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N
early half a century ago, Friedmann and Roblin concep-
tualized that inherited genetic disorders resulting in dys-
functional gene products could be treated by introducing 

a functional gene copy1. Today, technologies enabling nucleic acid 
delivery are at the forefront of global efforts to fight the COVID-19 
pandemic2–4.

Targeting the genetic bases of many other diseases is rapidly 
becoming a reality, as demonstrated by the recent approval of 
various nucleic-acid-based therapeutics by the United States Food 
and Drug Administration (FDA) and the European Medicines 
Agency (EMA). In contrast to conventional drugs, which gener-
ally target proteins, genetic drugs modulate gene expression to 
induce therapeutic effects. Introducing exogenous nucleic acids 
into cells to counteract defective genes is an attractive way to 
achieve highly specific, durable and possibly curative therapeu-
tic effects in inherited and acquired disorders. However, employ-
ing nucleic acids as therapeutics is challenging because they are 
susceptible to degradation by nucleases, contribute to immune 
activation and have unfavourable physicochemical characteris-
tics that prevent facile transmission into cells. Safe and effective 
nucleic acid therapeutics therefore require sophisticated delivery 
platform technologies. In this Review we use the term ‘nucleic 
acid therapeutics’ to include all nucleic-acid-based approaches 
that modulate gene expression by inhibiting, adding, replacing,  
or editing at the DNA or RNA level.

Groundbreaking research over the past 30 years has resulted in 
safe, effective delivery platforms enabling nucleic acid therapeu-
tics. Several ex vivo and in vivo genetic drugs have recently been 
approved (or are in late-stage development) for treating infections, 
cancer, muscular and retinal dystrophies, and other inherited dis-
orders. Typical ex vivo gene therapies involve retrovirally trans-
duced patient-derived hematopoietic stem cells or T cells, which 
are transplanted back into patients. Currently approved therapies 

include Strimvelis—patient-derived CD34+ cells transduced with a 
γ-retroviral vector to express DNA encoding the human adenosine 
deaminase (ADA) enzyme, treating severe combined immunode-
ficiency due to ADA deficiency (ADA-SCID)5—and the chimeric 
antigen receptor T cell products Kymriah (tisagenlecleucel), Yescarta 
(axicabtagene ciloleucel) and Tecartus (brexucabtagene autoleucel), 
for treating various types of leukaemia or lymphoma6. These latter 
approaches involve engineering autologous T cells using lentiviral 
or γ-retroviral vectors to express chimeric antigen receptors specific 
for the CD19 protein common on B cells6.

In parallel, several in vivo nucleic acid therapeutics have been 
approved (Table 1). The effectiveness of these treatments critically 
depends on chemical modifications and/or technologies designed 
to protect the nucleic acids from degradation and to ensure their 
stability in the circulation, to enable localization to the target tis-
sue, and to ensure effective intracellular delivery. Here, we pro-
vide an overview of viral and non-viral technologies that have 
facilitated clinical translation of in vivo nucleic acid therapeu-
tics. The vast majority of nucleic acid therapeutics that are either 
already approved or currently in late-stage clinical evaluation 
rely on four platform technologies: chemically modified anti-
sense oligonucleotides (ASOs), N-acetylgalactosamine (GalNAc) 
ligand-modified short interfering RNA (siRNA) conjugates, lipid 
nanoparticles (LNPs), and adeno-associated virus (AAV) vec-
tors (Fig. 1). For each platform technology, we explain the mode 
of action (Fig. 2), provide the rationale behind its development, 
highlight key technological aspects that have facilitated its clinical 
translation, and discuss its therapeutic effectiveness and adverse 
reactions using a clinically relevant drug product as an example. 
In addition, we address how these platform technologies are now 
enabling the next generation of nucleic acid therapeutics, such as 
targeted nucleic acid conjugates, messenger RNA (mRNA) and  
gene-editing therapeutics.

The current landscape of nucleic acid therapeutics

Jayesh A. Kulkarni   1,2,3,7, Dominik Witzigmann   2,3,4,7, Sarah B. Thomson   1, Sam Chen5, 

Blair R. Leavitt   1, Pieter R. Cullis   2,4 and Roy van der Meel   6 ✉

The increasing number of approved nucleic acid therapeutics demonstrates the potential to treat diseases by targeting their 
genetic blueprints in vivo. Conventional treatments generally induce therapeutic effects that are transient because they target 
proteins rather than underlying causes. In contrast, nucleic acid therapeutics can achieve long-lasting or even curative effects 
via gene inhibition, addition, replacement or editing. Their clinical translation, however, depends on delivery technologies that 
improve stability, facilitate internalization and increase target affinity. Here, we review four platform technologies that have 
enabled the clinical translation of nucleic acid therapeutics: antisense oligonucleotides, ligand-modified small interfering RNA 
conjugates, lipid nanoparticles and adeno-associated virus vectors. For each platform, we discuss the current state-of-the-art 
clinical approaches, explain the rationale behind its development, highlight technological aspects that facilitated clinical trans-
lation and provide an example of a clinically relevant genetic drug. In addition, we discuss how these technologies enable the 
development of cutting-edge genetic drugs, such as tissue-specific nucleic acid bioconjugates, messenger RNA and gene-editing 
therapeutics.

NATuRe NANoTeChNoLogy | VOL 16 | JUNE 2021 | 630–643 | www.nature.com/naturenanotechnology630

mailto:r.v.d.meel@tue.nl
http://orcid.org/0000-0002-3622-6998
http://orcid.org/0000-0002-8197-8558
http://orcid.org/0000-0001-9407-1245
http://orcid.org/0000-0002-4532-766X
http://orcid.org/0000-0001-9586-2508
http://orcid.org/0000-0002-2200-7946
http://crossmark.crossref.org/dialog/?doi=10.1038/s41565-021-00898-0&domain=pdf
http://www.nature.com/naturenanotechnology


REVIEW ARTICLENATURE NANOTECHNOLOGY

ASos
ASOs are short synthetic nucleic acids that hybridize with cellular RNA 
using classic Watson−Crick base pairing to modulate gene expression. 

By binding pre-mRNA or mRNA, ASOs can post-transcriptionally 
regulate protein synthesis through mechanisms including modifica-
tion of pre-mRNA processing and splicing, competitive inhibition, 

Table 1 | Nucleic acid therapeutics approved by the FDA and eMA

Product gene target Indication Administration Approval year Costs 
(uS$ per 
treatment)

ASos

Vitravene, fomivirsen (Ionis 
Pharmaceuticals)

Cytomegalovirus gene 
(UL123)

Cytomegalovirus infection Intravitreal 1998 
(withdrawn 
2002/2006)

10.4 k/yr

Exondys 51, eteplirsen (Sarepta 
Therapeutics)

Dystrophin (exon 51) Duchenne muscular 
dystrophy

Intrathecal 2016 300 k/yr

Tegsedi, inotersen (Ionis Pharmaceuticals) Transthyretin (TTR) TTR-mediated amyloidosis Subcutaneous 2018 450 k/yr

Spinraza, nusinersen (Ionis 
Pharmaceuticals)

Survival of motor 
neuron 2 (SMN2)

Spinal muscular atrophy Intrathecal 2016 750 k/yr1, 
375 k/yr2

Kynamro, mipomersen (Ionis 
Pharmaceuticals)

Apolipoprotein B-100 Hypercholesterolemia Subcutaneous 2013 176 k/yr

Waylivra, Volanesoren (Ionis 
Pharmaceuticals / Akcea)

Apolipoprotein CIII Familial chylomicronemia 
syndrome

Subcutaneous 2019 395 k/yr

Vyondys 53, golodirsen (Sarepta 
Therapeutics)

Dystrophin (exon 53) Duchenne muscular 
dystrophy

Subcutaneous 2019 
(confirmatory 
trial required)

300 k/yr

Amondys 45, casimersen (Sarepta 
Therapeutics)

