permits multiple requests for a data item within the same data block, and (e) processes multiple data blocks in a single run.

An example of a QUASAR run is shown in Table 2.

The first two lines of the request list in Table 2(a) specify the input and output STAR File names. These are input as extensions to the strings star_arc_ and star_out_, respectively. This example shows how specific data are extracted from the file toz.cif shown in Appendix II. The contents of the QUASAR output file, toz.out, are shown in Table 2(b). The contents of Tables $2(a)$ and $(b)$ should be carefully compared with the data items in Appendix II.

## Concluding remarks

Crystallography, along with other computer-intensive disciplines, has entered an era in which the archiving and electronic exchange of data are of paramount importance. It is these basic needs of storage and transportability of data in a machine-independent form that have driven the development of CIF. The CIF Core Dictionary provides a set of data names, data items and definitions that are fundamental to crystallography. Future versions of the Dictionary will contain extensions to this core that cover data items of importance in more specific areas of the subject, e.g. powder diffraction, macromolecular crystallography etc. Developments parallel to those of CIF have led to the definition of a standard molecular data (SMD) format (Barnard, 1990) for the exchange of chemical connectivity and reaction data. SMD addresses the need to transfer data between databases and the various software systems for molecular modelling and synthesis planning. Since there is an overlap of information between CIF and SMD, it is hoped that some degree of integration can be achieved between the two formats.

The provision of a common standard format for machine-readable submissions to Acta Crystallographica and to the crystallographic databases has been a particular aim of the CIF development. These submissions require only a restricted subset of CIF data names for manuscript preparation, many of which can be generated automatically. We would encourage those who are responsible for the development of crystallographic structure determination packages to provide output CIF files as soon as possible. Further, we envisage that software tools will rapidly become available to assist in the upgrading of a program-generated CIF to publication standard. The submission, processing and publication procedures for CIF manuscripts directed to Acta Crystallographica will be announced in the November issue of Section C [Acta Cryst. (1991), C47, 2266-2275]. The announcement will indicate those CIF data items that are normally regarded as essential in manuscript submission. The announcement will also indicate how authors without electronic mail or diskette facilities will benefit from the new procedures.

There is no doubt that the standardization of data exchange formats is overdue. Existing approaches are inadequate because they sacrifice portability, flexibility and extensibility for computational efficiency. Today's and tomorrow's computer technology relegate the latter consideration to a much lower priority. The STAR File, and its specific application to the CIF, are seen as forerunners in the development of new tools for local and global data exchange.

The authors wish to thank the IUCr Executive, members of various IUCr Commissions, the IUCr Working Party on Crystallographic Information, and a number of other crystallographers for their constructive comments and active encouragement during the course of this development. In particular we acknowledge the input and support of Enrique Abola, Mike Dacombe, Paula Fitzgerald, Howard Flack, Richard Goddard, Carl Krüger, Brian McMahon, Ted Maslen, George Sheldrick, Rolf Sievers and Jim Stewart which contributed directly to the CIF construction. Without this cooperation the relatively swift completion of the central core of this project would not have been possible. We are indebted to Hazel Woodley (Cambridge) for her careful editing of the many revisions to this manuscript.

## Notes

The STAR File process is the subject of a patent application by the International Union of Crystallography and S. R. Hall. The CIF specifications and Dictionary are the Copyright of the International Union of Crystallography. These decisions protect STAR File and/or CIF from use for commercial gain without prior permission, and reflect the involvement of the IUCr in supporting this development. STAR File and CIF may be used freely by individuals for their intended purposes, and for the preparation of deposition documents for non-IUCr journals. Requests to use STAR File and/or CIF for any other purpose should be addressed to: Dr J. N. King, Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

The computer program source code for QUASAR and CYCLOPS, and the CIF Dictionary (Core Version 1991) in printed form, and as the electronic file cifdic.C91, are available from the Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England (email: teched@iucr.ac.uk).

## APPENDIX I

## CIF Dictionary (Core Version 1991)

## 1. Introduction

This version of the CIF Dictionary contains the detailed definitions of data names which are acceptable in submissions to the IUCr and to the crystallographic databases. Data names are considered to be case insensitive: they may be given in upper- or lower-case letters, or in any combination of upper and lower case. The data name definitions are ordered alphabetically by the data category; general notes on these categories are given in Section 2 of this Appendix.

Certain abbreviation conventions have been adopted in the CIF Dictionary when referring to groups of data names. Use of only the _<category>_ or _<category>_<topic>_ components of a data name, while retaining the trailing underline character, refers to a category or subcategory of data names. For example, _refin_
refers to all data items which have data names starting with this text string. Another commonly used abbreviation replaces the leading components of a data name with an asterisk. This provides a convenient shorthand method for referring to specific members of a category of data names. For example, when discussing data items in the chemical_formula_ category, one can refer simply to the * moiety and *_sum items rather than the full data names. This abbreviation aids in the identification of individual data names.

Literature references that are required for the definition of a data item are included in full within the Dictionary, in order that it can be distributed as a standalone document.

The CIF Dictionary contains information about the permitted units for numerical data items. Default units do not require any extensions to be appended to the data name. These defaults, except for the ångström unit, conform to the SI standard adopted by the IUCr. Default units should be used wherever possible; they must be used in submissions to Acta Crystallographica.

Simple typesetting conventions have been adopted for use with CIF data. These are listed in a table below. These conventions are particularly important in text submissions to Acta Crystallographica. The list will be extended as need arises and reported in future versions of the Dictionary and in the Notes for Authors which will be published annually in Acta. Typesetting signals are important in the free-text fields, such as _publ_section_, and also in fields such as _chemical_name_ or in the construction of atom labels for certain classes of compounds, e.g. amino acids and peptides.

Greek letters have been assigned a single-character ASCII alphabetic equivalent. As far as possible, this is the first letter of the fully spelled name of each Greek letter. The exceptions are marked * in the list below. Greek letter codes are preceded by a backslash ' $\$ '; lower-case Greek letters use the code in lower case, upper-case Greek letters use the code in upper case.

## 2. CIF data categories

## _audit_ data names

The _audit_ data items provide a record of the CIF creation and subsequent updating. These items usually precede all others in the CIF.
_ atom_data names
The _atom_data names are in two separate categories: those that describe atom sites in a crystal structure (i.e. _atom_site data names), and those that describe the $\overline{\text { properties of the }}$ the atom types that occupy these sites _atom_type_ data names).

The - atom_type_ data provide information on the chemical identity, scattering factors, atomic radii and so on. The _atom_site_items describe specific information on atomic sites such as positional coordinates, atomic displacement parameters, magnetic moments and directions, and so on.

| $\alpha \quad \mathrm{A}$ | \a $\backslash \mathrm{A}$ | alpha |  |
| :---: | :---: | :---: | :---: |
| $\beta \quad$ B | \b \B | beta |  |
| $\chi$ X | Ic IC | chi |  |
| $\delta \quad \Delta$ | \d \D | delta |  |
| E | le \E | epsilon |  |
| $\varphi \quad \Phi$ | \f \F | phi | * |
| $\gamma \quad \Gamma$ | ig \G | gamma |  |
| $\eta \quad \mathrm{H}$ | \h $\backslash \mathrm{H}$ | eta | * |
| $\iota \quad \mathrm{I}$ | \i \I | iota |  |
| $\kappa \quad \mathrm{K}$ | $\backslash \mathrm{k}$ \K | kappa |  |
| $\lambda \quad \Lambda$ | $\backslash 1$ \L | lambda |  |
| $\mu \quad \mathrm{M}$ | Im \M | mu |  |
| $\nu \quad \mathrm{N}$ | $\backslash \mathrm{n}$ \N | nu |  |
| $o \quad \mathrm{O}$ | lo $\backslash 0$ | omicron |  |
| $\pi \quad \Pi$ | $\backslash p \quad \backslash p$ | pi |  |
| $\theta \quad \Theta$ | \q iQ | theta | * |
| $\rho \quad \mathrm{R}$ | $\backslash \mathrm{r}$ \R | rho |  |
| $\sigma \quad \Sigma$ | $\backslash s$ \S | sigma |  |
| $\tau \quad \mathrm{T}$ | it \T | tau |  |
| $v \quad \Upsilon$ | iu \U | upsilon |  |
| $\omega \quad \Omega$ | iw iw | omega | * |
| $\xi$ E | ix $\mathrm{i}^{\text {x }}$ | xi |  |
| $\psi \quad \Psi$ | iy IY | psi | * |
| $\zeta$ Z | $\backslash z \quad \backslash z$ | zeta |  |
| superscripts | Csp ${ }^{-}{ }^{\text {- }}$ | for | Csp ${ }^{3}$ |
| subscripts | U-eq | for | $\mathrm{U}_{\mathrm{cq}}$ |
| acute accent | l'e | for |  |
| grave accent | \}  ,  | for | a |
| circumflex | \e | for | ê |
| cedilla | $1, \mathrm{c}$ | for | $¢$ |
| umlaut | \" | for | ü |
| degree | 120\号 | for | $120^{\circ}$ |
| ångström | $1.54 \backslash \frac{8}{3} \mathrm{~A}$ | for | $1.54 \AA$ |

The _atom_t.ppe_ data are global. They apply to one or more atom sites. The link to the atom site data is provided through the data names _atom_type_symbol and _atom_site_type_symbol. These items provide the common character codes which identify atom types. Normally these codes are element symbols but they can include the oxidation state or any other information that uniquely identifies the atom types present in the structure.

If the _atom_site_type_symbol data is supplied in an atom site list, it must match with one of the atom_type_symbol codes. Alternatively, if the ${ }^{\text {atom_site_type_symbol is not supplied, the lead- }}$ ing characters of the _atom_site_label must match with one of the _atom_type_symbol codes. Note that the _atom_site_type_symbol has precedence over the _atom_site_label for the purpose of linking with atom type data and, if the former is present, the latter need not contain an atom type code. The rules for specifying the _atom_site_label are given in Section 4 . When several atom species share the same site, as is commonly found in mineral structures, two different approaches may be used. Atom types may be defined separately with unique symbol codes. A multiply occupied atom site is then specified as two or more atom sites with the same coordinates but different _atom_site_type_symbol (or _atom_site_label) codes. With this approach atom_site_occupancy values must add up to unity or less. The alternative approach is to specify an _atom_type_symbol to identify the properties of the combined atomic species sharing the site. In this case only a single entry for each atom site is needed.
_ce11_ data names
These data specify the cell parameters, together with the method of measurement, experimental conditions, etc.
_chemical_data names
These data specify the composition and chemical properties of the compound. The formula data items must agree with those that specify the density, unit-cell and $Z$ values.

The following rules apply to the construction of the data items _chemical_formula_analytical, *_structural and *- sum. For the data item *_moiety the formula construction is broken up into residues or moieties, i.e. groups of atoms that form a molecular unit or molecular ion. The rules given below apply within each moiety but different requirements apply to the way that moieties are connected (see _chemical_formula_moiety).

1. Only recognized element symbols may be used. The symbol D is used for deuterium.
2. Each element symbol is followed (without a space) by an integer or decimal 'count' number. A count of ' 1 ' may be omitted.
3. A space or parenthesis must separate each element symbol and its count from the next element symbol.
4. Where a group of elements is enclosed in parentheses, the multiplier for the group must follow the closing parentheses. That is, all element and group multipliers are assumed to be printed as subscripted numbers. An exception to this rule exists for *_moiety formula where preand post-multipliers are permitted for molecular units.
5. Unless the elements are ordered in a manner that corresponds to their chemical structure, as in _chemical_formula_structural, the order of the elements should be: $\mathrm{C}, \mathrm{H}$, followed by the other elements (including deuterium) in alphabetical order of their symbol. This is the Hill system used by Chemical Abstracts. This ordering is used in *_analytical, *_sum and within the molecular units of ${ }^{\text {* }}$ moiety.

## _chemical_conn_data names

The _chemical_conn_data items specify the 2D chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships.

The chemical connectivity specification uses two related lists of looped data. These are the atom list and the bond list.

The atom data items provide information about the chemical properties of the atoms in the structure. In cases where crystallographic and molecular symmetry elements coincide it must also contain symmetry-generated atoms, so that the _chemical_conn_ data items will always describe a complete chemical entity. The bond data items specify the connections between the atoms in the atom list and the nature of the chemical bond between these sites.

## _computing_ data names

These items identify the computer programs used in the crystal structure analysis.
_database_data names
These codes are assigned by database managers and should only appear in a CIF if they originate from this source.

## _diffrn_ data names

These items record details of the diffraction data and its measurement.

_expt1_ data names

These items record experimental measurements on the crystal, such as shape, size, density etc.

_geom_data names

These data items provide information on the molecular and crystal geometry, as calculated from the contents of the _atom_, cell_ and _symmetry_data. Geometry data is therefore redundant in that it can be calculated from other more fundamental quantities in the CIF. It serves, however, the dual purpose of providing a check on the correctness of both sets of data, and of enabling the most important geometric data to be identified for publication by setting the *_publ_flag.

Geometry data types that are not defined explicitly in the CIF Dictionary may be entered as _geom_special_details.

## _journal_data names

These are the book keeping entries used by the journals staff when processing a CIF submitted for publication. Normally the creator of a CIF will not specify these data. The data names are not defined in the Dictionary because they are for journal use only.

## _publ_ data names

These items are used when submitting a manuscript to a journal for publication.

```
_refine_data names
```

These items describe the structure refinement parameters.
_refln_ and_reflns_data names
These names specify the reflection data used to determine the _atom_ data items. They exist in two categories: _refln_ and_reflns_items. The _refins_data specify the parameters that apply to all reflections. The refln_ data refer to individual reflections and must be included in looped lists. The _refins_ data are not looped.
_symmetry_ data names
These items specify the space-group symmetry.

