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Abstract

The posttranslational addition of ubiquitin (Ub) helps control the half-
life, localization, and action of many intracellular plant proteins. A pri-
mary function is the degradation of ubiquitylated proteins by the 26S
proteasome, which in turn plays important housekeeping and regulatory
roles by removing aberrant polypeptides and various normal short-lived
regulators. Strikingly, both genetic and genomic studies reveal that Ub
conjugation is extraordinarily complex in plants, with more than 1500
Ub-protein ligases (or E3s) possible that could direct the final transfer of
the Ub moiety to an equally large number of targets. The cullin-RING
ligases (CRLs) are a highly polymorphic E3 collection composed of a
cullin backbone onto which binds carriers of activated Ub and a diverse
assortment of adaptors that recruit appropriate substrates for ubiquity-
lation. Here, we review our current understanding of the organization
and structure of CRLs in plants and their dynamics, substrates, poten-
tial functions, and evolution. The importance of CRLs is exemplified
by their ability to serve as sensors of hormones and light; their essential
participation in various signaling pathways; their control of the
cell cycle, transcription, the stress response, self-incompatibility, and
pathogen defense; and their dramatically divergent evolutionary histo-
ries in many plant lineages. Given both their organizational complexities
and their critical influences, CRLs likely impact most, if not all, aspects
of plant biology.
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Ubiquitin (Ub): a
76-amino acid protein
that becomes
covalently attached to
other proteins

26S proteasome: a
2.5-MDa complex that
degrades proteins
modified with Ub

Ub/26S proteasome
system (UPS):
pathway for degrading
proteins via the 26S
proteasome that first
involves the selective
attachment of Ub
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INTRODUCTION TO UBIQUITIN
AND THE UPS

Life is exquisitely birthed, maintained, and
reshaped by the synthesis of new proteins,
their subsequent assembly into functional
structures, and their final removal by various
proteolytic routes. Whereas the machineries
directing protein synthesis and assembly
are relatively well understood, we are only
beginning to appreciate the underpinning
mechanisms responsible for the final catabolic
step in a protein’s life and, in particular, the
roles that various posttranslational modifiers
play in this process. In fact, it is now clear
that plants and animals employ a collection of

small polypeptide modifiers that affect protein
breakdown (42, 86). The founding member of
this family—ubiquitin (Ub)—was first identi-
fied during the Nobel Prize–winning research
of Hershko and colleagues investigating intra-
cellular proteolysis (83). Upon addition, Ub
serves as a reusable tag that selectively commits
proteins for destruction as well as other non-
proteolytic outcomes. Subsequently, a number
of functionally distinct “Ub-fold” proteins
have been discovered, including related to Ub
(RUB)-1/NEURAL-PRECURSOR-CELLS
DEVELOPMENTAL-DOWNREGU-
LATED (Nedd)-8, membrane-anchored Ub-
fold protein (41a), autophagy-8 and -12, and
small-Ub-like-modifier (42, 86). Surprisingly,
these relatives can work either alone, together,
or in conflict with Ub in regulating protein
turnover, thus highlighting the depth and
breadth of posttranslational events that affect
a protein’s life span.

As the name implies, Ub is a highly
conserved, small polypeptide ubiquitously
distributed among eukaryotes. Its ligation is
accomplished by an ATP-dependent reaction
cascade involving the sequential action of Ub-
activating (E1s), Ub-conjugating (E2s), and
Ub-protein ligase (E3s) enzymes (Figure 1a)
(181, 212). The final step links, via an isopeptide
bond, the C-terminal glycine carboxyl group
of Ub to a free lysl ε-amino group in the target.
In some cases, only a single Ub is attached
(mono-ubiquitylation). More often, reiterative
rounds of conjugation assemble a Ub polymer
onto the target (poly-ubiquitylation), using one
or more lysines from previously attached Ubs
for concatenation (Figure 1b). The number
and arrangement of the linked Ubs then imbue
important structural information that expands
the functionality of the Ub moiety (147).
Ubiquitylated proteins have several possible
fates. Substrates modified with poly-Ub chains,
especially those linked via Lys-11 or Lys-48,
are degraded by the 26S proteasome, a 2.5-
MDa proteolytic complex that breaks down the
substrate but releases the attached Ubs intact
for reuse. Through this Ub/26S proteasome
system (UPS), plants and animals selectively
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Figure 1
Ubiquitin (Ub) and the Ub-26S proteasome system (UPS). (a) Diagram of the UPS. The pathway begins
with adenosine triphosphate (ATP)-dependent activation of Ub by an E1, followed by transfer of the
activated Ub to an E2, and then final attachment of the activated Ub to the target with the help of an E3.
The resulting product is a Ub-protein conjugate where the C-terminal Gly carboxyl group of Ub is linked
through an isopeptide bond to an accessible amino group (typically lysine ε-amino) in the target or another
Ub if poly-Ub chains are added. After iterative assembly, the Ub-protein conjugate can be disassembled by
deubiquitylating enzymes (DUBs) to release the target protein and Ubs intact or the target can be broken
down by the 26S proteasome, with the concomitant release of the bound Ub molecules by DUBs. (b) Three-
dimensional ribbon model of plant Ub (204). The side chains from the seven lysines in Ub that can be used
for poly-Ub chain formation are shown in red. The β strands are in green, the α helices are in cyan, and the
C-terminal Gly76 used to ligate Ub to other proteins is indicated. N, N terminus; C, C terminus.

Cullin-RING ligases
(CRLs): types of Ub
ligases that share the
cullin scaffold along
with the RBX subunit
and one of a number
of target recognition
modules

Cullin (CUL):
arch-shaped protein
that provides the
scaffold for CRLs

remove misfolded or mutant polypeptides and
the majority of normal intracellular regulators
in the cytoplasm and nucleus (181). Alterna-
tively, mono-ubiquitylated and Lys-63 poly-
ubiquitylated targets bound to the plasma mem-
brane are often internalized and transported to
the vacuole/lysosome for breakdown. Ub addi-
tion can also be reversed by a family of deubiq-
uitylating enzymes (DUBs) that cleave just the
isopeptide bond to release both polypeptides
intact. This ubiquitylation/deubiquitylation
cycle helps direct a number of nonprote-
olytic events involved in chromatin structure,
transcription, and vesicle trafficking (132).

Key to the specificity of ubiquitylation
and the arrangement of the bound Ubs are
the E3s (181, 212). They recruit substrates,
position them for optimal transfer of the Ub
moiety from an associated E2, and then stim-
ulate conjugation. Not surprising considering
the range of target proteins affected by Ub
addition, eukaryotes employ an extraordinarily

large collection of E3s to potentially modify
an equally large set of targets. For example,
comprehensive genome analyses of Arabidopsis
thaliana predict that it can synthesize more than
1,500 different E3s (43, 60, 64, 91, 118, 131,
188), potentially making this enzyme collection
one of the largest in the plant kingdom (202).

One prominent collection of E3s is the
cullin-RING ligases (CRLs). They are defined
by a common backbone consisting of one of
several cullin (CUL) isoforms, the really inter-
esting new gene domain (RING)-containing
protein RING-BOX (RBX)-1 (Roc1/Hrdt
in animals), and a variety of adaptors that
recognize and deliver appropriate substrates
for ubiquitylation (14, 145). In the past decade
primarily using Arabidopsis as the model,
researchers have shown that CRLs are central
to numerous processes in plants, including
hormone and light perception where some
even act as receptors, regulation of the cell cy-
cle and transcription, self-recognition, and the
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RBX1: RING-
containing subunit of
CRL complexes that
docks E2s carrying
activated Ub

RUB1/Nedd8:
a Ub-like protein that
stimulates the
ubiquitylation activity
of CRLs upon
covalent attachment to
the cullin subunit

response to biotic and abiotic challenges (115,
203). The purpose of this review is to update our
current understanding of CRLs in plants with
respect to their structural organization, regula-
tion, functions, and complicated evolutionary
histories. Wherever possible, we emphasize
data from plant systems but include results
from other organisms to fill in knowledge gaps.
Hopefully, it becomes apparent that the CRLs
can influence much of plant biology. The
reader is referred to additional reviews on the
plant UPS, which describe the 26S proteasome,
DUBs, other important E3 types, and various
regulatory factors (44, 87, 164, 181, 203, 211).

ORGANIZATION AND
STRUCTURE OF CRLS

All CRLs share a common molecular archi-
tecture, which has been modified to presum-
ably expand the repertoire of substrates, diverse
modes of regulation, and possibly unique ways
to attach Ub moieties. Their composite struc-
tures are reasonably well known thanks in part
to several representative near-complete or par-
tial three-dimensional models (e.g., 3, 62, 67,
78, 121, 128, 193, 215, 233, 235), including two
from plants (174, 192). Using motifs that dis-
tinguish each of the subunits, it is now relatively
easy to identify potential CRL orthologs in any
plant species by bioinformatic methods.

The signature subunit is the CUL scaffold
protein. Plants synthesize three main CUL
types (CUL1/CU2a/b, CUL3a/b, and CUL4
in Arabidopsis) (64, 175), each of which assem-
bles a distinct CRL collection. As illustrated
by the structure of a human CRL designed
to ubiquitylate the phosphorylated cell-cycle
regulator p27 (233), CULs employ a string of
three-helix bundles to generate an elongated
shallow arc (Figure 2a). The C-terminal region
downstream of the bundles contains two helical
domains that create a V-shaped cleft; this cleft
becomes tightly occupied by the N-terminal
helix of RBX1 to create a stable CUL/RBX1
catalytic core. The C-terminal 70-amino-acid
RING-H2 domain in RBX1 provides a docking
platform for E2s charged with Ub. This RING

domain is formed by an octet of cysteines and
histidines in a C3/H2/C3 arrangement, which
chelates two zinc atoms; the resulting fold cre-
ates a shallow pocket. Binding of the E2-Ub to
this pocket allosterically promotes Ub transfer
from the E2 directly to the substrate. CRLs in
yeast and animals use members of the Cdc34
E2 family as the Ub shuttles, which are distin-
guished by a long C-terminal acidic extension
that helps tether the E2 to the CUL (107). It
remains unclear which E2 type(s) among the
14 or so present in plants (111) is its functional
counterpart(s), in part because a clear sequence
ortholog of Cdc34 is not obvious in plants.
Adjacent to the RBX1-binding site in CULs
is a positionally conserved lysine that becomes
reversibly modified with RUB1/Nedd8 during
the ubiquitylation cycle (see below).

