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Abstract: Recent literature in science education suggests that, to transform girls’ participation,
learning, and identities within school science, we must think about ways to engage girls in different kinds of
educational activities that promote broader meanings of science and scientist. This study was designed to
examine more deeply this call for a changed science curriculum and its implications for girls’ participation,
interest, and emerging science identities. In this ethnographic study, I examine the culturally produced
meanings of science and scientist in a reform-based physics classroom that used a curriculum called Active
Physics, how these meanings reproduced and contested larger sociohistorical (and prototypical) meanings
of science and scientist, and the ways girls participated within and against these meanings. The girls in this
upper middle class school were mostly concerned with accessing and maintaining a good student identity
(rather than connecting to science in any meaningful way) and resisted promoted meanings of science and
scientist that they perceived as threatening to their good student identities. Their embrace of the ways
school defined success (via grades and college admission) produced a meaning of Active Physics as a way
to get credentials on a transcript and ensured their disconnection from real-world, meaningful science and
science identities. The story of girls’ participation and resistance in Active Physics complicates our quest
for gender-fair science and highlights the power of sociohistorical meanings of schooling and science in
producing educational subjects. ! 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 392–414, 2004

Recent literature in science education suggests that, to transform girls’ participation,
learning, and identities within school science, we must think about ways to engage girls in
different kinds of educational activities that promote broader meanings of science and scientist
(Eisenhart & Finkel, 1998). This implies that we must make substantive changes to both science
pedagogy and curriculum so that girls might begin to see themselves as people who can do and
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learn science (Brickhouse, 2001; Carlone, 1999). These ideas about how to create a more gender-
inclusive science and science education have evolved over the years from accounting for or trying
to overcome girls’ biological, cognitive, and/or social differences (e.g., Benbow & Stanley,
1980; Gilligan, 1982) to encouraging more equitable classroom treatment without changing the
prototypical science curriculum (e.g., AAUW, 1992; Irvine, 1986; Kahle, 1996; Sadker & Sadker,
1994) to calling for transformation in the prototypical science curriculum itself (e.g., Barton &
Osborne, 1998; Eisenhart & Finkel, 1998; Kyle, 1998). In other words, calls for addressing the
gender gap have shifted from attempting to fix ‘‘problems’’ with the girls to attempting to fix the
problems with school science (Barton & Yang, 2000; Brickhouse, 1998).

I designed this study to examine more deeply the call for a changed science curriculum.
I wondered whether a different kind of school science, one that promoted alternative (and
broadened)meanings ofwhat itmeant to ‘‘do science’’ and ‘‘be a science person,’’wouldmake for
a more inclusive and interesting science for girls. To address this research problem, my study
examined the meanings of science and kinds of science identities that were produced in a reform-
based high school physics classroom that centered on the study of physics on real-world themes
such as sports, medicine, home, and transportation (called Active Physics).What did it mean to do
science and be a ‘‘good’’ science participant in this setting? How did girls participate within and
against the cultural meanings produced in this classroom?

The results described herein are framed around a pivotal (and initially, surprising) interaction
in the classroom during my first day of data collection. This study began with an expectation that
Active Physics would be a more inviting, inclusive science for girls than a traditional physics
course. However, as the following vignette illustrates, this expectationwas complicated during the
first day of data collection.

Day One of Data Collection: Resisting Active Physics

Active Physics, 10:30 a.m. It’s my first day of data collection. I sit in the back of the Active
Physics classroom with my eyes peeled to notice subtle nonverbal responses and
interactions and my ears ready to capture hard-to-hear exchanges between students. I want
to capture the girls’ joy, their excitement, and their resistance. Will I recognize these when I
see them? I want to take this first day to really experience the classroom as an outsider—to
question taken-for-granted practices and to denaturalize the natural.

Before Mr. Stewart (the teacher) begins with the instructions for today’s activity, he gives
students a ‘‘heads up’’ on the schedule for the last week and a half of the semester.

‘‘Okay, everyone! We have about a week left in the semester—’’

A girl sitting in the middle of the classroom raises both arms, pumps them victoriously and
cheers, ‘‘Yahoo! I’m outta’ here! I’m droppin’ this class baby!’’

My heart sank. So began my first day of data collection in Active Physics. . .

This girl’s reaction to Active Physics was representative of a certain amount of frustration
many of the girls felt about the class. Although there were girls who embraced certain aspects of
Active Physics, many were conflicted about the emergent meanings of science and the implied
science identities in their class. In this investigation, I describe the unfolding of this story by
highlighting social practices that promoted particular meanings of what it meant to do science
and be a ‘‘good’’ participant in Active Physics and girls’ participation within and against these
promoted meanings. What, exactly, were girls embracing and resisting about Active Physics?
What meanings of science emerged and shaped these reactions?
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To address these questions, I use ideas from cultural anthropology that draw attention to
the ways structure and agency interact in producing cultural practice. For those interested in
transforming science education, part of what comprises the ‘‘structure’’ we contend with in
enacting reform is the sociohistorical legacy of science and science education, which I describe
in more detail in what follows. Understanding the ways that this legacy shapes practice provides
a starting point in thinking about alternative, more inclusive science education realities. At the
same time, we should understand that girls do not passively accept promoted cultural scientific
practices. Therefore,wemust pay attention to girls’ agency in shaping, accepting, and resisting the
promoted cultural practices. Below, I also describe two concepts from practice theory—cultural
production and situated learning—that help frame my research.

Conceptual Framework

Sociohistorical Legacy of Science and Science Education

Science carries a powerful sociohistorical legacy and is reproduced as an objective, privileged
way of knowing pursued by an intellectual elite (Barton & Yang, 2000; Duschl, 1988; Fensham,
1997; Lemke, 1990). As previous research has shown, school science plays a role in reproducing
these alienating meanings of science via classroom activities, discourse, and social organization
(Cunningham, 1997; Lemke, 1990; Moje, 1997; Roseberry, Warren, & Conant, 1992; Rosenthal,
1996). Over the past century, traditional ideas about what science is, who does science, and
historical practices of science education have left us with a legacy about what ‘‘good’’ science
education looks like. Angela Calabrese Barton and Kimberley Yang (2000) call this the ‘‘culture
of power’’ in science education. This culture gets reproduced by practices that include: transmis-
sionmodels of instruction; boring, repetitive tasks (e.g., verification laboratory activities, defining
vocabulary words from a list in the book); a tacit or explicit privileging of dry, technical rational
discourse; a tacit or explicit denigration of students’ knowledge and ideas; a goal of producing
future scientists, rather than a goal of teaching science for all students; and the narrow disciplinary
view of the science curriculum that treats social issues, technology, and engineering as diversions.
This list represents a small sample of practices that comprise what I call prototypical science
education. Although recent reform efforts aim to counter how prototypical science education gets
done, these prototypical practices, for many practicing teachers, serve as a model of what a good
(‘‘rigorous,’’ ‘‘challenging’’) science education looks like. The practices privileged in school
science also point to a narrowly constructed vision of ‘‘good’’ participants; a construction that
leaves out many students (Brickhouse, 2001; Carlone, 1999; Eisenhart & Finkel, 1998).
Throughout this study, I use the phrase ‘‘prototypical science education’’ to represent these taken-
for-granted notions about science and science education that comprise the alienating nature of
school science.