## 3. Standard codes table

Recognized codes are provided for specific data items. Definitions of the codes are included within the CIF data name descriptions of Section 5. Only the codes shown there may be used. If one of these codes does not adequately identify the condition of a parameter, include this information in another data item (e.g. in * speecial details fields). For convenience we list here those data names for which standard codes are provided.

```
a:mu site ralc : iso
```







```
bom:`al..%on bow:s - \%s
1.:1rf re:1r. S:a! modf
```



```
"xp: a dosorpt roz:ucticua rysu
```









## 4. Atom label definition

The atom_site_iabe is the unique identifier of a specific site in the crystal structure which contains a particular atomic type or combination of atom types. There may be more than one aton_site : abei referring to the same position in the crystal structure. This is one approach to specifying shared atom sites. The other is to specify a single site containing a mixture of atom types in a fixed proportion defined by atom_t ype description.

The atom site label may be constructed from up to seven distinct components, 0 to 6 . These components are concatenated in sequential order from left to right. The at.om_site_label must contain a component 0 code. All other components are optional. Components 0 and 1 are concatenated: all other components are joined by an underline ' ' character. These underlines must be included up to the highest-order component present (i.e. if a lowerorder component is omitted the '_' separator must still be inserted in order to maintain the component ranking). An underline character can never be used within a component code itself.

For most applications component 0 of the atom label is a code that identifies the 'type' of atom, or atoms, at the atomic site. It must therefore match one of the specified atom type symbo: codes in the atom type_ list. However, if the data item _-atom_site_type_symbol is also specified, component $\overline{0}$ of the atom label is not used to identify the atom type and it may contain any code which is consistent with the construction rules cited below. In other words, the _at.om_site_type symbol, if specified. takes precedence ōver the acom sito _label component o code in the role of linking the atom site list to the atom type list.

The aton_site label construction is flexible, visually decipherable and well suited to computer applications. The components can be easily identified and stripped with a single pass, from left to right, along the label string. Note that the underline separators are only used if higher-order components exist. If intermediate components are not used they may be omitted provided the underline separators are inserted. For example the label ' $\because \ldots$ : 4 ' is acceptable and decodes as the components 0 : $\because, 1: \because, 2: \cdots$, and 3 : ': 4 '. There is no requirement that the same number of components be used in each label.

Components of _atom_site_label
Component (0: foptionally identical to an
atem =yre_symbel | (mandolory)
A character string containing any character except a blank or an underline, with the proviso that each digit -()'-.9' be used only to designate an oxidation state and, as such. must be followed by a plus ' + ' or a minus -- character. It is recommended that the element symbols be used when applicable. Permissible codes are:

## Component 1: |atom number code| (optional)

This string may contain any alphanumeric character except a blank or an underline '_ but the first character must be a digit ' 0 '-' 9 ' and the second character may not be a plus ‘+ ’ or a minus ${ }^{-} \cdot$. It is intended primarily to differentiate sites containing the same atom type, but can he used for any purpose whatsocver. This string is concatenated directly with the atom site_ype simber. Examples of combined component $0^{-}$and 1 codes are: where the component 0 is underlined to indicate how these labels are parsed.

An underline character is inserted if components beyond 1 are included in the label.
Component 2: |idenifier code| (optional)
This string may contain any character except a blank or underline. It is intended primarily to identify specific structural information in a macromolecular fragment, but may be used for any other purpose as well.

An underline character is inserted if components beyond 2 are included in the label.
Components 3-6: |residue, sequence number. chain-order, alternate codes) (optional)

These strings may contain any character except a blank or an underline.

Underline characters are inserted after each component, 3 to 5, included in the label.

## 5. CIF data name definitions

The CIF definition of each data item in this dictionary contains: (a) an identifying data name, $(b)$ a data type code, (c) a description, ( $(d)$ optional parameters, and $(c)$ optional example(s).
(a) The data name appears at the top of the definition in a bold typewriter face.
(b) The data type code appears to the right of the data name in italics and is bounded by parentheses. The possible type codes are 'char' and 'numb'. The 'char' code signals that the data item may be represented by either a single-line character string bounded by matching blanks, single quotes or double quotes, or multi-line text bounded by a semicolon as the first character of the bounding lines. The 'numb' code indicates that the data item is a number in integer, decimal or scientific notation.
(c) The description of the data item appears immediately below the data name in roman type. The description indicates the purpose of the data item and its relationship to other data items. References to the original definition of the data item are provided where appropriate.
(d) Parameters which specify the way in which the data item may be used follow the description, in a smaller roman typeface. These parameters appear in the definition as standard descriptive phrases. The meanings of these phrases are given below.
(i) "Appearance in list: [ves $\mid$ no $\mid$ both]." specifies whether the data item may be included in a repeated list of data items (that is, as a member of data item(s) preceded by a 'loop_' command). Note that 'both' refers to a data item which is normally a single value but in special circumstances may also appear in a looped list.
(ii) "If looped, [_data name] must be present in the same list." specifies another data item that must appear in the same looped list in order that the currently defined item may be correctly accessed.
(iii) "Where no value is given, the assumed value is ' $\left.{ }^{*}\right]^{\prime}$ '." specifies the string '*' which is assumed to be the default entry when this data item is absent from the CIF.
(iv) "The permitted range is $[\min ] \rightarrow[$ max $]$." specifies the minimum and maximum numbers permitted for this data item.
(v) "E.s.d. expected: [yes $\mid n o]$." specifies whether an estimated standard deviation value, bounded by parentheses, is expected to be concatenated to a numerical data item.
(vi) "Default e.s.d. value: $[n]$." specifies the assumed estimated standard deviation ' $n$ ' when a value is not appended to the data item.
(vii) "The units extensions are: "' ([default units $]$ *1.0) 'I_ext]' (|alternative units ] [* $1 / 1+][$ con $]$ )." specifies permitted units for dimensioned quantities. The first entry gives the default units which do not require a data name extension or a conversion factor. The second and succeeding entries specify the data name extension, the alternative units and the factor 'con' needed to convert these units into the default. The symbol '*' signals a multiplication; the symbol '/' a division; and the ' + ' an addition of the value 'con'.
(e) Examples of a data item may follow the parameter information in a typewriter face. Note that commas are used to separate different examples of the data item.

A string containing blanks and bounded by quotes represents a single example. Sometimes an explanation of the example is provided in parentheses.

## Version: CIF Dictionary (Core 1991)

## _atom_site_aniso_label

(char)
Anisotropic atomic displacement parameters are usually looped in a separate list. If this is the case, this code must match the _atom_site_label of the associated atom coordinate list and conform with the same rules described in _atom_site_label. Appearance in list: yes.

## _atom_site_aniso_type_symbol (char)

This _atom_type_symbol code links the anisotropic atom parameters to the atom type data associated with this site and must match one of the _atom_type_symbol codes in this list.
Appearance in list: yes. If looped, _atom_site_aniso_label must be present in the same list.

```
_atom_site_aniso_U_11
_atom_site_aniso_U_12
_atom_site_aniso_U_13
atom_site_aniso_U_22
_atom_site_aniso_U_23
_atom_site_aniso_U_33
(numb)
```

These are the standard anisotropic atomic displacement components which appear in the structure factor term: $\exp \left(-2 \pi^{2} \sum_{i} \sum_{j} U_{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)$. The components may be entered in any order.
Appearance in list: yes. If looped, _atom_site_aniso_label must be present in the same list. E.s.d. expected: yes. Default e.s.d. value: 0.0 . The units extensions are: ' (ångströms squared *1.0) '_pm' (picometres squared $/ 10000$. ) '_m' (nanometres squared *100.).

## _atom_site_attached_hydrogens <br> (numb)

The number of hydrogen atoms attached to the atom at this site excluding any H atoms for which coordinates (measured or calculated) are given.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. Where no value is given, the assumed value is ' 0 '. The permitted range is $0 \rightarrow 4$.
Example(s): 2 (water oxygen). 1 (hydroxyl oxygen), 4 (ammonium nitrogen)

## _atom_site_calc_attached_atom (chur)

The _atom_site_label of the atom site to which the 'geometrycalculated' atom site is attached.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. Where no value is given, the assumed value is'.'.

## _atom_site_calc_flag

(char)
A standard code to signal if the site data has been determined by diffraction data or calculated from the geometry of surrounding sites, or has been assigned dummy coordinates.
d determined from diffraction measurements
calc calculated from molecular geometry
dum dummy site with meaningless coordinates

Appearance in list: yes. If looped. _atom_site_label must be present in the same list. Where no value is given, the assumed value is ' $d$ '.
_atom_site_Cartn_x
_atom_site_Cartn_y
_atom_site_Cartn_z
(numb)
The atom site coordinates specified according to a set of orthogonal Cartesian axes related to the cell axes as specified by the _atom_sites_Cartn_transform_axes description.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. E.s.d. expected: yes. Default e.s.d. value: 0.(). The units extensions are: ' (ångströms *1.0) '_pm' (picometres//100.) ' $n \mathrm{~nm}$ ' (nanometres *10.).
_atom_site_chemical_conn_number (numb) This number links an atom site to the chemical connectivity list. It must match a number specified by _chemical_conn_atom_number.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. The permitted range is $1 \rightarrow \infty$.

```
_atom_site_constraints
```

(char)
A description of the constraints applied to parameters at this site during refinement. See also _atom_site_refinement_flags and _refine_ls_number_constraints.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. Where no value is given, the assumed value is '.'.
Example(s): pop-l.0-pop (Zn3)

## _atom_site_description

(char)
A description of special aspects of this site. See also _atom_site_refinement_flags.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. Where no value is given, the assumed value is '.'.
Example(s): 'Ag/Si disordered'
_atom_site_disorder_group
(char)
A code to link disordered atom sites of a group that exist simultaneously in the crystal structure.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. Where no value is given. the assumed value is '.'.
Example(s): A

```
_atom_site_fract_x
__atom_site_fract_Y
_atom_site_fract_z
```

(numb)
Atom site coordinates as fractions of the _cell_length_ values. Appearance in list: yes. If looped, _atom_site_label must be present in the same list. E.s.d. expected: yes. Default e.s.d. value: 0.0. Where no value is given, the assumed value is ' 0.0 '.
_atom_site_label (char)
The _atom_site_label is a unique identifier for a particular site in the crystal. This code is made up of a sequence of up to seven components, _atom_site_label_component_ 0 to *_ 6 . which may be specified as separate data items. Component 0 usually matches one of the specified _atom_type_symbol codes. This is not mandatory if an _atom_site_type_symbol item is
included in the atom site list. The _atom_site_type_symbol always takes precedence over an _atom_site_label in the identification of the atom type. The label components 1 to 6 are optional, and normally only components 0 and 1 are used. Note that components 0 and 1 are concatenated, while all other components, if specified, are separated by an underline character. Underline separators are only used if higher-order components exist. If an intermediate component is not used it may be omitted provided the underline separators are inserted. For example the label 'C233__ggg' is acceptable and represents the components C, 233,". and ggg. Each label may have a different number of components.
Appearance in list: yes.
Example(s): C12, Ca3g28. Fe3ti7, H*251. boron2a,

_atom_site_label_component_0
_atom_site_label_component_1
_atom_site_label_component_2
_atom_site_label_component_3
_atom_site_label_component_4
_atom_site_label_component_5
_atom_site_label_component_6

Component 0 is normally a code which matches identicall_' with one of the _atom_type_symbol codes. If this is the case then the rules governing the _atom_type_symbol code apply. If, however, the data item _atom_site_type_symbol is also specified in the atom site list, component 0 need not match this symbol or adhere to any of the _atom_type_symbol rules. Component 1 is referred to as the 'atom number'. When component 0 is the atom type code, it is used to number the sites with the same atom type. This component code must start with at least one digit which is not followed by $\mathrm{a}+$ or - sign (to distinguish it from the component 0 rules). Components 2 to 6 contain the identifier, residue, sequence, chain order and alternate codes, respectively. These codes may be composed of any characters except an underline.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list.

## _atom_site_occupancy <br> (mumb)

The fraction of the atom type present at this site. The sum of the occupancies of all the atom types at this site may not significantly exceed 1.0 unless it is a dummy site.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. E.s.d. expected: yes. Default e.s.d. value: 0.0. Where no value is given, the assumed value is ' 1.0 '. The permitted range is $0.0 \rightarrow 1.0$.
_atom_site_refinement_flags (whar)

A concatenated series of single-letter codes which indicate the refinement restraints or constraints applied to this site.
no refinement constraints
special position constraint on site
rigid group refinement of site
riding atom site attached to non-riding atom
distance or angle restraint on site
thermal displacement constraints
$U_{100}$ or $U_{i j}$ restraint (rigid bond)
partial occupancy constraint

Appearance in list: yes. If looped. _atom_site_label must be present in the same list. Where no value is given, the assumed value is '.'.
atom_site_restraints

A description of restraints applied to | (char) |
| ---: |
| parameters at this site during | refinement. See also

atom_site_refinement_flags and _refine_ls_num-
ber_restraints.

Appearance in list: yes. If looped, _atom_site_label must be present in the same list. Where no value is given, the assumed value is '.'.
Example(s): 'restrained to planar ring'
_atom_site_symmetry_multiplicity
(numb)
The multiplicity of a site due to the space-group symmetry as is given in International Tables for Crystallography, Vol. A (1987).
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. The permitted range is $\mathrm{I} \rightarrow 192$.
_atom_site_thermal_displace_type
(char)
A standard code used to describe the type of atomic displacement parameters used for the site.

| Uani | anisotropic $U_{i j}$ |
| :--- | :--- |
| Uiso | isotropic $U$ |
| Uovl | overall $U$ |
| Umpe | multipole expansion $U$ |
| Appearance | in list: yes. If looped, _atom_site_label must be present |
| in the same list. |  | in the same list.

_atom_site_type_symbol
(char)
A code to identify the atom specie(s) occupying this site. This code must match a corresponding _atom_type_symbol. The specification of this code is optional if component 0 of the _atom_site_label is used for this purpose. See _atom_type_symbol.
Appearance in list: yes. If looped, _atom_site_label must be present in the same list.