The N-terminal bundle of each CUL termi-
nates in a hydrophobic/polar patch that binds
specific sets of substrate adaptors (Figure 2a–c).
These adaptors can best be described as base-
ball catcher’s mitts [e.g., the β propeller of kelch
and WD-40 domain repeats, and the solenoid
shape of leucine-rich repeats (LRRs) (121, 140,
174, 192, 215)], which create a large pocket to
grasp the substrate. When a holo-complex is
assembled with its substrate, a C-shaped qua-
ternary structure that correctly positions the
substrate next to the E2-Ub intermediate is
formed (Figure 2b). Presumably, the substrate
is oriented in such a way as to bring one or
more accessible lysines close to the activated
Ub. Given the ample space predicted between
bound substrates and the docked E2-Ub moiety
(∼60 Å) (193, 215), the exploitation of adaptors
with widely varied shapes for substrate selec-
tion, and the fact that ubiquitylation can some-
times be promiscuous with respect to the sub-
strate lysines, it is likely that the substrate is
bound to the CRL with considerable wobble.
Consequently, simply positioning one or more
accessible substrate lysines in a “hot zone” close
to the E2 may be sufficient to drive Ub transfer
(17).

Once bound to the CRL, the substrate
is ubiquitylated with at least four Ub moi-
eties needed to send the substrate to the 26S
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Figure 2
Three-dimensional structures and subunit organization of cullin-RING ligases (CRLs). (a) Three-
dimensional ribbon model of the human SCFSKP2 complex. The F-box domain and the propeller WD-40
repeat domains in SKP2 are indicated. The yellow spheres in RBX1 indicate the locations of the chelated
zinc atoms (adapted from Reference 233). (b) Diagram of a CRL with its target based on the three-
dimensional structure of several representatives. The various substrate adaptor configurations are shown in
panel c. The K in the target and the CUL (cullin) are the acceptor sites for ubiquitin (Ub) and
RUB1/Nedd8, respectively. The C in the E2 locates the active-site cysteine that binds activated Ub. The
CRL shown ultimately assembles a chain of multiple Ubs. (c) Organization of CRL complexes found in
plants and metazoans. Diagrams are for SCF, VHL, BTB, DWD, and SOCS box-type CRLs, which are
assembled with the CUL1, 2, 3, 4, and 5 isoforms, respectively. Only the SCF, BTB, and DWD complexes
have been detected in plants to date. The lower right cartoon shows the predicted dimeric structure for a
SCF CRL complex based on the analysis of the yeast SCFCdc4 dimer (adapted from Reference 193).

proteasome (147). From the analysis of in vitro
reactions using purified components, Ub addi-
tion appears processive (107, 148). In vivo, both
processive and direct addition of preassembled
chains are likely, given the substantial amount
of free poly-Ub chains that exist inside plant

and animal cells (200). Inhibitor studies using
mammalian cells suggest that at least 20% of all
proteasome-mediated breakdown is CRL de-
pendent (183). In accord, RBX1 and each of
the main CUL types in Arabidopsis are essential;
null homozygous mutants display early embryo
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SCF: CRL that
contains SKP1, CUL1,
RBX1, and an FBX
protein as the target
recognition subunit

BTB: CRL that
contains CUL3,
RBX1, and a broad
complex/tramtrack/
bric-a-brac protein as
the target recognition
subunit

DWD: CRL that
contains DDB1,
CUL4, RBX1, and a
DWD protein as the
target recognition
subunit

F-Box (FBX):
∼40-amino-acid
domain that helps
dock FBX proteins
with SKP1

arrest (54, 64, 175) while weak alleles exhibit
a range of pleiotropic defects (9, 19, 72, 116,
118, 159).

Thus far, five major types of CRLs have been
identified in metazoans, which are easily distin-
guished by both the nature of their substrate
adaptors and by their associated CUL (14, 145).
Only three of these, SCF, BTB, and DWD
complexes, have been detected thus far in plants
(Figure 2c).

SCF CRLs

The SCF CRLs are so named after their
founding member, which consists of the CUL1
isoform (Cdc53 in yeast) and a substrate adap-
tor composed of the S-phase kinase-associated
protein (SKP)-1/cyclin-F heterodimer (52,
180). It was discovered subsequently that
cyclin-F is part of a large protein family that is
distinguished by a common N-terminal ∼40-
amino-acid domain called the F-box (FBX)
(6). As revealed by the three-dimensional
structure of several SCF complexes (see
Figure 2a), this reasonably degenerate FBX
sequence assumes a compact trihelical fold that

forms an interlocked interface with a broad
shallow pocket in SKP1 (169, 215, 233). The
SKP1/FBX adaptor docks with the N terminus
of CUL1. The primary interface is provided by
the ∼120-amino-acid BTB/POZ fold in SKP1
with several amino acids in the FBX domain
also contacting CUL1 (168, 233). The FBX
proteins individually exploit one of a number
of C-terminal interaction domains to recruit
appropriate substrates (60, 179). By binding
SKP1 via the FBX domain and SKP1 then
binding CUL1 via its BTB/POZ domain, FBX
proteins deliver targets to the CUL1/RBX1
core for ubiquitylation (Figure 2b,c).

In contrast to most animals and yeast,
which encode one or a few SKP1 proteins
and a small set of FBX proteins [e.g., 14,
27, and 69 FBX genes in yeast (Saccharomyces
cerevisiae), Drosophila melanogaster, and hu-
mans, respectively (179)], plants can assemble
a surprisingly diverse array of SCF complexes
using large gene families encoding the SKP1
and FBX subunits (Table 1). In Arabidopsis for
example, almost 700 functional FBX genes exist
that account for almost 2.3% of the protein
coding genes along with ∼200 pseudogenes

Table 1 Number comparison of cullin-RING ligase adaptors among selected eukaryotes

Number of CRL adaptorsa

FBX BTB DWD

Species Number Reference Number Reference Number Reference
Plants
Arabidopsis lyrata 1350/980 (91)
Arabidopsis thaliana 897/698 (91) 80 (64) 85 (118)
Brachypodium distachyon 998/686 (91) 166 (95)
Carica papaya 198/154 (91)
Chlamydomonas
reinhardtii

88/83 (91)

Medicago truncatula 1148/908 (91)
Oryza sativa 971/764 (91) 192/149 (65) 78 (118)
Physcomitrella patens 258/241 (91)
Nonplants
Saccharomyces cerevisiae 20 (179) 5 (187) 20 (81)
Caenorhabditis elegans ∼520 (196) 178 (187) 36 (81)
Drosophila melanogaster 27 (179) 85 (187) 75 (81)
Homo sapiens 69 (179) 183 (187) 90 (81)

aFirst number indicates total gene number and second number indicates likely intact genes without predicted pseudogenes.
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(60, 91). An assortment of interaction motifs
are downstream of the FBX domain, including
LRRs, kelch repeats, Tubby, lectin-like,
and light-oxygen-voltage (LOV), which can
recognize proteins, small molecules, glycosyl
moieties, and even flavin chromophores (60,
91, 217, 221). Combined with 19 SKP1 genes
(ASK1–19) (51, 60), Arabidopsis could theo-
retically assemble thousands of different SCF
complexes. Not surprisingly, individual FBX
proteins and their cognate SCF complexes
have been connected to almost all facets of
plant physiology and development (Table 2),
including several novel forms that work as
hormone (174, 192) and light receptors (106).
Furthermore, because many SCF targets in
animals and yeast are phosphorylated before
Ub transfer (145, 194), it is conceivable that
the raison d’être of many plant protein kinases
is to control ubiquitylation by SCF CRLs.

BTB CRLs

Following the identification of SCF E3s, a
second related CRL complex that includes
the CUL3 isoform, RBX1, and members
of the broad complex/tramtrack/bric-a-
brac (BTB) family was discovered (58, 149,
218). Structurally, BTB proteins act as
SKP1/FBX amalgams; accordingly, they
contain a BTB/POZ fold related to that
in SKP1 to bind CUL3 (235) (Figure 2c).
N- or C-terminal to the BTB domain are a
variety of protein-protein interaction domains
that recognize targets. Interaction domains
used by plants include armadillo and ankryin
repeats, nonphototropic-hypocotyl (NPH),
meprin-and-TRAF-homology (MATH),
and tetratricopeptide as well as a variety of
novel sequence motifs (64, 65).

Similar to FBX proteins, some eukaryotes
express large families of BTB adaptors that can
assemble with the CUL3/RBX1 catalytic core
(187). For example, the yeast, Drosophila, and
human genomes encode 5, 85, and 183 BTB
proteins, respectively (Table 1). Arabidopsis
and rice (Oryza sativa) can assemble 80 and
149 different BTB complexes, respectively,

which cluster into ∼16 clades depending on
the nature of the BTB adaptor (54, 64, 65,
210). Preliminary genetic analyses have linked
individual members to various processes rang-
ing from blue- and red-light perception (143;
M.J. Christians, D.J. Gingerich, R.D. Vierstra,
unpublished), to ethylene biosynthesis (23,
208) and salicylic acid (SA)-mediated defense
signaling (190) (Table 2).

