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Abstract. Bang-Jensen and Hell conjectured in 1990 (using the language

of graph homomorphisms) a CSP dichotomy for digraphs with no sources or
sinks. The conjecture states that the constraint satisfaction problem for such a

digraph is tractable if each component of its core is a circle and is NP-complete

otherwise. In this paper we prove this conjecture, and, as a consequence, a
conjecture of Bang-Jensen, Hell and MacGillivray from 1995 classifying hered-

itarily hard digraphs. Further, we show that the CSP dichotomy for digraphs

with no sources or sinks agrees with the algebraic characterization conjectured
by Bulatov, Jeavons and Krokhin in 2005.

1. Introduction

The history of the Constraint Satisfaction Problem (CSP) goes back more than
thirty years and begins with the work of Montanari [Mon74] and Mackworth [Mac77].
Since that time many combinatorial problems in artificial intelligence and other ar-
eas of computer science have been formulated in the language of CSPs. The study
of such problems, under this common framework, has applications in database
theory [Var00], machine vision recognition [Mon74], temporal and spatial reason-
ing [SV98], truth maintenance [DD96], technical design [NL], scheduling [LALW98],
natural language comprehension [All94] and programming language comprehen-
sion [Nad]. Numerous attempts to understand the structure of different CSPs
has been undertaken and a wide variety of tools ranging from statistical phy-
sics (e.g. [ANP05, KMRT+07]) to universal algebra (e.g. [JCG97]) has been em-
ployed. Methods and results developed in seemingly disconnected branches of math-
ematics transformed the area. The conjecture proved in this paper resisted the ap-
proaches based in combinatorics and theoretical computer science for nearly twenty
years. Only recent developments in the structural theory of finite algebras provided
tools, strong enough, to solve this problem.

For the last ten years the study of CSP has also been a driving force in theo-
retical computer science. The dichotomy conjecture of Feder and Vardi, published
in [FV99], has origins going back to 1993. The conjecture states that a constraint
satisfaction problem, for any fixed language, is either NP -complete or solvable in
polynomial time. Therefore the class of CSPs would be a subclass of NP avoiding
problems of intermediate difficulty. The logical characterization of the class of con-
straint satisfaction problems (see [FV99] and [Kun]) provides arguments in support
of the dichotomy, nevertheless the conjecture remains open.
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One of the results of the above mentioned [FV99] shows that the CSP dichotomy
conjecture is equivalent to the CSP dichotomy conjecture restricted to digraphs.
Therefore the constraint satisfaction problems can be defined in terms of (di)graph
homomorphisms studied in graph theory for over thirty years (e.g. [Lev73]). It
adds a new dimension to a well established problem and shows the importance of
solving CSPs for digraphs. The classification of the complexities of the H-coloring
problems for undirected graphs, discovered by Hell and Nešetřil [HN90], is an im-
portant step and provides a starting point towards proving, or refuting, the CSP
dichotomy conjecture. There has since appeared many papers on the complexity of
digraph coloring problems (see, e.g. [BJH90, BJHM95, Fed01, GWW92, HNZ96a,
HNZ96b, HNZ96c, HZZ93, Mac91, Zhu95]), but as yet, no plausible conjecture on a
graph theoretical classification has been proposed. Bang-Jensen and Hell [BJH90]
did, however, conjecture a classification (implying the dichotomy) for the class of
digraphs with no sources or sinks. Their conjecture significantly generalizes the
result of Hell and Nešetřil.

In 1995 Bang-Jensen, Hell and MacGillivray (in [BJHM95]) introduced the no-
tion of hereditarily hard digraphs and conjectured their classification. Surprisingly,
they were able to show that this conjecture and the one given in [BJH90] are equiv-
alent. In this paper we prove the conjecture of Bang-Jensen and Hell and, as a
consequence, the conjecture of Bang-Jensen, Hell and MacGillivray.

Our paper relies on the interconnection between CSP and algebra as first discov-
ered by Jeavons, Cohen and Gyssens in [JCG97] and refined by Bulatov, Jeavons
and Krokhin in [BJK05]. Using this connection Bulatov, Jeavons and Krokhin
conjectured a full classification of the NP -complete constraint satisfaction prob-
lems. For a small taste of results in the direction of proving this classification
see [BIM+06, Bul06, Dal05, Dal06, KV07]. A particularly interesting example,
demonstrating the potency of the algebraic approach, is Bulatov’s proof of the re-
sult of Hell and Nešetřil (see [Bul05]). A recent, purely algebraic result of Maróti
and McKenzie [MM07] is one of the key ingredients in the proof of conjecture of
Bang-Jensen and Hell. This provides further evidence supporting the extremely
strong bond between the Constraint Satisfaction Problem and universal algebra.

2. Preliminaries

We assume the reader possesses a basic knowledge of universal algebra and graph
theory. For an easy introduction to the notions of universal algebra that are not
defined in this paper (e.g. terms, powers, subalgebras), we invite the reader to
consult the monographs [BS81] and [MMT87]. Further information, concerning the
structural theory of finite algebras (called tame congruence theory) can be found
in [HM88]. For an explanation of the basic terms in graph theory and graph homo-
morphisms, we recommend [HN04]. Finally, for an introduction to the connections
between universal algebra and CSP we recommend [BJK05].

Throughout the paper we deviate from the standard definition of the constraint
satisfaction problem, with respect to a fixed language (found in e.g. [BKJ00]),
in favor of an equivalent definition (from [FV99, LZ06]). A relational structure
T = (T,R) is an ordered pair where T is a finite non-empty set and R is a finite set
of finitary relations on T indexed by a set J . Let dj denote the arity of the relation
rj ∈ R. The indexed set of all the dj constitutes the signature of T . For two
relational structures of the same signature, say T = (T,R) and U = (U, S), a map
h : T → U is a homomorphism if h(tj) ⊆ sj for all j ∈ J (where h(tj) is computed
pointwise). A polymorphism of a relational structure T is a homomorphism from
a finite cartesian power, say T n, to T . Precisely, a polymorphism h of T , is an
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operation h : Tn → T , such that, for all relations r ∈ R, of arity m, if

(ai,0, ai,1, . . . , ai,m−1) ∈ r for all i < n,

then

(h(a0,0, a1,0, . . . , an−1,0), . . . , h(a0,m−1, a1,m−1, . . . , an−1,m−1)) ∈ r.

A digraph is a pair G = (V,E) where V is a set of vertices and E ⊆ V × V is a
set of edges (note that a digraph is not, by definition, a relational structure, however
the difference is only a technicality). A vertex of a digraph is called a source (resp.
a sink), if it has no incoming (resp. outgoing) edges. A closed directed path in a
digraph is called a cycle, while a circle is a cycle with no proper subcycles. A loop
is an edge from a vertex to itself (i.e. a cycle of length one). Given a digraph G,
we sometimes denote the set of vertices of G by V (G) and similarly the edges of G
by E(G). A homomorphism between two digraphs is a map between the sets of
vertices that preserves the edges.

A graph is 3-colorable if and only if it maps homomorphically into the complete
graph on three vertices (without loops). The notion of colorability is generalized
using graph homomorphisms: a digraph, say G, is H-colorable if there exists a
homomorphism mapping G to H.