Example(s): $\mathrm{Cu}, \mathrm{Cu} 2+$, dummy, $\mathrm{Fe} 3+\mathrm{Ni} 2+, \mathrm{S}-, \mathrm{H}^{*}, \mathrm{H}(\mathrm{SDS})$
_atom_site_U_iso_or_equiv
(numb)
Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter calculated from anisotropic atomic displacement parameters. The latter must be calculated as $U_{\text {(equiv) }}=(1 / 3) \sum_{i}\left[\sum_{j}\left(U_{i j} a_{i}^{*} a_{j}^{*} A_{i} . A_{j}\right)\right]$ where $A$ are the realcell and $a^{*}$ the reciprocal-cell lengths [see Fischer, R. X. \& Tillmanns, E. (1988). Acta Cryst. C44, 775-776].
Appearance in list: yes. If looped, _atom_site_label must be present in the same list. E.s.d. expected: yes. Default e.s.d. value: $0 \cdot 0$. The permitted range is $0.0 \rightarrow 10.0$. The units extensions are: ', (ângströms squared *1.0) '_pm' (picometres squared /10000.) '_nm' (nanometres squared *100.).

## _atom_site_Wyckoff_symbol

(char)
The Wyckoff symbol (letter) as listed in the space-group section of International Tables for Crystallography, Vol. A (1987).
Appearance in list: yes. If looped, _atom_site_label must be present in the same list.

```
_atom_sites_Cartn_tran_matrix_11
_atom_sites_Cartn_tran_matrix_12
atom_sites_Cartn_tran_matrix_13
atom_sites_Cartn_tran_matrix_21
_atom_sites_Cartn_tran_matrix_22
_atom_sites_Cartn_tran_matrix_23
```

_atom_sites_Cartn_tran_matrix_31 _atom_sites_Cartn_tran_matrix_32
_atom_sites_Cartn_tran_matrix_33 (numb)
Matrix elements used to transform fractional coordinates to orthogonal Cartesian coordinates. The axial alignments of this transformation are described in _atom_sites_Cartn_transform_axes.

$$
\left(\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { fractional }=\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right) \text { Cartesian }
$$

_atom_sites_Cartn_transform_axes (char)
A description of the relative alignment of the crystal cell axes to the Cartesian orthogonal axes as applied in the transformation matrix _atom_sites_Cartn_tran_matrix_.
Example(s): 'a parallel to $x$; $b$ in the plane of $y \& z$ '

```
_atom_sites_solution_primary
_atom_sites_solution_secondary
_atom_sites_solution_hydrogens (char)
```

Codes which identify the methods used to locate the initial atomic sites. The *_primary code identifies how the first atom sites were determined; the *_secondary code identifies $^{\text {s }}$ how the remaining non-hydrogen sites were located; and the *_hydrogens code identifies how the hydrogens were located.

$$
\begin{array}{ll}
\text { difmap } & \text { difference Fourier map } \\
\text { vecmap } & \text { real-space vector search } \\
\text { heavy } & \text { heavy-atom method } \\
\text { direct } & \text { structure-invariant direct methods } \\
\text { geom } & \text { inferred from neighbouring sites } \\
\text { disper } & \text { anomalous-dispersion techniques } \\
\text { isomor } & \text { isomorphous structure methods }
\end{array}
$$

_atom_type_analytical_mass_\% (numb)
Mass percentage of this atom type derived from chemical anal$y s i s$.
Appearance in list; yes. If looped, _atom_type_symbol must be present in the same list. The permitted range is $0 \cdot 0 \rightarrow \infty$.

## _atom_type_description

(char)
A description of the atom(s) designated by this atom type. In most cases this will be the element name and oxidation state of a single atom species. For disordered or nonstoichiometric structures it will describe a combination of atom species.
Appearance in list: yes. If looped, _atom_type_symbol must be present in the same list.
Example(s): deuterium, $0.34 \mathrm{Fe}+0.66 \mathrm{Ni}$
_atom_type_number_in_cell
(numb)
Total number of atoms of this atom type in the unit cell.
Appearance in list: yes. If looped, _atom_type_symbol must be present in the same list. The permitted range is $0 \rightarrow \infty$.
_atom_type_oxidation_number (numb)
Formal oxidation state of this atom type in the structure.
Appearance in list: yes. If looped, _atom_type_symbol must be present in the same list. Where no value is given, the assumed value is ' 0 '. The permitted range is $-6 \rightarrow 6$.
-atom_type_radius_bond $\quad$ (numb)

The effective intra- and intermolecular bonding radii of this atom type.
Appearance in list: yes. If looped, _atom_type_symbol must be present in the same list. The permitted range is $0 \cdot 0 \rightarrow 4.0$. The units extensions are: ' ( (ångströms *1.0) ' $-\mathrm{pm}^{*}$ (picometres /100.) '_nm' (nanometres *10.).

|  |
| :---: |
|  |
| om |
| ato |
| om |
|  |
|  |
|  |

(numb)
The Cromer-Mann scattering-factor coefficients used to calculate the scattering factors for this atom type. May be entered in any order. See International Tables for X-ray Crystallography, Vol. IV, Table 2.2B (1974); or International Tables for Crystallography, Vol. C, Tables 6.1.1.4 and 6.1.1.5 (1991).
Appearance in list: yes. If looped, _atom_type_symbol must be present in the same list.

## _atom_type_scat_dispersion_imag <br> _atom_type_scat_dispersion_real

(numb)
The imaginary and real components of the anomalous dispersion scattering factors, $f^{\prime \prime}$ and $f^{\prime}$ (in electrons) for this atom type and the radiation given in _diffrn_radiation_wavelength.
Appearance in list: yes. If looped, _atom_type_symbol must be present in the same list. Where no value is given, the assumed value is ' 0.0 '.

## _atom_type_scat_source

(char)
Reference to source of scattering factors used for this atom type. Appearance in list: yes. If looped, _atom_type_symbol must be present in the same list.
Example(s): 'International Tables Vol. IV Table 2.4.6B'

## _atom_type_scat_versus_stol_list

(char)
A table of scattering factors as a function of $(\sin \theta) / \lambda$. This table should be well commented to indicate the items present. Regularly formatted lists are strongly recommended

Appearance in list: yes. If looped, _atom_type_symbol must be present in the same list.

## _atom_type_symbol

(char)
The code used to identify the atom specie(s) representing this atom type. Normally this code is the element symbol. The code may be composed of any character except an underline with the additional proviso that digits designate an oxidation state and must be followed by $\mathrm{a}+$ or - character.
Appearance in list: yes.
Example(s): C. Cu $2+$, H(SDS), dummy, FeNi

## _audit_creation_date

(char)
A date that the CIF was created. The date format is yy-mm-dd.

[^2]_audit_creation_method
(char)
A description of how data was entered into the CIF.
Example(s): 'spawned by the program QBEE'
_audit_update_record
(char)
$\bar{A}$ record of any changes to the CIF. The update format is a date (yy-mm-dd) followed by a description of the changes. The latest update entry is added to the bottom of this record.
Example(s): 90-c7-15 Updated by the co-editor'
\[

$$
\begin{aligned}
& \text { cell_angle_alpha } \\
& \text { _cell_angle_beta } \\
& \text { _cell_angle_gamma }
\end{aligned}
$$
\]

(numb)
Unit-cell angles in degrees of the reported structure. The values of _refln_index_h, *_k, *_l must correspond to the cell defined by these values and _cell_length_a, *_b and *_c. The values of _diffrn_refln_index_h, *_k, *_l may not correspond to these values if a cell transformation took place following the measurement of diffraction intensities. See also _diffrn_reflns_transf_matrix_.
E.s.d. expected: yes. Default e.s.d. value: $0 \cdot 0$. Where no value is given, the assumed value is ' 90.0 '. The permitted range is $0.0 \rightarrow 180.0$.
_cell_formula_units_z
(numb)
The number of the formula units in the unit cell as specified by _chemical_formula_structural,
_chemical_formula_moiety or _chemical_formula_sum.
The permitted range is $1 \rightarrow \infty$.

## _cell_length_a <br> _cell_length_b <br> _cell_length_c

(numb)
Unit-cell lengths corresponding to the structure reported. The values of _refln_index_h, *_k, *_1 must correspond to the cell defined by these values and _cell_angle_ values. The values of _diffrn_refln_index_h, *_k, *_l may not correspond to these values if a cell transformation took place following the measurement of diffraction intensities. See also _diffrn_reflns_transf_matrix_.
E.s.d. expected: yes. Default e.s.d. value: 0.0 . The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ', (ăngströms *1.0) ' -Pm ' (picometres /100.) '_nm' (nanometres *10.).
_cell_measurement_pressure
(numb)
The pressure at which the unit-cell parameters were measured (not the pressure used to synthesize the sample).
E.s.d. expected: yes. Default e.s.d. value: 0.0. The units extensions are: ', (kilopascals *1.0) '_GPa' (gigapascals *1.0E+6).
_cell_measurement_radiation (char) Description of the radiation used to measure the unit-cell data. See also _cell_measurement_wavelength.
Example(s): neutron, 'Cu $k \backslash a '$, synchrotron

$$
\begin{aligned}
& \text { _cell_measurement_refln_index_h } \\
& \text { _cell_measurement_refln_index_k } \\
& \text { _cell_measurement_refln_index_1 }
\end{aligned}
$$

(numb)
Miller indices of a reflection used for unit-cell measurements.
Appearance in list: yes.

(numb)
Theta angle in degrees for the reflection used for unit-cell measurement with the indices _cell_measurement_refln_index_.
Appearance in list: yes. If looped, _cell_measurement_refln_index_ must be present in the same list. The permitted range is $0.0 \rightarrow 90.0$.

```
_cell_measurement_reflns_used
```

(numb)
The total number of reflections used to determine the unit cell. These reflections may be specified as _cell_measurement_refln_ data items.

## _cell_measurement_temperature

(numb)
The temperature at which the unit-cell parameters were measured (not the temperature of synthesis).
E.s.d. expected: yes. Default e.s.d. value: 0.0 . The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' (Kelvin +0) '_C' (Celsius +273.0 ).

(numb)
The maximum and minimum theta angles in degrees of reflections used to measure the unit cell.

The permitted range is $0.0 \rightarrow 90.0$.

## _cell_measurement_wavelength (numb)

The wavelength of the radiation used to measure the unit cell. If this is not specified, the wavelength is assumed to be the same as that given in _diffrn_radiation_wavelength.
The permitted range is $0 \cdot 0 \rightarrow \infty$. The units extensions are: ', (ångströms *1.0) ' $\mathrm{pm}^{\prime}$ (picometres /100.) '_nm' (nanometres *10.).

```
_cell_special_details
```

(char)
A description of special aspects of the cell choice, noting possible alternative settings.

```
Example(s): pseudo-orthorhombic, 'standard setting from 45
deg rotation around c'
```

_cell_volume (numb)
Volume calculated from _cell_length_ and _cell_angle_ values.
E.s.d. expected: yes. Default e.s.d. value: 0.0 . The permitted range is $0 \cdot 0 \rightarrow \infty$. The units extensions are: ' (cubic ångströms *1.0) ' ${ }^{*} \mathrm{pm}^{\prime}$ (cubic picometres $/ 1.0 \mathrm{E}+6$ ) ' nm ' (cubic nanometres *1000.).

## _chemical_compound_source <br> (char)

Description of the source of the compound under study, or of the parent molecule if a simple derivative is studied. This includes the place of discovery for minerals or the actual source of a natural product.
Example(s): 'Erom Norilsk (USSR)', 'Extracted from the bark of Cinchona Na:uralis'
_chemical_conn_atom_charge
(numb)
The net integer charge assigned to this atom. This is the formal charge assignment normally found in chemical diagrams.
Appearance in list: yes. If looped, _chemical_conn_atom_type_symbol must be present in the same list. Where no value is given, the assumed value is ' 0 '. The permitted range is $-6 \rightarrow 6$.
Example(s): 1 (for an ammonium nitrogen), - 1 (for a chloride ion)
_chemical_conn_atom_display_x
(numb)
The 2D Cartesian coordinates $(x, y)$ of the position of this atom in a recognizable chemical diagram. The coordinate origin is at the lower left corner, the $x$ axis is horizontal and the $y$ axis is vertical. The coordinates must lie in the range 0.0 to 1.0 . These coordinates can be obtained from projections of a suitable uncluttered view of the molecular structure. If absent, values will be assigned by the joumals' or database staff.
Appearance in list: yes. If looped, _chemical_conn_atom_type_symbol must be present in the same list. The permitted range is $0.0 \rightarrow 1.0$.

```
_chemical_conn_atom_NCA
(numb)
```

The number of connected atoms excluding terminal hydrogen atoms.
Appearance in list: yes. If looped, _chemical_conn_atom_type_symbol must be present in the same list. The permitted range is $0 \rightarrow \infty$.
_chemical_conn_atom_NH (numb)
The total number of hydrogen atoms attached to this atom, regardless of whether they are included in the refinement or the _atom_site_ list. This number will be the same as _atom_site_attached_hydrogens only if none of the hydrogen atoms appear in the _atom_site_ list.
Appearance in list: yes. If looped, _chemical_conn_atom_type_symbol must be present in the same list. The permitted range is $0 \rightarrow \infty$.

## _chemical_conn_atom_number

(numb)
The chemical sequence number to be associated with this atom.
Appearance in list: yes. If looped, _chemical_conn_atom_type_symbol must be present in the same list. The permitted range is $1 \rightarrow \infty$.
_chemical_conn_atom_type_symbol (char)
A code identifying the atom type. This code must match an _atom_type_symbol code in the _atom_type_ list; or be a recognizable element symbol.
Appearance in list: yes.
chemical_conn_bond_atom_1
_chemical_conn_bond_atom_2
(numb)
Atom numbers which must match with chemical sequence numbers specified as _chemical_conn_atom_number values. These link the bond connection to the chemical numbering and atom sites.
Appearance in list: yes. The permitted range is $1 \rightarrow \infty$.