Reform-based Science Education and Active Physics

Science educators have struggled to transform prototypical science education, via one reform
effort or another, for over 50 years (Bybee, 1997; DeBoer, 1991). Contemporary ideas about
science education reform are represented in the National Science Education Standards (National
Research Council [NRC], 1996). A key feature of the Standards is the emphasis on science as
inquiry, which includes the ‘‘abilities necessary to do scientific inquiry’’ and ‘‘understandings
about scientific inquiry’’ (NRC, 1996, p. 121). These abilities include engaging scientifically
oriented questions, using evidence to develop, evaluate, and revise scientific explanations, and
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communicating and justifying scientific explanations (NRC, 2000). Understandings about
scientific inquiry include the nature of science, scientific knowledge, and scientists’ work. A
curriculum based on the Standards, then, would provide students opportunities to engage in
activities that promote these abilities and understandings. There are multiple ways to create an
inquiry-based classroom, ranging frommore teacher-direction and structure (e.g., learner engages
a question posed by the teacher, is given data and told how to analyze it, is provided steps for
communication of explanations) to more learner self-direction (e.g., learner poses a question,
determines what counts as evidence, forms a logical argument to communicate explanations)
(NRC, 2000). The learning opportunities provided by the enacted Active Physics curriculum
typically fell in the middle of this spectrum—sometimes representing a more structured approach
and sometimes representing a more learner-centered approach.

Developed by the American Association of Physics Teachers and the American Institute
of Physics, the Active Physics curriculum frames the study of physics around real-world
themes (e.g., home, medicine, sports, transportation), promotes inquiry-based learning, and
includes students’ interests and social issues as part of the physics curriculum. Active Physics was
developed explicitly as a response to the traditional physics curriculum to make physics more
accessible, relevant, and interesting to a broader range of students. As Eisenkraft (1998) noted in
his introduction to the text:

The usual physics course has so much math and so much reading that many students miss
the beauty, the excitement, and the usefulness of physics. Many more students simply
refuse to take the course. Active Physics began when a group of physicists and physics
teachers wondered how to pass on their enjoyment of physics to high school students.

The inclusion of relevant, real-world themes and collaborative, inquiry-based problems had
the potential to broaden the meaning of science and scientist in ways that were consistent with
much of what science education reformers called for. For example, a traditional physics class
might promote a meaning of science that stresses science as a body of knowledge disconnected
from real-world applications through repetitive tasks, cook-book labs, and assessments that focus
on the finished body of knowledge of physics. The Active Physics curriculum, on the other hand,
emphasized students as producers of scientific knowledge. As such, it had the potential to
introduce students to the context and processes that give rise to the products of science. For
instance, in one activity, students were to design the best (safest) car bumper, subject their designs
to various tests of force and momentum, and revise their designs accordingly. In this activity,
students had to apply their existing knowledge to the design of amodel, test theirmodel, and revise
their models based on evidence garnered from their investigations. In doing so, they experienced
the frustrations of less than perfect equipment and uncertain results, as well as the joys of
successful, creative design work. As Christine Cunningham and Jenifer Helms (1998) argued,
infusing the messiness and contingent nature of scientific knowledge into the science classroom
may erode students’ idealized image and unquestioning acceptance or rejection of science,
may give students more faith in their own findings (rather than relying on the teacher or text to
ratify their findings), and perhaps will allow students to see themselves as future participants of
the discipline.

Using Practice Theory to Define Culture

Mywork draws on an anthropological theory that informs how scientific practices in settings
of science learning are not only constitutive of, but might also work against, sociohistorical
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legacies of science and science education. Practice theory (as defined byEisenhart&Finkel, 1998)
is an evolving perspective in cultural anthropology that focuses on the ways in which people,
in their daily practice, make meaning in such a way as to reflect and/or counter larger social
structures (see also Buxton, 2001; Carlone, 2003a; Holland & Eisenhart, 1990; Levinson, Foley,
& Holland, 1996). I argue that using practice theory for understanding settings of science
learning allows us to see how school science (and local meanings of science) both reproduces
and contests sociohistorical legacies of science and science education. Two primary concepts
from practice theory—cultural production and situated learning—are particularly helpful in
creating an interpretation of girls’ access, participation, and resistance in this reform-based
physics classroom.

Cultural Production. Margaret Eisenhart and Elizabeth Finkel (1998) define cultural
productions as ‘‘meanings developed by groups in their everyday activities’’ (p. 44). A focus on
cultural production provides us with a different way to think about settings of science learning.
It promotes a critical examination of how the local meanings of science and scientist vary
depending on the social organization of the classroom and the context in which the classroom is
positioned. Thus, we might examine the ways new (more liberatory, transformative) meanings of
science emerge in new school science contexts. Yet, the concept of cultural production also forces
us to recognize how participants produce the meanings of science and scientist in local settings
within and against larger, more powerful and pervasive (i.e., prototypical) meanings (Carlone,
2003a). That is, one is not free to create any meaning of science in a setting of science learning.
History plays a large role in shaping possible meanings. This history is reified in the forms of
values, beliefs, and taken-for-granted actions of peers, teachers, and administrators, all of which
imply certain meanings of a ‘‘good’’ science education and ‘‘good’’ science participants. Thus,
the concept of cultural production enables us to account for how larger sociohistorical meanings
shape participants’ values, beliefs, and actions, but also the ways new meanings of science might
emerge depending on the context in which the classroom is positioned. It draws attention to the
intersection of the local and global, the micro and macro.

Situated Learning. Jean Lave and Etienne Wenger’s theory of situated learning (1991)
provides another aspect of practice theory. Situated learning differs markedly from psychological
theories of learning. Instead of viewing the learner as an individual meaning maker, Lave and
Wenger draw our attention to the learner’s increasing participation in a community of social
practice. This alerts us to the ways in which activities represent certain knowledge, learning, and
identities (themeaning of being a scientist, awoman, an expert), andmake these socially available
to group members as they participate in activities over time (Brickhouse, Lowery, & Schultz,
2000; Eisenhart & Finkel, 1998; Lave & Wenger, 1991).

An important aspect of situated learning is examining how participation in relevant social
practices promotes the formation of certain kinds of identities. Instead of viewing learning with a
predetermined outcome measure, learning becomes measured in new ways of talking, acting,
being in theworld, describing oneself, or relating to others (Brickhouse, 2001; Eisenhart&Finkel,
1998). New identities develop when one begins to take on new roles in the learning community,
gains more knowledge, and has access to the discourse, tool use, and more central aspects of
participation in the learning community.

Lave and Wenger’s (1991) argument that participation in relevant social practices
promotes the formation of certain kinds of identities is tempered with a recognition that structure
and power relations within a community may encourage and/or inhibit access to legitimate
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participation for individuals within the community or for those who seek membership. In other
words, the promoted science identities may not be socially available, achievable, or interesting
to all participants. Thus, these alternative, ‘‘inappropriate’’ identities may become marginalized
within the community.

A focus on situated learning shifts the perspective of learning from an internalization of
knowledge to a focus on how people organize science activity, represent science in activities,
and the kinds of identities implied by the activities. A perspective grounded in situated learning
raises questions such as, ‘‘How do learners participate (or not) in social practices?’’ or ‘‘What
kinds of people do well (or are interested) in this activity?’’ Through an examination of local
practice and the ways learners participate within and against these practices, one can garner rich
information about the kinds of people for whom a science class is designed—for instance, creative
types, logical thinkers, political activists, collaborators, geniuses. Put another way, these are the
promoted science identities or meanings of ‘‘scientist’’ in the local setting.