A digraph G = (V,E) retracts to an induced subgraph H = (W,F ) if there is an
endomorphism h : V → V such that h(V ) = W and h(a) = a for all a ∈W . Such a
map h is called a retraction. A core of a digraph is a minimal induced subgraph to
which the digraph retracts (the definition of retraction and core clearly generalize
to relational structures). It is a trivial fact that, for any digraph H, and for a core
of H, say H′, the set of H-colorable digraphs coincides with the set of H′-colorable
digraphs.

In this paper all relational structures, digraphs and algebras are assumed to be
finite.

3. The main result

For a relational structure T = (T,R) we define the language CSP(T ), of relational
structures with the same signature as T , to be

CSP(T ) = {U | there is a homomorphism from U to T }.
Alternatively we can view CSP(T ) as a decision problem:

INPUT: a relational structure U with the same signature as T
QUESTION: does there exists a homomorphism from U to T ?

In either approach we are concerned with the computational complexity (of mem-
bership of the language, or of the decision problem respectively) for a given rela-
tional structure. The CSP dichotomy conjecture proposed in [FV99] states:

The CSP dichotomy conjecture. For a relational structure T the problem
CSP(T ) is either NP-complete or solvable in polynomial time.

The (di)graph coloring problems can be viewed as special cases of CSP. Although
a digraph H = (W,F ) is technically different from a relational structure, the set
of H-colorable digraphs is obviously polynomially equivalent to the CSP for an ap-
propriate relational structure and therefore we denote the class of all H-colorable
digraphs by CSP(H). Due to the reduction presented in [FV99] every constraint
satisfaction problem is polynomially equivalent to a digraph homomorphism prob-
lem. Thus we can restate the CSP dichotomy conjecture in the following way:

The CSP dichotomy conjecture. For a fixed digraph H, deciding whether a
give digraph is H-colorable is either NP-complete or solvable in polynomial time.



4 L.BARTO, M. KOZIK, AND T. NIVEN

This brings us to the main problem of the paper, a conjecture nearly ten years
older than the CSP dichotomy conjecture, and a special case of it. It deals with
digraphs with no sources or sinks and was first formulated by Bang-Jensen and Hell
in [BJH90]:

The conjecture of Bang-Jensen and Hell. Let H be a digraph without sources
or sinks. If each component of the core of H is a circle, then CSP(H) is polynomially
decidable. Otherwise CSP(H) is NP-complete.

Note that the above conjecture is a substantial generalization of the H-coloring
result of Hell and Nešetřil [HN90].

The notion of hereditarily hard digraphs was introduced by Bang-Jensen, Hell
and MacGillivray in [BJHM95]. A digraph H is said to be hereditarily hard if the
H′-coloring problem is NP -complete for all loopless digraphs H′ that contain H as
a subgraph. The following conjecture was posed and shown to be equivalent to the
Bang-Jensen and Hell conjecture in [BJHM95]:

The conjecture of Bang-Jensen, Hell and MacGillivray. Let H be a digraph.
If the digraph R(H) (which is obtained by iteratively removing the sources and
sinks from H until none remain) does not admit a homomorphism to a circle of
length greater than one, then H is hereditarily hard. Otherwise H has a polynomial
extension.

In this section we prove the Bang-Jensen and Hell conjecture and therefore
the conjecture of Bang-Jensen, Hell and MacGillivray. In this proof we assume
Theorem 3.1 which will be proved in the subsequent sections of the paper. The
reasoning uses weak near unanimity operations (defined in Section 4) and Taylor
operations (used only to connect Theorems 3.2 and 3.3, and therefore not defined
here [HM88, Tay77, LZ06]).

Theorem 3.1. If a digraph without sources and sinks admits a weak near unanimity
polymorphism then it retracts onto the disjoint union of circles.

It is easy to see that the colorability by digraphs retracting to a disjoint union
of circles is tractable (see e.g. [BJH90]). It remains to prove the NP-completeness
of the digraphs not retracting to such a union. Before we do so, we recall two
fundamental results.

It follows from [HM88, Lemma 9.4 and Theorem 9.6] that a part of the result of
Máróti and McKenzie [MM07, Theorem 1.1] can be stated as follows:

Theorem 3.2 ([MM07]). A finite relational structure T admits a Taylor polymor-
phism if and only if it admits a weak near unanimity polymorphism.

The following result was originally proved in [BKJ00] and [LZ03] and, as stated
below, can be found in [LZ06, Theorem 2.3]:

Theorem 3.3 ([LZ06]). Let T be a relational structure which is a core. If T does
not admit a Taylor polymorphism, then CSP(T ) is NP -complete.

If a digraph H without sources or sinks does not retract to a disjoint union of circles,
then its core H′ also does not. Thus, by Theorem 3.1, it follows that H′ does not
admit a weak near unanimity polymorphism and by Theorem 3.2 and Theorem 3.3
it follows that CSP(H′) is NP -complete, completing the proof of the conjecture of
Bang-Jensen and Hell.

The conjecture (posed in [BKJ00]), classifying the CSPs from the algebraic point
of view, can be stated as follows (see, e.g. [LZ06]).

The algebraic CSP dichotomy conjecture. Let T be a relational structure
that is a core. If T admits a Taylor polymorphism, then CSP(T ) is polynomial
time solvable. Otherwise CSP(T ) is NP -complete.
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Note that the proof of the conjecture of Bang-Jensen and Hell immediately implies
that the structure of the NP -complete digraph coloring problems agrees with the
algebraic CSP dichotomy conjecture. The remainder of the paper is dedicated to
the proof of the Theorem 3.1 connecting the structural properties of digraphs with
no sources or sinks with their polymorphisms.

4. Notation

In this section we introduce the notation required throughout the remainder of the
paper.

4.1. Neighborhoods in graphs. For a fixed digraph G = (V,E) we denote
(a, b) ∈ E by a → b, and we use a

k−→ b to say that there is a directed path
from a to b of length precisely k. More generally for any oriented path α, with
endpoints c, d, we write a

α−→ b if there exists a homomorphism φ from α into G
such that φ(c) = a and φ(d) = b. For any W ⊆ V we define

W+n = {v ∈ V | (∃w ∈W ) w
n−→ v}

and similarly

W−n = {v ∈ V | (∃w ∈W ) v
n−→ w}.

We define W 0 = W , and write a+n (or a−n, a0) instead of {a}+n ({a}−n
, {a}0

respectively) for any a ∈ V . More generally, for an oriented path α, we write

Wα = {v ∈ V | (∃w ∈W ) w
α−→ v}.

As before we use aα for {a}α. Sometimes, for ease of presentation, we write a
k,n−−→ b

to denote a
k−→ b and a

n−→ b.