## chemical_conn_bond_type

(char)
The chemical bond type associated with the connection between the two sites _chemical_conn_bond_atom_1 and *_2.

| sing | single bond |
| :--- | :--- |
| doub | double bond |
| trip | triple bond |
| quad | quadruple bond |
| arom | aromatic bond |
| poly | polymeric bond |
| delo | delocalized double bond |
| pi | pi bond |

Appearance in list: yes. If looped, _chemical_conn_bond_atom_1 must be present in the same list. Where no value is given, the assumed value is 'sing'.
chemical_formula_appendix (These are notes onty) _chemical_formula_ items specify the composition and chemical properties of the compound. The formula data items must agree with those that specify the density, unit-cell and $Z$ values.

The following rules apply to the construction of the data items _chemical_formula_analytical, *_structural and *_sum. For the data item *_moiety the formula construction is broken up into residues or moieties, i.e. groups of atoms that form a molecular unit or molecular ion. The rules given below apply within each moiety but different requirements apply to the way that moieties are connected (see _chemical_formula_moiety).

1. Only recognized element symbols may be used.
2. Each element symbol is followed by a 'count' number. A count of ' 1 ' may be omitted.
3. A space or parenthesis must separate each element symbol and its count.
4. Where a group of elements is enclosed in parentheses, the multiplier for the group must follow the closing parentheses. That is, all element and group multipliers are assumed to be printed as subscripted numbers. [An exception to this rule exists for *_moiety formulae where pre- and post-multipliers are permitted for molecular units].
5. Unless the elements are ordered in a manner that corresponds to their chemical structure, as in _chemical_formula_structural, the order of the elements within any group or moiety should be: C, H followed by the other elements in alphabetical order of their symbol. This is the 'Hill' system used by Chemical Abstracts. This ordering is used in _chemical_formula_moiety and _chemical_formula_sum.
chemical_formula_analytical
Formula determined by standard chemical analysis including trace elements. See _chemical_formula_appendix for rules for writing chemical formulae. Parentheses are used only for e.s.d.'s.
```
Example(s): 'Fe2.45(2) Nil.60(3) S4'
```


## _chemical_formula_moiety

(char)
Formula with each discrete bonded residue or ion shown as a separate moiety. See above _chemical_formula_appendix for rules for writing chemical formulae. In addition to the general formulae requirements, the following rules apply:

1. Moieties are separated by commas ' $\quad$ '.

2 . The order of elements within a moiety follows general rule 5 in _chemical_formula_appendix.
3. Parentheses are not used within moieties but may surround a moiety. Parentheses may not be nested.
4. Charges should be placed at the end of the moiety. The charge ' + ' or ' - ' may be preceded by a numerical multiplier and should be separated from the last (element symbol + count) by a space. Pre- or post-multipliers may be used for individual moieties.

Example(s): 'C7 $\mathrm{H} 4 \mathrm{Cl} \mathrm{Hg} \mathrm{N} \mathrm{O} 3 \mathrm{~S}^{\prime}$
'C12 H17 N4 O S 1+, C6 H2 N3 O7 1-'
' C 12 H16 N2 O6, $5(\mathrm{H} 2 \mathrm{Ol})^{\prime}$
, (Cd 2+)3, (C6 N6 Cr 3-)2, $2(\mathrm{H} 2 \mathrm{O})^{\prime}$
_chemical_formula_structural (char)
See above _chemical_formula_appendix for the rules for writing chemical formulae for inorganics, organometallics, metal complexes etc., in which bonded groups are preserved as discrete entities within parentheses, with post-multipliers as required. The order of the elements should give as much information as possible about the chemical structure. Parentheses may be used and nested as required. This formula should correspond to the structure as actually reported, i.e. trace elements not included in atom type and atom site data should not be included in this formula (see also _chemical_formula_analytical).

_chemical_formula_sum
(char)
See above _chemical_formula_appendix for the rules for writing chemical formulae in which all discrete bonded residues and ions are summed over the constituent elements, following the ordering given in general rule 5 in _chemical_formula_appendix. Parentheses are not normally used.

Example(s): 'Cl8 419 N7 O8 $\mathrm{S}^{\prime}$

## _chemical_formula_weight <br> (numb)

Formula mass in daltons. This mass should correspond to the formulae given under _chemical_formula_structural, *_moiety or *_sum and, together with the $Z$ value and cell parameters, should yield the density given as _exptl_crystal_density_diffrn.
The permitted range is $1.0 \rightarrow \infty$.
_chemical_formula_weight_meas (numb)
Formula mass in daltons measured by a non-diffraction experiment.
The permitted range is $1.0 \rightarrow \infty$.
_chemical_melting_point (numb)
The melting point of the crystal.
The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' (Kelvin +0 ) '_C' (Celsius +273.0).
chemical_name_common
(char)
Trivial name by which compound is commonly known.
Example(s): 1-bromoestradiol

[^3]_chemical_name_structure_type (char)
Commonly used structure-type name. Usually only applied to minerals or inorganic compounds.

```
Example(s): perovskite, sphalerite, A15
```

```
_chemical_name_systematic
IUPAC or Chemical Abstracts full name of compound.
IUPAC or Chemical Abstracts full name of compound.
```

(char)

```
Example(s): 1-bromoestra-1, 3,5(10)-triene-3,17\b-diol
```

```
computing_cell_refinement
_computing_data_collection
_computing_data_reduction
-computing molecular graphics
_computing_publication_material
    computing_structure_refinement
_computing_structure_solution
```

(char)

Software used in the processing of this data. Give the program or package name and a brief reference.

Example(s): 'CAD4 (Enraf-Nonius)'
'DIFDAT, SORTRE, ADDREF (XTAL3.0, 1990)'
'FRODO (Jones, 1986) \& ORTEP (Johnson, 1965)'
'CRYSTALS (Watkin, 1988)'
'SHELX85 (Sheldrick, 1985)'
_database_code_CAS
_database_code_CSD
_database_code_ICSD
_database_code_MDF
-database_code_NBS
_database_code_PDF
(char)
The codes are assigned by databases: Chemical Abstracts; Cambridge Structural (organic and metal-organic compounds); Inorganic Crystal Structure; Metals Data File (metal structures); NBS (NIST) Crystal Data Database (lattice parameters) and the Powder Diffraction File (JCPDS/ICDD).

```
_database_journal_ASTM
_database_journal_CSD
```

(char)
The ASTM coden for a journal as given in the Chemical Source List and the journal code used in the Cambridge Structural Database.

## diffrn_ambient_pressure

(numb)
The pressure at which the diffraction data were measured.
E.s.d. expected: yes. Default e.s.d. value: 0.0 . The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' ( (kilopascals *1.0) '_GPa' (gigapascals *1.0E+6).

## _diffrn_ambient_temperature.

(numb)
The mean temperature at which the diffraction data were measured.
E.s.d. expected: yes. Default e.s.d. value; 0.0 . The permitted range is $0.0 \rightarrow \infty$. The units extensions are:' (Kelvin +0) '_C' (Celsius +273.0 ).
_diffrn_attenuator_code
(char)
A code associated with a particular attenuator setting. This code is referenced by the _diffrn_refln_attenuator_code
which is stored with the diffraction data. See _diffrn_attenuator_scale.
Appearance in list: yes.
_diffrn_attenuator_scale (numb)
The intensity scale associated with a particular attenuator setting identified by _diffrn_attenuator_code.
Appearance in list: yes. If looped, _diffrn_attenuator_code must be present in the same list. The permitted range is $1.0 \rightarrow \infty$.
_diffrn_measurement_device
(char)
Description of the diffractometer or camera used to measure the diffraction intensities.

Example(s): 'Gandolfi 114 mm powder camera'
_diffrn_measurement_method
(char)
Method used to measure diffraction data.
Example(s): 'profile data from theta/2theta scans'

```
_diffrn_orient_matrix_type
(char)
```

A description of the orientation matrix type and how it should be applied to define the orientation of the crystal precisely with respect to the diffractometer axes.

```
diffrn_orient_matrix_UB_11
_diffrn_orient_matrix_UB_12
_diffrn_orient_matrix_UB_13
_diffrn_orient_matrix_UB_21
_diffrn_orient_matrix_UB_22
_diffrn_orient_matrix_UB_23
_diffrn_orient_matrix_UB_31
_diffrn_orient_matrix_UB_32
_diffrn_orient_matrix_UB_33
```

(numb)
The elements of the diffractometer orientation matrix. These define the dimensions of the reciprocal cell and its orientation to the local diffractometer axes. See _diffrn_orient_matrix_type.
_diffrn_orient_refln_angle_chi
_diffrn_orient_refln_angle_kappa
_diffrn_orient_refln_angle_phi
_diffrn_orient_refln_angle_psi (numb)
Diffractometer angles in degrees of a reflection used to define the orientation matrix. See _diffrn_orient_matrix_UB_ and _diffrn_orient_refln_index_h, *_k and *_l.
Appearance in list: yes. If looped, _diffrn_orient_refln_index_ must be present in the same list.

[^4]_diffrn_radiation_detector
(char)
The detector used to measure the diffraction intensities. Appearance in list: both.

Example(s): scintillation, EiI, 'video tube', 'Kodak II film'
_diffrn_radiation_detector_dtime (numb)

The deadtime in microseconds of _diffrn_radiation_detector.

Appearance in list: both. The permitted range is $0 \cdot 0 \rightarrow \infty$.

## _diffrn_radiation_filter_edge

(numb)
Absorption edge of the radiation filter used.
Appearance in list: both. The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' ' (ångströms *1.0) '_pm' (picometres /l00.) '_nm' (nanometres *10.).

## _diffrn_radiation_inhomogeneity

(numb)
Half-width in millimetres of the incident beam in the perpendicular direction with respect to the diffraction plane.

Appearance in list: both. The permitted range is $0 \cdot 0 \rightarrow \infty$.


#### Abstract

_diffrn_radiation_monochromator (char) The method used to obtain monochromatic radiation. If a monochromator crystal is used the material and the indices of the Bragg reflection are specified.

Appearance in list: both. Example(s): 'Zr filter', 'Ge 220', none, 'equator:al mounted graphite'


diffrn_radiation_polarisn_norm
The angle in degrees of the perpendicular polarisation
component to the diffraction plane. See component to the diffraction
Appearance in list: both. The permitted range is $0 \cdot 0 \rightarrow \infty$.

## _diffrn_radiation_polarisn_ratio

(numb)
Polarisation ratio of the diffraction beam incident on the crystal. It is the ratio of the perpendicularly polarised to the parallel polarised component of the radiation. The perpendicular component forms an angle of _diffrn_radiation_polarisn_norm to the normal to the diffraction plane of the sample (i.e. the plane containing the incident and reflected beams).

Appearance in list: both. The permitted range is $0.0 \rightarrow \infty$.

## _diffrn_radiation_source

(char)
The source of radiation.
Appearance in list: both.
Example(s): 'RU2 Rigaku Denki rotating Cu anode', 'fine focus Philips Mo tube', '5MeV synchrotron', 'HIFAR reactor'

## _diffrn_radiation_type

(char)
The nature of the radiation.
Appearance in list: both.
Example(s): 'Cu K\a', neutron, electron
_diffrn_radiation_wavelength
(numb)
The radiation wavelength.
Appearance in list: both. The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' ( (ångströms *1.0) '_pm' (picometres /100.) '_nm' (nanometres *10.).

## _diffrn_radiation_wavelength id (char)

The code identifying each value of _diffrn_radiation_wavelength. The _diffrn_radiation_ data is looped when multiple wavelengths are used. This code is used to link with the _diffrn_refln_ list. It must match with one of the _diffrn_refln_wavelength_id codes.
Appearance in list: yes. If looped, _diffrn_radiation_wavelength must be present in the same list.
Example(s): x1, x2, neut

## _diffrn_radiation_wavelength_wt

(numb)
The relative weight of a wavelength identified by the code _diffrn_radiation_wavelength_id in the list of wavelengths.
Appearance in list: yes. If looped, _diffrn_radiation_wavelength_id must be present in the same list. The permitted range is $0.0 \rightarrow 1.0$. Where no value is given, the assumed value is ' 1.0 '.

```
_diffrn_refln_angle_chi
diffrn_refln_angle_kappa
_diffrn_refln_angle_omega
_diffrn_refln_angle_phi
_diffrn_refln_angle_psi
```

_diffrn_refln_angle_theta (numb)

The diffractometer angles in degrees of a reflection. These correspond to the specified orientation matrix and the original measured cell before any subsequent cell transformations.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list.

```
_diffrn_refln_attenuator_code
```

(char)
The code identifying the attenuator setting for this reflection. This code must match one of the _diffrn_attenuator_code values.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list.

```
_diffrn_refln_counts_bg_1
_diffrn_refln_counts_bg_2
-diffrr_refln-counts net
_diffrn_refln_counts_peak
_diffrn_refln_counts_total
```

(numb)
The diffractometer counts for the measurements: background before the peak, background after the peak, net counts after background removed, counts for peak scan or position, and the total counts (background plus penk).
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list. The permitted range is $0 \rightarrow \infty$.

## _diffrn_refln_crystal_id

(char)
Code identifying each crystal if multiple crystals are used. Is used to link with _exptl_crystal_id in the _exptl_crystal_ list. Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list.

```
_diffrn_refln_detect_slit_horiz
_diffrn_refln_detect_slit_vert
```

(numb)
Total horizontal and vertical slit apertures in degrees.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list. The permitted range is $0.0 \rightarrow 90 \cdot 0$.
_diffrn_refln_elapsed_time
(numb)
Elapsed time from the start of diffraction measurement to the measurement of this intensity.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list. The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' (minutes *l.0) '_sec' (seconds /60.) '_hr' (hours *60.).

```
_diffrn_refln_index_h
__diffrn_refln_index_k
_diffrn_refln_index_1
```

(numb)
Miller indices of a diffraction reflection. These need not match the _refln_index_h, *_k, *_l values if a transformation of the original measured cell has taken place. Details of the cell transformation are described in _diffrn_reflns_reduction_process. See also _diffrn_reflns_transf_matrix_.
Appearance in list: yes.

```
_diffrn_refln_intensity_net
_diffrn_refln_intensity_sigma
```

(numb)
Net intensity and e.s.d. calculated from the diffraction counts after the attenuator and standard scales have been applied.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list. The permitted range is $0 \rightarrow \infty$.
_diffrn_refln_scale_group_code (char)
The code identifying the scale appling to this reflection. This code must match with a specified _diffrn_scale_group_code value.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list.

```
_diffrn_refln_scan_mode
```

(char)
The code identifying the mode of scanning with a diffractometer. See _diffrn_refln_scan_width and _diffrn_refln_scan_mode_backgd.
om $\quad \omega$ scan
ot $\quad \omega / 2 \theta$ scan
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list.
_diffrn_refln_scan_mode_backgd (char)
The code identifying the mode of scanning a reflection to measure the background intensity.
st stationary counter background
mo moving counter background

Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list.
_diffrn_refln_scan_width (numb)
The scan width in degrees of the scan mode defined by the code _diffrn_refln_scan_mode.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list. The permitted range is $0.0 \rightarrow 90.0$.