DWD CRLs

The most recent additions to the CRL pan-
theon are the DWD CRLs (9, 19, 84). They
employ the CUL4 isoform and RBX1, along
with a substrate adaptor module consisting
of DNA damage-binding protein (DDB)-1
and a set of DDB1-binding/WD-40 domain-
containing (DWD) proteins (Figure 2c). As
with SKP1 in SCF CRLs, DWD complexes
use DDB1 to tether various DWD proteins
to the CUL4/RBX1 catalytic core. However,
instead of containing a BTB/POZ-like fold
to bind CUL4, X-ray crystallographic studies
of a human CUL4/RBX1/DDB1 subcomplex
revealed that DDB1 has two β-propeller
structures: one that connects DDB1 to the N
terminus of CUL4 and another that connects
the various DWD proteins to DDB1 (3). The
consensus 16-amino-acid DWD box within
the WD-40 domain of DWD proteins contains
a core WDXR motif, which generates the
docking site for DDB1 (81).

Using this DWD motif consensus as a
query, researchers identified 85 Arabidopsis
and 78 rice DWD proteins; paired interaction
studies have confirmed the association of
many of the Arabidopsis versions with DDB1
(118). Most metazoans encode comparable
numbers, whereas yeast encodes considerably
less (81) (Table 1). Either N- or C-terminal
to the DWD motif of some DWD proteins
are various protein interaction domains
that presumably provide docking sites for
substrates (118). Conversely, others appar-
ently consist solely of the DWD-containing
WD-40 domain, implying that additional
factors are sometimes required for substrate
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Anaphase-promoting
complex (APC): 11
or more subunit
complex related to
CRLs that
ubiquitylates proteins
important to the cell
cycle

recognition. In line with this possibility, the
exact composition of the complete CUL4-
based DWD complex is still in flux as other
proteins have been implicated as potential
accessory factors. The current list includes the
DWD proteins CONSTITUTIVELY
PHOTOMORPHOGENIC (COP)-1
and the SUPPRESSOR OF PHYA (SPA)-1
protein family working alone or together
(18), DE-ETIOLATED (DET)-1 (9), and
the CDD complex containing DET1 and
the enzymatically inactive E2 variant COP10
in association with DDB1 (219). At present,
few plant DWD proteins have been studied
genetically so the range of processes affected
by the corresponding DWD complexes is
unclear. Connections to flowering time (18),
abscisic acid signaling (117), and the turnover
of the AKIN10 protein kinase (118) have been
reported (Table 2).

Other CRLs in Plants

Besides the CUL1, -3, and -4 isoforms, yeast
and animals synthesize several other CUL and
CUL-like proteins that also serve as E3 scaf-
folds. Included in this list is the anaphase-
promoting complex (APC), an 11 or more sub-
unit ligase that contains the CUL-like protein
APC2 and a RING domain-containing relative
of RBX1 called APC11. Via its use of several
interchangeable recognition subunits (CDC1,
CDH10, and APC10), the APC is a central
player in the cell cycle by removing a number of
checkpoint proteins in correct sequence (144).
An obvious APC complex containing APC2
and APC11 orthologs exists in plants but its
organization and functions are only partially
understood (57).

Phylogenetic analyses of plant genomes
have detected loci encoding other CUL-
like proteins in addition to the canonical
types (64, 175). Although most appear by
sequence alignments to express CUL trun-
cations missing the RBX1-binding site, it
remains possible that these CUL variants
work alone or together with other com-
ponents to scaffold novel CRL complexes.

Interesting possibilities include relatives of
two animal CRLs, VON-HIPPEL LINDAU
(VHL) and SUPRESSOR OF CYTOKINE
SIGNALING (SOCS) (14, 145). They in-
clude the CUL2 or -5 isoforms and RBX1
together with a family of VHL or SOCS box
substrate adaptors, respectively (Figure 2c).
Both sets of adaptors are connected to the
CUL2/5/RBX1 core via shared Elongin B and
Elongin C heterodimeric tethers. Elongin C
makes direct contact with CUL2/5 using a
BTB/POZ fold similar to those found in SKP1
and BTB proteins (128, 185). Although possible
relatives of CUL2/5, Elongin B, and proteins
with potential VHL or SOCS-box motifs have
not yet been found in any plant genome, an
obvious sequence ortholog of Elongin C is
universally present (M.J. Miller & R.D. Vier-
stra, unpublished results). Arabidopsis Elongin
C null mutants are phenotypically normally
under standard growth conditions, suggesting
that if VHL or SOCS CRLs do indeed exist in
plants they regulate noncritical targets.

DYNAMIC REGULATION OF CRL
ASSEMBLY AND ACTIVITY

CRLs must navigate through a number of
competing reactions to allow smooth operation
of the UPS and other Ub-dependent functions.
First, the substrate adaptors must identify ap-
propriate targets among the sea of intracellular
proteins and deliver them to the correct core
CUL/RBX1 ligation machinery, all in the
face of stiff competition from related adaptors
also engaged with substrates. Ubiquitylation
must then occur rapidly via repetitive cycles
of E2-Ub binding, Ub transfer, and eviction
of the discharged E2 in such a way as to either
mono-ubiquitylate the target or build the cor-
rect type of poly-Ub chains. And finally, when
the target is sufficiently ubiquitylated, it must
be released and the ligase complex disassem-
bled to enable reuse of the CUL/RBX1 core
by other awaiting adaptors. With hundreds of
adaptors simultaneously delivering substrates,
failure or delays of any step could inadvertently
stabilize substrates or prematurely release
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CULLIN-
ASSOCIATED
NEDD-8-
DISSOCIATED-1
(CAND1): protein
important for
dissociating and
recycling CRLs
following
ubiquitylation of
substrates

COP9/signalosome
(CSN): 8-subunit
complex that removes
RUB1/Nedd8 bound
to cullins

substrates without the requisite number of Ubs
if poly-ubiquitylation was intended.

Given this complexity, it is not surpris-
ing that the abundance, assembly, and ac-
tivity of the CRLs are dynamically regu-
lated at multiple levels (14, 145). At least
for some substrate adaptors, their expression
can be regulated transcriptionally (2, 10, 150)
and/or by microRNA-mediated (134, 142) or
exonuclease-mediated (151) downregulation of
the resulting mRNA. As seen for the COP1
subunit from a DWD E3 (205) and the
NONEXPRESSOR OF PATHOGENESIS-
RELATED GENES (NPR)-1 adaptor from
a BTB E3 (184, 190), it may also be possi-
ble to manipulate CRL activity by control-
ling the nuclear/cytoplasm partitioning of spe-
cific components. Once a CRL is assembled,
the CUL/RBX1 cores have the propensity to
ubiquitylate their adaptors instead of the sub-
strate, especially when the substrate is absent
(14). This auto-ubiquitylation in turn can in-
duce turnover of the adaptor, thus providing
a broad-based mechanism to dampen the ac-
tivity of individual CRLs when not needed
without compromising the CUL/RBX1 core.
The fact that some FBX and BTB proteins
markedly increase in abundance after treating
Arabidopsis seedlings with the 26S-proteasome
inhibitor MG132 implies that adaptor regula-
tion by auto-ubiquitylation occurs in planta (2;
M.J. Christians & R.D. Vierstra, unpublished).
Examples also exist where the level of a sub-
strate adaptor is controlled by the ubiquityla-
tion activity of another E3, thus offering a sec-
ond layer of proteolytic control (14).

It appears that many CRLs can form homo-
and heterodimers with dimerization stimulat-
ing Ub transfer (14). For SCF complexes,
dimerization mainly occurs through a con-
sensus D domain just upstream of the FBX
sequence; the resulting dimer assumes a W-
shaped suprafacial configuration in which the
bound E2s potentially face both targets (e.g.,
78, 173, 193) (Figure 2c). For some BTB com-
plexes, homodimerization may also occur by
direct interaction between unmodified CUL3
of one monomer and the RUB1/Nedd8 moiety

covalently connected to its partner (213). By ei-
ther mechanism, dimerization can theoretically
increase the target range of CRLs combinato-
rially as well as provide a mechanism to build
poly-Ub chains via ubiquitylation in trans across
the dimer. Although not yet well investigated in
plants, several studies have confirmed that some
BTB and DWD CRLs can be dimeric (117,
154a; M.J. Christians, D.J. Gingerich, R.D.
Vierstra, unpublished). Increased target speci-
ficity may also be provided by additional factors
that associate with the CRL. As an illustration,
binding of the human cell cycle–inhibitor p27
to its Cdk2/Csk1 regulator helps position p27
in the binding pocket of the cognate Skp2 FBX
protein for optimal ubiquitylation (17).

Clearly the most complicated and per-
haps the most influential regulatory mecha-
nism affecting CRLs involves two competing
cycles driven by the CULLIN-ASSOCIATED
NEDD8-DISSOCIATED (CAND)-1 pro-
tein, and RUB1/Nedd8 together with the
COP9/signalosome (CSN) (Figure 3a). Until
recently, the roles of CSN and CAND1 were
unclear owing to their paradoxical abilities to
strongly inhibit CRL activities in vitro while be-
ing necessary for efficient degradation of CRL
substrates in vivo (14, 87).