4.2. Digraph path powers. Let G = (V,E) be a digraph and α be an oriented
path. We define a path power of the digraph G, which we denote by Gα, in the
following way: the vertices of the power are the vertices of the digraph G and a
pair (c, d) ∈ V 2 is an edge in Gα if and only if c

α−→ d in G. For a directed path α
of length n we define G+n = Gα. Note that, if f : V m → V is a polymorphism of
G then it is also a polymorphism of any path power of this digraph. Path powers
are special cases of primitive positive definitions (used in e.g. [Bul05]) or indicator
constructions introduced in [HN90] in order to deal with the colorability problem
for undirected graphs.

4.3. Components. A connected digraph is a digraph such that there exists an
oriented path, consisting of at least one edge, between every choice of two vertices.
A strongly connected digraph is a digraph such that, for every choice of two vertices,
this path can be chosen to be directed. By a component (resp. strong component)
of a digraph G, we mean a maximal (under inclusion) induced subgraph that is
connected (resp. strongly connected). Note that, according to this definition, a
single vertex with the empty set of edges is not connected and thus not every
digraph decomposes into a union of components (or strong components). Given a
digraph G with no sources or sinks, we say that a strong component H of G is a
top component if V (H)+1 = V (H). Similarly, we say that a strong component H
of G is a bottom component if V (H)−1 = V (H).
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4.4. Algebraic length. The following definition is taken from [HNZ96b]. For any
oriented path α we define the algebraic length al(α) to be

al(α) = |{edges going forward in α}| − |{edges going backward in α}|.
For a digraph G = (V,E) we put

al(G) = min{i > 0 | (∃v ∈ V ) (∃ a path α) v
α−→ v and al(α) = i},

whenever the set on the right hand side is non-empty and ∞ otherwise. We note
that for digraphs with no sources or sinks (or with a cycle) the algebraic length of
a non-empty digraph is always a natural number. It is an easy observation that
a connected digraph G retracts to a circle if and only if there exists a circle (or
equivalently a cycle) in G of length al(G).

4.5. Algebraic notation. By a we denote the tuple (a, a, . . . , a) (the arity will
always be clear by the context) and by −→a we denote the tuple (a0, a1, . . . , an).
Further, we extend the notation a to the sets in the following way. For a set W
let W be an appropriate cartesian power of W . Thus for example, given a vertex
a of a digraph G, the set a+n is the collection of all tuples whose coordinates are
vertices reachable by an n-path from a.

An idempotent operation on a set A is an operation, say f : An → A, such that
f(a) = a, for all a ∈ A. In accordance with [MM07], by a weak near unanimity
operation we understand an idempotent operation w(x0, . . . , xn−1) that satisfies

w(y, x, . . . , x) = w(x, y, . . . , x) = · · · = w(x, x, . . . , y),

for any choice of x and y in the underlying set. Moreover, for a term t of arity n,
we define

t(i)(x0, x1, . . . , xn−1) = t(xn−i, xn−i+1, . . . , x0, x1, . . . , xn−i−1),

for each 0 ≤ i < n, where addition on the indices is performed modulo n.

5. Preliminary results on digraphs

We start with a number of basic results describing the connection between digraphs
and its path powers. The following lemma reveals the behavior of the algebraic
lengths of paths in powers of a digraph.

Lemma 5.1. Let G be a digraph without sources or sinks. Let α be an oriented
path of algebraic length k and let a

α−→ b in G. Then a
β−→ b in G+k for some

oriented path β of algebraic length one.

Proof. For a fixed, large enough number j, consider all the oriented paths of the
form a

l1−→ a1
l2←− a2

l3−→ · · · � alj = b where l1 − l2 + · · · ± lj = k. Choose such
an oriented path in which k divides a maximal initial segment of the li’s. Let li0
be the last element of this segment. If i0 + 1 < j then (assuming without loss of
generality that i0 is odd) the path

a
l1−→ · · ·

li0−−→ ai0

li0+1←−−− ai0+1

li0+2−−−→ ai0+2 · · ·
can be altered, using the fact that ai0+1 (and possibly other vertices) is not a source,
to obtain

a
l1−→ · · ·

li0−−→ ai0

l′i0+1←−−− a′i0+1

l′i0+2−−−→ ai0+2 · · ·
where l′i0+1 is greater than li0+1 and is divisible by k. This contradicts the choice
of i0.

If, on the other hand, i0 + 1 = j the number k divides l1 − l2 + · · · ± li0 and,
using the fact that l1− l2 + · · · ± li0 ∓ li0+1 = k, we infer that k divides li0+1, again
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contradicting the choice of i0. Thus i0 = j and we can find a path a
l1−→ a1

l2←−
a2

l3−→ . . . alj = b with l1 − l2 + · · · ± lj = k where each li is divisible by k. This
gives an oriented path of algebraic length one in G+k. �

As a consequence we get

Corollary 5.2. Let G be a digraph, without sources or sinks, such that al(G) = 1.
Then al(G+k) = 1 for any natural number k.

Proof. Let a
α−→ a, where α is an oriented path of algebraic length one. Then, by

following the path α k-many times, we obtain a
β−→ a for an oriented path β of

algebraic length k. Now the statement follows from the previous lemma. �

Theorem 3.1 is proved in Section 7 for strongly connected digraphs first and there-
fore we need some preliminary results on such digraphs. The following very simple
lemma is needed to prove some of the further corollaries in this section.

Lemma 5.3. Let c be a vertex in a strongly connected digraph. Then the greatest
common divisor (GCD) of the lengths of the cycles in this digraph is equal to the
GCD of the lengths of the cycles containing c.

Proof. Suppose, for contradiction, that the GCD, say n′, of the lengths of the
cycles containing c is bigger than the GCD of the lengths of the cycles for the
entire digraph. Then there exists a cycle d

l−→ d such that n′ does not divide l. On

the other hand, since the digraph is strongly connected, c
l′−→ d and d

l′′−→ c for some
numbers l′, l′′. The number n′, by definition, divides l′ + l′′ and l′ + l + l′′ and thus
divides l, a contradiction. �

Moreover the following easy proposition holds.

Proposition 5.4. For any connected digraph G and any oriented cycle α in G,
the number al(G) divides al(α).

Proof. Let G and a
α−→ a be as in the statement of the proposition. Let b be a

vertex in G such that b
β−→ b is an oriented path satisfying al(β) = al(G). Since G

is connected there is an oriented path γ such that b
γ−→ a and thus b

γ−→ a
α−→ a

γ′−→ b
with al(γ′) = −al(γ). Following appropriate paths we can obtain an oriented cycle,
from b to b, of algebraic length al(α)−k ·al(G), for any number k. The minimality
of al(G) implies that al(G) divides al(α). �

The following lemma is heavily used in the proof of Theorem 3.1 for strongly con-
nected digraphs in Section 7.

Lemma 5.5. If, for a strongly connected digraph G = (V,E), the GCD of the
lengths of the cycles in G is equal to one, then

(∃m) (∀a, b ∈ V ) (∀n) if n ≥ m then a
n−→ b.