Remembering that a primary aspect of situated learning includes a focus on learners’
participation in relevant activities, onemight ask of a science learning context, ‘‘What are theways
that students are given opportunities to engage in relevant science practices?’’ Thus, one might
argue that if students are not given opportunities to engage in practices that represent scientific
knowledge and identities, then they will not come to see themselves as participants.

The articulations of situated learning with cultural production give us a rich understanding of
the culture of a science education classroom. In other words, in this study, while I describe girls’
opportunities to engage in science practices, I also outline the meanings of science those practices
evoke and the kinds of identities implied by the activities.

Research Context

Sunnyglen High School1

Located within a largely upper middle class suburb of a major metropolitan area,
Sunnyglen High School serves some of the wealthier students in the district. During the study
period the school’s population was mostly white (84%), with 4% Hispanic, 4% black, and 9%
Asian. Approximately 3400 juniors and seniors attended SunnyglenHigh School, with 97% of the
school’s 1998 graduates attending college (84% 4-year college, 13% 2-year college). The school
was well known for its high-achieving students.

Approximately 50% of the students at Sunnyglen High School enrolled in first year physics,
well above the national average (e.g., 29% of all high school students completed physics in 1998,
according to NSF [2002]). As a result of this high enrollment, the physics department was
extremely large (11 full-time faculty members). Therewere five different kinds of physics courses
offered: (1) Advanced Placement (AP) Physics C (second year physics with calculus); (2) AP
Physics B (second year physics without calculus); (3) Honors Physics I (first year physics);
(4) Regular Physics I (first year physics); and (5) Physics I–Active Physics (first year physics).
The focus of this study is on Active Physics, which, along with Regular Physics I, was considered
to be the lowest level physics option.

The Active Physics Classroom

Mr. Stewart, the Active Physics teacher, had a master’s and a bachelor’s degree in chemistry.
He taught chemistry for 10 years before switching to physics. One assistant principal described
him as one of the ‘‘strongest and most academic teachers’’ in the physics department. After
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teaching a traditional physics course for 2 years, he decided to pursue training with the Active
Physics curriculum because he was intrigued by reaching more students with a more inquiry-
based approach.

The Active Physics class that I studied had 28 students (juniors and seniors; 14 girls and
14 boys), and most of them were white (with the exception of 2 Asian Americans). Students had
been randomly placed in the class—the option of enrolling in Regular Physics or Active Physics
was not made public to students.2 All students in this class reported that they planned to attend a
4-year college upon graduation from high school.

Ethnographic Methods

The results I describe are part of a larger ethnographic study (Carlone, 2000). Elsewhere,
I have reported the ways in which girls participated in ‘‘Regular Physics’’ (a class that used a
traditional physics curriculum) at SunnyglenHigh School (Carlone, 2003a) and theways inwhich
the meaning of the Active Physics at Sunnyglen High School curriculum got transformed as it
traveled across space and time (Carlone, 2003b). The results of these ethnographic studies
help make sense of the data I present here; thus, I will refer occasionally to the findings of these
studies in my analysis.

In general ethnography allows one to better understand the culture of a group—the meanings
produced by people in their daily lives that shape and are shaped by the ways they think, feel,
and act. Spradley’s (1980) model for understanding meanings produced by people in their
daily activities allows the ethnographer to make cultural inferences about the group by using
three types of information: (1) cultural behavior (what people do); (2) cultural artifacts
(e.g., tools and products); and (3) speech messages (what people say). A participant observer
‘‘learns’’ the culture by making cultural inferences. In this section, I briefly describe the kinds
of data I collected and the methods of analysis I used to make cultural inferences about the
meanings of science and scientist in the setting and girls’ participation within and against these
meanings.

Data Collection

I spent approximately 6 weeks (December 1998 to May 1999) acting as a participant-
observer in the classroom. During class activities, I took fieldnotes and audiotaped whole-group
and two or three small-group conversations. Each trip to the research site was approximately 1
week long with periods between visits spent transcribing audiotape data and doing preliminary
analysis of the data to help inform subsequent observations.

Other sources of data included: artifacts from the classroom (e.g., student work, sample
handouts), e-mail correspondence with students and the teacher (used as a form of member
checking), and survey data (to gather background information about students’ academic per-
formance, future plans, perceptions of the physics class, and identification with physics and
science). In addition, I conducted formal interviews with ten Active Physics students (three
boys, seven girls), three Advanced Placement Physics students who had taken Active Physics
the previous year (two boys, one girl), the physics teacher, two guidance counselors, and the
assistant principal of curriculum and instruction. I had many opportunities to hold informal
conversations with the teacher and students, which also became part of the data set. Finally,
I held two focus group interviews with girls from the class (toward the beginning of data
collection), so that I could interact informally with them, develop rapport, and focus subsequent
data collection.
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Data Analysis

My primary method of data analysis (applied to the entire data set) was Spradley’s (1980)
method of semantic structure analysis, which involved three, iterative stages of analysis.3 The
first stage, called a domain analysis, involved searching the data (line by line) for categories of
cultural meaning or ‘‘domains.’’ Each domain included a cover term (the name of the domain) and
a semantic relationship (that describes the relationship between the cover term and the domain).
So, a sample cover term and semantic relationship was ‘‘kinds of student questions,’’ with
‘‘student questions’’ representing the cover term and ‘‘kinds of’’ representing the semantic
relationship. A different semantic relationship with a similar cover termmight be ‘‘ways of asking
questions.’’ As domains were identified, they became codes whereby data could be chunked.
So, underneath ‘‘kinds of student questions,’’ for example, I included the following actual student
questions (among many others): ‘‘What would happen to your electric bill if you left your
computer on all day?’’; ‘‘Dowe have to know this?’’; ‘‘Are you saying that . . . ?’’; ‘‘Was that in the
book?’’; ‘‘Do we redraw the bars on the graph?’’; ‘‘Are you going to answer the question I asked
earlier?’’ At this stage in the analysis, the researcher used the participants’ language as much as
possible and simply chunked the data underneath relevant domains. Other domains and semantic
relationships (for this study) included: reasons for being frustrated, characteristics of good work;
ways to express creativity; ways to handle unexpected data; and uses of textbook. Thus, I searched
my data for domains and associated semantic relationships using my conceptual framework as a
loose guide to focusmy analysis. At one point in the analysis, therewere over 100 domains, which
were later collapsed as the analysis grew more focused.

The second stage of analysis, called taxonomic analysis, involved looking for relationships
among the data included in each domain. This stage helped define how the cultural domains were
organized and involved looking for relationships among the data underneath each domain. So, for
example, in the domain noted earlier (kinds of student questions), students’ questions could be
categorized as curiosity questions (‘‘What would happen if . . . ?’’); questions about physics
content (‘‘Do you mean that all three of these share wattage?’’); questions about accountability
(‘‘Is this going to be on the test?’’); questions that challenged the teacher (‘‘Howwas I supposed to
know that?’’); and procedural questions about labs (‘‘Shouldwegraph our results?’’). This process
allowed me to refine the meaning of the domains (the cultural categories) and the data included
underneath each domain.

The final stage of analysis, called a componential analysis, involved looking for dimensions
of contrast that highlighted different meanings of the cultural categories for different members of
the group. This stage of analysis provided away to compare and contrast two or three domain lists,
which resulted in juxtaposing dimensions of contrast (e.g., girls’ participation in small-group
activities vs. girls’ participation in whole-class activities) and the data included under each
domain.