Dystrophin (exon 45) Duchenne muscular 
dystrophy

Subcutaneous 2021

galNAc−siRNA conjugates

Givlaari, Givosiran (Alnylam 
Pharmaceuticals)

ALAS1 Acute hepatic porphyrias Subcutaneous 2019 575 k/yr

Leqvio, inclisiran (Novartis/Alnylam 
Pharmaceuticals)

PCSK9 Hypercholesterolemia Subcutaneous 2020

Oxlumo, lumasiran (Alnylam 
Pharmaceuticals)

Glycolate oxidase Primary hyperoxaluria type 1 Subcutaneous 2020 493 k/yr

LNP-RNA

Onpattro, patisiran (Alnylam 
Pharmaceuticals)

TTR siRNA TTR-mediated amyloidosis Intravenous 2018 450 k/yr

Comirnaty, tozinameran (BioNTech/Pfizer) SARS-CoV-2 spike 
protein mRNA

COVID-19 (FDA, emergency 
use; Switzerland, full 
approval)

Intramuscular 2020 30−40

mRNA-1273 (Moderna/NIAID/BARDA) SARS-CoV-2 spike 
protein mRNA

COVID-19 (FDA, emergency 
use)

Intramuscular 2020 30−36

AAV vectors

Glybera, alipogene tiparvovec (uniQure) Lipoprotein lipase (LPL) 
(AAV1)

LPL deficiency Intramuscular 2012 
(withdrawn 
2017)

1 M

Luxturna, voretigene neparvovec-rzyl 
(Spark Therapeutics)

RPE65 (AAV2) Leber congenital amaurosis Subretinal 2017 850 k

Zolgensma, onasemnogene abeparvovec 
(AveXis/Novartis)

SMN1 (AAV9) Spinal muscular atrophy Intravenous 2019 2.1 M

Adenovirus (Ad) vectors

Vaxzevria, AZD1222, ChAdOx1 nCoV-19 
(AstraZeneca)

SARS-CoV-2 
spike protein DNA 
(ChAdOx1)

COVID-19 (FDA and EMA 
emergency use)

Intramuscular 2021 4−8

Ad26.COV2.S (Johnson & Johnson) SARS-CoV-2 spike 
protein DNA (Ad26)

COVID-19 (FDA and EMA 
emergency use)

Intramuscular 2021 8.5−10

Convidecia, Ad5-nCoV (CanSinoBIO) SARS-CoV-2 spike 
protein DNA (Ad5)

COVID-19 (Approved in 
China)

Intramuscular 2021 30

ALAS1, 5′-aminolevulinate synthase 1; PCSK9, proprotein convertase subtilisin–kexin type; RPE65, retinal pigment epithelium-specific 65 kDa. Referenced to 2020 US$.
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steric blockade of translational machinery, and degradation of bound 
target RNA. The latter mechanism leverages endogenous RNA deg-
radation pathways mediated by RNase H1 (recruited by DNA:RNA 
duplexes) or Argonaute 2 (recruited by RNA:RNA duplexes through 
the RNA interference pathway)7. The ability to interact with 
pre-mRNA enables ASOs to target splicing processes and dramatically 
increases the amount of RNA sequence that can be selected for ASO 
binding, which can also limit off-target effects. For example, in the 
HTT gene, which encodes for the huntingtin protein, only 7% of 2,842 
known single nucleotide polymorphisms could be targeted in the 
mature mRNA (using siRNAs) compared to 100% targeting of these 
single nucleotide polymorphisms by ASOs8.

Potential off-target binding toxicities are an important consid-
eration for any nucleic-acid-based therapeutic strategy. Molecular 
size and precise sequence design give ASOs particularly robust 
therapeutic potential compared to other nucleic acid drugs. For 
example, artificial microRNA (miRNA)-enabled gene regulation 
relies on sequence complementarity between the target mRNA 3′ 
untranslated region and the first seven to eight 5′-nucleotides of 
the miRNA (the seed sequence)9. mRNA−miRNA binding outside 
the miRNA seed is variable, such that a single miRNA may interact 
with multiple mRNAs with different affinities10,11. ASO−RNA bind-
ing is rigorously regulated by complementarity between target RNA 
and the full ASO molecule, which is typically between 13 and 30  
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Fig. 1 | Approved delivery technologies enabling in vivo gene therapy in the clinic. Four platform technologies that have helped herald a new age 

of medicine in which diseases can be treated at a genetic level. For ASOs (top left), backbone, sugar or nucleobase modifications of approved ASO 

therapeutics enhance affinity to target RNA, improve nuclease resistance, alter circulation characteristics and modulate immunological properties. 

Advances in chemical modifications have been reviewed elsewhere132,133. Schematic representation of an LNP (top right) containing siRNA or mRNA 

including key lipid components. A trivalent ligand with terminal GalNAc moieties (bottom left) is covalently linked to siRNA at the 3′-end of the sense 

strand. Multivalency and optimal spatial arrangement of the (GalNAc)3 ligand enable hepatocyte-specific targeting of siRNA via the asialoglycoprotein 

receptor. Notably, advanced chemical modifications, including 2′-OMe, 2′-fluoro, and phosphorothiorate linkages, are also utilized for approved 

GalNAc-siRNA therapeutics. Schematic representation (bottom right) of an AAV vector containing a 4.7-kb ssDNA with inverted terminal repeats (ITR). 

LNP schematic adapted with permission from ref. 76, American Chemical Society.
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nucleotides in length. This stringent binding specificity directly cor-
relates with ASO efficacy but can exacerbate toxicity if off-target 
binding does occur12–14.

The modest size of ASOs also means distribution to target tis-
sues is achievable through multiple administration routes (Fig. 2). 
In vivo, unmodified phosphodiester ASOs are rapidly degraded by 
serum nucleases and cleared from circulation by renal filtration15. 
As a result, chemical modifications of ASO nucleosides, nucleo-
bases, and the internucleoside backbone are critical for improv-
ing pharmacokinetics and pharmacodynamics while maintaining 
target affinity and efficacy (Fig. 1). Therapeutically effective ASOs 
are heavily modified, so they do not require a delivery carrier. This 
limited downstream processing during manufacturing decreases 
production-associated costs.

Platform technology design. ASOs were first indicated for 
translationally repressing Rous sarcoma virus (RSV) RNA 
to treat cytomegalovirus retinitis. Vitravene (fomivirsen), a 
deoxyribonucleotide-based ASO, binds terminal repetitive regions 
of RSV genomic RNA. Through competitive inhibition, Vitravene 
directly interferes with viral genome circularization and recruits 
RNase H1 to block viral protein translation13,14. Target gene expres-
sion can also be indirectly modified using ASOs complementary 
to endogenous miRNA or using miRNA mimetic ASOs. Although 
less specific, this approach enables simultaneous targeting of mul-
tiple genes regulated by shared miRNAs, usually to increase their 
expression11,16,17. ASOs can also upregulate gene expression through 
RNA cleavage-independent mechanisms, such as steric blockade. 
By selectively targeting upstream open reading frames and bind-
ing motifs for translational repressors within noncoding RNA, ASO 
binding can redirect translation to downstream open reading frames 

and increase mRNA translation by blocking the accessibility of neg-
ative regulators18,19. Similarly, ASOs can be used to alter pre-mRNA 
processing, by modifying 5′ capping and polyadenylation, and to 
influence mRNA splicing. Exondys 51 (eteplirsen) and Spinraza 
(nusinersen), both approved in 2016, respectively induce exon skip-
ping and intron inclusion for the treatment of Duchenne muscular 
dystrophy and spinal muscular atrophy (SMA) (Table 1)20,21.

Early studies of phosphodiester ASOs achieved RNA target 
binding in vitro but were impeded by nuclease degradation and 
clearance in vivo18. Phosphorothiorate linkages within the ASO 
backbone (that is, first-generation ASO modifications) were intro-
duced to increase nuclease resistance, decrease hydrophilicity 
and promote serum protein binding to improve circulation life-
time while maintaining RNase H1 activity and anionic charge22. 
First-generation ASOs, however, are immunostimulatory and have 
lower target binding affinities than their unmodified counter-
parts. Comparatively, phosphorodiamidate-modified morpholino 
oligomers have superior target RNA affinity and stability but are 
uncharged (which decreases serum protein binding and circulation 
lifetime) and rely exclusively on steric blockade-enabled regulatory 
mechanisms because they do not activate RNAse H123.