## _diffrn_refln_sint/lambda

(numb)
The $\sin \theta$ over wavelength value for this reflection.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list. The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ', (reciprocal ångströms ${ }^{*} 1.0$ ) '_pm' (reciprocal picometres *100.) '_nm' (reciprocal nanometres /10.).
_diffrn_refln_standard_code (char)
The code identifying that this reflection was measured as a standard intensity. This is the case if the code matched one of the _diffrn_standard_refln_code values.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list.
Example(s): 1, 2, 3, s1, s2, s3, A, B, C
_diffrn_refln_wavelength
(numb)
The mean wavelength of radiation used to measure diffraction for this reflection. This is an important parameter for data collected using energy dispersive detectors or the Laue method.
Appearance in list: yes. If looped, _diffrn_refln_index_ must be present in the same list. The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' (ångströms *1.0) ' pm ' (picometres /100.) '_nm' (nanometres *10.).
diffrn_refln_wavelength_id (char)

Code identifying the wavelength in the _diffrn_radiation_ list.
Appearance in list: yes. lf looped, _diffrn_refln_index_ must be present in the same list.
Example(s): $\times 1, \times 2$, neut
diffrn_reflns_av_R_equivalents (numb) The residual [ $\left.\sum|a v \Delta(I)| / \sum|a v(I)|\right]$ for symmetry-equivalent reflections used to calculate the average intensity $a v(I)$. The $a v \Delta(I)$ term is the average difference between $a v(I)$ and the individual intensities.
The permitted range is $0 \cdot 0 \rightarrow \infty$.
_diffrn_reflns_av_sigmal/netI (numb) $\overline{\text { Measure }\left[\bar{\sum}|\sigma(I)| / \bar{\sum}|\overline{n e t}(I)|\right] \text { for all measured reflections. }}$ The permitted range is $0 \cdot 0 \rightarrow \infty$.
diffrn_reflns_limit_h_max
_diffrn_reflns_limit_h_min
_diffrn_reflns_limit_k_max
_diffrn_reflns_limit_k_min
_diffrn_reflns_limit_l_max
_diffrn_reflns_limit_l_min
(numb)
The index limits of the diffraction reflection data specified by _diffrn_refln_index_h, *_k, *_l.
_diffrn_reflns_number
(numb)
The total number of measured diffraction data.
The permitted range is $0 \rightarrow \infty$.

## _diffrn_reflns_reduction_process

(char)
A description of the process used to reduce the intensity data into structure-factor magnitudes.

Example(s): 'data averaged using Fisher test'

## _diffrn_reflns_theta_max <br> _diffrn_reflns_theta_min

Theta angle limits in degrees for the measured diffraction data. The permitted range is $0.0 \rightarrow 90.0$.

```
_diffrn_reflns_transf_matrix_11
_diffrn_reflns_transf_matrix_12
_diffrn_reflns_transf_matrix_13
_diffrn_reflns_transf_matrix_21
_diffrn-reflns-transf matrix_22
_diffrn_reflns_transf_matrix_23
_diffrn_reflns_transf_matrix_31
__diffrn_reflns_transf_matrix_32
__diffrn_reflns_transf_matrix_33
```

(numb)
Elements of the matrix used to transform the diffraction reflection indices _diffrn_refln_index_h, *_k, *_1 into the _refln_index_h, *_k, *_1 indices.

$$
\left(\begin{array}{lll}
h & k & l
\end{array}\right)_{\text {diffraction }}\left(\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right)=\left(\begin{array}{lll}
h^{\prime} & k^{\prime} & l^{\prime}
\end{array}\right)
$$

## _diffrn_scale_group_code

(char)
The code identifying a specific measurement group (e.g. for multi-film or multi-crystal data). The code must match a _diffrn_refln_scale_group_code in the reflection list.
Appearance in list: yes.
Example(s): 1, 2, 3, s1, A, B, c1, c2, c3
_diffrn_scale_group_I_net
(numb)
The intensity scale for a specific measurement group identified by _diffrn_scale_group_code.
Appearance in list: yes. The permitted range is $0.0 \rightarrow \infty$.

## diffrn_special_details

(char)
Special details of the diffraction measurement process. Should include information about source instability, crystal motion, degradation and so on.

```
diffrn_standard_refln_code
```

(char)
The code identifying a reflection measured as a standard reflection with the indices _diffrn_standard_refln_index_. This is the same code as the _diffrn_refln_standard_code in the _diffrn_refln_ list.
Appearance in list: yes. If looped, _diffrn_standard_refln_index_ must be present in the same list.
Example(s): 1, 2, 3, s1, A, B

$$
\begin{aligned}
& \text { _diffrn_standard_refln_index_h } \\
& \text { _diffrn_standard_refln_index_k } \\
& \text { _diffrn_standard_refln_index_l }
\end{aligned}
$$

(numb)

Miller indices of standard reflections used in the diffraction measurement process.
Appearance in list: yes.
_diffrn_standards_decay_\%
(numb)
The percentage variation of the mean intensity for all standard reflections.
The permitted range is $0.0 \rightarrow \infty$.
diffrn_standards_interval_count
_diffrn_standards_interval_time (numb)
The number of reflection intensities, or the time in minutes, between the measurement of standard reflection intensities.
The permitted range is $0 \rightarrow \infty$.
_diffrn_standards_number (numb)
The number of unique standard reflections used in the diffraction measurements.
The permitted range is $0 \rightarrow \infty$.
_diffrn_standards_scale_sigma (numb)
The e.s.d. of the individual mean standard scales applied to the intensity data.
The permitted range is $0.0 \rightarrow \infty$.

## exptl_absorpt_coefficient_mu

(numb)
The absorption coefficient $\mu$ calculated from atomic content of the cell, the density and the radiation wavelength.
The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' ' (reciprocal millimetres ${ }^{*} 1.0$ ) ' $\_$c⿴囗 (reciprocal centimetres $/ 10$ ).
_exptl_absorpt_correction_T_max
(numb)
The maximum and minimum transmission factors for the crystal and radiation. These factors are also referred to as the absorption correction $A$ or $1 / A^{*}$.
The permitted range is $0.0 \rightarrow 1.0$.

> _exptl_absorpt_correction_type
(char)
The absorption correction type and method.
analytical analytical from crystal shape
integration integration from crystal shape
empirical empirical from diffraction data
refdelf refined from $\Delta F$
sphere spherical
$\begin{array}{ll}\text { cylinder } & \text { cylindrical } \\ \text { none } & \text { no absorption correction applied }\end{array}$
_exptl_absorpt_process_details
(char)
Description of the absorption process applied to the data.
Example(s): 'Tompa analytical'
_exptl_crystal_colour
(char)
The colour of the crystal.
Example(s): 'Dark green'
_exptl_crystal_density_diffrn
(numb)
Density values calculated from crystal cell and contents. The units are megagrams per cubic metre (grams per cubic centimetre).
The permitled range is $0.0 \rightarrow \infty$.

## _exptl_crystal_density_meas (numb)

Density values measured using standard chemical and physical methods. The units are megagrams per cubic metre (grams per cubic centimetre).
The permitted range is $0.0 \rightarrow \infty$.

## _exptl_crystal_density_meas_temp (numb)

Temperature in Kelvin that _exptl_crystal_density_meas was determined at.
The permitted range is $0.0 \rightarrow \infty$.
_exptl_crystal_density_method
(char)
The method used to measure _exptl_crystal_density_meas.

## _exptl_crystal_description

(char)
A description of the crystal quality and habit. Dimensional data is better placed in the _exptl_crystal_face_ data items.

```
_exptl_crystal_F_000
```

(numb)
The number of electrons in the crystal unit cell $F(000)$.
The permitted range is $1 \rightarrow \infty$.

```
_exptl_crystal_face_diffr_chi
_exptl_crystal_face_diffr_kappa
_exptl_crystal_face_diffr_phi
_exptl_crystal_face_diffr_psi
```

(numb)
The diffractometer angle settings in degrees for a specific crystal face associated with _exptl_crystal_face_perp_dist.
Appearance in list: yes. If looped, _exptl_crystal_face_perp_dist must be present in the same list.

```
_exptl_crystal_face_index_h
_exptl_crystal_face_index_k
_exptl_crystal_face_index_1
```

(numb)
Miller indices of the crystal face associated with the value _exptl_crystal_face_perp_dist.
Appearance in list: yes. If looped, _exptl_crystal_face_perp_dist must be present in the same list.

```
_exptl_crystal_face_perp_dist
```

(numb)
The perpendicular distance of the face to centre of rotation of the crystal.
Appearance in list: yes. The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' , (millimetres *1.0) '_cm' (centimetres *10.0).

## _exptl_crystal_id

(char)
Code identifying each crystal if multiple crystals are used. Is used to link with _diffrn_refln_crystal_id in diffraction data and with _refln_crystal_id in the _refln_ list.
Appearance in list: yes.

## _exptl_crystal_preparation

(char)
Details of crystal growth and preparation of the crystal (e.g. mounting) prior to the diffraction measurements.

Example(s): 'mounted in an argon-filled quartz capillary'
exptl_crystal_size_max
-exptl_crystal_size_mid
-expt__crystal_size_min
_exptl_crystal_size_rad
The maximum, medial and minimum dimensions of the crystal. If the crystal is a sphere or a cylinder then the *_rad item is the radius. These may appear in a list with _exptl_crystal_id if multiple crystals used in the experiment.
Appearance in list: both. If looped, _exptl_crystal_id must be present in the same list. The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' (millimetres *1.0) '_cm' (centimetres *10.0).
_exptl_crystals_number (numb)
The total number of crystals used in the data measurement.
The permitted range is $1 \rightarrow \infty$.
_exptl_special_details (char) Any special information about the experimental work prior to the diffraction measurement. See also _exptl_crystal_preparation.
 _geom_angle_atom_site_label_1, *_2 and *_3. Site at *_2 is at the apex of the angle.
Appearance in list: yes. If looped, _geom_angie_atom_site_label_ must be present in the same list. E.s.d. expected: yes. Default e.s.d. value: 0.0 .
geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
(char)
The labels of the three atom sites which define the angle specified by _geom_angle. These must match labels specified as _atom_site_label in the atom list. Label 2 identifies the site at the apex of the angle.
Appearance in list: yes.
_geom_angle_publ_flag (char)
This code signals if the angle is referred to in a publication or should be placed in a table of significant angles.
no do not include angle in special list
yes do include angle in special list
Appearance in list: yes. If looped, _geom_angle_atom_site_label_ must be present in the same list.

```
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_2
```

_geom_angle_site_symmetry_3 (char)

The symmetry code of each atom site as the symmetry equivalent position number ' $n$ ' and the cell translation number ' mmm '. These numbers are combined to form the code ' $n \mathrm{mmm}$ ' or $n_{n} m m m$. ' $n$ ' is the sequence number of the symmetry elements as listed in _symmetry_equiv_pos_as_xyz. 'mmm' are the concatenated cell translations along $x, y, z$ with respect to the base number 555 . The symmetry transformation is applied to the coordinates given by _atom_site_fract_x, *_y, *_z identified by _atom_site_label. If there are no cell translations the translation number may be omitted. If no symmetry operations or translations are applicable then a single period '.' may be used.

Appearance in list: yes. If looped, _geom_angle_atom_site_label_ must be present in the same list.
Example(s): (no symmetry or translation to site), 4 (4th symmetry operation applied), 7 645 ( 7 th symm. posn; $+a$ on $x ;-b$ on $y$ )

## _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2

(char)
The labels of two atom sites that form a bond. These must match labels specified as _atom_site_label in the atom list.
Appearance in list: yes

## _geom_bond_distance

(numb)
The intramolecular bond distance.
Appearance in list: yes. If looped, _geom_bond_atom_site_label_ must be present in the same list. E.s.d. expected: yes. Default e.s.d. value: 0.0 . The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' , (ångströms *1.0) The units extensions are: '_pm' (picometres /100.) '_nm' (nanometres *10.).
_geom_bond_publ_flag
(char)
Signals if the bond distance is referred to in a publication or should be placed in a list of special bond distances.
no do not include bond in special list
yes do include bond in special list
Appearance in list: yes. If looped, _geom_bond_atom_site_label_
must be present in the same list.
_geom_bond_site_symmetry_1
_geom_bond_site_symmetry_2
(char)
The symmetry code of each atom site as the symmetry-equivalent position number ' $n$ ' and the cell translation number ' mmm '. These numbers are combined to form the code ' n mmm ' or $n \_m m m$. ' $n$ ' is the sequence number of the symmetry elements as listed in _symmetry_equiv_pos_as_xyz. 'mmm' are the concatenated cell translations along $x, y, z$ with respect to the base number 555 . The symmetry transformation is applied to the coordinates given by _atom_site_fract_x, *_y, *_z identified by _atom_site_label. If there are no cell translations the translation number may be omitted. If no symmetry operations or translations are applicable then a single period $\because$ ' may be used.
Appearance in list: yes. If looped, _geom_bond_atom_site_label_ must be present in the same list.
Example(s): (no symmetry or translation to site), 4 (4th symmetry operation applied), 7_645 (7th symm. posn: $+a$ on $x:-b$ on $y$ )

```
_geom_contact_atom_site_label_1
_geom_contact_atom_site_label_2
```

(char)
The labels of two atom sites that are within contact distance. The labels must match _atom_site_label codes in the atom list. Appearance in list: yes.
_geom_contact_distance
(numb)
The interatomic contact distance.
Appearance in list: yes. If looped, _geom_contact_atom_site_label_ must be present in the same list. E.s.d. expected: yes. Default e.s.d. value: $0 \cdot 0$. The permitted range is $0 \cdot 0 \rightarrow \infty$. The units extensions are: ' ' (ångströms *1.0) The units extensions are: '_pm' (picometres /100.) '_nm' (nanometres *10.).

