THE CUMULATIVE NUMBERS AND THEIR POLYNOMIALS
By P. S. DwyEer

In a recent paper [1] the author has shown how the moments of a distribution
can be obtained from the last entries of cumulative columns with the use of
multiplication by certain numbers. These numbers may be called ‘‘cumulative
numbers.” It is the aim of this paper to show how these numbers can be
obtained from the expansion of z° in terms of factorials of the s-th order and to
demonstrate properties of the polynomials of which these numbers are the co-
efficients.

TABLE 1
Successive Frequency Cumulations

1) (2) 6] 4) (5) (6) (7) (8

X T fs oL C2 C3 lol} Cs
a+6 6 64 64 64 64 64 64
a+5 5 192 256 320 384 448 512
a4+ 4 4 240 496 816 1200 1648 2160
a+3 3 160 656 1472 2672 4320 6480
a+ 2 2 60 716 2188 4860 9180 15660
a+1 1 12 728 29016 7776 16956 32616
a 0 1 729 3645 11421 28377 60993

1. The values Ci(u;). We use the notation Ci(u.) of the previous paper
[1,289] to express the columnar cumulated entries. The j indicates the order
of the cumulation while the 7 indicates the number of the term, counting from
the bottom of the column. Thus in Table I, which presents the cumulations
of a frequency distribution used in the previous paper [1,289], C; = 729; Ci =
3645; C; = 2916; ..., C; = 6480, etc. Now if £ 4 1 values of x are spaced at
unit distances and if the smallest value of z is 0, it can be shown that

k k k k
Ci= 2w Ci= 26+ Du; ¢ = Daw; 01 =2 EFIEED,
0 0 0 0 .
k . k _
Cg=2(ﬁi1_)xuz; C§=E§(x——1)uz
0 2! 0 2!

and, in general, 7 > Oand j + 1 > 7,

] k . AW
) iy (x +j -;'1 7) .
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Similarly if k values of x arc spaced at unit distances and if the smallest value
of zis 1, it can be shown that

k k k k
=;uz; Cf=zxuz; C§=Z(x—-1)uz; C"{=Z@-|2-,l)xuz;

Ex(x—l) Z(x—l)(x"z)
1
and, in general, j > O0and j 4+ 1 > ¢,
_ ) k L oaG)
(2) C£+1 p— ez_:l SE_-‘___‘ZJ_’__Z)__ Uz

It is to be noted that the coefficients of u, in (2) could be obtained from the
coefficients of u, in (1) by the substitution z + 1 = z’.

2. The powers in terms of factorials of the s-th order. If the s-th powers can
be expressed in terms of factorials of the s-th order (factorials having s factors)
then the moments can be expressed in terms of the cumulations. For example

:_ @+ Dz +2(@—1)
T 2

so, from (1)

k

k (2)
};xzf,—;(”“) AR f,—02+03

And since
® ® ®
x3=(x+2) +4§’:+1) T2 , we have
% 3)
pIETRED JICE PR Ry Sk R R R

In general if

Aa@ 4+ s — D@ + Aoz +s — 2)@
+ ... + As,'(x + s —j)(.) + ...+ Asax(')

s!

3 =

)

then

k
@ 2afe = AaCi" 4 AaCi + -+ AGCH -+ ALCH,

while if the smallest value of z is 1, we have
k

(5) Z x fz = Acha-H + As2 ;-H + e + AsiC;'+1 + e + AsaC:+l~

These quantities, A,;, in (4) and (5) are simply the coefficients of certain fac-
torials of the s-th order in the expansion of z°s!.
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These numbers, for small values of s, are easily obtained. It is possible to
use the table and a recursion formula of a previous paper [1,294-295] for larger
values of s. It is also possible to obtain these values, without involving cumula-~
tive theory, from (3) above.

While doing this we make a more general approach by expanding (¢ + z)°
in terms of these same factorials with the coefficients now functions of @. This
is possible if we add an additional term, A,(z + s), to the numerator of the
right hand side of (3). We have then

Aso(x + 3)(8) + Asl(x +s— 1)(‘)
+ ot Au@ts— DY+ 4 Auz®

s!

6) (a+2)=

The determination of the values A,; can be accomplished by purely algebraic
means by successive substitution of £ = 0, 1, 2, ... s. In this way we obtain
s + 1 equations in s + 1 unknowns. For example when s = 2

An(z + 2)? + Aule + )P + Apz®
— 21

(a+2)’ =

so that when z = 0, 1, 2, we have
(12 = Ay H (a + 1)2 = 342 + Axn 5 (a + 2)2 = 642 + 34xn + As.

The solution is As = a’; Ay = 2ab + 1; Ay, = b* where b = 1 — a. It
follows that

2 (x + 20

) (z + 1)@ z®
21 21

+ b*~— and hence that

+ (2ab + 1 5

(a+2)l=a

k
> (@ + 2)%. = a*C} + (2ab + 1)C; + b°C3.
0

as indicated in the previous paper [1,293].
When a = 0, then b = 1 and we have

2%, = C3 + C3 while when a = 1, b = 0 and the right
hand side becomes C: + Ci .

It follows that the general cumulative numbers might also be defined as the
solutions of the s + 1 equations in the s+ 1 unknowns obtained by placing
z2=20,1,2 ...,sin (6).