Proof. Fix an arbitrary element c ∈ V . By Lemma 5.3 we find some cycles con-
taining c such that their lengths k1, . . . , ki satisfy GCD(k1, . . . , ki) = 1. Thus c is
contained in an l-cycle whenever l is a linear combination of k1, . . . , ki with nonneg-
ative integer coefficients. It is easy to see that there is a natural number m′ such
that, for every n′ ≥ m′, n′ can be expressed as such a linear combination, hence c
is in a n′-cycle for each such n′. Now it suffices to put m = m′ + 2|V | since, for
arbitrary vertices a, b ∈ V , there are directed paths of length at most |V | from a to
c and from c to b. �

The following easy corollary follows.
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Corollary 5.6. For a strongly connected digraph G with GCD of the lengths of the
cycles equal to one, and for any number n, the digraph G+n is strongly connected.

For strongly connected digraphs, the greatest common divisor of the lengths of the
cycles and the algebraic length of the digraph coincide.

Corollary 5.7. For a strongly connected digraph, the GCD of the lengths of the
cycles is equal to the algebraic length of the digraph.

Proof. Let us fix a digraph G = (V,E) and denote by n the greatest common
divisor of the lengths of the cycles in G. Since, by Proposition 5.4, the algebraic
length of G divides the length of every cycle in G then al(G) ≤ n.

Conversely, let a = a0
l0−→ b0

k0←− a1
l1−→ · · · km−1←−−− am = a be an oriented path of

algebraic length al(G). Let k′
i be such that bi

ki←− ai+1
k′i←− bi for all i. Note that n

divides ki +k′
i and

∑
i<m li +

∑
i<m k′

i. Thus n divides
∑

i<m li−
∑

i<m ki = al(G)
which shows that n ≤ al(G) and the lemma is proved. �

Finally we remark that if α is an oriented path of algebraic length one and G
has no sources and no sinks, then E(Gα) ⊇ E(G). In particular, if al(G) = 1, then
al(Gα) = 1.

6. A connection between graphs and algebra

In this section we present basic definitions and results concerning the connection
between digraphs and algebras. Let G = (V,E) be a digraph admiting a weak near
unanimity polymorphism w(x0, x1, . . . , xh−1). We associate with G an algebra
A = (V,w) for which E is a subuniverse of A2. Note that for any subuniverse of
A, say W , we can define the digraph G|W = (W,E ∩W ×W ) (or (W,E|W )) which
admits the weak near unanimity polymorphism w|W h and the algebra (W,w|W h)
is a subalgebra of A. For the remainder of this section we assume that G and A
are as above.

The first lemma describes the influence of the structure of the digraph on the
subuniverses of the algebra.

Lemma 6.1. For any subuniverse W of A the sets W+1 and W−1 are subuniverses
of A.

Proof. Take any elements a0, . . . , ah−1 from W+1 and choose b0, . . . , bh−1 ∈ W
such that bi → ai for all i. Then w(b0, . . . , bh−1) → w(a0, . . . , ah−1) showing that
w(a0, . . . , ah−1) ∈W+1 and the claim is proved. The proof for W−1 is similar. �

Since the weak near unanimity operation is idempotent, all the one element subsets
of V are subuniverses of A. Using the previous lemma, the following result follows
trivially.

Corollary 6.2. For all a ∈ V , for all oriented paths α and every number n, the
sets a+n, a−n and aα are subuniverses of A.

Subuniverses of A can also be obtained in another way.

Lemma 6.3. Let H be a strong component of G. Assume that the GCD of the
lengths of the cycles in H is equal to one. Then V (H) is a subuniverse of A.

Proof. Using Lemma 5.5 we find a number m such that there is a directed path
from b

m−→ c in H, for all b, c ∈ V (H). Fix a vertex a ∈ V (H). There is a directed
path of length a

m−→ b, for all b ∈ V (H) and a directed path c
m−→ a, for all c ∈ V (H).

Thus, V (H) = a+m ∩ a−m is a subuniverse. �

We present a second construction leading to a subuniverse of the algebra.
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Lemma 6.4. If H = (W,F ) is the largest induced subgraph of G without sources
or sinks, then W is a subuniverse of A.

Proof. Clearly, the vertices of H can be described as those having arbitrarily long
directed paths to them and from them. Since G is finite, there exists a natural
number k such that

W = {w | (∃v, v′ ∈ V ) v
k−→ w and w

k−→ v′}.

Thus W = V +k ∩ V −k and we are done, since both sets on the right hand side are
subuniverses. �

7. Strongly connected digraphs

In this section we present a proof Theorem 3.1 in the case of strongly connected
digraphs. The reasoning uses directed paths only and thus, in this section, by a
path we always mean a directed path.

Theorem 7.1. If a strongly connected digraph of algebraic length k admits a weak
near unanimity polymorphism, then it contains a cycle (and circle) of length k (and
thus retracts onto it).

Using Corollary 5.7, the result can be restated in terms of the GCD of the lengths
of cycles in G and we will freely use this duality. Theorem 7.1 is a consequence of
the following result:

Theorem 7.2. If a strongly connected digraph G of algebraic length one admits a
weak near unanimity polymorphism then it contains a loop.

We present a proof of Theorem 7.1, assuming Theorem 7.2, and devote the remain-
der of this section to proving Theorem 7.2.

Proof of Theorem 7.1. Fix an arbitrary vertex c in a strongly connected digraph of
algebraic length k. Using Lemma 5.3 and Corollary 5.7 we obtain cycles containing c
with the GCD of their lengths equal to k. Thus, in the path power G+k, the GCD
of lengths of cycles containing c is equal to one. Let H be the strong component
of G+k containing c. Using Lemma 6.3 we infer that V (H) is a subuniverse of the
algebra (V (G+k), w) and thus it admits a weak near unanimity polymorphism. The
algebraic length of H (again by Corollary 5.7) is one and therefore, by Theorem 7.2
it follows that there is a loop in G+k. This trivially implies a k-cycle in G which,
by Proposition 5.4, is a circle and the theorem is proved. �

The remaining part of this section is devoted to the proof of Theorem 7.2. We
start by choosing a digraph G = (V,E) to be a minimal (with respect to the
number of vertices) counterexample to Theorem 7.2. We fix a weak near unanimity
polymorphism w(x0, . . . , xh−1) of this digraph and associate with it the algebra
A = (V,w). The proof will proceed by a number of claims.

Claim 7.3. The digraph G can be chosen to contain a 2-cycle.

Proof. Using Lemma 5.5 we find a minimal k such that a 2k-cycle is contained
in G. Consider the path power G+2k−1

. It contains a 2-cycle and admits a weak
near unanimity polymorphism. Moreover, since k was chosen to be minimal, and G
did not contain a loop, the path power G+2k−1

does not contain a loop either. By
Corollary 5.6 the path power is strongly connected and by Corollary 5.2 it has
algebraic length equal to one. Thus, the digraph G+2k−1

is also a counterexample
to Theorem 7.2 (with the same number of vertices as G) and therefore we can use
it as a substitute for G. �
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From this point on we assume that G contains a 2-cycle (an undirected edge). The
next claim allows us to choose and fix an undirected edge with special properties.

Claim 7.4. There are vertices a, b ∈ V , forming an undirected edge in G, and a
binary term t of A such that a = t(w(a, b), w(b, a)).