These stages of analysis were done iteratively with data collection. For example, after
examining dimensions of contrast in the componential analysis and finding gaps and unanswered
questions, I returned to the field to try to fill in the gaps. I also reexamined the taxonomies to look
for new relationships and reconsidered evolving themes via the componential charts.

Results

In this section, I describe meanings of science and accompanying science identities
promoted in the Active Physics classroom. As practice theory implies, everyday practices in a
science classroom will reproduce and/or contest larger sociohistorical meanings of science and
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scientist. These everyday practices give rise to local meanings (cultural productions) of science
and scientist. Thus, when I make note of the meanings of science or science identities in Active
Physics, I am referring to the localmeanings produced via the everyday classroom activities and
social practices. I also examine the ways these local meanings reproduce or contest larger
sociohistorical meanings of science and scientist. In this way, the practice theory framework
enables a dual analytic focus on micro and macro practices.4 In the case of Active Physics at
Sunnyglen High School, there were both new (broadened) and traditional (narrow, prototypical)
meanings of science and scientist being promoted. In the first subsection, I describe the ways the
social practices of theActive Physics classroom challenged prototypicalmeanings; the promise of
thewritten curriculum translated into new kinds of activities, newways of participating in physics,
and new ways of being a physics student. In the second subsection, I describe the ways the social
practices of the Active Physics classroom reproduced prototypical meanings; certain classroom
practices promoted alienatingmeanings of science (as difficult and hierarchical) and scientist (as a
super-intelligent male). Throughout, I draw attention to the ways girls participated within and
against these meanings of science and scientist and provide my interpretations of why they
responded as they did.

Science as Active/Scientist as an Energetic Problem Solver

I consider paying attention in most classes optional. I’ll take the notes, fine, because . . .
really, if you give me the notes, I don’t need to listen to you. I’ll figure it out later on my
own. I’m capable of that. So, just let me do your redundant homework and I’ll be through
with it. . . .But, this class, it drives me nuts ‘cause I can’t do that. (Amy, Focus Group #2,
3/3/99)

Amy’s comments indicate that this class required one to be a different kind of student.
This class promoted a different kind of participation than is the norm for a high school physics
class (or, formost classes in general). The studentsworked on activities in small groups (of three or
four) approximately 3 or 4 days per week. Mr. Stewart emphasized learning by doing, which
demanded that students bring their ideas and knowledge to the tasks and hindered the ease with
which they could memorize the material as they might have done in a more traditional setting.
Mr. Stewart was attracted to Active Physics for its opposition to a traditional instructional
approach:

[T]he students that really enjoy this type of approach are the ones that like to get their
hands dirty and like to get in there and figure out how something works, and enjoy that.
The [student] that looks for the details and tries to memorize those details . . . has a difficult
time. They get real frustrated. Because, I mean, it’s worked in the past, but it’s not gonna
work in the approach that I use. (Mr. Stewart, Interview, 3/1/99)

The important aspect of this active participation, for me, was the way it countered students’
laboratory participation in prototypical settings, where labs are considered diversions from
lectures and seat work and most students spend their laboratory time socializing with peers
and engaging in non–science-related talk (Gallagher & Tobin, 1987; Tobin & Gallagher, 1987).
In this setting, students had to be active, work well in groups, and be able to make sense of what
the lab activities implied about physics concepts to do well in the class. Students knew that
‘‘lab time’’ did not mean ‘‘free time’’:
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Kids consistently stay on task while we are engaged in a lab/activity. An attitude of
‘‘work’’ develops. (Mr. Stewart, Survey):

You have to be more of an energetic type person [to do well in Active Physics]. You can’t
be like kind of an anal person where you just sit and read a textbook. Active is more
enthusiastic. You kind of have to be willing to learn. You can get into Active and just start
doing the labs and having fun, just playing with the stuff without learning. But, to really
learn [and do well] you have to kind of want to understand. (Max, Interview, 5/6/99)

Students engaged in in-depth problem solving, working through uncertainty to solve
problems of relevance to their lives and interests.Many problems that students were asked to solve
in lab activities involved ambiguity, did not have easy answers, and demanded that students
bring their knowledge of physics to the task. This was also a challenge to prototypical school
science laboratories, which are ‘‘places where students follow recipes, perform routine
procedures, rehearse technical skills . . . , demonstrate the reliability of selected scientific ‘laws’
or phenomena, and falsify their data when procedures and demonstrations produce inconclusive
or ‘unexpected’ results’’ (Gough, 1992, p. 6).

Mr. Stewart was committed to having students puzzle through the material. He made choices
about the kinds of physics topics he wanted to cover based on whether or not students would be
able to construct their understanding of the physics through experimentation. Certain topics that
were ‘‘standard’’ in prototypical physics courses (e.g., modern physics) were left out in Active
Physics because they were too abstract or too hard to design experiments for. On the other hand,
Active Physics covered some topics that a traditional introductory physics course did not cover or
touched on only briefly. Those who took Advanced Placement (AP) Physics after taking Active
Physics did not feel as though they were at any disadvantage:

In some topics, we were prepared better [than the Regular or Honors students], like
potential energy. Max and I were great in that. We did a project and had it finished in
almost half the time the other people did because we were so well thought out in that
subject . . . . Lens and focal points—Active did a lot of that, too, so we were ahead in that,
too. (Christopher, an AP student who took Active Physics, Interview, 5/4/99)

We’ve had it easier than some of the Regulars . . . . This year actually, we might have a
carousel or something and we have to find out the velocity at a certain point. It sounded like
the Regulars didn’t have any problems like that. It was more like just plug-and-chug
problems. Last year we had problems that would be like real-world experiences. We’d have
to calculate velocities here just like you can relate it to something. . . . I think it’s made it a
little bit easier. (Max, an AP student who took Active Physics, Interview, 5/6/99)

Ms. Carpenter, an Active Physics teacher who also taught AP Physics, told me that there
were a number of topics that the former Active Physics students (enrolled in AP) excelled at in
comparison with the former Regular Physics students:

Ms. C.: Active kids excel at work/energy problems.

Author: Why is that?

Ms. C.: Because they’ve spent so much time with these concepts. The roller coaster
unit did a great job with that. [In AP], they are just as apt to apply a work/energy
format [to new problems] as a kinematics approach. Also, Active kids excel with
the light unit. They do more with light intensity, properties of light rays, and ray
diagrams. (Phone Conversation, 3/17/2000)
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I use these quotes from the AP students and teacher to help support my observations that the
kinds of problems the Active Physics students were being asked to solve were worthwhile,
involved conceptual understanding of physics, and prepared them for further study in physics.
These problems, juxtaposed to the ‘‘plug-and-chug’’ type problems common in Regular Physics
(Ms. Carpenter, Phone Conversation, 3/17/00), demanded that students not only know the
formula, but also gain an understanding of the meaning of the formulas. As a result, the work they
did in Active Physics in trying to work through conceptual problems gave them an understanding
of physics that helped them in AP Physics.

Girls Accept and Resist the Active Science Learner Identities

The attitudes of work and persistence evident among the Active Physics students were part of
the ‘‘active’’ meaning of science and scientist. In some ways, this new kind of participation was
exciting andmore interesting. Thus, it should not be surprising thatmany girls embraced the active
meaning of science. Yet, in other ways, this new kind of participation demanded more from
students than the prototypical student roles to which they were accustomed. Also, taking into
consideration the local community context, where students were expected to ‘‘achieve’’ (with
achievement marked by superior grades), the more demanding student roles were risky for girls.
Thus, it should also not be surprising that some girls resisted the activemeaning of science and the
accompanying implied science learner identities (energetic problem-solver, hard-worker).