Extensive progress has been made in ASO nucleoside chem-
istry (Fig. 1). 2′ ribose or second-generation modifications 
include 2′-O-methyl (2′-OMe), 2′-O-methoxyethyl (2′-MOE), 
2′-O-aminopropyl (2′-O-AP), and 2′-fluoro. These 2′ substituents 
influence ASO molecular conformation, resulting in improved RNA 
target binding affinity and, with the exception of 2′-fluoro, increased 
nuclease resistance24,25. Like phosphorodiamidate-modified mor-
pholino oligomers, fully 2′-modified ASOs do not recruit RNase 
H1. Although less common, nucleobase modifications can also 
be incorporated into ASO design. Numerous modifications have 

ASO GalNAc–siRNA AAVLNPIntravitreal Subretinal
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Fig. 2 | Routes of administration and modes of action for approved in vivo nucleic acid therapeutics. Subcutaneous, intravitreal and intrathecal 

administration of ASO modulates pre-mRNA splicing or induces RNAse H1- or interfering RNA (RNAi)-dependent transcript degradation. The cellular 

uptake mechanisms of ASOs and their endocytotic pathways have been reviewed elsewhere133. GalNAc−siRNA conjugates are delivered to hepatocytes 

via the asialoglycoprotein receptor (ASGPR) expressed on the sinusoidal surface. LNPs containing siRNA mediate hepatocyte gene silencing following 

internalization via the low-density lipoprotein receptor (LDLR) when administered intravenously. Loading siRNA into the RNA-induced silencing complex 

(RISC) results in target mRNA cleavage. LNP-mRNA vaccines administered intramuscularly elicit potent immune responses following expression of virus 

antigen. AAV vectors for treating retinal disorders are administered locally into the eye via subretinal injection for therapeutic transgene delivery. Other 

AAV vector drug products in development are administered intravenously. The capsid protein sequences dictate AAV tropism and uptake mechanism.
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been identified, but only replacing cytosine with 5-methylcytosine 
has proved beneficial: 5-methylcytosine substitution reduces ASO 
immunostimulatory effects without compromising Watson−Crick 
complementarity26. Third-generation modifications more exten-
sively alter ASO chemistry to further enhance stability and potency 
post-administration and provide greater control over both tar-
get affinity and cellular tropism. These modifications may alter 
nucleoside connectivity and restrict ASO stereochemistry, as in 
locked nucleic acids, constrained ethyl nucleoside analogues and 
artificial amido-bridged nucleic acids27–29; change the backbone 
charge (phosphorodiamidate-modified morpholino oligomers are 
third-generation modified ASOs); or link ASOs to ligands, as in 
cholesterol- and GalNAc-conjugated ASOs30.

Single ASOs frequently incorporate multiple modifications to 
combine their advantageous properties and mitigate associated com-
plications (Fig. 1). For example, adding second-generation modifica-
tions to a fully phosphorothiorate-modified ASO backbone increases 
binding affinity and maintains phosphorothiorate-conferred nucle-
ase resistance24. Similarly, chimeric gapmer ASOs contain a cen-
tral region of unmodified deoxynucleotides flanked by terminal 
2′-modified nucleotides. The deoxynucleotide region preserves 
RNAse H1 activity, while peripheral 2′-modifications improve 
potency31. Tegsedi (inotersen), approved for treating polyneuropa-
thy caused by hereditary transthyretin amyloidosis, is a gapmer 
ASO comprised of a 10-base deoxynucleotide core flanked by five 5′ 
and 3′ 2′-MOE-modified wings32.

Clinical example. Nusinersen, marketed as Spinraza, is a fully 
phosphorothioate- and 2′-MOE-modified ribonucleotide ASO 
approved for treating SMA33. SMA is an autosomal recessive dis-
order caused by loss-of-function mutations in the survival motor 
neuron 1 gene (SMN1). SMN1 mutations result in survival motor 
neuron protein (SMN) deficiency and cause motor neuron degener-
ation34. The DNA sequences of SMN1 and its paralogue SMN2 both 
encode SMN, but a base substitution within an intragenic SMN2 
enhancer means that the major mRNA products of the two genes 
are different splice isoforms. SMN1 mRNA produces full-length 
SMN, while SMN2 mRNA lacks exon 7 and produces truncated, 
non-functional SMN35. A small proportion of SMN2 transcripts 
retain exon 7, and homozygous SMN1 mutation carriers with larger 
SMN2 copy numbers have milder SMA phenotypes36,37. The mecha-
nism of Spinraza leverages this effect for SMA therapy. The ASO 
binds SMN2 pre-mRNA, modifies splicing to promote exon 7 inclu-
sion and increases the proportion of full-length SMN translated 
from SMN2 mRNA38. Because Spinraza does not target the causative 
gene for SMA, ASO binding does not depend on SMN1 mutation 
type, meaning that Spinraza is a viable treatment option for all SMA 
patients.

The first phase 1 ascending-dose clinical trial of Spinraza, in 
which one intrathecal dose of 1 mg, 3 mg, 6 mg or 9 mg of the drug 
was administered, reported only mild and moderate adverse events 
in 89% of subjects. At nine to fourteen months post-treatment, cere-
brospinal fluid SMN concentrations were unchanged in the 1 mg and 
3 mg dose groups, and the 6 mg and 9 mg dose groups had respec-
tive mean increases in cerebrospinal fluid SMN of 118% and 161%. 
Compared to baseline, subjects in the 9 mg dose group showed a 
17.6% improvement in the Hammersmith Functional Motor Scale 
Extended (HFMSE) score (used to assess motor function) 85 days 
post-treatment and a 32.8% improvement nine to fourteen months 
post-treatment. The 1 mg, 3 mg and 6 mg dose groups did not have 
better HFMSE results38.

Two phase 3 clinical trials assessed the efficacy of mul-
tiple Spinraza doses in infant and later-onset SMA patients. 
Spinraza-treated infants showed reduced risk of death or perma-
nent ventilation (47%) and better motor-milestone response (51%) 
compared to untreated infants, and later-onset SMA patients had 

clinically meaningful improvements in HFMSE scores. In both 
trials, adverse event frequency was similar between treated and 
sham-injected groups. Adverse events included vomiting, pyrexia, 
constipation and lower respiratory infection21,39. Low platelet counts 
and elevated urine protein were measured in 16% and 56% of 
treated infants and later-onset patients, compared to 14% and 34% 
in untreated patients. Spinraza is approved for SMA treatment in 
both paediatric and adult patients33 and is administered by intrathe-
cal injection. Patients receive four initial loading doses (at days 1, 
15, 31 and 61) of 12 mg each and subsequent maintenance doses 
every four months33. Delivering Spinraza directly to the cerebrospi-
nal fluid ensures the drug reaches its target within the central ner-
vous system, as ASOs in peripheral circulation do not permeate the 
blood−brain barrier40.

galNAc−siRNA conjugates
GalNAc conjugation represents an efficient way of increasing 
siRNA target organ accumulation and of facilitating their cellular 
uptake. In the absence of a protective delivery vector, siRNA has 
to be chemically modified to ensure stability in the circulation fol-
lowing parenteral administration41. To silence disease-causing genes 
in hepatocytes, these therapeutics are composed of siRNA conju-
gated to a triantennary GalNAc moiety targeting the asialoglyco-
protein receptor (ASGPR) (Fig. 1)42. This receptor is predominantly 
expressed on hepatocytes and thus provides access to a defined cell 
type within the liver. ASGPR specifically binds carbohydrates with 
terminal galactose or GalNAc residues43. After ligand binding, the 
receptor−ligand complex is internalized by clathrin-dependent 
receptor-mediated endocytosis. Abundant (around 500,000 ASGPR 
per cell) and predominantly expressed (>95% of total expression) 
on the hepatocyte sinusoidal membrane, ASGPR is an ideal recep-
tor for hepatic siRNA delivery. Further, its high internalization and 
recycling rate (within minutes) allow continuous uptake of siRNA 
molecules, thereby increasing target cell concentration. Different 
species exhibit the same carbohydrate recognition pattern, which 
is an important consideration in preclinical and translational study 
design.