Proof. Let M ⊆ V be a minimal (under inclusion) subuniverse of A containing an
undirected edge and let a, b ∈M be vertices in such an edge. Since vertices w(a, b),
w(b, a) ∈ M form an undirected edge in G, the set {w(a, b), w(b, a)} generates, in
the algebraic sense, the set M (by the minimality of M). Therefore there exists a
term t such that t(w(a, b), w(b, a)) = a. �

In the following claims we fix vertices a, b and a term t(x, y) such that a → b → a
and a = t(w(a, b), w(b, a)) (provided by the previous claim). Note that, by the
definition of the operation w(x0, . . . , xh−1), for any numbers i, j < h, we obtain
a = t(w(i)(a, b), w(j)(b, a)).

Using Lemma 5.5 we find and fix a minimal number n such that a+(n+1) = V .
We put W = a+n and F = (W×W )∩E so that H = (W,F ) is an induced subgraph
of the digraph G. Using Corollary 6.2 we infer that W is a subuniverse of A and
thus H admits a weak near unanimity polymorphism. In the following claims we
will show that the algebraic length of some strong component of H is one which
will contradict the minimality of G.

Claim 7.5. For any element in W there exists a cycle in H and a path (also in
H) connecting the cycle to this element.

Proof. Let d0 denote an arbitrary element of W . Since a+(n+1) = W+1 = V there
is d1 ∈ W such that d1 → d0. Similarly, there exists d2 ∈ W such that d2 → d1.
By repeating this procedure, we get both statements of the claim. �

The next claim will allow us to fix some more elements necessary for further con-
truction:

Claim 7.6. There exist element c, c′ ∈W and a number k such that:
(1) c′ → a,
(2) c

k−→ c in H, and
(3) c

k−n−1−−−−−→ c′ in H.

Proof. Since W+1 = V there exists c′ ∈ W such that c′ → a. Let l be the length
of a cycle provided by Claim 7.5 for c′ ∈ W . For a sufficiently large multiple k of
l there is a path in H of length k − n− 1 from some element of the cycle to c′, we
call this element c. This finishes the proof. �

From this point on we fix vertices c and c′ in W and a number k to satisfy the
conditions of the last claim. The following claims focus on uncovering the structure
of the strong component containing c in H.

Claim 7.7. For any m ≤ n either a+m ⊆ a+n or a+m ⊆ b+n.

Proof. Since a is in a 2-cycle, we obviously have a+n ⊇ a+(n−2) ⊇ a+(n−4) . . .
which proves the claim for even m’s. If, on the other hand, m is odd we have
b+n ⊇ a+(n−1) ⊇ a+(n−3) . . . completing the proof. �

The next two claims are of major importance for the proof of Theorem 7.2. They are
used to show that the algebraic length of the strong component of H containing c
is one.
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Claim 7.8. For any m ≤ n and for any 0 ≤ i, j < h the following inclusion holds

t(w(i)(a+n, a+m), w(j)(a+m, a+n)) ⊆ a+n

Proof. Since a = t(w(i)(a, b), w(j)(b, a)), we have

a+n ⊇ t(w(i)(a+n, b+n), w(j)(b+n, a+n)).

By idempotency we have a = t(w(i)(a, a), w(j)(a, a)) and therefore

a+n ⊇ t(w(i)(a+n, a+n), w(j)(a+n, a+n)).

Now the claim follows directly from Claim 7.7. �

The following technical lemma will allow us to find directed paths in the strong
component of H containing c.

Claim 7.9. The following implication holds in H (i.e. all the paths and vertices lie
inside H). For any numbers 0 ≤ i, j < h and all e, e′, f ∈W and

−→
d ,
−→
d′ ,−→g ∈W ,

if
e

k
��

e′
and

dl

k
��

d′l

for all l, then
t(w(i)(

−→
d , c), w(j)(c, e))

k
��

t(w(i)(
−→
d′ , f), w(j)(−→g , e′))

Proof. Note that, by looking at the tuples of elements pointwise, we can find the
following paths in G:

−→
d

k

��

c

k−n−1
��

c
k−n−1

��

e

k

��

c′

��

c′

��

a
n

��

a
n

��−→
d′ f −→g e′

where the paths from c to c′ are provided by Claim 7.6 and lie entirely in H. Ap-
plying the appropriate term to the consecutive elements of the paths (rows in the
diagram above) we obtain a path of length k connecting t(w(i)(

−→
d , c), w(j)(c, e)) to

t(w(i)(
−→
d′ , f), w(j)(−→g , e′)). It remains to prove that all the elements of this path

are in W . The first k − n − 1 elements of the path are in W , since W is a
subuniverse and they are results of an application of a term to elements of the
subuniverse. For m ≥ 0, the (k − n + m)-th element of the path is a member of
t(w(i)(a+n, a+m), w(j)(a+m, a+n)) and thus in W by Claim 7.8. �

We now construct a cycle in H, that contains c, of length coprime to k.

Claim 7.10. There exists a path c
(h+1)k−1−−−−−−→ c in digraph H .

Proof. In the proof of this claim we only use elements and paths that lie inside H.
Fix d ∈ W (provided by Claim 7.6) such that c → d

k−1−−→ c in H. By repeatedly
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applying Claim 7.9 we obtain:

t(w(c, . . . , c, c, c), w(c, c . . . , c))
k

��

t(w(c, . . . , c, c, d), w(d, c, . . . , c)) = t(w(1)(c, . . . , c, d, c), w(1)(c, . . . , c, d))
k

��

t(w(2)(c, . . . , d, d, c), w(1)(c, . . . , c, d))

��

= t(w(1)(c, . . . , c, d, d), w(1)(c, . . . , c, d))

= t(w(h−1)(d, . . . , d, d, c), w(1)(c, . . . , c, d))
k

��

t(w(h−1)(d, . . . , d, d, d), w(1)(d, . . . , d, d))

and since the algebra is idempotent the starting point of this path is c and the
ending point is d. Thus c

hk−→ d (for h the arity of the operation w(x0, . . . , xh−1))
which immediately gives us the claim. �

By Claims 7.6 and 7.10, the strong component of H containing c has GCD of
the lengths of its cycles equal to one and thus, by Lemma 6.3, its vertex set forms
a subuniverse of the algebra A. As a digraph it admits a weak near unanimity
polymorphism. By Corollary 5.7 it has algebraic length one and (as an induced
subgraph of G) it has no loops. Since H was chosen to be strictly smaller than G
we obtain a contradiction with the minimality of G and the proof of Theorem 7.2
is completed.

8. The general case

In this section we prove Theorem 3.1 in its full generality. Nevertheless the majority
of this section is devoted to the proof of the following result.

Theorem 8.1. If a digraph with no sources or sinks has algebraic length one and
admits a weak near unanimity polymorphism then it contains a loop.

Using the above result we prove the core theorem of the paper.

Theorem 3.1. If a digraph with no sources or sinks admits a weak near-unanimity
polymorphism then it retracts onto the disjoint union of circles.

Proof. Let G be a digraph with no sources or sinks which admits a weak near
unanimity polymorphism. Let n be the algebraic length of some component of G.
The path power G+n admits a weak near unanimity polymorphism, has no sources
or sinks and, by Lemma 5.1, has algebraic length equal to one. Thus, Theorem 8.1
applied to G+n provides a loop in the path power and therefore an n-cycle in G.

