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Abstract: Many pathological processes including neurogenic bladder and malignancy necessitate
bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal
tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term
sequelae, raising the need for a source of safe and reliable bladder tissue. Advancements in stem
cell biology have catapulted stem cells to the center of many current tissue regeneration and
bioengineering strategies. This review presents the recent advancements in the use of stem cells in
bladder tissue bioengineering.
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1. Introduction

The bladder is a reservoir that serves to store and empty urine through coordinated and complex
processes. It is composed of four layers: the urothelium, lamina propria, muscularis propria, and serosa
(Figure 1) [1]. The urothelium is a specialized layer that serves as a barrier between the urine and the
muscle. As the primary barrier layer, the urothelium is subject to insults, such as injury, inflammation,
and infection, and requires continued maintenance and repair. The urothelium is composed of three
cellular layers: the basal cell layer, the intermediate layer, and the superficial layer comprised of
umbrella cells. The basal layer contains urothelial stem cells and plays a critical role in urothelial
regeneration. The intermediate layer rapidly regenerates urothelial tissue in cases of infection or injury.
The superficial layer maintains the bladder barrier function and contains umbrella cells, which form
tight junctions that limit movement of water and solutes [1,2].

Reconstruction of this intricate reservoir is necessary in many pathological processes. Patients
with neurogenic bladder often require bladder augmentation for small capacity or high intravesical
pressures that threaten the upper urinary tract. Patients with bladder malignancies undergo
cystectomies with need for new urinary reservoirs. Bowel tissue has generally been accepted as
a safe substitute for bladder tissue in these cases, but patients who have bladders reconstructed
with intestinal tissue are subject to metabolic disturbances, recurrent infections, bladder stones, and
increased risk for malignancy [3]. Furthermore, patients are at risk for intraoperative complications
including bowel obstruction arising from the need for bowel anastomoses [4]. As such, there is
increasing interest in tissue engineering to generate bladders.
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Figure 1. Schematic of a bladder and the different layers. The urothelium is the layer that lines the 
bladder lumen and forms the urine-body barrier. The lamina propria is a connective tissue layer that 
contains nerves and vessels (blue line = basement membrane, red lines = blood vessels, black lines = 
nerves). The muscularis propria is the muscular layer that provides structural support to the bladder 
and facilitates its physiological functions of filling and emptying. The serosa is the outermost layer. 

Tissue engineering combines principles of cellular biology with materials science and 
biomedical engineering [5]. It involves fostering cellular growth on a temporary scaffold on which 
the cells may proliferate and generate their own extracellular matrices to replace the scaffold [6]. For 
years, this has been a proposed method of generating new tissues for treatment of genitourinary 
pathologies. The complex functions of the bladder have made this process challenging, but great 
advancements have been made in the last two decades that make this goal achievable. 

Recent reviews have highlighted the therapeutic applications of stem cells in urological 
pathologies, including urinary incontinence and voiding dysfunction, as well as the use of stem cells 
in bladder engineering [7,8]. These reviews, however, place greater emphasis on tissue layers other 
than urothelium or focus on therapeutic as opposed to regenerative applications of stem cells. Herein, 
this review presents a comprehensive look at the recent applications of stem cells in bladder tissue 
bioengineering with a particular focus on the potential cell sources for urothelial regeneration and 
their utility in creating a bioengineered urinary reservoir. This review will also discuss the 
regeneration of muscle and vasculature from various stem cells and briefly cover the various scaffolds 
currently being studied for use in bladder bioengineering. This review summarizes the key studies 
that have documented in vitro and in vivo reprogramming of stem cells from various sources into 
urothelium. It also highlights the key papers that have reported urothelial differentiation from 
embryonic stem cells and induced pluripotent stem cells. As such, this review provides a special focus 
on urothelial regeneration and its role in bladder engineering. 

2. Bladder Engineering 

2.1. The Scaffold 

The scaffold is a key component of tissue engineering as it guides the localization and 
development of the cells. Tissue generation is dependent on cellular development which is influenced 
by the microenvironment provided by the scaffold. As the bladder is subject to varying mechanical 

Figure 1. Schematic of a bladder and the different layers. The urothelium is the layer that lines
the bladder lumen and forms the urine-body barrier. The lamina propria is a connective tissue
layer that contains nerves and vessels (blue line = basement membrane, red lines = blood vessels,
black lines = nerves). The muscularis propria is the muscular layer that provides structural support
to the bladder and facilitates its physiological functions of filling and emptying. The serosa is the
outermost layer.

Tissue engineering combines principles of cellular biology with materials science and biomedical
engineering [5]. It involves fostering cellular growth on a temporary scaffold on which the cells may
proliferate and generate their own extracellular matrices to replace the scaffold [6]. For years, this
has been a proposed method of generating new tissues for treatment of genitourinary pathologies.
The complex functions of the bladder have made this process challenging, but great advancements
have been made in the last two decades that make this goal achievable.

Recent reviews have highlighted the therapeutic applications of stem cells in urological
pathologies, including urinary incontinence and voiding dysfunction, as well as the use of stem cells
in bladder engineering [7,8]. These reviews, however, place greater emphasis on tissue layers other
than urothelium or focus on therapeutic as opposed to regenerative applications of stem cells. Herein,
this review presents a comprehensive look at the recent applications of stem cells in bladder tissue
bioengineering with a particular focus on the potential cell sources for urothelial regeneration and their
utility in creating a bioengineered urinary reservoir. This review will also discuss the regeneration
of muscle and vasculature from various stem cells and briefly cover the various scaffolds currently
being studied for use in bladder bioengineering. This review summarizes the key studies that have
documented in vitro and in vivo reprogramming of stem cells from various sources into urothelium.
It also highlights the key papers that have reported urothelial differentiation from embryonic stem
cells and induced pluripotent stem cells. As such, this review provides a special focus on urothelial
regeneration and its role in bladder engineering.