The girls that were successful and interested in Active Physics defined themselves as ‘‘hands-
on’’ people and ‘‘energetic’’ people who liked doing labs and working with groups. The Active
Physics class, in this sense, gave them space to feel good about themselves as learners and to see
themselves as capable in a learning community:

Author: What kinds of people do well in Active Physics?

Tanya: Visual learners, people that have to do hands-on stuff to learn. People like me.
(Interview, 5/6/99)

Kelly: I heard about [Active Physics] and figured that was the kind of person I was . . . .
The counselor said it was hands-on, and I thought I’m that kind of person.
(Interview, 5/4/99)

Thus, it was apparent that the promoted active science learner identity appealed to some girls.
They saw themselves as active ‘‘kinds of people.’’ Although it took some of them a bit of time to
adjust to the new identities, they made this adjustment and embraced it5:

If you would have asked me first semester [whether to recommend the class to others], I’d
be like, ‘‘It’s not that bad. You can get through it.’’ Now, I’m like, ‘‘Go for it!’’ (Kelly,
Focus Group #2, 3/3/99)

Author: What do you think about the science class this year?

Meg: I’m glad I’m in Active.

Christy: Me too.

Meg: My boyfriend hates Regular [Physics]. Book work. That’s all they do.

Author: Tell me why you like Active over the idea of Regular.

Christy: They just go by the book. I don’t learn by the book. I learn by seeing it or doing it.
(Interview, 5/5/99)
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I like the class. It was fun for me to do the stuff rather than sit there and listen. I really
think if I was in Regular Physics it would be really hard for me. You can tell, I can’t just sit
there and listen to [Mr. Stewart] lecture. I get bored. If I only see it, I don’t understand.
When we analyze graphs and he just shows us the bowling ball falling and coming back
up—if he just says, ‘‘This is where it’s in free fall. This is where the acceleration is,’’ I can’t
see it at all. If we go and do it ourselves and get the data ourselves, I can visualize.
Doing labs really helps me. (Tanya, Interview, 5/6/99)

Not all girls embraced all aspects of the new active science learner identities. Some thought
(perhaps accurately) that their grades would have been better had they taken Regular Physics:

Author: Would you choose Active or Regular, knowing what you know now?

Missy: I’d probably choose Regular because it’s just a lot easier from what I’ve heard.

Author: What about interest? If you took grades out of the picture, what class would you
choose?

Missy: Probably Active Physics. It’s really interesting. It’s fun, exciting. You get to do
cool labs and stuff, compared to sitting at a desk and reading and just listening.
(Interview, 5/5/99)

Missy was not necessarily contesting the active (local) meaning of science and scientist; in
fact, she embraced her role as an active participant. She was, however, contesting the fact that she
was held accountable for these new roles and that her grades were dependent on being successful
in her new role.

Some girls, however, were put off by and contested the active science learner identities. There
were four girls in the class (out of 14 girls) who were unhappy with the class for various reasons.6

These girls were vehemently opposed to the active approach and found ways to denigrate it
whenever possible:

Survey question: Knowing what you know now, would you choose to enroll in Active
Physics (vs. Regular Physics)? Why or why not?

Karen’s response: Absolutely no way no how. Hate labs. Hate teaching style.

Amy’s response: No. It has been a living hell.

Survey question: What kinds of things do you have to do to be successful in Active
Physics?

Amy’s response: One must be in class and actively participate, have extreme patience for
the slower intellects or nonintellects. It might even be useful to be one
of the nonintellects who can’t learn in a conventional manner, or rather,
doesn’t try to learn in a conventional manner.

Those who opposed the active approach were frustrated by their new student roles. They were
frustrated with the attitude of work and persistence that the class demanded:

Survey question: Did you choose to enroll in Active Physics? Why or why not?

Amy’s response: No! I wanted an easy class with a textbook. I didn’t want to think
beyond what equation to use.

Survey question: How is this class different from/the same as other science classes you
have taken?
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Karen’s response: It’s more challenging, which might be good for someone, but that
someone sure isn’t me.

Author: What kinds of people do well in Active Physics?

Melissa: I don’t know. Maybe I just don’t care enough about physics, but they’re
anal people. They concentrate on details. And I’m not like that. I’m
just like, all right, if I get it, I get it. If I don’t, I don’t. But they’re like—
even in my lab period. Peter Brown? He can concentrate on all the
details. And like Kelly?

Author: She’s detail oriented?

Melissa: They don’t give up. I guess that’s it. (Interview, 5/5/99)

In many ways, they were resisting the active, locally produced meaning of science and
scientist that was different from prototypical meanings. These three girls defined themselves in
opposition to the active science learner identity. They claimed that they were not ‘‘lab people’’ or
‘‘group people.’’ It was interesting to examine the ways that these girls defined themselves in
opposition to active science learners. For example:

Olivia: I think in Regular, you just sit through lectures—

Amy: I would be really happy.

Karen: Yeah, I think me and Amy would rather have—I’m a notes person, just like her.
(Focus Group #2, 3/3/99)

It was clear that the ‘‘notes’’ people were not excited about embracing an ‘‘active’’ identity.
Also, perhaps, the teacher could have nurtured this new active identity more than he did. I am not
convinced he did enough to make it safe for girls who were reluctant to take on active roles to do
so. That is, there was not a lot of teacher support for ‘‘notes’’ people to embrace an ‘‘active’’ role.
One either embraced this role (to succeed in the class) or one did not. Those who did not were
left to fend for themselves. Also, in an interesting example of cultural production, they defined
themselves as different kinds of people—people who did not ‘‘fit into’’ the celebrated science
learner in this class.

The three students who most vehemently resisted the active science learner identity saw
themselves as capable students in other arenas. For example, Amy defined herself as an
‘‘intellectual’’ andMelissa described herself as a ‘‘smartmath person.’’ One could argue that these
girls contested the active identities on the grounds that it threatened their ‘‘good student’’ identities
or, perhaps, threatened their perceptions ofwhat itmeant to be a ‘‘good student.’’ A transformation
from ‘‘good student’’ as listener, memorizer, and recipient of knowledge to ‘‘good student’’ as
active, hard-worker, problem-solver, troubleshooter, and producer of knowledge is difficult.
The active identity is more risky andmore demanding with nomore (or even less) of a ‘‘payback’’
(read good grades and credit on a transcript) than a traditional ‘‘good student’’ identity in a
prototypical science class.

Despite this resistance from some girls in the class, there were girls who enjoyed the active,
challenging nature of the class. In examining these girls’ active participation, interest, and success
in the class, it was interesting to note their continued disconnect from what they perceived as
legitimate science identities. That is, at the end of the year, the girls who were successful and
interested in the class (and who defined themselves as ‘‘lab’’ people) did not define themselves as
‘‘science people’’ and opted not to pursue further study in physics. Perhaps some of this can be
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explained by the fact that most of these girls were taking this class for credit on their high school
transcripts, which looked good for college admission (rather than as away to learnmore about and
become connected to science). While this purpose cannot be understated, it is also fruitful to
examine other possible reasons for girls’ disconnect from science. In examining the culture of
the classroom (the taken-for-granted, local meanings of science and scientist that emerged in
the classroom), there were prototypical meanings of science that may have overshadowed the
potential of transforming girls’ science identities and relationship to science. I describe these
meanings in what follows.