Let n be minimal, under divisibility, in the set of algebraic lengths of components
of G. Since the algebraic length of a component divides (by Proposition 5.4) the
length of any cycle in it, every n-cycle (for such a minimal n) is a circle. Moreover,
by the same reasoning, circles obtained for two different minimal n’s cannot belong
to the same component. Thus each component of G maps homomorphically onto
an n-circle (for any minimal n dividing the algebraic length of this component)
and it is not difficult to see that these homomorphisms can be chosen so that their
union is a retraction. This proves the theorem. �

Therefore the only missing piece of the proof to the conjecture of Bang-Jensen
and Hell is Theorem 8.1. We prove this result by way of contradiction. Suppose
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Figure 1. The 12-tambourine.

that G = (V,E) is a minimal (with respect to the number of vertices) counterex-
ample to Theorem 8.1 and let A = (V,w(x0, . . . , xh−1)) be the algebra associated
with G, in the sense of Section 6, for some weak near unanimity polymorphism
w(x0, . . . , xh−1).

The first part of the proof is dedicated to finding a particular counterexam-
ple satisfying more restrictive conditions than G. To do so we need to define a
special family of digraphs called tambourines. The n-tambourine is the digraph
({d0, . . . , dn−1, u0, . . . , un−1}, Fn) such that

Fn =
⋃
i

{(di, di+1), (di, ui), (di, ui+1), (ui, ui+1)}.

where the addition on the indices is computed modulo n. The 12-tambourine can
be found in Figure 1. We begin the proof of the theorem with the following claim:

Claim 8.2. We can choose a digraph G and a number n such that
• the n-tambourine maps homomorphicaly into G,
• every element of G is in an n-cycle and
• G+(mn+1) = G for any number m.

To prove this claim, we begin with an easy subclaim and work towards replacing
G with a particular path power of G which satisfies the additional conditions.
Note that, for any oriented path α, the path power Gα admits w(x0, . . . , xh−1) as
a polymorphism and has no sources or sinks. If such a path power has algebraic
length one and does not contain a loop, then it can be taken as a substitute for G.

Subclaim 8.2.1. The digraph G contains vertices d and u such that d
|V |,|V |+1−−−−−−→ u.

Proof. Let α be the oriented path

→ · · · →︸ ︷︷ ︸
|V |+1

← · · · ←︸ ︷︷ ︸
|V |

Using the fact that al(α) = 1 and that G has no sources or sinks, it follows that
E(G) ⊆ E(Gα). Moreover, let a, b be vertices in G such that b is contained in a

cycle and a
k−→ b, for some k. Then a

k′−→ b for some k′ ≤ |V | and choosing b′ (from
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the cycle containing b) such that b′
k′+1−−−→ b we obtain

b′
k′+1−−−→ b

(|V |+1)−(k′+1)−−−−−−−−−−→ c
(|V |+1)−(k′+1)←−−−−−−−−−− b

k′←− a for some c.

Thus b′
α−→ a and this implies that every component of G becomes a strong com-

ponent of Gα.
Let H = (W,F ) be a component of G with a path of algebraic length one. Then,

there exists F ′ ⊇ F such that the digraph H′ = (W,F ′) is a strong component of
Gα. The digraph H′ contains H as a subgraph and therefore its algebraic length is
one. The path power Gα admits w(x0, . . . , xh−1) as a polymorphism and thus, by
Lemma 6.3, the digraph H′ admits an appropriate restriction of w(x0, . . . , xh−1).
Theorem 7.2 provides a loop in H′ which in turn implies the existence of vertices

d, u ∈W such that d
|V |,|V |+1−−−−−−→ u in G. �

Proof of Claim 8.2. We fix n = |V |! and argue that, for some k, the path power
Gk = G+(kn+1) satisfies the assertions of the claim and therefore can be taken
as a substitute for G. Note that, for any number k, the digraph Gk admits
w(x0, . . . , xh−1) as a polymorphism, it has no sources or sinks and, by Corollary 5.2,
it has algebraic length one.

We first prove that, for all k, the digraph Gk does not contain a loop. If Gk does
contain a loop, then there exists a cycle of length kn+1 in some strong component
of G. The length of any circle in G is coprime to kn + 1, therefore the GCD of
the lengths of cycles in this strong component is one, and, using Corollary 5.7,
Lemma 6.3 and Theorem 7.2, we obtain a loop in this strong component and there-
fore also in G, a contradiction. Thus, to prove the claim, it remains to verify the
additional required properties.

We now show that, for the fixed number n, the n-tambourine maps homomorphi-
cally into Gk for k ≥ 4. Let d, u be vertices of G provided by Sublaim 8.2.1. Since
G has no sources or sinks we can find vertices d′, u′, each contained in a cycle, such
that d′ is connected by a directed path to d and u is connected by a directed path
to u′. By following the cycles containing d′ and u′ multiple times we get d′0, u

′
0,

each contained in a cycle, such that d′0
3n,3n+1−−−−−→ u′

0. Moreover, again following the
cycles multiple times, we obtain

d′0
n−→ d′0

3n,3n+1−−−−−→ u′
0

n−→ u′
0.

Let d′i denote the i-th element of the cycle d′0
n−→ d′0 and, similarly u′

i the i-th
element of the cycle u′

0
n−→ u′

0. Then, for any number k ≥ 4 and any i < n, we have
d′i

kn+1−−−→ u′
i and d′i

kn+1−−−→ u′
(i+1) mod n. On the other hand d′i

kn+1−−−→ d′(i+1) mod n

and u′
i

kn+1−−−→ u′
(i+1) mod n. Thus, for any k ≥ 4, the map di 7→ d′i, ui 7→ u′

i is a
homomorphism from the n-tambourine in the path power Gk .

To prove the second assertion of the claim we need to show that, if k ≥ 4, than
any vertex of Gk is in an n-cycle. We fix such a number k and let W ⊂ V be
the subuniverse of A generated by {d′0, . . . , d′n−1, u

′
0, . . . , u

′
n−1}. Let G′

k be the
subgraph induced by Gk on W . The digraph G′

k obviously admits a restriction of
w(x0, . . . , xh−1) and (since the n-tambourine maps homorphically into it) has alge-
braic length one. Choose an arbitrary a ∈W . Then, by the definition of W , we have
a term t(x0, . . . , xn−1, y0, . . . , yn−1) such that a = t(d′0, . . . , d

′
n−1, u

′
0, . . . , u

′
n−1).



THE CSP DICHOTOMY FOR SMOOTH DIGRAPHS 15

Therefore,
t(d′0, . . . , d

′
n−2, d

′
n−1, u

′
0, . . . , u

′
n−2, u

′
n−1)

��

t(d′1, . . . , d
′
n−1, d

′
0, u

′
1, . . . , u

′
n−1, u

′
0)

��

t(d′n−1, . . . , d
′
n−3, d

′
n−2, u

′
n−1, . . . , u

′
n−3, u

′
n−2)

��

t(d′0, . . . , d
′
n−2, d

′
n−1, u

′
0, . . . , u

′
n−2, u

′
n−1)


n

and thus a is in an n-cycle. This proves that G′
k has no sources and no sinks

and since it cannot be a counterexample smaller than G we infer that W = V .
Therefore the second assertion holds for all the digraphs Gk with k ≥ 4.