Platform design. Selective and efficient ASGPR targeting ligands, 
optimized siRNA design and a favourable administration route have 
been key factors for clinically translating GalNAc−siRNA. ASGPR 
is a hetero-oligomeric receptor complex comprising numerous 
subunits with carbohydrate recognition domains44. Increasing the 
number of carbohydrates that simultaneously bind to several recep-
tor subunits exponentially elevates avidity (the cluster glycoside 
effect)45. The carbohydrates’ spatial arrangement and the sugar 
moieties are crucial for specific and efficient ASGPR binding46. 
Of note, ASGPR has a higher (up to 100-fold) affinity for GalNAc 
as compared to galactose. To further improve affinity, trianten-
nary GalNAc ligands were developed with dissociation constants 
in the low nanomolar range as compared to the millimolar range 
for monovalent ligands47. Additionally, triantennary GalNAc ligand 
compatibility with siRNA synthesis streamlined large-scale manu-
facturing processes41.

Advances in backbone chemistry initially designed for ASO 
therapeutics have also been applied to siRNA therapeutics (Fig. 1)41. 
Notable modifications used for siRNAs include 2′-OMe, 2′-fluoro 
and phosphorothiorate linkages to improve metabolic stability, 
reduce recognition by Toll-like receptor 3 and 7, and increase bind-
ing to target mRNA. Iterative siRNA design optimization resulted in 
Alnylam’s proprietary Enhanced Stabilization Chemistry (ESC)48,49. 
The augmented stability of ESC−GalNAc−siRNA conjugates sub-
stantially increased liver exposure and prolonged gene silencing 
duration50, resulting in efficacy ten times greater than standard 
template chemistry. Stability in acidic intracellular compartments of 
hepatocytes is therefore key to extended activity (long-term depot)50. 
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Careful siRNA sequence selection, especially of seed regions, 
reduces the risk of hybridization-dependent off-target effects. 
Additional siRNA modifications, including glycol nucleic acid  

substitution in the seed region (ESC+) or altriol nucleic acid resi-
dues, might be implemented in future conjugates to further boost 
RNAi potency and curtail adverse effects51,52 Chirality-dependent 

Table 2 | highlighted nucleic acid therapeutics in phase 3 late-stage clinical evaluation for in vivo gene therapy

Product gene target Indication Route Clinical trial identifier(s)

ASos

Tominersen (Ionis 
Pharmaceuticals/Roche)

Huntingtin Huntington’s disease Intrathecal NCT03761849

Tofersen, BIIB067 (Ionis 
Pharmaceuticals/Biogen)

SOD-1 Amyotrophic lateral sclerosis Intrathecal NCT02623699

galNAc−siRNA conjugates

Fitusiran, ALN-AT3sc 
(Sanofi/Alnylam 
Pharmaceuticals)

SERPINC1 Haemophilia and rare bleeding 
disorders

Subcutaneous NCT03417102, NCT03417245, 
NCT03549871, NCT03754790

Vutrisiran, ALN-TTRsc02 
(Alnylam Pharmaceuticals)

TTR TTR-mediated amyloidosis Subcutaneous NCT03759379

Nedosiran, DCR-PHXC 
(Dicerna Pharmaceuticals)

Lactate dehydrogenase Primary hyperoxaluria Subcutaneous NCT04042402

galNAc−ASo conjugates

AKCEA-TTR-LRx (Akcea/
Ionis Pharmaceuticals)

TTR TTR-mediated amyloid 
polyneuropathy or 
cardiomyopathy

Subcutaneous NCT04136184, NCT04136171

Pelacarsen, 
AKCEA-APO(a)-LRx (Akcea/
Ionis Pharmaceuticals)

Apoliprotein A1 Cardiovascular disease Subcutaneous NCT04023552

LNPs

Onpattro, patisiran (Alnylam 
Pharmaceuticals)

TTR siRNA Cardiomyopathy-associated 
TTR-mediated amyloidosis

Intravenous NCT03997383

AAV vectors

Lumevoq, lenadogene 
Nolparvovec, GS010 
(GenSight Biologics)

ND4 (AAV2) Leber hereditary optic neuropathy Intravitreal NCT03293524, NCT02652767, 
NCT02652780, NCT03153293

AVXS-101 (Novartis) SMN2 (AAV9) Spinal muscular atrophy Intrathecal NCT03505099, NCT03461289, 
NCT03306277, NCT03837184

Valoctocogene roxaparvovec, 
BMN 270 (BioMarin 
Pharmaceutical)

FVIII (AAV5) Haemophilia A Intravenous NCT03370913, NCT04323098, 
NCT03392974

Etranacogene dezaparvovec 
AMT-061 (uniQure)

FIX-Padua (AAV5) Haemophilia B Intravenous NCT03569891

Fidanacogene elaparvovec, 
SPK-9001, (Pfizer, Spark 
Therapeutics)

FIX-Padua (AAV100) Haemophilia B Intravenous NCT03587116

Timrepigene emparvovec, 
NSR-REP1 (Biogen/Nightstar 
Therapeutics)

REP1 (AAV2) Chloridaemia Subretinal NCT03496012

Olenasufligene 
relduparvovec, LYS-SAF302 
(Lysogene)

SGSH (AAVrh10) MPS-IIIA Intracerebral NCT03612869

NSR-RPGR (Biogen/
Nightstar Therapeutics)

RPGR (AAV8) X-linked retinitis pigmentosa Subretinal NCT03116113

FLT180a (Freeline 
Therapeutics)

FIX (AAVs3) Haemophilia B Intravenous NCT03641703

Adenovirus serotype vectors

Sputnik V, Gam-Covid-Vac 
(Gamaleya Research 
Institute)

SARS-CoV-2 spike protein 
(Ad26/Ad5)

COVID-19 Intramuscular NCT04530396

FVIII, Factor VIII; FIX, Factor IX; MPS-IIIA, mucopolysaccharidosis type IIIA; ND4, NADH-ubiquinone oxidoreductase chain 4; REP1, rab escort protein 1; RPGR, retinitis pigmentosa GTPase regulator; 

SERPINC1, serpin family C member 1; SGSH, N-sulfoglucosamine sulfohydrolase; SMN2, survival of motor neuron 2; SOD1, superoxide dismutase 1.
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properties could also offer additional functionalities53. Balancing 
further chemical modifications and compatibility with RNAi 
machinery will be vital to the next generation of siRNA therapeutics.

Finally, the administration route has affected the clinical trans-
lation of GalNAc−siRNA conjugates and influenced patient com-
pliance. Owing to their low molecular weight, GalNAc−siRNA 
conjugates are amenable to subcutaneous administration54 (Fig. 
2). This delays siRNA delivery to the liver, but efficient and steady 
knockdown is still achieved owing to the high-capacity recycling 
of ASGPR. Several GalNAc−siRNA conjugates are currently under-
going late-stage clinical evaluation for treating cardiometabolic or 
genetic disorders (Table 2).

Clinical example. Givosiran (marketed as Givlaari) is an 
FDA-approved RNAi therapeutic based on GalNAc−siRNA tech-
nology indicated for acute hepatic porphyria, which is caused by 
mutations in genes associated with the heme biosynthesis path-
way55. Physical triggers that increase aminolevulinic acid synthase 
(ALAS1) expression cause a build-up of aminolevulinic acid (ALA) 
and porphobilinogen, which are toxic intermediates that harm ner-
vous tissue and contribute to the onset of acute, life-threatening 
episodes of severe abdominal pain, neuropathy (central and periph-
eral) and neuropsychiatric symptoms. At the time of givosiran’s 
development, the only treatment for acute hepatic porphyria was 
Hematin (an exogenous heme source), which was approved for 
post-symptomatic patients but not as a prophylactic treatment. 
Givlaari leverages the RNAi machinery to reduce and prevent ele-
vated ALAS1 expression.