The first cycle revolves around RUB1 in
plants and yeast or Nedd8 in animals, a
Ub-fold protein most related to Ub (∼60%
amino acid sequence identity) with a nearly
identical β-grasp structure (156). Analogous
to Ub, RUB1/Nedd8 is conjugated to pro-
teins via a three-step reaction cascade in-
volving a heterodimeric E1, encoded by
the AUXIN-REGULATED (AXR)-1/ AXR1-
LIKE (AXL) gene pair and the E1 C-
TERMINALLY RELATED (ECR)-1 gene (30,
33, 37), and a single E2 encoded by paralogous
RUB1-CONJUGATING ENZYME (RCE)-1
and RCE2 genes in Arabidopsis (32) (Figure 3a).
The E3 activity appears to be conferred by
the RBX1 subunit of CRLs (72, 116), with the
activated RCE1/2-RUB1 intermediate likely
docking to the same surface on RBX1 that
the E2-Ub intermediate bind. Given the im-
portance of the SCF-based CRL activities in
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Figure 3
Proposed regulatory cycles of cullin-RING ligases (CRLs) involving CAND1 and RUB1-CSN-mediated
RUBylation/de-RUBylation of the cullin (CUL) subunit. (a) Diagrams of the regulatory cycles. Via a
transient and reversible binding of CAND1 to the CUL/RBX1 catalytic core, a dynamic pool of
uncommitted CRLs is maintained in the cell. Occlusion of both the adaptor-binding and RUB1-binding
sites by the U-shaped CAND1 prevents CRL assembly. Various adaptors then identify cellular substrates
and recruit them to unsequestered CUL/RBX1 cores to generate an active CRL complex that enters the
RUB1/CSN cycle. Through the action of the AXR1/ECR1 E1 heterodimer, the RCE1/2 E2, and an E3
activity provided in part by RBX1, RUB1 is attached to a positionally conserved lysine (K) at the C-terminal
end of the CUL, which in turn helps activate the CUL/RBX1 ubiquitin (Ub) ligase activity. Ubs are
subsequently added to the substrate and sometimes to the substrate adaptor (auto-ubiquitylation), especially
if no substrate is present. The ubiquitylated substrate is released and often degraded by the 26S proteasome.
Either before or after the substrate is fully ubiquitylated, the engaged CRL complex associates with the
eight-subunit COP9/signalosome (CSN). Through the action of the de-RUBylating activity provided by the
CSN5 subunit and the deubiquitylating enzyme (DUB) activities provided in part by the associated DUB
UBP12, RUB1 and Ubs bound to the CUL and the adaptor, respectively, are released from the CRL. Final
dissociation of the substrate adaptor then allows the CUL/RBX1 core to re-enter the CAND1 and
RUB1/CSN cycles for eventual reuse. (b) Three-dimensional ribbon model of CAND1 in a ternary complex
with human CUL1 and RBX1 (adapted from Reference 67).
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auxin signaling, all Arabidopsis mutants compro-
mising RUB1/Nedd8 conjugation have altered
auxin sensitivity (87). A second factor, DE-
FECTIVE IN CULLIN NEDDYLATION
(DCN)-1, also drives RUB1/Nedd8 conjuga-
tion in yeast and animals (112). A likely DCN1
ortholog was recently identified in Arabidopsis
by a genetic screen for resistance to an auxin
antagonist (11), but its role in plant RUByla-
tion remains to be confirmed.

Although a few other RUBylation sub-
strates have been proposed (14, 87), the
main targets are the CULs, with the three
canonical Arabidopsis CULs (CUL1, -3, and
-4) confirmed to be modified in vivo (13, 19,
32, 54, 118, 210). RUB1 is covalently attached
to a positionally conserved lysine within a
near invariant VRI/VMK motif, which is
adjacent to the RBX1-binding site in the CUL
three-dimensional structure (32, 210). Recent
biochemical studies with nonplant components
showed that this attachment improves the
affinity of the CUL/RBX1 cores for the
activated E2-Ub intermediate and induces a
conformational change in the CUL, which tilts
the E2 closer to the substrate-binding pocket
(45, 160, 162).

RUB1/Nedd8 addition to CULs is reversed
by the CSN (Figure 3a). This previously enig-
matic eight-subunit complex was first identified
from a screen for light-perception mutants in
Arabidopsis (211). Whereas null mutants affect-
ing each of the CSN subunits are embryo lethal,
weaker csn alleles display a strong constitu-
tive photomorphogenic phenotype even when
grown in dark and have altered auxin sensitiv-
ity. Subsequent studies revealed that the CSN
is evolutionarily conserved and distantly related
to the regulatory particle of the 26S proteasome
(55, 66). De-RUBylation of CULs is directed
by the CSN5 subunit, a zinc-dependent met-
alloprotease containing a JAB1/MPN/Mov34
( JAMM) catalytic site (28, 123). CSN5 is en-
coded by two essential genes in Arabidopsis.
Single csn5a or csn5b mutants or weak csn5a csn5b
double mutants induce pleiotropic defects simi-
lar to those defective in RUB1 conjugation (75,

76, 172). One or more DUBs (UPB12 in hu-
mans) associate substoichiometrically with the
CSN; one of their likely functions is to stabilize
CRLs by removing Ubs that become attached
autocatalytically to the adaptors (168, 234).

The second cycle of CRL regulation is
driven by CAND1, a 120-kDa protein contain-
ing a long string of HEAT-repeat helical rods
(67). The Arabidopsis CAND1 ortholog was in-
dependently identified by several groups, with
subsequent genetic studies showing that it, like
RUB1 and CSN, is important for one or more
Ub-mediated steps affecting auxin signaling
and photomorphogenesis (1, 21, 25, 53). Where
tested, CAND1 has the capacity to interact with
all canonical CUL types (e.g., 129). In vitro,
this binding readily inhibits CRLs by dissociat-
ing the adaptor module from the CUL1/RBX1
core. The three-dimensional structure of hu-
man CAND1 bound to CUL1/RBX1 (67) re-
vealed that it works as a clamp with its re-
markable U-shaped structure wrapping around
the elongated CUL1 surface (Figure 3b). A β

hairpin at its C terminus partially occludes the
adaptor-binding site in CUL1, thus inhibiting
the interaction of CUL1 with the SKP1/FBX
subcomplex. The N-terminal end of CAND1
packs against the surface of CUL1 to cover
the RUB1 conjugation site, effectively block-
ing this modification as well. Via these interac-
tions, CAND1 simultaneously interferes with
CUL RUBylation and docking of the substrate
adaptor to the CUL/RBX1 core. Conversely,
RUB1/Nedd8 addition interferes with CAND1
binding to the core.

Numerous hypotheses have attempted
to explain the paradoxical functions of
RUBylation/de-RUBylation and CAND1
binding on CRL action (see 14, 87). The most
plausible model by Schmidt et al. (168) posits
that their interplay is essential to maintain
a dynamic population of free CUL/RBX1
cores and for subsequent adaptor/substrate
loading and ubiquitylation. As shown in
Figure 3a, CAND1 binding to non-
RUBylated CUL/RBX1 catalytic cores is
viewed as transient and reversible and is
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designed to maintain a dynamic population of
inert cores without substrate adaptors. Once
a substrate adaptor along with its substrate
becomes engaged with a free CUL/RBX1
core, the CUL is RUBylated, which prevents
further interference by CAND1. Stimulated by
the modification, the RUB1/Nedd8-modified
holo-CRL then binds to the CSN, using it as
a platform for safe and efficient ubiquitylation
of the substrate. If the adaptor becomes
auto-ubiquitylated inadvertently, this addition
is reversed by one or more DUBs bound
to the CSN. Given the energy present in
the unstable E2-Ub intermediate and the
potential wobble of the bound substrate, such
spurious Ub transfer may be unavoidable.
Once the substrate is appropriately modified,
and presumably released, the CRL is disso-
ciated by CSN-induced de-RUBylation; the
de-RUBylated CUL/RBX1 core then re-enters
the CAND1-binding/release cycle. Through
these opposing cycles, CRLs are maintained
in a dynamic equilibrium, which allows many
competing adaptors to deliver substrates to the
ubiquitylation machinery while encouraging
sufficient engagement with the substrate as
poly-ubiquitylation proceeds but discouraging
and/or reversing auto-ubiquitylation.

The CAND1-RUB1/CSN cycles would be
particularly advantageous to plants and animals
given the plethora of possible substrate adap-
tors for each CRL type (60, 65, 91, 118). Ac-
cordingly, higher-order eukaryotes deficient in
the CAND1 and RUB1/Nedd8 cycles are more
broadly affected than comparable yeast mutants
(14, 87). Although support for such a model in
plants is still forthcoming, several genetic stud-
ies in Arabidopsis are consistent with its frame-
work. These include data showing that (a) only
a small fraction of unmodified CUL1 associates
at steady state with CAND1 (53), (b) mutants in
CAND1 that abrogate CUL1 binding inversely
affect the assembly of SCF complexes (229), and
(c) mutants that alter the RUB1/Nedd8 cycle
and the CSN both negatively affect SCF E3
activities (25, 72, 75).

Even with this rudimentary understanding,
key parts of the CAND1/RUB1-CSN cycles

are still not clear. For instance, are all adap-
tors regulated by the two cycles? It has been
proposed that only a subset of FBX proteins,
which use a positionally conserved proline in
their FBX domains to directly bind CUL1, are
stabilized by the CSN (168). This critical pro-
line is absent in ∼30% of the plant FBX pro-
teins, including some known to be functionally
important, suggesting that they are regulated
differently. Do adaptors engage substrates be-
fore or after docking with the CUL1/RBX1
core? Are there additional factors (chaperones?)
that prevent CRL E3s from becoming over-
whelmed with free adaptors? What signal(s)
trigger RUBylation and de-RUBylation of the
CUL? Are there other activities associated with
the CSN besides de-RUBylation? How does
the complex know when a sufficient number of
Ubs with the right topology is added to the sub-
strate? And finally, by what mechanism is the
CRL disassembled after ubiquitylation of the
substrate? Hopefully, the recent development
of in vitro CRL ligation systems will soon help
address these questions (e.g., 146, 148, 160,
207).