In the digraph G4 every element is in an n-cycle and therefore E(G4
+(nm+1)) ⊆

E(G4
+(n(m+1)+1)) for any number m. Thus, there is a number l such that for any

m ≥ l we have G4
+(nm+1) = G4

+(nl+1). Take G′ = G4
+(nl+1) = G(4nl+l+4)n+1

and note that, according to the previous paragraphs of this proof, such a di-
graph satisfies all but the last assertion of the claim. Let m be arbitrary. Then
(G′)+(mn+1) = G4

+((mnl+l+m)n+1) = G4
+(nl+1) = G′ and thus G′ can be taken

to substitute G and the claim is proved. �

From this point on we substitute G with a digraph provided by the previous claim
and fix it together with the number n. For ease of notation we denote the number
modulo n using brackets (e.g [n+1] = 1). We already know that the n-tambourine
maps homomorphically into G, but we must choose such a homomorphism carefully.

Claim 8.3. The n-tambourine can be mapped homomorphically into G in such a
way that

d′i = t(i)(w(d′0, d
′
1), w(d′1, d

′
2), . . . , w(d′n−1, d

′
0)) for all i < n,

where d′i is the image of di.

Proof. Let di 7→ d′i, ui 7→ u′
i be a homomorphism from the n-tambourine into G.

Then, for any i, we have

w(u′
i, u

′
[i+1]) // w(u′

[i+1], u
′
[i+2]) // · · ·

w(d′i, d
′
[i+1])

OO 55kkkkkkkk
// w(d′[i+1], d

′
[i+2]) //

OO

· · ·
· · ·

and thus di 7→ w(d′i, d
′
[i+1]), ui 7→ w(u′

i, u
′
[i+1]) is also a homomorphism from the

n-tambourine into G. By repeating this procedure we obtain an infinite sequence of
homomorphisms from the n-tambourine into G and thus some homomorphism has
to appear twice in this sequence. This homomorphism satisfies the claim, since the
term t(x0, . . . , xn−1) can be easily obtained as a composition of the polymorphism
w(x0, . . . , xh−1) used in the construction of the sequence. �

In the remaining part of the proof we fix vertices d′0, . . . , d
′
n−1, u

′
0, . . . , u

′
n−1 pro-

vided by the previous claim and a term t(x0, . . . , xn−1) associated with them. Let
ϕk be the oriented path 4 ϕk−−→ ◦

4 • •

• •
· · ·

•

◦
GG���

WW////
GG����

WW////
GG GG����

WW

with exactly k edges (the last edge of the path is pointing forward for odd k, as in
the above picture, and backward for even k).
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Claim 8.4. The neighborhood (d′0)
ϕn contains all vertices of G.

Proof. Note that, in the n-tambourine, we have

(d0)
ϕn = {d0, . . . , dn−1, u0, . . . , un−1}

and thus in the digraph G we have

(d′0)
ϕn ⊇ {d′0, . . . , d′n−1, u

′
0, . . . , d

′
n−1}.

Let G′ denote the subgraph of G induced on the set (d′0)
ϕn . Then, by Corollary 6.2,

G′ admits a restriction of w(x0, . . . , xh−1) as a polymorphism and has algebraic
length one. Further restricting the digraph G′, denote the largest induced subgraph
of G′ without sources or sinks by G′′. By Lemma 6.4 it admits a weak near
unanimity polymorphism. Moreover the elements {d′0, . . . , d′n−1, u

′
0, . . . , d

′
n−1} are

among the vertices of G′′. Thus G′′ is a counterexample to Theorem 8.1 and
therefore has to be equal to G. This proves the claim. �

We choose (and fix) k to be a minimal number such that (d′0)
ϕk+1 = V . Define

Wi = (d′i)
ϕk , for each i < n. We set

W =
⋂
i<n

Wi

and since W is an intersection of subuniverses of A, by Corollary 6.2, it is itself a
subuniverse of A. We denote by H the subgraph of G induced by W and prove
that H is a counterexample to Theorem 8.1 contradicting the minimality of G.

The most involved part of the proof deals with constructing an oriented cycle of
algebraic length one in H. Two following claims introduce tools for “projecting”
certain paths from G into H.

Claim 8.5. There exists a term s(x0, . . . , xp−1) such that for every coordinate q < p
there exists i such that

s(q)(Wl,W, . . . ,W ) ⊆W[i−l] ∩W[i−l+1] for any l < n.

Proof. Let p = hn and let s(x0, . . . , xp−1) be defined by

t
(
w(x0, . . . , xh−1), w(xh, . . . , x2h−1), . . . , w(x(n−1)h, . . . , xhn−1)

)
.

For all q < p, let i be maximal such that q = ih + q′′ for some non-negative q′′.
Then, for all l < n

s(q)(Wl,W ) ⊆ t(i)
(
w(q′′)(Wl,W ), w(W ), . . . , w(W )

)
⊆ t(i)

(
w(q′′)(Wl,W[l+1]), w(W[l+1],W[l+2]), . . . , w(W[l+n−1],Wl)

)
= t([i−l])

(
w(W0,W1), . . . , w(q′′)(Wl,W[l+1]), . . . , w(Wn−1,W0)

)
⊆W[i−l]

where the last inclusion follows from Claim 8.3 and the fact that

d′[i−l] = t([i−l])(w(d′0, d
′
1), . . . , w(d′l, d

′
[l+1]), . . . , w(d′n−1, d

′
0))

= t([i−l])(w(d′0, d
′
1), . . . , w

(q′′)(d′l, d
′
[l+1]), . . . , w(d′n−1, d

′
0)).
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Similar reasoning shows that

s(q)(Wl,W ) ⊆ t(i)
(
w(q′′)(Wl,W ), w(W ), . . . , w(W )

)
⊆ t(i)

(
w(q′′)(Wl,W[l−1]), w(W[l+1],Wl), . . . , w(W[l+n−1],W[l+n−2])

)
= t[i−l+1]

(
w(W1,W0), . . . , w(q′′)(Wl,W[l−1]), . . . , w(W0,Wn−1)

)
⊆W[i−l+1]

and the proof is finished. �

Further, using the term constructed in the last claim, we can construct a term
satisfying stronger conditions.

Claim 8.6. There exists a term r(x0, . . . , xm−1) such that for every coordinate
q < m

r(q)
( ⋃

l<n

Wl,W, . . . ,W
)
⊆W.

Proof. Let s(x0, . . . , xp−1) be the p-ary term provided by the previous claim. Note
that the term

s2(x0, x1, · · · , xp2−1) = s(s(x0, . . . , xp−1), . . . , s(xp2−p, . . . , xp2−1))

has the property that for every coordinate q < p2 − 1 there exists an i such that

s
(q)
2 (Wl,W ) ⊆W[i−l] ∩W[i−l+1] ∩W[i−l+2].