Science as Difficult/Scientist as Someone with ‘‘Raw Ability’’

In this section, I describe classroom practices that promoted meanings of science as difficult
and hierarchical. Initially, these meanings were surprising contradictions to me, given the central
reason (to make physics more accessible to more students) for the development of the Active
Physics curriculum and Mr. Stewart’s reasons for adopting the curriculum (to reach more
students). As a caveat, in describing the more alienating meanings of science and scientist in
Active Physics, I do not wish to denigrate the teacher’s efforts in enacting a reform-based science.
Elsewhere, I provide an explanation for why this course became more traditional and ‘‘difficult’’
as it traveled across space and time (see Carlone, 2003b). In examining the local context and
history of Active Physics at Sunnyglen High School, I found that its difficulty in gaining
legitimacy in the school (to be seen as a ‘‘real’’/‘‘rigorous’’ physics class) put pressures on the
course in ways that might explain the course’s evolution from an ‘‘accessible’’ physics course to
what the other Active Physics teacher described as a difficult, ‘‘college level course.’’ Yet, the
issue to consider for this discussion is how girls responded to these prototypical meanings of
science.

The difficult and hierarchical nature of the enacted Active Physics curriculum implied
science identities (e.g., someone who is ‘‘naturally’’ smart, has ‘‘raw talent,’’ and is male) that
were alienating, inaccessible, and/or uninteresting for girls. At the same time, these meanings
did not challenge girls’ taken-for-granted assumptions about who is ‘‘good’’ at science.
Thus, most girls (even the successful ones) did not actively resist these celebrated science
identities unless they perceived the practices as threatening to their grades or their ‘‘good student’’
identities.

Students came to understand that aspects of physics were difficult, and not everyonewould be
able to do and understand every aspect of the class. When introducing laboratory activities to
students or telling students about upcoming tests, Mr. Stewart would often alert students to the
stair-step difficulty of the problems they had to solve. In most labs and tests, there were problems
that were fairly ‘‘easy’’ (i.e., that everyone would be able to solve), problems that were
‘‘challenging’’ (i.e., that only some would be able to solve), and problems that were ‘‘difficult’’
(i.e., that only a few would be able to solve). These were not implicit categories of meaning;
Mr. Stewart made these levels of difficulty explicit for students. For example, he introduced an
acceleration/time activity in the following manner:

Tomorrow, you will have 15 minutes to solve eight problems. There are three levels on that
sheet. Level one is gonna be a piece of cake. If you follow and understand what today’s
worksheet is, level one is gonna be a piece of cake. Level two is gonna be a piece of cake.
Level one is a 70%. Level two is an 85%. Level three is gonna separate the A’s from the B’s.
It will not be a piece of cake. All right? (Fieldnotes, 3/4/99)

He introduced a laboratory activity about air resistance in a similar way:
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So, part I is easy to do, but difficult to explain. I’m looking for good explanations. Part II,
the section labeled ‘‘optional’’ will not be optional for you. It will be difficult. The last
thing you’re going to do, and this is the fun one, is looking at how spin might affect a tennis
ball on the moon . . . . But this is only for whom? Those who are efficient and finish the first
ones. (Fieldnotes, 12/2/99)

For the air-resistance activity, being able to move on to the ‘‘fun’’ problem was a reward for
those who got through the ‘‘difficult’’ sections. For the computer activity, an ‘‘A’’ was a reward
for those who got through the difficult problems successfully. Mr. Stewart’s message, continually
reinforced with statements like those just expressed, made it clear that not everyone would be
able to solve every problem.

While it may be understandable to give students opportunities to solve problems of varying
levels of difficulty, the message that not everyonewould be able to do and understand the difficult
problems reinforced prototypical meanings of scientist. Mr. Stewart’s goal was not to alienate
students, but to ‘‘give kids an opportunity for success, and then continue to challenge them in new
areas of things they don’t understand’’ (Interview, 3/1/99). Mr. Stewart made it clear to students
that this class was not like a ‘‘typical’’ science class in that memorization was not going to help
them succeed:

Mr. Stewart told the students that he doesn’t really want them to memorize for tests. He says
he ‘‘stays awake at night trying to figure out test questions that will trick anybody who tries
to memorize things.’’

The students, he said, respond to this with complaints, such as, ‘‘Why do you do that?!’’
‘‘Why do you want to trick us?’’ (Fieldnotes, 2/25/99)

This was another way that the difficulty of the class was established. Strategies students
used in the past to succeed (i.e., memorization) would not work in this setting. As Brenda said,
‘‘I’ve been memorizing stuff [in other classes]. And, in this class, you can’t memorize really.
‘‘Cause you have to apply it all’’ (Focus Group #2, 3/3/99). By creating new rules for success,
Mr. Stewart created a more challenging environment. And, defining his course as different from
(and more challenging than) typical science courses was a source of pride for Mr. Stewart.
His enthusiasm about ‘‘difficult’’ problems and conceptual questions was evident in how he
talked with me about these problems before or after class, how he talked with students about
these problems in debrief lectures and discussions, and how he pointed out differences in the
kinds of activities he had his students do in comparison with those in Regular Physics.

Mr. Stewart saw his course as different from ‘‘other’’ science courses (and other physics
courses). Also, I believe part of that difference was operationalized for him in his emphasis on
concepts and relationships rather than facts that could be easily memorized by students. The
students, in turn, internalized this message as part of what made the course more difficult.

As the leading science education reform documents indicate, an emphasis on concepts and
relationships versus facts should be a prominent characteristic of a reform-based classroom
(e.g., American Association for the Advancement of Science, 1993; National Research Council,
1996). In such a classroom, students have opportunities to learn the subject matter in more robust
ways and apply it to new situations. Thus, Mr. Stewart’s emphasis on concepts and relationships
versus facts of science was actually a way to challenge prototypical meanings of science.
He made some adjustments to the written curriculum that made the curriculum more ‘‘difficult’’
and ‘‘rigorous,’’ yet in meaningful ways. For example, the text might ask students to collect data
and sketch a graph. Mr. Stewart would add to that by asking students to interpret the graph and
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draw a free body diagram, which infused more meaning making (and also, difficulty) into the lab
activities. However, his celebration of the ‘‘difficult’’ aspects of the content and expectation that
only a select few would be able to understand the most ‘‘difficult’’ concepts and relationships
brought prototypical meanings of science and scientist back to the fore.

Interestingly, it was not always clear that the ‘‘difficulty’’ of the class was entirely due to new
kinds of problems that required more sophisticated physics knowledge. The difficulty of physics
was not always based on students’ ability to do and understand physics, but was established by
giving students a limited (and overly short) period of time to solve problems. This time factor was
prevalent in many of the laboratory activities and tests. Students often felt like they did not have
enough time to finish laboratory activities and tests, even if they stayed on task the entire period.
For example:

Mr. Stewart announces to the class that they’ll have to work efficiently and that none of the
lab groups have finished the test all day. (Fieldnotes, 1/28/99)

Tanya tells me, ‘‘That test yesterday was so uncool. First of all, it was like four pages long.
That was ridiculous. He knew we would never finish. I hate it when teachers do that.’’
(Fieldnotes, 1/29/99)

Because students’ grades were partly determined by how much work they were able to do
(or how many problems they were able to solve) in a given period of time, those who took more
time on given tasks were left feeling as though they were not ‘‘good’’ or ‘‘bright’’ students. This
notion of ‘‘difficulty’’ was fairly arbitrary and had little to do with students’ physics knowledge.
In addition, it may have sent the wrong message about what it means to be able to do science.
It reinforced meanings of the super-intelligent scientist that were inaccessible for many students
in the class.

