The Cube of Every Connected Graph is 1-Hamiltonian *

Gary Chartrand and S. F. Kapoor**

(November 15, 1968)

Abstract

Let G be any connected graph on 4 or more points. The graph G^{3} has as its point set that of G, and two distinct points u and v are adjacent in G^{3} if and only if the distance between u and v in G is at most three. It is shown that not only is G^{3} hamiltonian, but the removal of any point from G^{3} still yields a hamiltonian graph.

Key Words: Cube of a graph; graph; hamiltonian.
Let G be a graph (finite, undirected, with no loops or multiple lines). A walk of G is a finite alternating sequence of points and lines of G, beginning and ending with a point and where each line is incident with the points immediately preceding and following it. A walk in which no point is repeated is called a path; the length of a path is the number of lines in it.

A graph G is connected if between every pair of distinct points there exists a path, and for such a graph, the distance between two points u and v is defined as the length of the shortest path if $u \neq v$ and zero if $u=v$.

A walk with at least three points in which the first and last points are the same but all other points are distinct is called a cycle. A cycle containing all points of a graph G is called a hamiltonian cycle of G, and G itself a hamiltonian graph.

Throughout the literature of graph theory there have been defined many graph-valued functions f on the class of graphs. In certain instances results have been obtained to show that if G is connected and has sufficiently many points, then the graph $f(G)$ (or its iterates $f^{n}(G)$) is a hamiltonian graph. Examples of such include the line-graph function $L(G)$ and the total graph function $T(G)$ (see [2, 1], ${ }^{1}$ respectively).

The line-graph $L(G)$ of graph G is a graph whose point set can be put in one-to-one correspondence with the line set of G such that adjacency is preserved. The total graph $T(G)$ has its point set in one-to-one correspondence with the set of points and lines of G in such a way that two points of $T(G)$ are adjacent if and only if the corresponding elements of G are adjacent or incident.

Another example which always yields a hamiltonian graph is the cube function. In fact, if x is any line in a connected graph G with at least three points, then the cube of G has a hamiltonian cycle containing x. This follows from a result due to Karaganis [4] by which the cube of any connected graph G on $p(\geqslant 3)$ points turns out to be hamiltonian-connected, i.e., between any two points there exists a path containing all points of G. Now if x is any line joining points u and v in G, then the addition of x to the hamiltonian path between u and v in the cube of the graph produces a hamiltonian cycle of G containing x.

The cube G^{3} of a connected graph G has as its point set that of G, and two distinct points u and v are adjacent in G^{3} if and only if the distance between u and v in G is at most three. The purpose of this note is to prove that if G is a connected graph (with $p \geqslant 4$ points) then not only is G^{3} hamiltonian, but the removal of any point from G^{3} still yields a hamiltonian graph. Graphs enjoying this property have been referred to as 1 -hamiltonian in [3].

Theorem. If G is a connected graph on $\mathrm{p} \geqslant 4$ points, then G^{3} is 1-hamiltonian.

[^0]Proof. That G^{3} is hamiltonian is already known; indeed, there exists a hamiltonian cycle of G^{3} which contains any specified line of G as we have already noted. We now show that the deletion of any point from G^{3} also results in a hamiltonian graph. The proof is by induction on p, the result being true for $p=4$, since the cube of any connected graph on 4 points yields the complete graph, and the removal of any point from this leaves a cycle on three points. Clearly the theorem follows if the result is proved for a spanning tree T of G. Assume the statement to be true for all trees on n points, $4 \leqslant n<p$, and let T be any tree on p points. Consider the forest F obtained by deleting any point u from T. Denote the components of F by $T_{i}, 1 \leqslant i \leqslant k$, where k is the degree of u in T. Furthermore, let T_{i} have p_{i} points so that $p=1+\sum_{i=1}^{k} p_{i}$, and let u_{i} be the point in T_{i} which is adjacent to
u in T.

If $k=1$, then F is a tree. If $p_{1} \geqslant 4$, then \dot{T}_{1}^{3} is 1-hamiltonian by hypothesis, while if $p_{1}=3, T_{1}^{3}$ is a triangle; in either case T_{1}^{3} is hamiltonian.

Assume $k>1$. For all i such that $1 \leqslant i \leqslant k$ and $p_{i} \geqslant 3$, it follows from earlier remarks that a hamiltonian cycle C_{i} may be selected in T_{1}^{3} to contain the line $u_{i} v_{i}$ where v_{i} is adjacent to u_{i} in T_{i}. If $p_{i}=2, T_{i}$ has only two points, namely u_{i} and v_{i}. We now construct a hamiltonian cycle C in $T^{3}-u$ as follows.

For each C_{i} so defined for $p_{i} \geqslant 3$, remove the line $u_{i} v_{i}$ to obtain a path P_{i} beginning at u_{i} and ending at v_{i}. If $p_{i}=2$, then T_{i} is itself a path P_{i} beginning at u_{i} and ending at v_{i}. For completeness, if $p_{i}=1$, we assign a second label v_{i} to the point u_{i} and speak of the trivial path P_{i}. Observe that for $r \neq s$, the distance from v_{r} to u_{s} is two if P_{r} is trivial, and is three otherwise. In either case the line $v_{r} u_{s}$ is present in $T^{3}-u$. The desired cycle C is $P_{1}, v_{1} u_{2}, P_{2}, \ldots, P_{j}, v_{j} u_{j+1}, P_{j+1}, \ldots, P_{k}, v_{k} u_{1}$.

The previous result cannot be improved so that the removal of any two points from the cube of a connected graph with at least five points results in a hamiltonian graph. For example, if P is a path containing adjacent points u and v, neither an end-point, then $P^{3}-\{u, v\}$ is not hamiltonian.

References

[1] Behzad, M., Chartrand, G., Total graphs and traversability, Proc. Edinburgh Math. Soc. 15, 117-120 (1966).
[2] Chartrand, G., The existence of complete cycles in repeated line-graphs, Bull. Amer. Math. Soc. 71, 668-670 (1965).
[3] Chartrand, G., Kapoor, S. F., and Lick, D. R., n-Hamiltonian graphs, J. Combinatorial Theory, to appear.
[4] Karaganis, J. J., On the cube of a graph, Canad. Math. Bull. 11, 295-296 (1968).
(Paper 73B1-287)

[^0]: ${ }^{*}$ An invited paper
 **Present address: Western Michigan University, Kalamazoo, Mich. 49001.
 ${ }^{1}$ Figures in brackets indicate the literature references at the end of this paper.