To prove a more general statement we recursively define a sequence of terms
• s1(x0, . . . , xp−1) = s(x0, . . . , xp−1) and
• sj+1(x0, . . . , xpj−1) = s(sj(x0, . . . , xpj−1−1), . . . , sj(x(p−1)pj−1 , . . . , xpj−1)).

We claim that for any j, any q < pj and any l < n there is an i such that

s
(q)
j

(
Wl,W, . . . ,W

)
⊆W[i−l] ∩ . . . ∩W[i−l+j].

We prove this fact by induction. The first step of the induction holds via Claim 8.5.
Assume that the fact holds for j, then for any l (setting q′ to be the result of integer
division of q by p and q′′ the remainder of this division) there exist i and i′ such
that

s
(q)
j+1(Wl,W ) ⊆ s(q′)

(
s
(q′′)
j (Wl,W ), sj(W ), . . . , sj(W )

)
⊆ s(q′)

(
W[i−l] ∩ . . . ∩W[i−l+j],W

)
⊆W[i′+i−l] ∩ . . . ∩W[i′+i−l+(j+1)]

where the second inclusion follows from the induction step and the last one from
Claim 8.5. Setting r(x0, . . . , xm−1) equal to sn−1(x0, . . . , xpn−1) proves the claim.

�

From this point on we fix a term r(x0, . . . , xm−1) (of arity m) provided by the
previous claim. To prove additional properties of the set W (e.g. the fact that it is
not empty) we require the following easy claim.

Claim 8.7. Let α be an oriented path and let a0 → a1 and b0 → b1 be edges that
belong to cycles. If a0

α−→ b0, then a1
α−→ b1.

Proof. We prove the claim by induction with respect to the number of edges in α.
Let the vertices a0, a1, b0, b1 be as in the statement of the claim. Assume that
a0 → b0. Since there is a number i such that a1

in−1−−−→ a0 → b0 → b1 then, by
Claim 8.2, a1 → b1. The same reasoning can be applied to the case of a0 ← b0 and
the first step of the induction is proved.
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For a path α consisting of more than one edge we can assume, without loss of

generality, that the last edge is going forward. Then a0
α′−→ a′0 → b0 for some

element a′0 (where α′ is the oriented path obtained by removing the last edge of α).
By Claim 8.2, it follows that a′0 is in an n-cycle and therefore a′0 → a′1

n−1−−−→ a′0

for some a′1. By the induction hypothesis a1
α′−→ a′1 and, by the first step of the

induction, a′1 → b1 which proves the claim. �

We recall the definition of the top and bottom components of the graph from
Subsection 4.3 and prove some basic properties of W .

Claim 8.8. The digraph H has no sources and no sinks and

• if k is even, then every bottom component is contained in W , and
• if k is odd, then every top component is contained in W .

Proof. First we show that, for any vertices a, b such that a
i−→ b

j−→ a for some i, j,

if a ∈Wl then b ∈W[l+i].

To see this note that if d′l
ϕk−−→ a and a→ b

j−→ a then, using Claim 8.7 and the edge
d′l → d′[l+1], we infer that d′[l+1]

ϕk−−→ b. The same procedure repeated i-many times
provides the result for arbitrary i.

Let a ∈ W be arbitrary and b be such that a
i−→ b

j−→ a for some numbers i, j.
Since a ∈ W it follows, using the note above, that b ∈

⋂
l<n W[l+i] = W and this

implies that W is a union of strong components. Since, by Claim 8.2, every vertex
in G belongs to an n-cycle, the digraph H has no sources or sinks.

Let k be even and let a be a member of a bottom component. Since every
element of the graph, by Claim 8.2, belongs to a cycle, there exists b, in the bottom
component containing a, such that a → b. Since (d′0)

ϕk+1 = V , we have d′0
ϕk−1−−−→

c ← a′ → b for some a′ and c. The vertex a is in a bottom component and
therefore a′ must be a member of the same bottom component. This implies that
a′ → b

i−→ a′, for some i, and further that a→ b
ni−1−−−→ a′ → c. Thus, by Claim 8.2,

we have a → c and a ∈ W0. Therefore every bottom component is contained in
W0. To see that every a from a bottom component is contained in an arbitrary Wl

we find a b satisfying a
l−→ b

i−→ a for some i and apply the note from the beginning
of the proof of the claim. The claim is proved for even k’s and the same reasoning
provides a proof for odd k and top components. �

Now we are ready to prove the final claim of this section.

Claim 8.9. The algebraic length of H is one.

Proof. In the case where k is odd, we want to find a, b, c ∈ W and e ∈ W0 such
that

a b c

e

// //
WW////

GG����

To find such elements we put e = d′1 and find, using Claim 8.8, b ∈ W from a
top component such that u′

[2]

in−1−−−→ b for some i. There exist a and c in the same

component (and thus in W by Claim 8.8) such that a→ b→ c. Since d′1
1,2−−→ u′

[2],

we have e
in+1−−−→ b and e

in+1−−−→ c and therefore, by Claim 8.2, the elements a, b, c
and e satisfy the required properties. Then, using the term s(x0, . . . , xm−1), we
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produce the following oriented path

•
b = s(b)

•
s(e, a)

•
s(c, b) = s(1)(b, c)

•
s(1)(e, a, b)

•
s(1)(c, b, c) = s(2)(b, c, c)

. . .

•
s(n−1)(c) = c

WW//////

::ttttttttttt

ddJJJJJJJJJJJ

::ttttttttttt

__ ??

By Claim 8.6, all the elements of this path belong to W . Thus we have constructed
a path in H of algebraic length zero connecting b to c. Since b→ c we immediately
obtain that the algebraic length of H is one.

In the case where k is even, we similarly find a, b, c ∈ W and e ∈ W0 (using u′
1

for e) such that

a b c

e

oo oo

GG����

WW////

The construction of a path of algebraic length one is the same as it is for odd k,
with the exception that the direction of the edges is reversed. �

Thus H is a digraph without sources or sinks (by Claim 8.8), admitting a weak
near unanimity polymorphism and, by the last claim, having algebraic length equal
to one. Since, by the definition of W , the number of vertices in H is strictly smaller
than the number of vertices in G, we obtain a contradiction with the minimality
of G and Theorem 8.1 is proved.
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[LZ03] Benoit Larose and László Zádori, The complexity of the extendibility problem for

finite posets, SIAM J. Discrete Math. 17 (2003), no. 1, 114–121 (electronic).

MR MR2033309 (2004h:06007)
[LZ06] , Taylor terms, constraint satisfaction and the complexity of polynomial equa-

tions over finite algebras, Internat. J. Algebra Comput. 16 (2006), no. 3, 563–581.
MR MR2241624 (2007i:08004)

[Mac77] Alan Mackworth, Consistency in networks of relations, Artificial Intelligence 8

(1977), 99–118.
[Mac91] Gary MacGillivray, On the complexity of colouring by vertex-transitive and

arc-transitive digraphs, SIAM J. Discrete Math. 4 (1991), no. 3, 397–408.
MR MR1105945 (92d:05156)
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