One limitation of this technology’s clinical translation was the 
lack of an appropriate diagnostic biomarker other than liver biop-
sies. Co-developing a biomarker based on ALAS1−mRNA con-
centrations in serum and urine both improved clinical diagnosis 
and provided a pharmacodynamic biomarker that could be used 
to monitor therapeutic endpoints without invasive procedures56. A 
striking similarity across species (that is, rodents and non-human 
primates) was the presence of circulating RNA, which strongly 
correlated to hepatic expression. Moreover, patient samples also 
showed similarly elevated circulating ALAS1−mRNA levels.

In a three-part phase 1 trial, 33 subjects received givosiran and 10 
received placebo. The data suggested that a single subcutaneous dose 
at 2.5 mg kg–1 resulted in >80% less circulating ALAS1−mRNA, and 
correspondingly reduced ALA and porphobilinogen levels in circu-
lation57. This established a dosing regimen of 2.5 mg kg–1 monthly. 
In the phase 3 trial, the primary outcome measure was the annu-
alized rate of composite porphyria attacks (hospitalization, urgent 
care, or Hematin administration) over six months58. Among the 48 
patients receiving givosiran, the rate of attacks dropped by 74%. The 
secondary outcome measures were urinary ALA and porphobilino-
gen levels, which were markedly lower in subjects receiving givo-
siran. Adverse events more frequently seen in treated individuals 
were elevated liver enzymes, chronic kidney disease, injection site 
reactions and nausea.

LNPs
The permeability requirements of biological membranes severely 
limit the transfer of large, charge-dense macromolecules (that is, 
nucleic acids) across the plasma membrane. To overcome this, lipid 
polymorphic phase behaviours could temporarily compromise 
the permeability barrier and allow nucleic acids to enter the cell. 
Landmark work on cationic lipids by Felgner et al. paved the way for 
a new class of lipid-mediated delivery systems59.

LNPs provide a protected compartment, sequestered from 
serum nuclease activity and immune components, and a 
drug-biodistribution profile dictated by the carrier. In this Review, 
we focus on the approved LNP technology developed for hepatic 
siRNA delivery following intravenous administration (Fig. 2). The 

discovery of ionizable cationic lipids has been essential for the clini-
cal translation of LNP-based RNA therapeutics. These lipids ensure 
efficient siRNA encapsulation (>85%), maintain neutral LNP sur-
face charge at physiological pH, and play a major part in endosomal 
escape60. After systemic administration, apolipoprotein E (ApoE) 
adsorbs to the LNP surface and promotes internalization by hepato-
cytes via the low-density lipoprotein receptor (Fig. 1)61, resulting in 
>80% accumulated dose in the liver62.

Platform design. LNP systems represent 25 years of evolution from 
initial formulations composed merely of phospholipids and choles-
terol. These developments drew from knowledge of lipid carriers 
for small-molecule therapeutics. Translating such systems to nucleic 
acids required additional functionalities such as enabling efficient 
entrapment, maintaining neutral surface charge and evading the 
immune system63.

LNPs are typically composed of four components: ionizable 
cationic lipids, phospholipids, cholesterol and polyethylene glycol 
(PEG)-lipids (Fig. 1). LNP formulations used for gene silencing in 
hepatocytes entrap siRNA at a ratio of 0.095 (w/w, siRNA/lipid) 
and generate ~50 nm particles with narrow size distributions64; 
this size is crucial to allowing these particles to pass through the 
fenestrated liver vasculature65. We discuss the following factors that 
have been critical for clinical translation: ionizable cationic lipid 
optimization, diffusible PEG-lipid design and a robust, scalable  
manufacturing process.

The ionizable lipid shape and acid-dissociation constant opti-
mization dramatically improved LNP potency, thereby enabling 
clinical translation. Permanently cationic lipids such as DOTMA 
demonstrated toxicities that hindered rapid translation in vivo66. 
Comparatively, ionizable tertiary amine moieties in the lipid head-
group allowed for a net-positive charge at acidic pH and a neutral 
charge in circulation; the decreased toxicity and lower immune 
stimulation suggested improved clinical utility67,68. Rational design 
and iterative screening using the murine factor VII (FVII) model 
identified DLin−MC3−DMA60; its development has been reviewed 
elsewhere69. Optimizing previous-generation lipids, such as DLin−

DAP, improved the therapeutic index 8,000-fold.
Another key component in determining LNP−siRNA transfec-

tion competency is the PEG-lipid, which was required to prevent 
aggregation during particle formation70. However, PEG-lipids inhib-
ited uptake into target cells and were therefore counter-productive 
for transfection71. To find an optimal balance between stability and 
transfection competency, diffusible PEG-lipids containing C14 alkyl 
chains were developed72,73. In the presence of a lipid sink, these lipids 
rapidly dissociate from the LNP, generating transfection-competent 
systems. Preclinical studies determined that LNP with diffusible 
PEG-lipids rapidly accumulate in the liver, with circulation half-lives 
of less than 15 minutes62,73. This rapid accumulation and potency for 
hepatocyte transfection stemmed from ApoE adsorption.

LNP−siRNA manufacturing required a rapid, reproducible proce-
dure. This was accomplished through an ethanol-loading technique 
that involved mixing preformed LNP (at pH 4) with nucleic acids in 
the presence of high ethanol concentrations (~40% v/v)74. A subse-
quently developed higher-throughput rapid mixing process combined 
lipids dissolved in ethanol with nucleic acids in an aqueous buffer 
(pH 4) through a T-junction, resulting in efficient nucleic acid load-
ing into LNP systems75. Rapid-mixing techniques produced LNP−

siRNA systems with high entrapment efficiencies (>85%) and narrow 
size distributions. Recent work suggests that such structures include 
a hydrophobic oil core primarily consisting of neutral ionizable lipid 
surrounded by siRNA complexed to lipids in a bilayer arrangement76 
with heterogeneity in the siRNA copy number per particle77.

Clinical example. Patisiran (marketed as Onpattro) is an RNAi 
therapeutic that relies on LNP delivery technology to treat  
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hereditary transthyretin amyloidosis (hATTR). This disease is 
caused by mutations in the gene for transthyretin (TTR) that make 
the TTR protein abnormally aggregate and accumulate. As a result, 
the disease manifests in a number of systemic pathologies affecting 
many organ systems. Transthyretin is expressed by hepatocytes in 
the liver and secreted into circulation (note similarity to the FVII 
screening model).

Onpattro is composed of D-Lin−MC3−DMA, phosphatidylcho-
line, cholesterol and PEG-lipid at a ratio of 50/10/38.5/1.5 (mol%)78. 
As with the ASO Tegsedi, at the time Onpattro was developed, liver 
transplantation was the only treatment option for patients with 
hATTR. Onpattro leverages the high LNP−siRNA accumulation 
in hepatocytes (source of TTR) and the potency for gene silenc-
ing in these cells to suppress mutated TTR expression. In doing so, 
Onpattro drastically reduces the amount of nucleic acid required to 
achieve efficient gene silencing79.

During clinical development, a key finding was that the doses 
required to achieve 80% gene silencing in non-human primate 
models were very similar to those required in humans (0.3 mg kg–

1)80,81. In a phase 2 study, a total of 29 hATTR patients received two 
patisiran infusions at a dose of 0.01−0.3 mg kg–1 every 4 weeks or 
0.3 mg kg–1 every 3 weeks (Q3W). A mean TTR knockdown level 
>85% was achieved after the second dose for the Q3W protocol79. 
In the phase 3 APOLLO study, 148 patients received patisiran at 
a dose of 0.3 mg kg–1 Q3W and 77 patients received placebo infu-
sions. The primary endpoint measured the change in the modified 
Neuropathy Impairment Score (mNIS+7) from baseline to after 
18 months. Results indicated that the patisiran group showed a 
median reduction in serum TTR levels >80% and mNIS+7 of −6 
compared to the placebo group measuring +28. This suggested 
patisiran can halt and reverse disease progression82. More recently, 
post hoc analyses of data from the phase 2 open-label extension and 
the phase 3 trial suggested that patients benefit from patisiran even 
when simultaneously receiving oral small-molecule TTR stabilizers 
(tafamidis or diflunisal)83.