3. The evaluation of the cumulative numbers. Formal algebraic methods of
evaluating equations (6) are somewhat tedious so we use finite difference theory
to aid in finding the solution. As in the previous paper [1] we use the notation

vzwhena_<_x$a+k\

V. =0, = vandy, = {0 otherwise J

We then write, from (6)
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sla + 2)" = Ado@ + ) + Adul@ + s — D®
Foe A s = )Y+ o+ Aua®

s!whenr =0
0 whenr # 0]

@)

We note further that V**'(z + r)ﬁ) = { We have then

(8) V' a + )" = A

It has been shown in the previous paper [1,292] that

® vty =2t eri-o

t=0

and it appears that the cumulative numbers could be defined by (9). A useful
recursion formula has been derived from (9)

(10) Va+2)=@+2)V@+z)" '+ +1—a—2)V0a+z— 1)

4. The cumulative polynomials. We define the cumulative polynomials to

be the polynomials obtained by using the cumulative numbers as coefficients.
Thus when a = 0,

Pi=y; Po=y+y5 Ps=y+ 4+ ¢ Pi=y+ 11y + 11y + ¢; ete.

It is possible to derive a recursion formula for these polynomials. We use
(10) with s replaced by s + 1 and @ = 0 and get

(11) Pa—f:l — 2Va+2(x)3+lya: — ExV”l@yx + E(S + 2 — x)vs-H(x . l)syx’
which becomes, after some manipulation,
(12) Py = (1 — 9)Zav @)y + (s + DyPs .

To illustrate we get Py from P; = y + 4y + 4°. Now 2Vi@) =y +

8+ 3y'and Py = (1 — 9)(y + 8 +3¢") + 4yl + 4" +9) =y + 11" +
4y + y'. The recursion formula (12) can be expressed also in the form of a

8 z—1

differential equation, since P, = C%(Ps) = ExV”“@ Y, as
v

(13) Po =yl — 9)P. + (s + DP..

It can be shown more generally that for any a
P, =1; P,1 = a + by; Poo=d + (2ab + )y + b%?, ete. with

(14) Pa,‘s—H = y(l - y)P(:,s + [(1(1 - y) + (S + l)y]Pl‘l.s

as the recursion formula.

5. The numerator coefficients in successive derivatives of the logistic function.
Lotka has recently exhibited the coefficients of the numerator terms of suc-
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cessive derivatives of the logistic function [2, 160]. These appear to be, aside
from sign, the same as the cumulative numbers when ¢ = 0. It is shown in
this section that these numbers are the cumulative numbers. The scheme is
generalized to include the numerator coefficients of the derivatives of a more
general function involving the parameter a.

rt

_1 e 5 =
14 e T Fev2 -

» ete.  The numerical coefficients are the same if r = 1 so we might

Lotka used the function & =
7'26"(1 _ ert
(1 + ert)a

as well use &, =

and obtained &, =

1%2 . A more general function is the two parameter function
az

e
(15) @a,c = mz.

Let successive derivatives with respect to z be indicated by ®,,c,1 ; $a,e2 ; Paress
etc. Then

_ €la + ¢(1 — a)e?]

Boot = T F
By.q = e“la* + (—2a® + 2a + 1)ce® + (1 — a)zcﬂeh]'
v (1 + ce?)3
In general,
Lasce = (—liﬂzé‘;:'—)’m = € Qu,ce (1 + ce”)™ "
so that
Boprry = S+ €e)(0Qucis + Qe = (5 + Dee” Qu}
- (1 + ces)*+
and
(16) Quenss = (1 + ¢€)[0Qurcn + @il — (5 + 1)c6 Qunn .

The @ functions can be changed to polynomials with the substitution ¢* = .
Then derivatives are taken with respect to y and

(17) Pa,c,a+1 = (]- + Cy)[aPa,c,a + yP;;c,n] - (S + l)cyPa,c,a .

When ¢ = —1, this becomes formula (14) and since P,,o = 1, it follows that
the numbers of the present section aré generalized cumulative numbers. When
¢ = 1and a = 0 we have the numbers found by Lotka.

It can be shown, further, that the ¢ coefficient of ’is ¢’. It follows that the
absolute values of the coefficients, when ¢ = 1 and when ¢ = —1, are the same.

6. Formulas for Zz’. A formula for the sums of the s-th powers of the
integers from 1 to & is obtained by summing (3). We get
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k k — 1\
;x'=A,1;(x+s 1) +

(18) s!

k _N\@® k (s)
TRV D) Ak I 9f 2
1 st 1 8!

from which

k (s+1)
8 (k + s — 1)
(19) lzx—Aal————(s——_—i_—l-)!————-i-...
‘ (k + s — j)(a+l) k(0+1)
+ Au —‘(s _‘+‘—1)!— + ... + Au (—————S + 1)‘1
or
k 8 = (8+1)
s _ (k4 s—j) _ 1 _ D getl( e
0 27 R A s R e

= Z Cv+l (I)Vﬁ—l(])‘

=1
For example

Z 2okt 2)® 4+ &+ 1D _ Kk + 12k 4 1)

3! 6
S * Ak Y+ k+ D _ K+ 1
T 4! T T
atk

More generally the values of ) z* can be evaluated by

a+k

(21) Zx E (’C +s— )(s+l)Vs+l(a +j)s = z C‘}ii(l)V’“(a + j)a.
L4 ( + 1)‘ =0 _— =0 -
7. Summary. It is shown how the cumulative numbers and the cumulative
polynomials may be obtained in a variety of ways. Of special interest is the
fact that the cumulative numbers can be obtained by expanding powers in
terms of factorials and hence they might be called factorial coefficients of a
kind. It is also possible, though it is not within the scope of this paper, to
establish interesting relations between the cumulative numbers and the multi-
nomial coefficients, the usual factorial coefficients, the difference of 0, etc.
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