## _geom_contact_publ_flag

(char)
Signals if the contact distance is referred to in a publication or should be placed in a list of special contact distances.
no do not include distance in special list
yes do include distance in special list
Appearance in list: yes. If looped, _geom_contact_atom_site_label_ must be present in the same list.

## _geom_contact_site_symmetry_1

 _geom_contact_site_symmetry_2(char)
The symmetry code of each atom site as the symmetry equivalent position number ' $n$ ' and the cell translation number 'mmm'. These numbers are combined to form the code ' n mmm' or $n_{-} m m m$. ' $n$ ' is the sequence number of the symmetry elements as listed in _symmetry_equiv_pos_as_xyz. ' mmm ' are the concatenated cell translations along $x, y, z$ with respect to the base number 555 . The symmetry transformation is applied to the coordinates given by _atom_site_fract_x, *_y, *_z identified by _atom_site_label. If there are no cell translations the translation number may be omitted. If no symmetry operations or translations are applicable then a single period ' $\because$ may be used.
Appearance in list: yes. If looped, _geom_contact_atom_site_label_ must be present in the same list.
Example(s): • (no symmetry or translation to site), 4 (4th symmetry operation applied), ${ }^{7} 645$ (7th symm. posn; $+a$ on $x ;-b$ on $y$ )
_geom_special_details (char)
The description of geometrical information not covered by the existing _geom_ data names, such as least-squares planes.

## __geom_torsion

(numb)
The torsion angle in degrees bounded by the four atom sites identified by the _geom_torsion_atom_site_label_ codes. These must match labels specified as _atom_site_label in the atom list. The torsion angle definition should be that of Klyne, W. \& Prelog, V. (1960). Endeavour, 16, 521-528.

Appearance in list: yes. If looped, _geom_torsion_atom_site_label_ must be present in the same list. E.s.d. expected: yes. Default e.s.d. value: 0.0 .

```
_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
geom_torsion_atom_site_label_4 (char)
```

The labels of the four atom sites which define the torsion angle specified by _geom_torsion. These must match codes specified as _atom_site_label in the atom list. The torsion angle definition should be that of Klyne, W. \& Prelog, V. (1960). Endeavour, 16, 521-528. The vector direction *_label_2 to *_label_3 is the viewing direction, and the torsion angle is the angle of twist required to superimpose the projection of the vector site 2-site 1 onto the projection of the vector site 3 -site 4 . Clockwise torsions are positive, anticlockwise torsions are negative.
Appearance in list: yes.
_geom_torsion_publ_flag
(char)
This code signals if the angle is referred to in a publication or should be placed in a table of significant angles.
no do not include distance in special list
yes do include distance in special list
Appcarance in list: yes. If looped, _geom_torsion_atom_site_label_ must be present in the same list.

```
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
_geom_torsion_site_symmetry_4 (char)
```

The symmetry code of each atom site as the symmetry-equivalent position number ' $n$ ' and the cell translation number ' mmm '.

These numbers are combined to form the code ' n mmm' or $n_{n} \mathrm{mmm}$. ' $n$ ' is the sequence number of the symmetry elements as listed in _symmetry_equiv_pos_as_xyz. ' mmm ' are the concatenated cell translations along $x, y, z$ with respect to the base number 555 . The symmetry transformation is applied to the coordinates given by _atom_site_fract_x, *_y, *_z identified by _atom_site_label. If there are no cell translations the translation number may be omitted. If no symmetry operations or translations are applicable then a single period '.' may be used.
Appearance in list: yes. If looped, _geom_torsion_atom_site_label_ must be present in the same list.
Example(s): • (no symmetry or translation to site), 4 (4th symmetry operation applied), 7_645 (7th symm. posn; $+a$ on $x ;-b$ on $y$ )

```
journal_coden_ASTM
journal_coden_Cambridge
journal_coeditor_address
journal_coeditor_code
journal_coeditor_email
journal_coeditor_fax
journal_coeditor_name
journal_coeditor_notes
journal_coeditor_phone
journal_date_accepted
journal_date_from_coeditor
journal_date_to_coeditor
journal_date_printers_final
journal_date_printers_first
journal_date_proofs_in
journal_date_proofs_out
journal_date_recd_copyright
journal_date_recd_electronic
journal_date_recd_hard_copy
journal_issue
journal_name_full
journal_page_first
journal_page_last
journal_suppl_publ_number
journal_suppl_publ_pages
journal_techeditor_address
journal_techeditor_code
journal_techeditor_email
journal_techeditor_fax
journal_techeditor_name
journal_techeditor_notes
journal_techeditor_phone
journal_volume
_journal_year
```

Data items specified by the joumal staff.

## publ_author_address

(char)
The address of a publication author. If there is more than one author this will be looped with _publ_author_name.
Appearance in list: both.
Example(s):
; Department
Institute
Street
City and postcode COUNTRY
publ_author_name
(char)
The name of a publication author. If there are multiple authors they will be looped with _publ_author_address. The family name(s) followed by a comma, precedes the first names or initials.
Appearance in list: both.
Example(s): 'Bleary, Percival R.'
"O'Neil, F.K."
'Van den Bossche, G.'
'Yang, D.-L.'
'Simonov, Yu.A.
publ_contact_author
(char)
The name and address of the author submitting the manuscript and CIF. This is the person contacted by the journal editorial staff.

Example(s):
; Professor Dr. J.U. Blogs
Department of structural Chemistry
RRDD Institute of Technology
Building \#6-M57
Highho Street
Citytown 64664
COUNTRYHERE
;
publ_contact_author_email (char)
Email address in a form recognizable to international networks.
Example(s): name@ host. domain. country,
uur5@banjo.bitnet
publ_contact_author_fax
(char)
Facsimile telephone number with international code in parentheses.

Example(s): '(12) $34 \quad 947 \quad 7334^{\prime}$
publ_contact_author_phone
(char)
Telephone number with international code in parentheses and any extension number preceded by 'ext'.

Example(s): '(12) 349477330 ext 5543'
Publ_contact_letter (char)
A letter submitted to the journal editor by the contact author.
publ_manuscript_creation (char)
A description of the wordprocessor package and computer used to create the word processed manuscript stored as _publ_manuscript_processed.
Example(s): 'Tex file created by FrameMaker on a Sun 3/280'
publ_manuscript_incl_extra_item
Publ_manuscript_incl_extra_info
publ_manuscript_incl_extra_defn $\quad$ (char)

These data items are used to specify the need to include specific data into a manuscript which is not normally requested by the journal. *_item specifies the data name; *_info provides the reasons for the inclusion; and *_defn flags whether this is a standard definition or not (flags are 'yes' or 'no'). The example
shows how these three items are looped. Note that *_item names must be enclosed in single quotes.

## Appearance in list: yes.

```
Example(s):
'_atom_site_symmetry_multiplicity' 'special sites' yes
,_chemical_compound_source' 'rare material' yes
,__eflns_d_resolution_high' 'limited data a probiem' yes
,'_crysta!_magnetic_permeability' 'new quantity' no
```


## publ_manuscript_processed

(char)
The full manuscript of a paper (excluding possibly the figures and the tables) output in ASCII characters from a word processor. Information about the generation of this data item must be specified in the data item _publ_manuscript_creation.

## publ_manuscript_text

(char)
The full manuscript of a paper (excluding figures and possibly the tables) output as standard ASCII text.

## _publ_requested_coeditor_name

(char)
The Co-editor's name requested to process the submitted manuscript.

## publ_requested_journal

(char)
The journal's name requested for publication.

```
publ_section_title
publ_section_abstract
_publ_section_comment
publ_section_introduction
publ_section_experimental
publ_section_discussion
publ_section_acknowledgements
publ_section_references
_publ_section_figure_captions
_publ_section_table_legends (char)
```

The sections of a manuscript if submitted in parts.
As an alternative see _publ_manuscript_text and
_publ_manuscript_processed.
_refine_diff_density_max
_refine_diff_density_min
(numb)
The largest and smallest density in the final difference Fourier map.
E.s.d. expected: yes. Default e.s.d. value: 0.0 . The units extensions are: , (electrons per cubic ăngström *1.0) '_pm' (electrons per cubic picometre ${ }^{*}(1.0 \mathrm{E}+6)^{\prime} \mathrm{nm}$ ' (electrons per cubic nanometre $/ 1000$. .).

```
_refine_ls_abs_structure_details
```

(char)
The nature of the absolute structure and how it was determined. For example, to describe the nature of the Friedel data used.

```
_refine_ls_abs_structure_Flack
```

(numb)
This measure of absolute structure (enantiomorph or polarity) is defined in the paper by Flack. H. D. (1983). Acta Cryst. A39, 876-881.
E.s.d. expected: yes. Default e.s.d. value: 0.0 . The permitted range is $0.0 \rightarrow 1.0$.
_refine_ls_abs_structure_Rogers (numb)
This measure of absolute structure (enantiomorph or polarity) is defined in the paper by Rogers, D. (1981). Acta Cryst. A37, 734-741.
E.s.d. expected: yes. Default c.s.d. value: $0 \cdot 0$.
_refine_ls_extinction_coef (numb)
The extinction coefficient used to calculate the correction factor applied to the structure-factor data. The nature of the extinction coefficient is given in the definitions of _refine_ls_extinction_expression and _refine_ls_extinction_method. For the 'Zachariasen' method it will be the $r$ * value; for the ' $B-C$ type 1 isotropic' method it is the ' $g$ ' value, and for ' $B-C$ type 2 isotropic' corrections it is the ' $\rho$ ' value. Note that the magnitude of these values is usually of the order of 10000 .
E.s.d. expected: yes. Default e.s.d. value: $0 \cdot 0$.

Example(s): 3472 (52) (Zachariasen coefficient $r^{*}=0.347(5) \times 10^{4}$ )
_refine_ls_extinction_expression (char)
A description or reference of the extinction correction equation used to apply the data item _refine_ls_extinction_coef. This information must be sufficient to reproduce the extinction correction factors applied to the structure factors.

$$
\begin{aligned}
& \text { Example(s): 'Equ (22) p292 "Crystallographic Computing" } \\
& \text { Munksgaard : } 970 \text {. }
\end{aligned}
$$

[^5]A description of the extinction correction method applied with the data item _refine_ls_extinction_coef. This description should include information about the correction method 'BeckerCoppens` [Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-153| or 'Zachariasen' (Zachariasen, W.H. (1967). Acra Cryst. 23, 558-564]. The latter is sometimes referred to as the 'Larson' method [Larson, A. C. (1967). Acta Cryst. 23, 664-665] even though it employs Zachariasen's formula. The BeckerCoppens procedure is referred to as 'type l' when correcting secondary extinction dominated by the mosaic spread; as 'type $2^{\prime}$ when secondary extinction is dominated by particle size and includes a primary extinction component; and as 'mixed' when there is a mixture of types 1 and 2. For the $\mathrm{B}-\mathrm{C}$ method it is also necessary to set the mosaic distribution as either 'Gaussian' or 'Lorentzian': and the nature of the extinction as 'isotropic' or 'anisotropic'. Note that if either the 'mixed' or 'anisotropic' corrections are applied the multiple coefficients cannot be contained in *_extinction_coef and must be listed in _refine_special_details.
Where no value is given, the assumed value is 'Zachariasen'.
Example(s): 'B-C type 2 Gaussiar isotrop:c'
refine_ls_goodness_of_fit_all
_refine_ls_goodness_of_fit_obs
(numb)
The least-squares goodness-of-fit parameter $S$ for all data, and for observed data, after the final cycle of refinement. Ideally account should be taken of parameters restrained in the least squares. The goodness-of-fit parameter $S$ is defined as $S=\left[\sum\left(n\left|Y_{m}-Y_{c}\right|^{2}\right) /\left(N_{\text {ref }}-N_{\text {param }}\right)\right]^{1 / 2}$ where the sum is
over the specified reflection data; $N_{\text {ref }}$ is the number of reflections used in the refinement; $N_{\text {param }}$ is the number of refined parameters; $Y_{m}$ and $Y_{c}$ are the measured and calculated coefficients specified in _refine_ls_structure_factor_coef; and $w$ is the least-squares weight [1/(e.s.d. squared)]. See also _refine_ls_restrained_S_ definitions.
E.s.d. expected: yes. Default e.s.d. value: 0.0 . The permitted range is $0.0 \rightarrow \infty$.

## _refine_1s_hydrogen_treatment

(char)
Treatment of hydrogen atoms in the least-squares refinement.
refall refined all H parameters
refxyz refined H coordinates only
refU refined $\mathbf{H} U$ only
noref no refinement of H parameters
Where no value is given, the assumed value is 'refxyz'.
_refine_ls_matrix_type
(char)
Type of matrix used to accumulate the least-squares derivatives. full full
fullcycle full with fixed elements per cycle
atomblock block diagonal per atom
userblock user-defined blocks
diagonal diagonal elements only
sparse selected elements only
Where no value is given, the assumed value is 'full'.

## _refine_1s_number_constraints

(numb)
The number of constrained (non-refined or dependent) parameters in the least-squares process. These may be due to symmetry or any other constraint process (e.g. rigidbody refinement). See also _atom_site_constraints and _atom_site_refinement_flags. A general description of constraints may appear in _refine_special_details.
Where no value is given, the assumed value is ' 0 '. The permitted range is $0 \rightarrow \infty$.