AAV vector
Since gene therapy was initially proposed several decades ago,  
the development of safe and efficient mammalian retroviruses,  
adenoviruses and adeno-associated viruses has been instrumen-
tal to clinical translation. Although early studies provided clear  
evidence that viral vectors could successfully deliver therapeutic 
transgenes, clinical benefits were observed only in a small num-
ber of studies, and significant immunotoxicities occurred (in  
some occasions leading to patient death)84. In addition, serious 
genotoxicity caused by the use of viral vectors capable of genome 
integration has also been observed. Although these outcomes raised 
considerable doubts about whether these viral strategies would be 
viable, they also initiated major efforts that improved our under-
standing of vector biology and its interactions with target cells and 
tissues. This ultimately resulted in the development and clinical 
translation of recombinant viral vectors, which are more effective 
and incur lower risk85,86.

Viral vectors are effective DNA delivery vehicles, as they have 
evolved to display tropism for specific cell types and, compared to 
the aforementioned approaches, are the only system able to actively 
deliver their payload to the nucleus. The importance of this latter 
feature cannot be overstated, as DNA whole-gene-encoding pay-
loads are non-functional outside the nucleus. Typically, non-viral 
systems rely on a cell division stage when nuclear membrane 
collapse and reformation allows DNA to passively diffuse into  
the nucleus.

Several drug products based on recombinant viral 
vector-mediated transgene delivery have been approved by the FDA 
and the EMA. These treatments involve either ex vivo or in vivo 
approaches, whereby transgenes are directly delivered to cells, 
mainly mediated by AAV vectors, following parenteral administra-
tion87. This Review discusses AAV vector-mediated in vivo thera-
pies, which in addition to being used for retinal disorders are also in 
late-stage clinical evaluation for treating diseases related to the liver 
and the central nervous system (Tables 1 and 2)87.
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Fig. 3 | A brief history of the development of nucleic acid therapeutics. This timeline depicts key discoveries and events during the development of 

nucleic acid therapeutics, with a specific focus on the delivery platform technologies reviewed herein. Each timeline point has a colour-coded circle: major 
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Platform design. Wild-type AAV is a small, non-enveloped par-
vovirus (~25 nm) with a ~4.7-kb single-stranded DNA (ssDNA) 
genome. Recombinant AAV vectors exploited as delivery vehicles 
generally contain the same capsid components and structure as 
wild-type AAV but all viral coding sequences are replaced by thera-
peutic gene expression cassettes, maximizing packing capacity and 
reducing immunogenicity (Fig. 1)87. Because AAV tropism has 
broad range, AAVs can be used for targeted transduction in a variety 
of tissues, potentially providing cellular specificity. Variable regions 
within capsid protein sequences define AAV serotypes and dictate 
tropism by modifying the binding interactions between capsids and 
receptors that facilitate their cellular uptake88,89. Receptor-bound 
AAVs enter cells by endocytosis, are released into the cytosol by 
acidification of the early endosome, and, following perinuclear 
accumulation, enter the nucleus90,91 (Fig. 2). Tissue specificity and 
transduction efficiency can be further modified by viral pseudo-
typing, chimeric capsid engineering and peptide library screening, 
among others92,93.

Additionally, AAV vectors have a number of other features that 
make them an attractive platform for therapeutic transgene delivery. 
First, AAVs require a helper virus for replication and are therefore 
considered non-pathogenic. Second, following AAV uncoating in 
the nucleus, inverted terminal repeats flanking the vector genome 
drive recombination to form episomal constructs. Genomic integra-
tion occurs at low frequency, reducing the potential for genotoxicity. 
Third, the 12 different AAV serotypes and hundreds of additional 
variants identified to date mean AAV-mediated nucleic acid therapy 
has extensive utility. Nevertheless, AAVs also have several limita-
tions. Most prominently, AAV vectors have a packaging capacity for 
genes of less than about 5.0 kb, thereby restricting their application 
to treating disorders for which the transgene can be packaged in a 
single vector. To overcome this, strategies are being developed to 
accommodate larger transgenes, or multiple transgenes (for mul-
tigenetic disorder treatment), by co-administrating multiple vec-
tors that carry separate (halves of) genes94. Following release in the 
nucleus, the ssDNA needs to be converted to a double-stranded 
DNA prior to transgene expression. Self-complementary AAV vec-
tors have been designed to prevent expression delay, but their pack-
aging capacity is halved. AAVs are most suitable for DNA delivery 
to long-lived, non-dividing or slowly dividing cells such as hepa-
tocytes because episomal genomes are not replicated and are lost 
during mitosis95. Further, AAVs occur naturally in multiple species; 
in humans, neutralizing antibodies are widely prevalent, which dra-
matically reduces AAV-mediated gene delivery following intrave-
nous administration (especially critical for repeated injections) and 
limits their broad applicability96.

Clinical example. Voretigene neparvovec-rzyl (marketed as 
Luxturna) is an AAV serotype 2 (AAV2) vector containing cDNA 
encoding the human RPE65 gene for treating inherited retinal dys-
trophy LCA type 2. The recombinant vector genome contains a cyto-
megalovirus enhancer and a hybrid chicken β-actin promoter that 
facilitate RPE65 expression while the vector remains episomal in the 
nucleus97. Prior to Luxturna’s development, there was no pharmaco-
logical treatment for LCA type 2, which is an autosomal recessive 
disease caused by mutations in the RPE65 gene. Although rare, this 
disorder was an appealing target for gene therapy, in part because it 
can be treated by introducing a single copy of the wild-type gene. 
Additionally, because it is a relatively small, easily accessible organ, 
the eye requires a lower number of vector particles for a therapeutic 
dose, thereby reducing the risk of adverse effects. This simplified 
access also facilitates multiple administration routes (mostly intra-
vitreal or subretinal, as is the case for Luxturna) (Fig. 2). Moreover, 
the eye is immune privileged by the blood−ocular barrier, which 
prevents vector particles from spreading to other parts of the body 
and promoting an immune response. In addition, because the AAV 

targets post-mitotic retinal pigment epithelium cells, the treatment 
is expected to be long-lasting without episomal DNA dilution.

Following studies in small animals, the development of Luxturna 
was advanced by canine studies, in which vision could be restored 
following treatment with AAV-RPE65 in naturally occurring 
RPE65−/− dogs98. Importantly, improved visual function and protec-
tion against photoreceptor degradation persisted even five to eleven 
years later99. Phase 1/2 trials were conducted by multiple groups 
which concomitantly demonstrated that AAV2−RPE65 could be 
safely delivered to the retina, resulting in improved visual function 
for varied lengths of time100–102. In a randomized phase 3 trial, 29 
patients with confirmed RPE65 mutations received a bilateral, sub-
retinal injection of 1.5 × 1011 vector genomes of Luxturna (n = 20) or 
underwent the same efficacy outcome testing without intervention 
(n = 9)97. The primary endpoint was a change in multi-luminance 
mobility testing (MLMT) one year after intervention. The change 
in MLMT performance was determined based on the light intensity 
level by which participants could successfully complete an obstacle 
course after the intervention compared to baseline97. This test and 
other secondary outcomes, such as visual tests, demonstrated that 
treatment with Luxturna improved light sensitivity, visual fields and 
navigational ability in RPE65-mediated LCA patients who were pre-
viously untreatable. In patients who were treated during a phase 1/2 
trial, clinical benefits are still present—lasting at least three years100. 
These results led to Luxturna’s approval in 2017.

outlook and discussion
Since using gene therapy to treat diseases was first proposed half 
a century ago, major biological and technological breakthroughs 
have led to several safe, effective platform technologies (Fig. 3). 
Importantly, currently approved nucleic acid therapeutics and 
those now in development are often valuable therapeutic options 
for patients who previously had limited or no treatment options. 
The successful clinical application of these technologies has sparked 
great interest in improving tissue specificity (for example, for ASO 
and siRNA conjugates) and broadening potential applications, par-
ticularly for LNP and AAV vector systems. This Review focuses on 
approved nucleic acid therapeutics, but the extremely rapid devel-
opment of mRNA and gene-editing therapeutics, which are already 
in clinical trials or have even been approved for treating infectious 
diseases and cancer, is worth mentioning103. Although newly devel-
oped treatments also include a number of ex vivo drug products, 
such as modified dendritic cells, we briefly highlight several in vivo 
approaches and conclude by discussing the socioeconomic impact 
of gene therapy as a whole.