DIVERSE FUNCTIONS OF CRLS

Given the extraordinary number of CRL
substrate adaptors in plants, it is not surprising
that the resulting E3s have now been connected
to nearly all facets of plant physiology and
development. Their versatility is exemplified
by their ability not only to detect various
protein targets, but also to bind small molecule
hormones, chromophores, and sugars with
high specificity. Most of the plant CRL
adaptors do not have obvious relatives in yeast
and animals, implying that many have evolved
with plant-specific targets and functions. The
current list of characterized CRL adaptors with
ascribed functions, mainly deduced by forward-
and reverse-genetic strategies in Arabidopsis, is
provided in Table 2. Owing to space limita-
tions, only a few of these are described below
to highlight the breadth of events under CRL
control.
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TRANSPORT
INHIBITOR
RESPONSE-1
(TIR1): FBX protein
that is the signal
receptor for auxin

CORONATINE-
INSENSITIVE-1
(COI1): FBX protein
that is the signal
receptor for jasmonic
acid

CRLs Participating in
Hormone Perception

The application of various genetic strategies,
especially using Arabidopsis, has recently uncov-
ered how a handful of the plant hormones work
at the molecular level with the remarkable dis-
covery that several exploit the UPS in general
and CRLs specifically in signal transmission
(164, 203). The most surprising were the find-
ings that several FBX proteins work as either
hormone receptors or coreceptors. The first ex-
ample came from an understanding of how the
hormone auxin or indole-3-acetic acid (IAA) is
perceived. Auxin is mainly synthesized in meris-
tems and transported via a sophisticated trans-
port system to generate local maxima that direct
cell development and elongation in response
to numerous internal and external cues (201).
The central regulators are a family of auxin re-
sponse factors (ARFs), which either promote
or inhibit the transcription of a variety of auxin
effector genes (164). In the absence of auxin,
ARFs are repressed by direct association with
an equally large family of AUXIN (AUX)/IAA
repressors together with their TOPLESS core-
pressor. Auxin then stimulates the proteolytic
removal of AUX/IAA proteins by the UPS thus
allowing ARFs to act.

Genetic studies implicated the conserved
Domain II sequence in AUX/IAA proteins and
the LRR-containing FBX protein TRANS-
PORT INHIBITOR RESPONSE (TIR)-1 in
auxin-mediated AUX/IAA turnover (73, 228),
but how was a mystery. After exploring various
possibilities, researchers found that TIR1 di-
rectly binds Domain II and that this binding
requires auxin, thus implicating the SCFTIR1

complex as the previously enigmatic auxin re-
ceptor (36, 101). The crystal structure of the
quaternary complex of TIR1, SKP1(ASK1),
auxin, and the Domain II peptide from IAA7
confirmed this proposal (192). The structure
revealed a solenoid-shaped pocket formed by
the 18-tandem LRRs in TIR1 cradling the Do-
main II degron with the auxin beneath acting
as a “molecular glue” to strengthen the in-
teraction (Figure 4a). Synthetic auxins with

distinct ring structures can also fit into this
somewhat promiscuous hydrophobic pocket,
thus explaining in molecular terms why they
also have auxin activity in planta (80, 192).
Surprisingly, the bottom of the TIR1 pocket
contains a tightly bound inositol hexaphos-
phate (InsP6 or phytic acid) that helps main-
tain the solenoid LRR configuration via a set
of electrostatic interactions with neighboring
lysines/arginines. Phylogenetic studies identi-
fied five other FBX proteins related to TIR1 in
Arabidopsis [AUXIN-BINDING FBX (AFB)-
1–5]; subsequent reverse-genetic and auxin-
binding studies demonstrated that SCFAFB1−5

also work combinatorially in auxin perception
(38, 142, 206).

The detection of LRR-containing FBX
proteins similar to TIR1/AFB1–5 in Ara-
bidopsis suggested that other SCF E3s could
also be small molecular sensors (60, 142).
One likely candidate was CORONATINE-
INSENSITIVE (COI)-1, an FBX protein ini-
tially discovered from a genetic screen for
resistance to coronatine (216), a potent phy-
totoxin from Pseudomonas syringae that is struc-
turally related to the oxilipin hormone jasmonic
acid ( JA). A glimpse of COI1 function was first
provided by the identification of its targets, a
family of JA-ZIM ( JAZ) transcriptional reg-
ulators that repress JA responses by binding
to and inhibiting the MYC2 transcription fac-
tor (22, 195). Presumably, after ubiquitylation-
mediated degradation of JAZ proteins by
SCFCOI1, MYC2 is free to direct JA-dependent
transcription. Like auxin and TIR1, the binding
of the bioactive form of JA, JA-isoleucine (Ile),
to COI1 greatly potentiates the association of
JAZ proteins to COI1 in vitro, strongly suggest-
ing that SCFCOI1 is a JA receptor (100). In fact,
the COI1/JAZ complex is a 1000-fold tighter
if coronatine is used instead of JA-Ile, in agree-
ment with its greater potency in planta (100).
The interaction between COI1 and JAZ pro-
teins was mapped to a C-terminal JAZ degron
that is essential for COI1-mediated turnover.

Proof that SCFCOI1 is the actual JA re-
ceptor was recently confirmed from the
x-crystallographic structure of the quaternary
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Figure 4
Structure of the (a) SCFTIR1 and (b) SCFCOI1 hormone receptors. Left diagrams show the organizations and mechanism of action for
the SCFTIR1 and SCFCOI1 E3 complexes following indole-3-acetic acid (IAA) and jasmonic acid ( JA)-Ile binding, respectively. Pictures
on the right show side and top views the corresponding three-dimensional models of the TIR1 and COI1 proteins assembled with
hormone, target protein degron, and SKP1(ASK1). The TIR1 structure contains IAA, the degron peptide from IAA7, and InsP6. The
COI1 structure contains JA-Ile and the JAZ1 peptide. The bottom of the COI1 binding pocket contains InsP5, which is not shown.
N, N terminus; C, C terminus (adapted from References 192 and 174).

complex consisting of COI1, SKP1(ASK1),
JA-Ile, and the JAZ degron from JAZ1 (174).
Analogous to TIR1, the 18-tandem LRRs of
COI1 create a solenoid-shaped pocket that
binds JA-Ile in a central cavity (Figure 4b).
However, unlike TIR1, COI1 employs inositol
pentakisphosphate (InsP5), not InsP6, in the
cavity’s base to stabilize the looped LRR con-
figuration. Recognition of the JAZ1 target by
COI1 also slightly differs from the molecular
glue mechanism used by TIR1 to recognize
AUX/IAA proteins. Instead of forming a

singular FBX/hormone/degron sandwich, the
helical section of the JAZ degron, which is
highly conserved among JAZ proteins, binds
to the COI1 pocket while an adjacent highly
degenerate and flexible section binds to JA-Ile,
thus creating a bipartite recognition interface
(174).

Do other CRL adaptors act as receptors for
plant hormones? One intriguing case is MORE
AXILLARY GROWTH (MAX)-2/ORESARA
(ORE)-9, an LRR-containing FBX protein
similar to TIR1 and COI1. MAX2/ORE9
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was originally identified in mutant screens for
proteins defective in shoot branching (186)
and senescence (214), with subsequent studies
also revealing a role in seed germination. Al-
though the target(s) of SCFMAX2/ORE9 is still
unclear, this E3 appears to participate in a sig-
naling pathway downstream of the newly dis-
covered plant hormone strigolactone (68, 198).
Because max2/ore9 mutants poorly respond to
strigolactone, an appealing possibility is that
SCFMAX2/ORE9 stimulates the turnover of a neg-
ative regulator of strigolactone perception after
binding the hormone.

Although not acting as the direct recep-
tor, one or more CRLs participate in percep-
tion of the gibberellin (GA) family of steroid
hormones that promote cell division and seed
germination. GA signaling requires removal
of a family of DELLA transcriptional repres-
sors, which are targeted by SCF E3s assem-
bled with the FBX proteins SLEEPY (SLY)-
1/SNEEZY (SNE)-1 in Arabidopsis (5a, 40, 56,
127, 189) and GA-INSENSITIVE DWARF
(GID)-2 in rice (166). Unlike SCFTIR1 and
SCFCOI1, the SCFSLY1/SNE1/GID2 complexes do
not directly bind GAs. The hormone is first rec-
ognized by the nuclear-localized GA receptor
GIBBERELLIN INSENSTIVE DWARF1
(GID1). The GA-GID1 complex then binds to
DELLA proteins, which in turn enhances the
recognition of DELLAs by SCFSLY1/SNE1/GID2

probably by altering the conformation of the
C-terminal GRAS domain of the DELLA pro-
teins (133, 176). In this way, GA serves as a
coregulator of DELLA turnover.

Hormone Synthesis and Signaling

In addition to direct perception of hormones,
CRLs can be intimately involved in the regu-
lation of hormone synthesis and their down-
stream signaling cascades (Table 2). Nowhere
is this more evident than in the synthesis and
response of Arabidopsis to the gaseous hor-
mone ethylene, which is controlled by sev-
eral CRL E3s working at multiple levels.
Synthesis of the hormone is rate limited by
a family of 1-aminocyclopropane-1-carboxylic

acid (ACC) synthases (ACSs) that convert S-
adenosylmethionine to the immediate ethylene
precursor ACC (15, 203). Type-1 and type-2
ACSs are constitutively degraded in a UPS-
dependent manner in the absence of ethy-
lene, with ethylene abrogating this turnover
to stimulate ethylene production by positive
feedback. Degradation is regulated by distinct
E3s recognizing unique C-terminal motifs in
each ACS type. For type-1 ACSs, ethylene-
induced phosphorylation of this motif likely
blocks E3 recognition (98, 224). For type-
2 ACSs, breakdown is directed by a fam-
ily of three Arabidopsis BTB E3s that are
assembled with the adaptors ETHYLENE
OVERPRODUCER (ETO)-1, ETO1-like
(EOL)-1, and EOL2 (23, 208). BTBETO1 plays
the dominant role in young seedlings, with the
actions of BTBEOL1 and BTBEOL2 becoming
phenotypically obvious in eto1 eol1 eol2 triple-
mutant backgrounds.