## _refine_ls_number_parameters

(numb)
The number of parameters refined in the least-squares process. If possible this number should include some contribution from the restrained parameters.The restrained parameters are distinct from the constrained parameters (where one or more parameters are linearly dependent on the refined value of another). Least-squares restraints often depend on geometry or energy considerations and this makes their direct contribution to this number, and to the goodness-of-fit calculation, difficult to assess.
The permitted range is $0 \rightarrow \infty$.

## _refine_ls_number_reflns

(numb)
Number of reflections contributing to least-squares derivatives.
The permitted range is $0 \rightarrow \infty$.

## _refine_ls_number_restraints

(numb)
The number of restrained parameters. These are parameters which are not directly dependent on another refined parameter. Often restrained parameters involve geometry or energy dependencies. See also _atom_site_constraints and _atom_site_refinement_flags. A general description of refinement constraints may appear in _refine_special_details. The permitted range is $0 \rightarrow \infty$.
_refine_ls_R_factor_all
_refine_1s_R_factor_obs
(numb)
Residual factors for all reflection data, and for reflection data classified as 'observed' (see _reflns_observed_criterion). $R=\left(\sum| | F_{m}\left|-\left|F_{c}\right|\right| / \sum\left|F_{m}\right|\right) ; F_{m}$ and $F_{c}$ are measured and calculated structure factors. This is the conventional $R$ factor. See also _refine_ls_wR_factor_ definitions.
The permitted range is $0.0 \rightarrow \infty$.
refine_ls_restrained_S_all
_refine_ls_restrained_s_obs
(numb)
The least-squares goodness-of-fit parameter $S^{\prime}$ for all data, and for observed data, after the final cycle of least squares. This parameter explicitly includes the restraints applied in the least-squares process. $S^{\prime}=\left\{\left[\sum\left(w^{\prime}\left|Y_{m}-Y_{c}\right|^{2}\right)+\sum_{r}\left(w_{r} \mid P_{r}-\right.\right.\right.$ $\left.\left.\left.\left.P_{t}\right|^{2}\right)\right] /\left(N_{\text {ref }}+N_{\text {resir }}-N_{\text {param }}\right)\right\}^{1 / 2}$ where the sum $\sum_{r}$ is over the specified reflection data; $\sum_{r}$ is over the restraint data; $N_{r e j}$ is the number of reflections used in the refinement (see _refine_ls_number_reflns); $N_{\text {param }}$ is the number of refined parameters (see _refine_ls_number_parameters); $N_{\text {ress }}$ is the number of restraints (see _refine_ls_number_restraints); $Y_{m}$ and $Y_{c}$ are the measured and calculated coefficients specified in _refine_ls_structure_factor_coef; $P_{C}$ and $P_{1}$ are the calculated and target restraint values; $w$ is the least-squares reflection weight [1/(e.s.d. squared)] and $w_{r}$ is the restraint weight. See also _refine_ls_goodness_of_fit_definitions.
The permitted range is $0.0 \rightarrow \infty$.

```
refine_ls_shift/esd_max
_refine_ls_shift/esd_mean
```

(numb)
The largest and the average ratios of the final least-squares parameter shift divided by the final estimated standard deviation.

The permitted range is $0.0 \rightarrow \infty$.
_refine_ls_structure_factor_coef (char)
Structure-factor coefficient $|F|, F^{2}$ or $I$, used in the least-squares refinement process.

| Inet | net intensity |
| :--- | :--- |
| Fsqd | structure factor squared |
| F | structure-factor magnitude |

Where no value is given, the assumed value is ' $F$ '.
_refine_ls_weighting_scheme (char)
The weighting scheme applied in the least-squares process. The standard code may be followed by a description of the weight.
sigma based on measured e.s.d.'s
unit unit or no weights applied
calc calculated weights applied
Where no value is given, the assumed value is 'sigma'.

## _refine_ls_wR_factor_all _refine_ls_wR_factor_obs

(numb)
Residual factors for all reflection data, and for reflection data classified as 'observed' (see _reflns_observed_criterion). $w \cdot R=\left[\sum\left(w\left|Y_{m}-Y_{c}\right|^{2}\right) / \sum\left(w Y_{m}^{2}\right)\right]^{1 / 2}$ where $Y_{m}$ and $Y_{c}$ are the measured and calculated coefficients specified by the _refine_ls_structure_factor_coef; $w$ is the least-squares weight. See also the _refine_ls_R_factor_ definitions.
The permitted range is $0 \cdot 0 \rightarrow \infty$.

## _refine_special_details

Description of special aspects of the refinement process.

```
refln_A_calc
_refln_A_meas
```

Calculated, measured structure-factor component $A=|F| \cos$ (phase) in electrons.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list.

```
_refln_B_calc
__refln_B_meas
```

Calculated, measured structure-factor component $B=|F| \sin$ (phase) in electrons.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list.
_refln_crystal_id

Code identifying each crystal if multiple crystals are used. Is used to link with _exptl_crystal_id in the _exptl_crystal_ list. Appearance in list: yes. If looped, _refln_index_ must be present in the same list.

```
_refln_F_calc
_refln_F_meas
_refln_F_sigma
```

(numb)
The calculated, measured and standard deviation (derived from measured data) of the structure factors, in electrons.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list.

```
refln F squared_calc
_refln_F_squared_meas
_refln_F_squared_sigma
```

Calculated, measured and estimated standard deviations of the squared structure factors, in electrons squared.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list.

```
_refln_index_h
_refln_index_k
_refln_index_1
```

(numb)
Miller indices of the reflection.
Appearance in list: yes.

```
_refln_intensity_calc
__refln_intensity_meas
_refln_intensity_sigma
```

(numb)
The calculated, measured and standard deviation (derived from measured data) of the intensity, in the measured units.
Appearance in list: yes. lf looped, _refln_index_ must be present in the same list.

```
_refln_mean_path_length_tbar
```

(numb)
Mean path length through the crystal for this reflection.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list. The units extensions are: ', (millimetres *1.0) '_cm' (centimetres $* 10.0$ ).
refln_obiserved_status
(char)
Classification of a reflection. E.g. 'observed' or 'unobserved' according to a criterion specified in _reflns_observed_criterion.

- observed by _refins_observed_criterion
$<\quad$ unobserved by _reflns_observed_criterion systematically absent reflection
$x \quad u n r e l i a b l e ~ m e a s u r e m e n t ~-~ n o t ~ u s e d ~$
Appearance in list: yes. If looped, _refln_index_ must be present in the same list. Where no value is given, the assumed value is ' 0 '.

```
_refln_phase_calc
_refln_phase_meas
```

(numb)
The calculated and measured structure-factor phase in degrees.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list.
_refln_refinement_status
(char)
Status of reflection in the structure refinement process.
incl included in ls process
excl excluded from Is process
extn excluded due to extinction
Appearance in list: yes. If looped, _refln_index_ must be present in the same list. Where no value is given. the assumed value is 'incl'.
_refln_scale_group_code
(char)
Code identifying the structure-factor scale. This code must correspond to one of the _reflns_scale_group_code values.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list.
Example(s): 1, 2, 3, s1, A, B, C1, c2, c3

[^6]
## _refln_symmetry_epsilon <br> (numb)

The symmetry reinforcement factor corresponding to the number of times the reflection indices are generated identically from the space-group symmetry operations.
Appearance in list: yes. If looped. _refln_index_ must be present in the same list. The permitted range is $1 \rightarrow 32$.
_refln_symmetry_multiplicity
(numb)
The number of symmetry-equivalent reflections. The equivalent reflections have the same structure-factor value because of the space-group symmetry and the Friedel relationship.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list. The permitted range is $1 \rightarrow 24$.

## refln_wavelength

(numb)
The mean wavelength of radiation used to measure this reflection. This is an important parameter for data collected using energy-dispersive detectors or the Laue method.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list. The permitted range is $0 \cdot 0 \rightarrow \infty$. The units extensions are: ${ }^{\prime}$ ' (ångströms *1.0) ' pm ' (picometres $/ 100$.) ‘ $\_$nm’ (nanometres *10.).
_refln_wavelength_id
(char)
Code identifying the wavelength in the _diffrn_radiation_ list. See _diffrn_radiation_wavelength_id.
Appearance in list: yes. If looped, _refln_index_ must be present in the same list.

```
_reflns_d_resolution_high
_reflns_d_resolution_low
```

(numb)
The highest and lowest resolution for the interplanar spacings in the reflection data. These are the smallest and largest $d$ values. The permitted range is $0.0 \rightarrow \infty$. The units extensions are: ' , (ångströms *1.0) '_pm' (picometres /100.) '_nm' (nanometres *10.).

```
reflns_limit_h_max
_reflns_limit_h_min
_reflns-limit k-max
_reflns_limit_k_min
_reflns_limit_l_max
_reflns_limit_1_min
```

(numb)
Miller indices limits for the reflection data. These need not be the same as the _diffrn_reflns_limit_ values.

```
_reflns_number_total
_reflns_number_observed
```

(numb)
The total number of reflections, and the number of 'observed' reflections, in the _refln_ list (not the _diffrn_refln_ list). The observed reflections satisfy the _reflns_observed_criterion. This may contain Friedel equivalent reflections according to the nature of the structure and the procedures used. The item _reflns_special_details describes the reflection data.
The permitted range is $0 \rightarrow \infty$.

## reflns observed_criterion

(char)
The criterion used to classify a reflection as 'observed'. This criterion is usually expressed in terms of an e.s.d. threshold.
Example(s): $>2$ sigma ( I )
_reflns_scale_group_code
(char)
The code identifying a scale _reflns_scale_meas_. These are linked to the _refln_ list by the _refln_scale_group_code. Appearance in list: yes. If looped, _reflns_scale_meas_ must be present in the same list.

```
_reflns_scale_meas_F
_reflns_scale_meas_F_squared
_reflns_scale_meas_iñtensity
(numb)
Scales associated with _reflns_scale_group_code. These
codes may not correspond to those in the _diffrn_scale_ list.
```

Appearance in list: yes. If looped, _reflns_scale_group_code must be present in the same list. The permitted range is $0.0 \rightarrow \infty$.
_reflns_special_details (char)
A description of reflection data not covered by the other data names. It should include details of the Friedel reflection data.
_symmetry_cell_setting
(char)
The cell settings for this space-group symmetry.

## triclinic

monoclinic
orthorhombic
tetragonal
rhombohedral
trigonal
hexagonal
cubic
_symmetry_equiv_pos_as_xyz (char)
Symmetry equivalent position in the ' $x y z$ ' representation. Except for the space group $P 1$, this data will be repeated in a loop. The format of the data item is as per International Tables for Crystallography, Vol. A (1987). All equivalent positions should be entered, including those for lattice centring and a centre of symmetry, if present.
Appearance in list: yes.
Example(s): ' $-y+x,-y, 1 / 3+z^{\prime}$
_symmetry_Int_Tables_number
(numb)
Space-group number from International Tables for Crystallography, Vol. A (1987).
_symmetry_space_group_name_Hall (char)
Hall space-group symbol [Hall, S. R. (1981). Acta Cryst. A37, 517-525]. This symbol gives the space-group setting explicitly. Leave spaces between the separate components of the symbol.


## _symmetry_space_group_name_H-M (char)

Hermann-Mauguin space-group symbol. Note that the H-M symbol does not necessarily contain complete information about the symmetry and the space-group origin. If used always supply the full symbol from International Tables for Crystallography, Vol. A (1987) and indicate the origin and the setting if it is not implicit. If there is any doubt that the equivalent positions can be uniquely deduced from this symbol specify the _symmetry_equiv_pos_as_xyz or *_Hall data items as well. Leave spaces between symbols referring to different axes.
Example(s):'P $121 / \mathrm{m} 1{ }^{\prime},{ }^{\prime} \mathrm{P} 2 / \mathrm{n} 2 / \mathrm{n} 2 / \mathrm{n}$ (origin at -1 )', ${ }^{\prime} R-3 \quad 2 / m^{\prime}$

## APPENDIX II

## Extract from a publication CIF

This is an extract from a CIF, generated by the program CIFIO (Hall, 1990), and submitted to Acta Crystallographica Section C for publication (Willis, Beckwith \& Tozer, 1991). This CIF contains more data than required
for publication purposes. Items requested for inclusion in this CIF but not present in the Xtal binary file are flagged with a '?'.

```
data_TOZ
_audit_creation_date 91-03-20
_audit_creation_method
            fr्rom_xtal_\vec{archive_file_using_CIEIO}
audit update record
; 91-04-c9 Eext and data added by Tony willis.
    91-04-15 rec'd by co-editor with diagram as ms. HL7.
    91-04-17 adjustments based on first referees report.
    91-04-18 adjustments based on second referees report.
;
_chemical_name_systematic
;
trans-3-Benzoy1-2-(tert-butyl)-4-(isobutyl)-
1,3-oxazolidin-5-one
;
```