There were practices that established an explicit hierarchy among those who could do and
understand physics and those who struggled. Amy described the class as follows: ‘‘The class was
verymuch an illustration ofwho just plain ‘got it,’ who had towork to ‘get it’ and thosewhoflat out
‘missed the boat’’’ (e-mail correspondence). Methods of grading and grouping students and
assumptions about being able to do science in terms of ‘‘natural’’ ability reinforced andmademore
explicit the classroom hierarchy.

Therewas a perception amongmany of the girls that the ‘‘smarter’’ people in the class (the top
of the hierarchy) were the boys:

Author: What are characteristics of people that do well in this class?

Samantha: Guys! (She laughs) Like my brother and Lance. My brother is just like an
average guy. And, like, he’s strong in English and math and has points that he’s
high at, but physics, he just got. I don’t know why.

Carly: Yeah, the guys in our class just treat this stuff like common sense. (Focus
Group #1, 3/3/99)

A lot of guys in our class are really smart. They’re not just like, mediocre kids. I can’t
really think of any guys that are struggling. (Christy, Interview, 5/5/99)

Despite what these girls thought, there were boys in the class who struggled. Mr. Stewart
also tended to place the boys at the top of the hierarchy despite the fact that there were girls in
the class who consistently outperformed (via grades) the boys he placed at the top of the hierarchy.
His rationale for this classification system was based on a system that differentiated between the
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students who worked hard and the students who were naturally ‘‘smart.’’ The naturally smart
students were the ones that Mr. Stewart saw as being ‘‘scientist’’ types. Mr. Stewart identified the
‘‘scientist’’ types in this class, and they were all boys:

Probably very few will go into careers in science. I could see, uh, Adam Lee doing
something in science. I could see Steve Cousins. Jacob Richardson. Engineer. Steve could
be an engineer. Henry. Definitely. He’s very insightful into how things work, so he’s got
some great insight into stuff. Now, those four, they have talent. They have a raw ability in
that area. (Interview, 3/1/99)

Girls who did well, some of whom had better grades than the boys just mentioned, were not
seen as having this same ‘‘raw ability.’’ Mr. Stewart interpreted their success in the class
differently:

Tanya, Christy, and Meg are all great students, but I don’t see them, you know, I see them
as good students in wanting to do good. And they can follow along. Christy’s probably,
out of the three, she doesn’t score as well, but the kind of questions that she asks tend to be
curious and that sort of thing. I think she has more of a raw interest than the other two.
The other two are real aggressive students in wanting to do well. And be successful.
(Interview, 3/1/99)

So, while the boys had ‘‘talent’’ and ‘‘raw ability,’’ Christy was described as having ‘‘raw
interest.’’ Tanya, Christy, andMeg were more vocal in class than any of the aforementioned boys,
and they were willing to voice objections to some of the practices in the classroom they thought
were unfair (especially practices they perceived as threatening to their grades). This resistance
might have been what Mr. Stewart meant by the ‘‘aggressive’’ description of the girls. Yet, Tanya,
Christy, andMeg also performedwell on tests, laboratory activities, and answered and askedmany
of the science-related questions inwhole group discussion. Therewere quite a few instanceswhere
these girlswould help the boys’ groups in small group tasks, finish a ‘‘difficult’’ task before the rest
of the class, and score at the top of the class on a test or laboratory activity.Despite this, they did not
see themselves, nor did the teacher see them, as being the ‘‘smart,’’ ‘‘scientist’’ types:

Science is not a strength for me. I have trouble getting into it enough to want upper level
thinking. (Tanya’s Survey Response, 5/18/99)

Yeah, he totally thinks we’re stupid. I think he thinks, ‘‘You girls in the back. What’s your
problem?’’ (Christy, Interview, 5/5/99)

I wouldn’t say I rely on the teacher, like I wouldn’t figure things out on my own, but I’m
not a whiz like Joseph where I can figure everything out. (Meg, Interview, 5/5/99)

Thus, in this class, the meaning of ‘‘scientist’’ as a super-smart male did nothing to
challenge prototypical meanings of scientist. It was hard for the girls to see their identity as a
‘‘part’’ of this scientist group, despite the fact that some of them were the top performers in the
class. This notion of ‘‘raw talent’’ strengthened the hierarchy in this class. Thosewho ‘‘had’’ it did
not have towork as hard as thosewho did not have it. Some of the girls (Melissa, Lucy, Samantha)
who ‘‘could have done well in physics’’ (according to Mr. Stewart) were puzzled as to why they
were not doing well. They were good students in other classes but did not do well in physics.
For example, Melissa and Samantha considered themselves smart ‘‘math’’ people, which made
their performance in physics puzzling to them:
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Melissa: Don’t you think that, normally, if you’re good in math, you should be good in
science?

Author: Yeah, that makes sense.

Melissa: Well, I’m making a 92 in pre-calculus and I’m failing in here. It doesn’t make
sense. (Fieldnotes, 2/25/99)

I have a 97 average in Algebra II, so that’s not why I’m not doing well in this class. I have
about a 67 average in here! I work so hard in here, but my grades don’t show it. I just don’t
get physics. (Samantha, Fieldnotes, 12/3/98)

Other girls in her position had similar feelings. They were puzzled as to why they were
not doing well in the class and were not sure what needed to happen for them to do better.
In response to a survey question that asked, ‘‘What kinds of things do you have to do to be
successful in Active Physics?’’ Carly wrote, ‘‘If I knew, then I would have better grades. I feel
very in the dark.’’ This uncertainty about what one needed to do to succeed in physics fostered
the idea that those who do well have natural ability.

The difficulty and hierarchical nature of the class invoked alienatingmeanings of science and
an inaccessible and uninteresting meaning of scientist for the girls. In general, the girls did not
actively resist these alienating meanings. In other words, the girls’ resistance did not contest
prototypical classroom roles nor did it alter the social organization and everyday practice of the
classroom in any significant way. The girls who were successful in the class resisted these
meanings by disengaging during activities in which the ‘‘difficult’’ and ‘‘hierarchical’’ meanings
of science were the most pronounced (e.g., during lectures). The girls who struggled in the class
were frustrated by (but nonetheless accepted) the alienatingmeanings. They were not particularly
upset about not being seen as having ‘‘raw talent’’ in science, but they were frustrated by the fact
that certain aspects of the class seemed to be geared toward the ‘‘smart’’ students. All girls in the
class, interestingly, overwhelmingly accepted these alienating meanings as ‘‘the way science is.’’
This acceptance reinforced their disconnect from legitimate scientist identities—they were not
produced as, nor did they see themselves as, ‘‘science people’’ based on the science identities
promoted in the class.