Perception and response to ethylene are
also affected by the UPS, with at least two
different SCF E3s playing major roles in
Arabidopsis (2, 10). The dominant regulatory
step involves turnover of the transcription fac-
tors ETHYLENE-INSENSITIVE (EIN)-3
and EIN3-like (EIL)-1 by SCF complexes
assembled with EIN3-binding FBX protein
(EBF)-1 or EBF2 (61, 74, 150). Orthologs of
EBF1/2 are widely distributed in the plant
kingdom, indicating that the corresponding
SCF E3s represent a central feature in ethylene
signaling (91). In the absence of ethylene,
EIN3/EIL1 is rapidly degraded following
SCFEBF1/2-mediated ubiquitylation to keep
the levels of these transcription factors low.
Ethylene interfers with the recognition of
EIN3/EIL1 by SCFEBF1/2 followed by possible
auto-ubiquitylation and subsequent removal
of EBF1/2 (2, 10). Ethylene-induced increases
in EIN3/EIL1 then enhance transcription of a
variety of ethylene response genes. The block
in EIN3/EIL1 recognition was proposed to be
mediated by EIN3/EIL1 phosphorylation via
a mitogen-activated-protein kinase pathway
(223), but more recent studies have questioned
this effect (2).
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Within the ethylene response, EBF1 and
EBF2 appear to have distinct roles. Whereas
EBF1 is constitutively expressed and responsi-
ble for maintaining low levels of EIN3/EIL1
in the absence of hormone, EBF2 expression is
upregulated by an EIN3-mediated mechanism
that then allows it to play a more prominent
role in removing excess EIN3/EIL1 during the
latter stages of the ethylene response and after
the hormone dissipates (10, 110, 150). Levels
of EBF1 and EBF2 mRNA are also negatively
controlled posttranscriptionally by the exori-
bonuclease EIN5/XRN4 to further modulate
EIN3/EIL1 protein accumulation (139, 151).

A second, less well-understood step in
Arabidopsis ethylene signaling involves the
intermediate signaling factor EIN2, an endo-
plasmic reticulum (ER)-bound protein with
similarity to NRAMP metal transporters. Like
EIN3/EIL1, EIN2 is degraded in the absence
of ethylene but dramatically stabilized by the
hormone. Breakdown is directed by a pair of
SCF E3s assembled with the FBX proteins
EIN2-targeting protein (ETP)-1 or ETP2
(152). Surprisingly, whereas the C-terminal
domain in EIN2 that binds ETP1/2 is con-
served throughout the plant kingdom, obvious
ETP1 and ETP2 orthologs can be found
only in the closely related Arabidopsis lyrata
species (91, 209). The lack of conservation for
ETP1/2 suggests either that this regulatory
step recently evolved and is not widespread in
the plants, or that other E3s assume this role
in less-related species.

CRLs and Light Perception

Besides serving as chemical receptors, a unique
class of CRLs that function as photorecep-
tors exists in plants and animals. In Arabidopsis,
these E3s are assembled with the FBX proteins
ZEITLUPE (ZTL), flavin-binding kelch re-
peat (FKF)-1, and LOV-kelch protein (LKP)-
2 that bear at their N termini an evolution-
ary conserved light-oxygen-voltage (LOV) do-
main that binds flavin mononucleotide (FMN)
(137, 170, 182). Light detection is achieved by
photo-induced formation of an FMN-cysteine

adduct. The adduct conformationally alters
the LOV domain, with the change presum-
ably propagated to the β-propeller recognition
module formed by the kelch domain repeats.
Collectively, ZTL, FKF1, and LKP2 help en-
train various plant circadian rhythms to blue
light by controlling the stability of three core
clock components, TIMING OF CAB EX-
PRESSION (TOC1)-1, pseudoresponse regu-
lator (PRR)-5, and CYCLING DOF FACTOR
(CDF1)-1, in a circadian-dependent manner.

The levels of ZTL and FKF1 fluctuate
during the day/night cycles by binding to an ac-
cessory component GIGANTEA (GI), whose
expression is circadian rhythmic (106, 167).
GI binding protects ZTL from UPS-mediated
degradation with this binding enhanced by
photoactivation of ZTL, thus generating a ro-
bust circadian oscillation of ZTL levels against
a background of constitutive ZTL gene expres-
sion. FKF1 similarly oscillates by GI binding
and photoactivation, which is accentuated
further by circadian regulation of FKF1 gene
transcription. SCFZTL ubiquitylates TOC1
and PRR5, thus cycling the abundance of these
related clock components in an inverse pattern
relative to the E3 (102, 106). Conversely,
SCFFKF1 and possibly SCFLKP2 ubiquitylates
CDF1, a repressor of CONSTANS (CO)
expression (93, 167). Removal of CDF1 allows
CO levels to rise to help elicit a number of
photoperiodic responses under CO control
(e.g., flowering time). In agreement with the
use of similar substrate recruitment kelch
repeats, FKF1 and LKP2 may also recognize
TOC1 and PRR5 (7). The dual actions of
SCFZTL and SCFFKF1/LKP2 produce robust
oscillating patterns of clock factors and outputs
that are easily entrained to the day/night cycles
by chromophore photoactivation.

Other CRLs do not act directly in photore-
ception but in the downstream steps directing
photomorphogenesis (Table 2). The BTB
E3s formed with the NPH3 and LRB1/2
BTB adaptors appear to play important roles
in regulating blue- and red-light perception
by controlling signaling from phototropin-1
(143) and the abundance of phytochrome-B
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photoreceptors (M.J. Christians, D.J.
Gingerich, R.D. Vierstra, unpublished),
respectively. Further downstream are SCF
E3s assembled with the ATTENUATED
FAR-RED RESPONSE (AFR) and
EMPFINDLICHER IM DUNKELROTEN
LICHT (EID)-1 FBX proteins that inversely
modulate PhyA signaling (39, 79). COP1 plays
a central role in the turnover of numerous
photomorphogenic regulators, including CO
and LONG HYPOCOTYL (HY)-5 (97, 141).
Although originally classified as a RING-type
E3, more recent studies suggest that COP1
associates with DWD complexes (18, 19).

Control of the Cell Cycle
and Development

The UPS is a central effector of the plant cell
cycle where it helps sequentially remove nu-
merous checkpoint proteins such as cyclins,
cycle-dependent kinase (CDK) inhibitors, and
securins as the cell cycle proceeds (17, 144).
Accordingly, a number of Arabidopsis E3s have
been implicated, including HECT, APC, and
CRL ligases (43, 57, 77, 103, 159). The contri-
butions of SCF E3 were first inferred from the
phenotypes of Arabidopsis skp1(ask1) mutants,
which display strong defects in male gameto-
phyte meiosis (220).

The G1/S phase transition in Arabidopsis is
tightly controlled by the activity of CDKA:1,
whose action must be derepressed by removal
of its CDK inhibitors, KIP-related protein
(KRP)-6 and KRP7. Recent genetic studies
showed that an SCF complex assembled with
the FBX adaptor FBL17 specifically directs
KRP6/7 turnover in the male germline (77,
103). FBL17 is nuclear localized and signifi-
cantly upregulated in the pollen generative cell
just prior to the second mitotic division that
forms the two male gametes. Loss-of-function
fbl17 mutants prevent this division by failing to
remove KRP6/7. The resulting single male ga-
mete can fertilize only the egg cell, with the
resulting embryo aborting early in embryogen-
esis owing to a lack of endosperm (77, 103). The
FBX protein S-phase kinase-associated protein

2A (SKP2A) also appears to regulate cell di-
vision through ubiquitylation of the cell cycle
transcription factors E2FC and DPB (98). In-
triguing, recent data indicate that SKP2 can also
bind auxins directly, thus potentially identify-
ing another CRL-based receptor for this hor-
mone (98a). One or more DWD-type CRLs
have also been connected to plant cell division
from the discovery that RNA-interference mu-
tants of CUL4 undergo altered rounds of en-
doreduplication in Arabidopsis trichomes (159).

A number of forward- and reverse-genetics
studies have linked specific CRLs to various de-
velopmental processes. In fact, one of the first
Arabidopsis FBX proteins discovered was UN-
USUAL FLORAL ORGANS (UFO), whose
deletion severely affects floral homeosis (163).
The types of phenotypic defects observed,
ranging from cell/tissue transformations to
ectopic organs, suggest that key components
controlling meristem integrity, cell specifica-
tion, and cell differentiation are modulated by
these CRLs (Table 2). At present, the identities
of the developmental regulators ubiquitylated
by these CRLs are largely unknown.

Role of CRLs in Protein
Quality Control

Whereas most CRLs target correctly folded,
functional proteins, it is also apparent that a
subset of CRLs has housekeeping roles by re-
moving misfolded counterparts. This action is
particularly important for the endomembrane
trafficking system, where aberrant polypeptides
are retained in the ER instead of reaching the
final destination(s) of their functional counter-
parts. To facilitate their removal, these aber-
rant polypeptides are transported back into the
cytosol via retrograde mechanisms where they
are removed by an ER-associated degradation
(ERAD) quality-control pathway that involves
both Ub and the 26S proteasome (155). In
mammals, two FBX proteins, Fbs1 and Fbs2,
play key roles in ERAD-mediated turnover
by detecting abnormally folded glycoproteins
with high mannose-type N-glucans (225, 226).
A small collection of FBX proteins with
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similar lectin-like recruitment modules are
present in Arabidopsis and other plants (60,
96, 114), suggesting that an analogous SCF-
dependent ERAD pathway works in the plant
kingdom.

Self-Recognition During
Reproduction

To avoid inbreeding, many flowering plants
have developed incompatibility barriers that
prohibit self-pollination, at least two of which
exploit the UPS (89, 154). One major self-
incompatibility (SI) mechanism, which is used
by Solanaceae, Plantaginaceae, and Rosaceae
species, involves a polyallelic ribonuclease (S-
RNase) gene within the S locus (88, 231). The
encoded polymorphic RNases are expressed in
the pistil of the flower and accumulate in the
transmitting tract where they enter the growing
pollen tubes of both self and nonself pollen. The
imported S-RNase is cytotoxic to self pollen
tubes by degrading their RNAs, thus induc-
ing SI by blocking sperm delivery. Remarkably,
nonself pollen tubes escape this growth arrest
by selectively degrading the S-RNase, using a
collection of SCF complexes assembled with a
presumably equally polymorphic family of S-
locus FBX proteins (SLF for Solanaceae and
Plantaginaceae and SFB for Rosaceae) (90, 153,
177). The haplotype-specific alleles of both the
S-RNase and SLF/SFB genes are tightly linked
in the S locus to maintain the SI barrier from
generation to generation.