Various bioconjugation strategies have been developed to 
overcome some limitations of approved ASO and siRNA thera-
peutics, specifically by modulating their pharmacokinetics and 
facilitating receptor-specific interactions. Modified ASOs conju-
gated to GalNAc can increase target gene silencing up to 60-fold 
in hepatocytes by increasing accumulation in these cells relative 
to non-parenchymal cells104. Similarly, antibody-modified siRNAs 
have extended the relatively short half-life of GalNAc−siRNAs from 
about two hours to more than ten hours in serum105. Chemically 
engineering oligonucleotides with lipophilic moieties can alter 
accumulation in extrahepatic tissues, enabling gene modulation in a 
broad range of tissues including heart, lung and muscle106,107. Recent 
developments demonstrate that nucleic acid bioconjugates are an 
emerging class with clinical utility (Table 2). The major advance-
ments through directly conjugating chemical moieties—for exam-
ple, sugars, lipids, antibodies or aptamers—to ASOs or siRNAs have 
been reviewed elsewhere108,109.

Following successful development of the first RNAi drug 
Onpattro, LNP technology is now facilitating mRNA applications for 
protein replacement therapy and vaccine development. Harnessing 
efficient ApoE-mediated hepatocyte transfection, LNP formulations 
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Box 1 | Advancements in nucleic acid therapeutics: a historical overview

Nucleic acid therapies
More than 70 years ago, Clyde Keeler134 noted that medical 
personnel often lamented the lack of effective treatments for 
hereditary abnormalities. Summarizing animal crossbreeding 
studies, he suggested that ‘modification of the genetic formula’ 
could correct hereditary dyscrasia. Other research demonstrated 
that viruses could specifically infect and thus regress tumours135,136 
and that injecting certain tissues with nucleic acids could produce 
genes of interest137. Genetic delivery seemed to be the solution to 
inherited abnormalities. Indeed, these pioneering studies are the 
foundations of today’s nucleic acid therapeutics and established 
that future developments must decipher the relationships between 
mutations and diseases, determine nucleic acid therapeutics’ 
long-term effects on human health, and prioritize safety and 
responsibility138.

ASOs
Seeking to limit RSV replication, investigators generated a 13-mer 
oligonucleotide that complemented the RSV genome’s inverted 
terminal repeats, because blocking these regions with a short DNA 
sequence could prevent circularization and integration into the 
host genome. Interestingly, the DNA oligomer reduced messenger 
RNA translation in a cell-free manner, suggesting that unmodified 
DNA reduced mRNA expression13,14. Developments in the 1980s 
improved the ability of nucleic acids to sustain gene suppression 
and induce therapeutic splice switching139–142. The first approved 
ASO, Vitravene, indicated for cytomegalovirus retinitis in patients 
with AIDS, entered phase 2/3 clinical trials in 1995 and received 
FDA approval in 1998. Subsequently approved ASOs include 
Kynamro, for homozygous familial hypercholesterolaemia143, and 
Spinraza, for treatment of SMA144.

GalNAc−siRNA conjugates
GalNAc−siRNA conjugates have undergone rapid clinical 
transition42. Unlike nanoparticle or viral delivery systems, modified 
siRNAs do not require immunosuppressant pre-dosing and can 
be given subcutaneously. This technology leveraged nucleic acid 
modifications previously devised for ASOs. A targeting ligand 
conjugation increased hepatic siRNA accumulation, and ligand 
modification did not affect yield from solid-phase oligonucleotides 
synthesis. Subcutaneous administration silenced 50% of hepatic 
gene targets at relatively low doses of 1 mg kg–1. Additionally 
altering GalNAc−siRNA chemistry improved in vivo performance 
with fewer off-target effects and potential toxicities48. In 2019, the 
first GalNAc−siRNA conjugate, Givlaari, was approved to treat 
acute hepatic porphyria58.

LNPs
In 1987, Felgner et al. described a positively charged lipid, N-[1-
(2,3- dioleyloxy)propylJ-N,N,N-trimethylammonium chloride 
(DOTMA), that could form stable unilamellar vesicles alone 
or with phospholipids59. Combining these vesicles with DNA 
encapsulated about 100% of the nucleic acid and provided effective 
intracellular delivery. This was a major leap forward from earlier 
attempts to encapsulate nucleic acids in zwitterionic vesicles145. 
Initial in vivo studies suggested that positively charged lipoplexes 
delivered efficiently but induced unfavourable haemolytic 
toxicities and immune activation146,147, which were addressed 
via ionizable cationic lipids with acid-dissociation constant 
headgroups that enabled neutral charge at physiological pH and 
positive charge under acidic conditions. The first ionizable lipid 

described, 1,2-dioleoyl-3-(N,N-dimethylamino)propane (AL1 or 
DODAP), was used to study membrane fusion by manipulating 
bilayer asymmetry148. Similar lipids delivered nucleic acids 
intracellularly but lacked sufficient efficacy for clinical translation. 
Subsequent developments improved LNP formation methods 
for better scalability, reduced particle surface charge by using 
different ionizable lipids, and increased particle homogeneity. 
In 2006, LNP-siRNA silenced ApoB expression in non-human 
primates67. Since the approval of Onpattro in 2018, similar LNP 
systems composed of ionizable lipids, cholesterol, phospholipid 
and PEG-lipid, have been used for mRNA delivery as vaccines, for 
protein replacement or for gene-editing applications. It should be 
noted that the molar composition of LNP systems used for mRNA 
delivery are very similar to that used in Onpattro, albeit for minor 
modifications. New lipid chemistries have improved formulation 
potency and decreased the dose of mRNA required to elicit a 
positive outcome.

AAV vectors
Viral vectors are, by far, the most extensively studied nucleic acid 
delivery platform technology, with a difficult path to clinical success. 
In 1968, following preclinical and clinical studies of oncolytic 
viruses, Sambrook et al. described the transfer of genetic material 
from virus to host and suggested integration of SV-40 DNA into 
the host genome149. Subsequent work showed that viral RNA can 
be altered and translated into modified protein in virus-transduced 
plant cells, indicating that genetically manipulated viral vectors 
could produce specific genes in host cells150. Additional studies 
included delivering rabbit151 or murine152 beta-globin via SV40 
transduction of monkey cells; correcting cellular-level deficits; 
and amending/repairing HPRT–/– cells though human HPRT 
complementary DNA cloned into a murine retroviral vector153. 
Simultaneously, the AAV genome was cloned into the plasmid 
pBR322, and cells co-infected with a helper virus produced virions 
indistinguishable from the wild type, thereby providing a way to 
produce therapeutic recombinant AAVs154.