_chemical_formula moiet
chemical formula weigh:
_chemical_formula_weigh
_chemical_meiting_point
Cl8 H25 N $03^{\prime}$
303.40
_computing_data_collection
'Phiiips FWil100/20 software 1976'
_computing_cell_refinement
'LATCON (Xtal: Schwarzenbach \& King)'
_computing_data_reduction
'pwredu (McLáughlia) ADDREF SORTRF (Xtal)'
_computing_structure solution
'SHELXS86 (Sheldrick)'
_computing_structure_refinement
'SHELX $76^{-}$(Sheldrick) CRYLSQ (Xtal: Olthof)'
_computing_publication_material
' BONDLA CIFIO (Xtal: Hall)
_cell_length_a $5.959(1)$
_celi_length_b $14.956(1)$
_cell_lengtr_c 19.737 (3)
_cell_angle_āpha 90
_cell_angle_beta 90
$\begin{array}{ll}\text { cell_angle gamma } & 90 \\ \text { _cell_volume } & 1759.0(3)\end{array}$
_cell-formula_units_z
_cell_measurement_temperature 293
_cell_measurement_reflns_used 25
_cell_measurement_theta_min 25
cell-measurement theta_max 31
symmetry_cell_setting
orthorhombic
symmetry space group name $H-M \quad$ 'P 2121 21'
_symmetry_space_group_name_H-M $\quad$ Pymetry_space_group_name_Hall P_2ac_2ab
100p_
symmetry_equiv_pos as_xyz
$+\bar{x},+y,+\bar{z} \quad 1 / 2-\bar{x},-y, 1 / 2+z$
$1 / 2+x, 1 / 2-y,-z-x, 1 / 2+y, 1 / 2-z$
_exptl_crystal_description
prism
_exptl_crystal_colour
0.32
_exptl_crystal_size_max
0.32
0.27
$\begin{array}{ll}\text { _exptl_crystal_size_mid } & 0.27 \\ \text { _expt_crystal_size_min } & 0.10\end{array}$
0.10
1.146
exptl_crystal_density_diffrn
1.146
?
$\begin{array}{ll}\text { _exptl_crystal_density_meas } & \text { ? } \\ \text { exptl_crystal_F_000 } & 656\end{array}$
exptl_absorpt_coefficient_mu 5.9
exptl_absorpt_correction_type 'shelx76 gaussian'
$\begin{array}{ll}\text { _exptl_absorpt_correction_T_min } & .933 \\ \text { _exptl_absorpt_correction_T_max } & .824\end{array}$
$\begin{array}{lr}\text { _exptl_absorpt_correction_T_min } & .933 \\ \text { _expt__absorpt_correction_T_max } & .824\end{array}$
_diffrn_special_details
;
\q $\operatorname{scan}$ width $(1.0+0.14 \tan \backslash q) \backslash 8, ~ \ q \operatorname{scan}$ rate
1.2 ${ }^{2}$ per min. Background counts for 5 s on each
side every scan.
with a '?'.
si

| _chemical_formula_moiety | 'Cl8 H25 N 03' |
| :--- | :--- |
| _chemical_formula_sum | Cl8 H25 N 03' |
| _chemical_formula_weigh: | 303.40 |
| _chemical_meiting_point | $?$ |


| _diffrn_ambient _emperature | 293 |
| :---: | :---: |
| _diffrn_radiation_wavelength | 1.5418 |
| _diffrn_radiation_type | 'Cu K $\backslash a$ ' |
| -diffrn_radiation_source | 'x-ray tube' |
| _diffrn_ radiation_monochromator | 'graphite' |
| _diffrn_radiation_detector | ? |
| _diffrn_measurement_device |  |
| 'Philips PW1100/20 diff | ometer' |
| _diffrn_measurement method | \q/2\q |
| _diffrn_standards_number | 3 |
| _diffrn_standards_interval_time | 120 |
| _diffrn_standards_decay_号 | 0 |


| cell_length_a | $5.959(1)$ |
| :---: | :---: |
| _celi_length_b | $14.956(1)$ |
| cell-lengtr_c | 19.737 (3) |
| -cell_angle_alpha | 90 |
| _cell_angle_beta | 90 |
| _cell_angle_gamma | 90 |
| _cell_volume | 1759.0(3) |
| _cell_formula_units_z | 4 |
| _cell_measurement_temperature | 293 |
| _cell_measurement_reflns_used | 25 |
| _cell_measurement_theta_min | 25 |
| _cell_measurement theta_max | 31 |
| _symmetry_cell_setting | orthorhombic |
| _symmetry_space_group_name_H-M | 'P 2121 21' |
| _symmetry_space_group_name_Hall | P_2ac_2ab |
| 100p_ |  |
| symmetry_equiv_pos_as_xyz |  |
| $+\mathrm{x},+\mathrm{y},+\mathrm{z} \quad 1 / 2-\mathrm{x},-\mathrm{y}, 1 / 2+z$ |  |
| $1 / 2+x, 1 / 2-y,-z-x, 1 / 2+y$ | 2-2 |
| _exptl_crystal_description | prism |
| _exptl_crystal_colour | colourless |
| _exptl_crystal_size_max | 0.32 |
| _exptl_crystal_size_mid | 0.27 |
| _exptl_crystal_size_min | 0.10 |
| _exptl_crystal_density_diffrn | 1.146 |
| _exptl_crystal_density_meas | ? |
| _exptl_crystal_F_000 | 656 |
| exptl_absorpt_coefficient_mu | 5.9 |
| exptl_absorpt_correction_type | 'shelx76 gaussian' |
| exptl absorpt correction_T_min | . 933 |
| _expt1_absorpt_correction_T_max | . 824 |

## loop

_diffrn_standard_refln_index_h
-diffrn_standard_refln_index $k$

loop
_dif̄́frn_attenuator_code
diffrn_attenuator_code
_diffrn_attenuator_scale
$1 \quad 16.976$

| diffrn_reflns_number | 1592 |
| :--- | :--- |
| _diffrn_reflns_av_R_equivalents | 0 |
| _diffrn_reflns_av_sigmal/net: | .027 |
| _diffrn_reflns_limit_h_min | 0 |
| _diffrn_reflns_limit_h_max | 6 |
| _diffrn_reflns_limit_k_min | -17 |
| _diffrn_reflns_limit_k_max | 0 |
| _diffrn_reflns_limit_l_min | 0 |
| _diffrn_reflns_limit_l_max | 22 |
| _diffrn_reflns_theta_min | 3.71 |
| _diffrn_reflns_theta_max | 61.97 |
| _diffrn_reflns_reduction_process | $?$ |

100p_
_atom_type_symbol
_atom_type_oxidation_number
_atom_type_number_in_cell
_atom_type_scat_dispersion_real
_-atom_type_scat_dispersion_real
_atom_rype_scat_source
_atom_type_scat_source
C $\overline{0} 72-.01 \overline{7} .009$
International_Tables_Vol_IV_Table_2.2B
H $0 \quad 100 \quad 0$
International_Tables_Vol_IV Table_2.2B

| 0 | 0 | 12 | .047 |
| :--- | :--- | :--- | :--- |

        International_Tables_Vol_IV_Table_2.2B
        International_Tables
    $\mathrm{N} \quad 0 \quad 4 \quad .029 \quad .018$

_diffrn_reflns_av_R_equivalents o
_diffrn_reflns_av_sigmal/netI . 027
_diffrn_reflns_limit_h_min 0
diffrn reflns limit $h$ max
diffrn_reflns_limit_k_min $\quad-17$
diffrn_reflns_limit_k_max 0
diffrn_reflns_limit_l_min 0
_diffrn_reflns_limit_1_max $\quad 22$
_diffrn_reflns_theta_min 3.71
-diffrr_reflns_theta_max 61.97
_diffrn_reflns_reduction_process?
loop__
_atom_site_label
_atom_site_label
-atom_site_fract_X
-atom_site_fract_Y
-atom-site ${ }^{-}$U iso or equiv
-atom_site_site_thermal_displace type
-atom_site_calc_flag
-atom_site_calc_flag



```
_publ_roquested_coeditor_name
_pub-_cortact__author phone
_puri contact author fax
....plid_oontact_author_emai ;
100p
_publ_alithor_riame
_publ_author_address
    'W:liis, Ar.thony C.'
    Research School of Chemistry
    Australian Nationa: University
    GPO Box 4
    Canberrar A.C.I'.
    Australia 2601
;
    'Beckwith, Athelstan L.J.'
    Research School of Chemistry
    Australian National University
    GPO BOX 4
    Canberra, A.C.T.
    Austraila 2601
;
    'Tozer, Matthew J.'
; Research School of Chemastry
        Austra:ian National University
        GPO Box 4
        Canberra, A.C.T.
        Australia 2601
_publ_section_Eille
    trans-3-Benzoyl-2-(tert-butyl)-4-(isobutyl)-
1,3-oxazolidin-5-one
_publ_section_abstract
The oxazolidinone ring is a shallow envelope
conformation with the tert-butyl and isobutyl groups
occupying trans-positions with respect to the ring.
The angles at the N atom sum to 356.2\%, indica_irg a
very small degree of pyramidalization at this atom.
This is consistent with electron delocalization between
the N atom and t.he carbonyl cent.re [N-C=0=2.374(3)\A].
;
pub:_section_experimental
The \q scan width was (1.0+0.14tan\g)\: wittr a \q scan
rate of 1.2\多 per min. and background courts for 5s on
each side of every scan. The absolute cor.figuration has
been assigned to agree with the known chirality at C3
arising from its precursor l-leucine. Refinement was by
full-matrix least-squares methods.
;
_pubi section_comment
;
The structure of the title compolid was undertaken to establist．whether an isobutyi group would be formed cis or trans to the tert－butyl group as part of a study of diastereoselectivities of tree radical reac：ions．Details of the synthetic work wili be published elsewhere（Beckwith，Chai \＆＇ozer，199－）．
The X－ray analysis shows that the tert－butyl ard i sobltyl groups are trans，as expected from nm： evidence．The oxazolidinone ring is ir ar enveiope conformatior with c．5 the out－of－plane atom．The ang．e between the least－squares plane through atoms \(01, \mathrm{C} 2\), \(O 3\) and N4 and the plane of N4，C5 and O：is \(19.9(2)\) i． Intra－annular torsion angles（starting with cj－01－C2－c3 and proceeding around the ring）are \(9.5,-2.3,-5.4\) ， 10.7 and－12．3（3）1\％．A search of the January 2990 Versior of the Cambridqe Structure Database（A：）en， Kennard \＆Taylar，1983）revealed three structure determinations with 1,3 －oxazolidin－5－one fragments
```

Seebach，Boes，Naet \＆Schweizer ：983，Karady，Amato $\&$ weinstock 1994 ，Wede？，Aesctimern，Maetzke 5 Seobach， 1986）．Eond lengtns and ang．es $\begin{aligned} & \text { an } \\ & \text { i．bese gomponned are }\end{aligned}$ comparable with those in the present study；the magnitides of their respective maximum irita－aratilar
 most calcu：atiors wexe performed with the xra．3．${ }^{\text {at }}$ package（ilail s SEewart．，1990），as was the goreration of the Crystaliographic Information Fize used for the suomission of th：s paper．

## ；

$\bar{i}^{\text {publ }}$ sectior＿reforences
Allen，F．H．，Kennard，O．ard Zayior，R．（：983）． Accoln：s Chem．Res．， 16 ，：46－1：3．

Beckwit．h，A．l．．J．，Bhas，C．L．L．á Tozer，M．J．（．9gi）． Mamuscrift ：a preparation．

Hall，S．R．ard Stewart，J．M．（：990）．Eods．Xtal3．0 Reference Mardal．Univexsity of Westorn Australic and Jniversity of Maryland．

Karady，S．，Amaco，こ．S．\＆weiristock，…M．（1984）． Tetrahedror liett．，25，4337－4340．

Mchaughlan，G．M．（－983）．PWREDJ．Erogran for data reductior Eor Prilips FW1100／20 diftractometor． Austraiian Nationą Univ．，Canberra．

Seebach，こ．，Roes，M．，Naef，W．B．\＆Sclweizer，w．B． （1983）．J Am．Chem．Soc．，105，5390－5398．

Stieltrick，G．M．（2976）．SHELX76．erogram for crysial structiure determination．Un：v．of Cambridge，England．

Sheldrick，G．M．（：985）．SHELXS86．Erogran fot the sotution of erystal structures．Un：v．of Gotzirgen， Federal Repubilc of Germary．
 （1986）．Helv．Chjm．Acte，69，1365－1？？． ：
publ＿sectior．＿figure＿captions
；
View of C＂18＂H＂25＊NO＂3－showing tine iabe．ling of the non－H atoms．Thermal ellipsoids are showr at 50 a probability ievels；$H$ atoms are drawr as sral：circles of arbitrary radius．
；

## References

Allen，F．H．\＆Edgington，P．R．（1992）．CIFER：a Program for CIF Generation．Crystallographic Data Centre．Cambridge，England．
Barnard．J．M．（1990）．J．Chem．Inf．Comput．Sci．30．81－96．
Brown，I．D．（1983）．Acta Cryst．A39，216－224．
Brown．I．D．（1988）．Acta Cryst．A44， 232.
Cook．A．P．F．（1991）．Implementing SMD in STAR：Dictionary Definition Language．ORAC Ltd．report（March 8）．Lecds．England．
Hall，S．R．（1990）．CIFIO：XTAL3．0 Cevstallographic Program System， edited by S．R．Hall \＆J．M．Stewart．Univs．of Western Australia， Australia．and Maryland，USA．
Hall，S．R．（1991a）．J．Chem．Inf．Comput Siti．31，326－333
Hall．，S．R．（1991b）．CYClops：a Program for Validating Data Names in a Text Fite．Univ，of Western Australia，Australia．
Hall．，S．R．\＆Sievers，R．（1990）．QUASAR：a Program for Access－ ing a STAR File．Univs，of Western Australia，Australia，and Bonn． Germany．
OSAKI．K．（1991）．EDCIF J：an Interactive Program for Creating a CIF． Personal communication．
Willis，A．C．，Beckwith，A．L．J．\＆Tozer，M．J．（1991）．Acta Cryst． C47，2276－2277．


[^0]:    * Reprints of this paper may be obtained from the Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]:    $\dagger$ From the Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. Fax: (44) 244314888. Email: teched@iucr.ac.uk

[^2]:    Example(s): 90-07-12

[^3]:    chemical_name_mineral
    (char)
    Mineral name accepted by the International Mineralogical Association. Use only for natural minerals. See also _chemical_compound_source.

    Example(s): chalcopyrite

[^4]:    _diffrn_orient_refln_index_h _diffrn_orient_refln_index_k
    _diffrn_orient_refln_index_1 (numb)
    The indices of a reflection used to define the orientation matrix. See _diffrn_orient_matrix_type and _diffrn_orient_matrix_
    Appearance in list: yes.

[^5]:    _refine_ls_extinction_method (char)

[^6]:    _refln_sint/lambda
    (numb)
    The $(\sin \theta) / \lambda$ for this reflection.
    Appearance in list: yes. If looped, _refln_index_ must be present in the same list. The permitted range is $0 \cdot 0 \rightarrow \infty$. The units extensions are: " (reciprocal ångströms *1.0) '_pm' (reciprocal picometres *I(0.) '_nm' (reciprocal nanometres /10.).