The SLF adaptors from Antirrhinum his-
panicum (Plantaginaceae) appear to be tethered
to CUL1 via a novel SKP1 bridge (SSK1);
both SLFs and SSK1 are specifically expressed
in pollen tubes (92, 154). In Petunia inflata
(Solanaceae), an alternative SCFSLF complex that
incorporates a novel S-RNase-binding protein
(SBP)-1 was proposed (89, 178). Analysis of
three SI species from the Petunia genus revealed
that the S-locus can contain multiple types of
polymorphic SLF genes, each of which encodes
an SLF protein designed to target a subset of S-
RNase alleleic variants (111a). This collection
presumably collaborates to recognize and re-

move the entire suite of non-self S-RNases dur-
ing a compatible pollination (111a). Biochem-
ical analysis of the petunia SI system showed
that its haplotype-specific SLFs preferentially
interact with nonself S-RNases both in vivo
and in vitro (89, 90, 111a). UPS-mediated S-
RNase breakdown has also been demonstrated
in vitro, but no S-RNase haplotype specificity
was observed (89, 89a). This lack of specificity
could reflect an inherent non-specificity of the
in vitro system, the absence of a key specificity
component, or the possibility that the turnover
reflects basal S-RNase proteolysis mediated by
SBP1 (89a). Reduced amounts of S-RNases in
compatible pollen tubes from Solanum chacoense
(Solanaceae) imply that this SCFSLF-mediated
degradation also occurs in vivo (120).

It remains unclear how self SCFSLF E3s are
able to recognize nonself S-RNases but avoid
targeting those from self. One model proposes
that a competitive interaction among domains
in the S-RNases and the SLF adaptors steri-
cally interferes with binding and ubiquitylation
of self S-RNases (88). Other less complicated
possibilities are that the S-RNase and SLF from
self cannot interact, whereas self/nonself pairs
can (111a), or that the repertoire of SCFSLF E3s
can recognize both self and nonself S-RNases
but the self S-RNase preferentially triggers
FBX auto-ubiquitylation and subsequent
turnover, thus allowing the self isoform to
survive. Given the subtle differences among
allelic S-RNases and their SLF/SFB partners,
understanding the recognition mechanism
involved should illuminate the sophisticated
methods used by CRLs to identify appropriate
targets with high specificity.

Interplay Between Pathogens
and Plant Hosts

Plants are in a continuous battle with numer-
ous viral, bacterial, and fungal pathogens that
seek suitable hosts for food and shelter. It is
becoming increasingly obvious that the UPS
in general and CRLs in particular provide a
major defense barrier for plants as well as
offer countermeasures for the intruder. One
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key host defense mechanism involves the BTB
E3 assembled with the NPR1 adaptor (47).
NPR1 helps mediate systemic-acquired resis-
tance to pathogens via the defense hormone SA,
presumably by ubiquitylating a currently un-
known substrate.

The BTBNPR1 complex is regulated at
multiple levels for which changes in the
cellular redox status are a key signal. In the
absence of pathogens, most NPR1 becomes
sequestered in the cytoplasm as free oliog-
mers created by S-nitrosylation-facilitated
intermolecular disulfide bridges (190). Upon
pathogen challenge, SA levels rise, which in
turn triggers monomerization of NPR1 via
thioredoxin-mediated reduction of the bridges.
The NPR1 monomers then enter the nucleus
where they assemble with CUL3/RBX1.
The resulting BTBNPR1 complex presumably
degrades a negative regulator of SA action.
Monomeric NPR1 is cleared from the nu-
cleus by a UPS-dependent process (possibly
auto-ubiquitylation) that requires phospho-
rylation of NPR1 (184). This regulated
turnover/localization could prevent untimely
activation of SA signaling by keeping active
NPR1 levels low in the absence of SA and then
maintain a reasonable level of active NPR1
as SA levels rise. Other host CRLs involved
in pathogen defense include the tobacco
Avr9/Cf-9-INDUCED F-BOX (ACIF)-1
protein that induces a general hypersensitive
defense response to a range of viral and
bacterial pathogens (199), and the Arabidopsis
FBX protein SUPPRESSOR OF NIM1
SIGNALING (SON)-1, which confers resis-
tance by an SA-independent mechanism (104).

Numerous plant pathogens have also
co-opted the UPS for their own benefit.
The best example is the bacterial pathogen
Agrobacterium tumefaciens, which exploits an
FBX protein encoded by its VIRULENCE F
(VirF) locus to help promote infection (197).
Upon plant contact, VirF is injected into
the host cell along with the single-stranded
T-DNA via a type-three secretion system
(T3SS). Once inside, VirF enters the nucleus
and assembles with plant components to form

an SCFVirF complex. The resulting E3 then
triggers breakdown of the A. tumefaciens VirE2
protein and the host VIRE2-INTERACTING
PROTEIN 1 (VIP1) protein, both of which
coat and help chaperone the T-strand DNA
into the nucleus but must be removed before
chromosomal integration of the T-strand
DNA (197). Surprisingly, A. tumefaciens strains
lacking VirF can induce expression of a host
alternative that can functionally replace VirF in
mediating VirE2 and VIP1 breakdown (227).

Other pathogen-encoded CRL components
include the P0 FBX protein from pathogenic
poleroviruses, the FRP1 FBX protein from
Fusarium oxysporum (48), and the GALA FBX
proteins from the bacterial pathogen Ralstonia
solanacearum. Upon infection, P0 assembles
with host CUL1, RBX1, and SKP1 to form an
SCF complex that directs the degradation of
ARGONAUTE (AGO)-1, a key component
of the plant RNA-induced silencing complex
(8, 12). Suppression of AGO1 by SCFP0 subse-
quently protects viral genome replication from
host-mediated viral-silencing mechanisms.
Coincidently, Arabidopsis AGO1 levels are also
regulated by an endogenous FBX FBW2 (49).
The seven-member GALA family belongs
to the collection of T3SS proteins from
R. solanacearum that enters the plant host upon
infection (4). Once inside, they presumably
assemble into SCFGALA complexes directed to
degrade one or more plant defense proteins
using their LRRs for substrate identification.
This proteolysis appears critical as removal of
the FBX domain in GALA7 severely damp-
ened infection of Medicago truncatula by the
bacterium (5).

In addition to injecting CRL adaptors into
plants, plant pathogens may also exploit CRL
regulators. As mentioned above, a good exam-
ple is the JA mimic coronatine, which is syn-
thesized by P. syringae to overstimulate the JA
receptors SCFCOI1 (100). Another novel strat-
egy comes from geminiviruses which use their
C2 protein to dampen CRL-mediated defense
responses. The C2 protein appears to work by
binding to and attenuating the de-RUBylation
activity of the CSN5 subunit of the CSN

320 Hua · Vierstra

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

11
.6

2:
29

9-
33

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

01
/2

4/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PP62CH13-Vierstra ARI 15 April 2011 9:56

complex thereby interfering with many CRLs
simultaneously by blocking their RUBylation
cycle (R. Lozano-Durán & E.R. Bejarano,
unpublished). A third strategy may involve
relatives of the global regulator CYCLE
INHIBITING FACTOR (Cif), a T3SS
protein synthesized by the animal pathogens
Burkholderia pseudomallei and enteropathogenic
Escherichia coli (29). Cif is a deamidase that
specifically and efficiently deamidates Gln-40
in both Ub and RUB1/Nedd8 upon entry into
the host. This modification effectively abro-
gates the activity of all host CRLs that require
RUB1/Nedd8 attachment and suppresses
much of the rest of the UPS by impairing
poly-Ub chain formation.

EVOLUTION OF CRL
SUBSTRATE ADAPTORS

Well before genetic analyses confirmed the
prominence of CRLs in plant biology, their
significance was presaged by various phyloge-
netic studies on the respective substrate adap-
tors, which revealed that many hundreds to a
thousand CRLs may be expressed in some plant
species (60, 64, 65, 91, 96, 118, 217). Whereas
the numbers of possible plant BTB and DWD
CRLs are comparable with those in most meta-
zoans, the number of possible plant SCF CRLs
is typically much larger (Table 1). For example,
Arabidopsis thaliana contains more than eight
times as many intact FBX genes than the single-
cell alga Chlamydomonas reinhardtii, and possi-
bly ten times more than humans (∼700 versus
83 and 69, respectively) (91).

From an evolutionary perspective, key
questions remain: Why do plants encode
so many CRL adaptors, particularly for SCF
complexes, as compared with other eukaryotes?
By what mechanism(s) did they expand during
plant evolution? The simplest answer would be
that the number of plant CRL adaptors directly
correlates with the number of substrates, with
both expanding in concert as plants evolved
more sophisticated growth patterns, tissue
types, and adaptive responses. The greater
number of targets in land plants versus other

eukaryotes could relate to their sessile growth
habit, which for reasons not yet obvious might
rely more heavily on posttranslational controls,
or could reflect an innate defense mechanism
used by land plants to ward off continuous
attacks by pathogens and predators (65, 196).
Comparisons among the FBX superfamilies in
C. reinhardtii, the seedless plants Physcometrilla
patens (bryophyte) and Selaginella moellendorffii
(lycopod), and a number of monocots and
eudicots are generally consistent with this
view, as more primitive plants typically contain
fewer FBX loci (91). Furthermore, one might
imagine that the thousand or so CRLs in seed
plants such as Arabidopsis and rice are matched
with an equally large number of targets.
Genetic analyses of a few well-characterized
CRL adaptors in Arabidopsis support this
one-to-one correspondence. For example, the
six-member TIR/AFB1–5 FBX family likely
controls the 27 AUX/IAA isoforms (142), the
ETO1/EOL1/EOL2 BTB family targets the
three type-II ACC synthases (23, 208), and the
EBF1/EBF2 FBX pair recognizes the EIN3
and EIL1 transcriptional regulators (10).