The first retroviral-mediated gene transfer into humans, to 
treat metastatic melanoma by transducing tumour-infiltrating 
lymphocytes ex vivo, was described in 1990155. Four years later, 
viral treatment for adenosine deaminase deficiency (ADA-SCID) 
resulted in cellular and humoral reconstitution156. Despite these 
positive results, a patient death during adenoviral therapy for 
ornithine transcarbamylase deficiency84 spurred increased focus 
on trial design (including exclusion criteria), ethics and safety 
characterization prior to human studies. Continued efforts in  
this area are necessary to ensure improved patient outcomes157.  
The first commercial viral therapy was Gendicine, approved 
in China in 2003158. Glybera, an AAV to treat lipoprotein lipase 
deficiency, received EMA approval in 2012. Priced at US$1 million 
for curing an ultrarare disease, Glybera was the most expensive 
medicine ever commercialized and was regrettably withdrawn  
in 2017159,160.

In the past few years, several viral systems have received FDA 
approval: Strimvelis, an ex vivo therapy for ADA-SCID161; Kymriah, 
an ex vivo therapy for B-cell acute lymphoblastic leukaemia; 
Luxturna, for blindness caused by RPE65 gene mutation; and, 
most recently, Zolgensma, an in vivo therapy for newborns 
with spinal muscular atrophy. Most recently, viral-vector-based 
vaccines, including one chimpanzee and two human adenoviral 
vectors, have received emergency-use authorization in a number 
of jurisdictions to battle the ongoing COVID19 pandemic.
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of mRNA can convert the liver into a ‘bioreactor’ for therapeutic 
protein production110. Simultaneously, LNP-mRNA-encoding anti-
gens are being used for subcutaneous, intramuscular or intrader-
mal immunizations. Compared to virus- or DNA-based vaccines, 
mRNA has several advantages: it is non-infectious, non-integrating 
and requires only cytoplasmic delivery103. This approach has shown 
potential in the development of a broadly protective influenza 
virus vaccine111, complete protection from Zika virus in mice and 
non-human primates112, and, most recently, a vaccine against P. fal-
ciparum113, a causative agent of malaria. Similarly, two LNP-mRNA 
vaccines are also leading the fight against SARS-CoV-23,114–118 with 
one formulation administered to the first subject only 63 days after 
the viral genome was published. The formulation named mRNA-
1273 achieved a 94.1% efficacy in a phase 3 trial involving 30,420 
volunteers (randomized as 1:1 ratio of vaccine-to-placebo)119. The 
second formulation, BNT162b2, conferred a 95% protection against 
viral infection in a phase 3 trial that included 43,448 participants120. 
As of February 2021, more than 76 million doses of these vaccines 
have been administered121.

Comparable strategies are also being used to generate personal-
ized vaccines for cancer immunotherapy122. This approach involves 
sequencing a patient’s healthy and tumour tissues, then producing 
mRNA vaccines encoding individual cancer-specific neoepitopes122. 
These vaccines have promising therapeutic effects in preclinical 
cancer models123,124 and are currently in the early stages of clini-
cal evaluation for breast cancer (NCT02316457) and melanoma 
(NCT02410733). The transient protein expression induced by 
LNP-mRNA vaccines is well suited to combating infections and 
cancer, but other applications, such as protein replacement thera-
pies, require repeated or chronic administration. Beyond vaccines, 
however, LNP formulations are administered intravenously, which 
creates a substantial burden on healthcare systems and limits thera-
peutic application to rare or life-threatening disorders.

Platform technologies for delivering large nucleic acid pay-
loads also enable clinical translation of gene editing-based treat-
ments, mediated by nuclease-induced double-stranded breaks or 
single-base DNA mutations. These approaches hold great promise, 
because unlike conventional gene transfer techniques, gene edit-
ing can treat disorders caused by dominant negative mutations. 
Furthermore, gene editing allows precise engineering so that gene 
insertion or correction is controlled by an endogenous promotor 
and probably provides physiologically accurate gene expression85. 
In addition to ex vivo approaches, several in vivo gene editing 
therapies, enabled by LNP or AAV vector technology, to treat reti-
nal dystrophies, hATTR and metabolic disorders (NCT03041324, 
NCT02702115, NCT04601051, NCT03872479) are undergoing 
clinical translation85,125.

Advanced genome editing tools, including base and prime edi-
tors, have been shown to further enhance target specificity in pre-
clinical studies, as described elsewhere126. Whereas the limited cargo 
capacity of AAVs demands the use of a split protein delivered in two 
separate vectors, LNP technology allows editor mRNA and guide 
RNA to be formulated into a single particle. Both platform tech-
nologies have recently been used for in vivo genome base editing in 
mice to correct the metabolic liver disease phenylketonuria94,127 and 
ex vivo modification of human hematopoietic stem cells128.

Generally, the various approved platform technologies are well 
tolerated, but nanoparticles, macromolecules and biologics often 
require pre- or co-medications to suppress undesirable infusion- 
or immune-related reactions. For example, patients receiving 
Onpattro also take a combination of dexamethasone, acetamino-
phen and antihistamines at least sixty minutes prior to treatment79. 
For Glybera, patients receive oral cyclosporine and mycopheno-
late mofetil three days prior and methylprednisolone thirty min-
utes prior to infusion129. Since the majority of approved nucleic 
acid therapeutics treat rare or monogenic disorders that would  

otherwise have few or no available treatments, the clinical outcomes 
justify the risks associated with potential adverse reactions.

With nucleic acid therapeutics now demonstrating clinical ben-
efits in patients, their socioeconomic impact related to treatment 
pricing (Table 1) has come under debate. Do clinical results justify 
high costs? This complex calculus depends on many factors, includ-
ing the duration and magnitude of the therapeutic effect, the rarity 
of the disease, its associated severity or lifetime morbidity, the costs 
of alternative treatment options, healthcare and insurance models, 
and, ultimately, the overall improvement in patients’ quality of life.

Clearly, for nucleic acid therapeutics that induce long-lasting or 
curative effects—for example, Zolgensma, Strimvelis or Luxturna—
high drug prices seem justified, especially when taking into account 
the healthcare resources required for ongoing treatment and the 
economic costs of losing productive life years. With regard to  
drugs such as Spinraza, Tegsedi and Onpattro that induce signifi-
cant but transient therapeutic effects, current treatment pricing  
may not appropriately reflect long-term therapeutic benefits for 
patients130. Furthermore, since a number of the currently approved 
nucleic acid therapeutics were developed for ultra-rare diseases, 
demand for these treatments is very limited. This is exemplified 
by the first approved gene therapy, Glybera: although highly effec-
tive, it was withdrawn from the market owing to limited access 
caused by low demand and high treatment costs ($US1 million 
in 2012). Several genetic drug manufacturers have implemented 
outcome-based agreements, whereby payment depends on treat-
ment success or duration. For example, short-term efficacy and 
long-term durability measures have been established to determine 
paying rebates for Luxturna, and similar arrangements have been 
set up for other nucleic acid therapeutics as well, for example, for 
Onpattro. Other controversial practices, like a global ‘lottery’ sys-
tem, are also in place. For example, 100 doses of Zolgensma are 
donated each year to children under two who are diagnosed with 
SMA and live outside the USA131. Pricing has also been the subject 
of debate in light of vaccine development during the current pan-
demic. While the price of mRNA vaccines is higher (US$30−40) 
than conventional or viral vector-based vaccines (US$2−5), it is 
eclipsed by the direct and indirect costs resulting from the global 
COVID-19 outbreak. In addition, the unprecedented speed by 
which mRNA vaccines were developed (one year) will contribute to 
reopening economies.

To conclude, the four platform technologies described in this 
Review have helped to transform nucleic acid therapeutics from 
intriguing theory into clinical reality. Whereas most currently 
approved nucleic acid therapeutics aim to treat orphan diseases, 
their delivery technologies are now being leveraged for more 
broadly applicable genetic drugs and have enabled rapid vaccine 
development in times of a pandemic. In addition, these platforms 
are facilitating the clinical translation of novel approaches, such as 
gene-editing therapeutics. Although their widespread implementa-
tion still faces several challenges, including manufacturing, toxicity 
and socioeconomic issues, it is clear that nucleic acid therapeutics 
are poised to have a revolutionary impact on many diseases that 
previously had limited or no treatment options.
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