Conclusion

This study was prompted by the question: Would a different kind of school science, one that
promoted alternative (and broadened) meanings of what it meant to ‘‘do science’’ and ‘‘be a
science person,’’ make for a more inclusive and interesting science for girls? The answer in this
setting, it turns out, is not straightforward. First, despite the teachers’ commitment to creating a
different kind of school science experience, it is not clear that prototypical meanings of science
were entirely challenged. Aspects of the classroom culture promoted broader meanings, but other
aspects reinforced prototypical meanings. Second, girls’ responses to Active Physics were mixed.
The girls who were successful learned to negotiate the rules of this new school science game;
some embraced this challenge, while others merely tolerated it. These girls learned how to access
a good student identity, and sometimes created alternative meanings to alienating practices in
order to do so. For example, for the girls who were successful, Mr. Stewart’s lectures about
‘‘sophisticated concepts’’ were seen as diversions or ‘‘tangents’’:

The funniest thing—a couple of days ago, he was explaining [something] and we got lost.
Everybody raised their hands to say that they were lost. It was probably something that we
did not need to know anyway. It was so funny! . . .We’ve learned that he goes off on these
tangents. (Meg, Interview, 5/5/99)
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On the other hand, the girls who struggled (or perceived themselves as struggling) generally
did not create alternative meanings of practices that promoted alienating meanings.7 They were
frustrated by various classroom practices, but did not create new meanings that might undermine
or dilute the promoted science learner identities and meanings of science. For example, for them,
the ‘‘difficult’’ nature of science and the implied genius science identity were just ‘‘theway things
were.’’ These taken-for-granted meanings left them feeling frustrated and placed the good student
identity out of reach:

[Mr. Stewart is] always talking about how the ideas are so sophisticated. He says that and
they go right over my head. (Missy, Interview, 5/5/99)

This is the first class I’ve been the dumb kid in. Usually like I’m the smart one that
everyone wants in their group. Then I came here and I’m the dumb kid in the class and no
one wants to be in my group. (Lucy, Interview, 5/5/99)

In trying to make sense of their responses to Active Physics, I found strong evidence to
support the assertion that these girls were most concerned about maintaining their good student
identities. Girls (both successful and unsuccessful) resisted promoted science learner identities
and meanings of science that they perceived as threatening to their good-student identities. Every
girl in this classroom reported to me that she was taking this class because ‘‘it was the next one in
the sequence for college-bound students’’ or because ‘‘it looks good on my transcript.’’ These
girls, within a culture of achievement in which it was a near certainty that they would attend
college (Carlone, 2003b), accepted what Paul Willis (1977) called the dominant educational
paradigm; they believed in teaching as a fair exchange, and they believed in the ways school
defined success (i.e., via grades and college admission). In this sense, the Active Physics class was
not supposed to be anything other than what it was—away for them to get the credentials to put on
their transcript so that they could gain access to an institute of higher education. Not only did this
meaning of the value of science ensure their access to higher education, it also ensured their
disconnection and alienation from real-world, meaningful science. As long as enrollment in
science is seen as a way to get a ‘‘credit’’ rather than as way to be empowered, then science
education cannot easily be transformed. The story about girls’ eager embrace of the dominant
educational paradigm highlights a complexity about gender-fair science that needs serious
consideration. We attempt to transform school science by coming up with ‘‘empowering’’
alternatives to the prototypical school science curriculum. Yet, where is one left when the girls
reject empowering science in favor of prototypical science that makes their role as good students
and their quest for their end of the exchange (i.e., good grades and college admission) easier?

This question not only crystallizes problems with the calls for transformative school science,
but also further complicates the notion of ‘‘science for all.’’ I amdrawnback tomy experience (as a
high school science teacher) working with diverse students, some of whom bought into the
dominant educational paradigm and some of whom actively rejected it. Thosewho rejected it may
have possibly been open to a different kind of science, but those who accepted it might have had a
hard time embracing a different kind of science. Science educators have recently spent time
talking about what a different kind of science might look like for those who are disenfranchised
with school and school science (and we need to spend a lot more time with this question), but we
must also understand the power of the exchange paradigm in producing educational subjects.

My interpretation of girls’ participation and resistance in Active Physics is supported by
my study of girls’ participation in a traditional physics class in the same school (see Carlone,
2003a), which foregrounded girls’ acceptance and embrace of prototypical school science. Upon
reflection, my question—‘‘Would a different kind of school science promote a more inclusive
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science for girls?’’—may have been premature. It underestimates the tenacity of the socio-
historical legacy of school science. The results of this study raise questions for our quest for
gender-fair science and ‘‘science for all.’’ The practices that we (science educators) ‘‘know’’ to be
effective ways to teach science (e.g., students as active, problem solvers; science as messy and
uncertain) are the same practices that may promote resistance with students. While I am not
advocating an embrace of prototypical school science, I merely point out how comfortable a
traditional approach is—and how risky and uncertain a new kind of science education might be.

As a science education community, we need to spend more time with these tough issues
regarding reform-based science. This study forwards a core line of research pursued recently by
feminist scholars—What are the implications of the social construction of school science for girls?
(see Barton&Osborne, 1998). In studying girls’ participation in a reform-based setting, this study
follows recommendations made by Anderson & Helms (2001), who called for more nuanced
understandings of the complexities of reform in science education and students’ roles within
reform-based classrooms in ordinary school contexts. However, the study raises additional
questions and prompts further research. Is the strength and comfort of traditional school science a
resource for resistance of reform-based science for all populations (e.g., for girls who have not
traditionally been successful in science)? What are the ways that students who have been
marginalized by prototypical practices of schooling participate within and resist meanings in
reform-based science classrooms?Howmight we engage girls in relevant science practices so that
they begin to develop identities as legitimate participants of the local and even global science
learning community? What do these ‘‘relevant science practices’’ look like in an ordinary school
setting? How do we transform the meanings of science and scientist in school science to mesh
girls’ agendas, interests, and motivations with relevant science practices that might lead to
legitimate science identities? These questions are not completely new to science educators nor
especially to feminist scholars, but, as this study suggests, demand continued attention. I expect
that our answers to these questions will provide a different kind of science for students who are
marginalized from science and open up new possibilities for what it means to ‘‘do’’ science and
‘‘be’’ a science person.

The opinions expressed in this article are solely those of the author and are not those of the
American Association of University Women Educational Foundation. The author thanks
Ronald Anderson and Margaret Eisenhart, who provided feedback on earlier drafts of this
paper.

Notes

1All names used in this article are pseudonyms to protect the anonymity of the participants.
2Some students did, however, request to be in Active or Regular Physics and were sometimes granted

their requests.
3I did not progress through these stages in a linear fashion. Each stage of analysis informed and

previous and subsequent stage; I simply separate out the description for ease of discussion.
4While it is true that the move from local meanings of science and scientist to broader, sociohistorical

meanings of science and scientist may be more inferential than empirically grounded, these inferences are
well supported by science educators’ work in the past decade (e.g., Barton & Yang, 2000; Brickhouse,
2001; Duschl, 1988; Eisenhart & Finkel, 1998; Fensham, 1997; Gough, 1992; Lemke, 1990). These
scholars argue that social practices of school science (e.g., lab activities, discourse, social organization)
play a role in reproducing alienating meanings of science.

5For example, many girls mentioned to me that they ‘‘hated’’ the class during the first 6 weeks because
it was so different from previous science classes. Once they learned what their new student roles entailed,
many girls came to embrace the active nature of the class.
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6The fourth girl, Sabrena, who was unhappy, transferred to a different school in the middle of the
second semester.

7Amy was one exception to this statement. She defined the class as a class for ‘‘nonitellects.’’ By
designating the class as such, she was, in a sense, contesting the promoted science identity and meanings of
science.
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