However, recent phylogenetic studies show
that the evolutionary patterns of plant CRLs
are more complex than anticipated, especially
for the SCFFBX and BTBBTB types. The first in-
dication came from the analysis of BTB adap-
tors, which showed that the patterns of evo-
lution were uneven among plant species and
could be lineage specific. Whereas Arabidopsis
contains 80 BTB genes with little or no obvi-
ous pseudogenes, rice contains 149 with evi-
dence for at least 43 more pseudogenes (64, 65).
This expansion in rice was not uniform across
all BTB types but was explained by an increase
in only one subfamily containing a Meprin
and TRAF homology (MATH) recognition
module, for which there are only 6 MATH-
BTB genes in Arabidopsis but 76 in rice. Simi-
lar lineage-specific expansions of MATH-BTB
proteins were evident in other monocots, in-
dicating that monocots diversified this adaptor
specifically after the monocot/eudicot split (65).

Subsequent studies with FBX adaptors de-
tected lineage-specific evolutionary patterns
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with even greater complexity than those for
BTB adaptors (91, 217, 221). One surprise
is that the FBX superfamily sizes vary con-
siderably among plant species and appear
unrelated to the growth habit (woody versus
herbaceous), life cycle (annual versus peren-
nial), or evolutionary history (91). For example,
Carica papaya contains as few as 159 likely intact
FBX loci, whereas Arabidopsis lyrata contains as
many as 980 (Table 1). Total FBX gene num-
bers (intact and pseudogene) differ substantially
even among closely related species. As illustra-
tions, Zea mays and Sorghum bicolor, which split
∼12 million years ago (Mya), differ by 400 to-
tal FBX loci, whereas Arabidopsis and A. lyrata,
which split ∼5 Mya, differ by 453 total FBX
loci. Ortholog relationships showed that these
extraordinary differences were caused by rapid
lineage-specific gene gains (births) and losses
(deaths), indicating that the FBX superfamily
as a whole underwent considerable transforma-
tions during land-plant evolution. Similar to
those observed for BTB proteins, birth/death
rates were not commensurate among all FBX
subtypes but showed striking enrichments
and/or depletions of specific recognition mod-
ules in the various plant lineages (91).

An intriguing scenario is that the evolution
of the plant FBX, BTB, and possibly the
DWD superfamilies is directed by a genomic
drift-type mechanism (91). This mechanism
first proposed by Nei and coworkers (135,
136) postulates that, similar to genetic drift
at the population level, neutral evolution ran-
domly generates widely different gene family
sizes among species. Although variations in
sequence and copy number for drifting genes
within a family may be largely inconsequential
within populations, some may become fixed if
they help acclimate the individuals to the new
niches and habitats.

Like other gene families proposed to be af-
fected by genomic drift [e.g., immunoglobu-
lin and chemosensory receptor genes in verte-
brates (135)], the plant FBX superfamily has all
the hallmarks of genes evolving by this mech-
anism. First, the fact that the size of the FBX
superfamily differs markedly and apparently at

random across plant lineages implies that the
birth/death history of the superfamily is for
the most part arbitrary (91, 217, 221). Sec-
ond, two subgroups of plant FBX loci can be
detected (91). One smaller group encodes a
highly conserved FBX collection that likely di-
rects core and possibly ancient ubiquitylation
events that are essential to most plants or even
to eukaryotes in general. Another much larger
group of FBX genes also exists that is under
more relaxed or neutral selection, is highly lin-
eage specific, and is often inconsequential to
the plants. These more divergent genes share
properties with obvious FBX pseudogenes, sug-
gesting that they either control more species-
specific functions or are nonfunctional and in
the process of pseudogenization. In accord with
the genomic-drift model, this more diverse col-
lection could be generated at random by vari-
ous events (e.g., polyploidy, segmental and tan-
dem duplications, and retrotransposition) (91)
to provide a dynamic reservoir of FBX pro-
teins that can adjust ubiquitylation to improve
plant fitness continually. Opportunities include
creating new FBX adaptors with novel expres-
sion patterns, altered affinities for existing tar-
gets, and/or specificity toward new targets. If
these birthed loci provide an adaptive advan-
tage to the plant, they would become fixed.
The lineage-specific ETP1/2 FBX proteins in-
volved in EIN2 degradation may represent such
a fixation (152). If not useful, the new FBX loci
would eventually degenerate into pseudogenes
or be lost. Such drift of FBX loci may also occur
rapidly within populations given the extremely
high rates of FBX polymorphisms that have
been detected among Arabidopsis ecotypes (26).

If we assume that CRLs evolved by a ge-
nomic drift-type mechanism, several functional
implications emerge. First, the birth/death his-
tories of the FBX superfamily are more extreme
than other large plant gene families (91), sug-
gesting that genomic drift was applied to FBX
genes and possibly those encoding other CRL
adaptors with greater strength than most oth-
ers. Coincidently, the SKP1 partners in SCF
complexes may have also evolved by a simi-
lar drift in concert with FBX proteins, possibly
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to preserve the same expression patterns and
protein-protein interactions (108, 109). Sec-
ond, given the high birth and death rates, most
new FBX genes do not persist over a long
time and rapidly become pseudogenes or are
lost. Nonetheless, those that did acquire im-
portant roles, have clearly survived over the
course of land-plant evolution. So, although ge-
nomic drift may have contributed to the initial
emergence of new FBX loci in general, strong
selection pressures would promote their long-
term retention. Third, the one-to-one corre-
spondence for CRL adaptors to substrates may
be oversimplistic. For the core conserved adap-
tors, this may be true, but for the larger, more
lineage-specific group, many may not have ded-
icated targets. This inert group may instead
serve as seeds for continued CRL innovation
through trial and error. Possibilities include
the adaptive evolution of divergent CRLs for
pathogen defense (65, 196) and self-recognition
during plant reproduction (91).

CHALLENGES AHEAD

Even though much has been learned about
plant CRLs since their discovery a decade ago
(60, 71, 216), substantial challenges lie ahead
in defining the full range of CRL E3 func-
tions in plant biology. Clearly a combination
of forward and reverse genetics, molecular
interaction approaches, biochemistry, bioin-
formatics, and proteomics will be critical to
reveal the functions of CRLs and link specific
complexes to their cognate targets. Certainly,
the possible scenario that only a subset of plant
FBX adaptors (and maybe BTB and DWD
as well) is biologically relevant with the rest
subjected to genomic drift may reduce the
task considerably by helping researchers focus
on the conserved adaptors that actually direct
physiologically relevant ubiquitylation events.
Approximately 100 Arabidopsis FBX genes fit
this criterion, thus concentrating genetic efforts
to only a small fraction of the total FBX loci
(91).

Unfortunately, each approach to studying
CRLs and their targets has inherent limitations.

Genetic approaches are complicated by func-
tional redundancy. Whereas phenotypes can
sometimes be elicited by removing the domi-
nant gene in the subfamily [e.g., BTBETO1 and
ethylene synthesis (23, 208)], in other cases, in-
activation of the entire set is required to observe
a robust phenotypic defect [e.g., SCFVIER1−4

(171) and BTBLRB1/2 (M.J. Christians, D.J.
Gingerich, R.D. Vierstra, unpublished)]. Even
though the use of weak alleles can demonstrate
the importance of core essential components
(CULs, RBX1, SKP1s, DDB1, etc.) (63, 130,
159), their pleiotropic consequences are often
too complicated to interpret because their com-
posite phenotypes could reflect stabilization of
hundreds of targets. Target predictions based
on the phenotype of plants either missing or
overexpressing individual adaptors (FBX, BTB,
and DWD proteins) can be successful. For
example, if a CRL E3 promotes degradation of
the target, then hypomorphic or null mutants
for the adaptor may resemble the phenotype
of plants overexpressing the corresponding
target(s) because the target(s) should be more
stable and thus more abundant in the mutant
background. Conversely, overexpressing CRL
E3 may phenocopy mutations that disable or
delete the target. Illustrations of this success
includes linking BTBETO1/EOL1/EOL2 to type
II ACS (23, 208), SCFCOI1 to JAZ targets (22,
195), and BTBLRB1/2 to phyB signaling (M.J.
Christians, D.J. Gingerich, R.D. Vierstra,
unpublished). Clearly, the more that is under-
stood about plant development and physiology
and their underpinning effectors, the better are
the chances for success.

Biochemistry is emerging as a possible
approach in defining E3/target pairs with the
recent development of recombinant systems
that can express functional CRL E3 complexes
(146, 148, 160) and in vitro degradation systems
that can mimic in planta turnover (141, 207).
However, a major hurdle for many CRL E3s is
the poor expression and insolubility of the in-
dividual components, which can sometimes be
overcome by coexpression with other compo-
nents [e.g., FBX and SKP1 (174, 192)]. Caution
must also be taken to ensure that the in vitro
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ubiquitylation reactions observed actually
represent true E3/substrate specificities and
not off-target events, given the high-energy
intermediates involved in Ub addition. In-
teraction approaches can sometimes work
(e.g., SCFEBF1/2 and their targets EIN3 and
EIL1) (61, 150), but if the target requires prior
modification (e.g., phosphorylation or glycosy-
lation) (145), it may be difficult to recapitulate
in vitro or in heterologous systems such as yeast
two-hybrid. Proteomic methods are now aiding
in the identification of ubiquitylated proteins
despite their low abundance and rapid turnover
(125, 165). Fortunately, better conjugate pu-

rification methods (e.g., 85, 191) and improved
mass spectrometers that should advance this ap-
proach have recently emerged. Unfortunately,
connecting these proteins to specific E3s by
combining proteomics with reverse genetics
remains a challenge given the sheer number of
Ub conjugates and ligases that plants normally
contain. Hopefully, new methods such as
the global protein stability assay developed
with mammalian cells can be adapted to plant
systems (222). Although many hurdles remain,
we expect continued progress on defining
CRL E3s and revealing their functions in plant
biology.
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