2. Bladder Engineering

2.1. The Scaffold

The scaffold is a key component of tissue engineering as it guides the localization and development
of the cells. Tissue generation is dependent on cellular development which is influenced by the
microenvironment provided by the scaffold. As the bladder is subject to varying mechanical forces
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during filling and emptying, a dynamic scaffold is necessary to provide mechanical support until the
engineered tissue is able to withstand these forces. Furthermore, the rate of scaffold degeneration
would ideally coincide with that of tissue regeneration.

Currently, scaffolds are made of naturally derived biomaterials, acellular matrices, or synthetic
polymers. Naturally derived scaffolds consist of those generated from collagen purified from human
or animal tissue, chitosan, alginates, gelatin, elastin, fibrin, and silk [9,10]. Weak mechanical strength
has deterred their clinical application. However, recent research suggests that silk matrices may be
promising. Electrospun silk fibroin matrices were compared to bladder acellular matrices (BAM) and
were found to have comparable degrees of urothelium regeneration and higher degree of vascular and
smooth muscle regeneration [11]. Seth et al. also showed that silk scaffold augmented bladders were
histologically and functionally similar to that of augments using small intestinal submucosa (SIS) [12].
Given silk’s biodegradability, elasticity, and mechanical strength, it may provide the structural support
necessary during bladder regeneration.

Scaffolds made of acellular matrices have been widely studied. Acellular matrices are collagen
rich biomaterials generated by isolating extracellular matrices from native tissues through the process
of decellularization. These matrices are advantageous as they maintain the mechanical properties and
structural proteins of the tissue so that engineering the biomaterial is not necessary. Common acellular
matrices include small intestinal submucosa (SIS) and bladder acellular matrices (BAM). Some studies
have also investigated the application of acellular amniotic membrane, acellular pericardium, and
acellular dermal tissue [9]. SIS has been shown to foster bladder regeneration without ex vivo cell
seeding and can be remodeled and replaced by host tissues [13,14]. BAM has similar characteristics
to SIS and retains biologically active proteins necessary for tissue regeneration including vascular
endothelial growth factor (VEGF) and insulin-like growth factor (IGF) [15]. Both matrices have been
shown to be compatible with various urothelial and smooth muscle cell types and are used to study
bladder regeneration in animal models [9].

Synthetic scaffolds are composed of polyesters such as polyglycolic acid, polylactic acid, and
poly(lactic-co-glycolic acid). Compared to naturally derived grafts and acellular grafts, these
matrices may be produced more efficiently with controlled properties such as degradation rate
and strength [5]. Though they offer reliable mechanical properties, they often require modification
with biologically active proteins inherent in acellular matrices to better regulate cellular activity.
In particular, nanotechnology has been applied to improve synthetic scaffolds. Nanofibrous
poly(ε-caprolactone)/poly(L-lactic acid) (PCL/PLLA) scaffolds have been shown to be biocompatible
with adhesion of human urothelial and smooth muscle fiber cells [16]. Electrospun PLLA nanofiber
scaffolds have also been shown to support bladder smooth muscle growth and alignment [17]. Research
is ongoing regarding the application of hybrid polymers that combine the biochemical advantages
offered by naturally derived scaffolds or acellular matrices and the mechanical benefits of synthetic
polymers [18].

2.2. Urothelial Generation: Stem Cell Sources

Acellular scaffolds seeded with cells function better than non-seeded grafts. Non-seeded grafts
depend on the ingrowth of the surrounding tissue which is feasible for small grafts but is challenging
for larger reconstructions. Autologous cells are ideal from an immunological perspective as they
circumvent issues of graft rejection. However, seeding grafts with cells from diseased bladders is not
ideal as these urothelial cells are vulnerable to malignant transformation or have impaired proliferative
capabilities [19,20]. Similarly, allowing ingrowth of surrounding urothelium in a diseased bladder is
not prudent. With advent in stem cell technology, advances have been made in the derivation of stem
cells from multiple sources (Table 1).
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Table 1. Current studies utilizing stem cells in various capacities for bladder bioengineering or regeneration.

Bladder Tissue Layer Cell Source or
Growth Factor Model System Major Findings Reference(s)

Urothelium

Human bone
marrow-derived
mesenchymal stem
cells (MSCs)

In vitro co-culture with human urothelial cells or urothelial
cell conditioned medium

Induced urothelial-like cells that express cytokeratins
typical of urothelium [21]

Exhibited epithelial characteristics via TEM

In vitro co-culture with human urothelium or culture in
urothelial cell conditioned medium

Induced urothelium that expressed urothelial markers
Uroplakin Ia (UPIa) and cytokeratins 7 and 13 [22]

Adipose-derived stem
cells (ASCs)

In vitro co-culture with human urothelial cells or urothelial
cell conditioned medium

Induction of uroplakin-expressing urothelial cells
in vitro [23–25]

ASCs mixed with human urothelial cell line and implanted
subcutaneously into athymic mice

High expression of UPIa and Uroplakin II(UPII) at 4
weeks post-implant [26]

Urine-derived stem
cells (USCs)

In vitro culture in urothelial specific medium and in vivo
implantation of induced urothelial cells

High expression of Uroplakins in induced urothelium
in vitro and in vivo

[27–29]
Barrier function in vitro

Stratified layers of induced urothelium in vivo

Human amniotic fetal
stem cells

In vitro co-culture with bladder cancer cell
conditioned medium

Morphologically resemble urothelial cells and express
UPII, cytokeratin 8 and Fibroblast growth
factor 10 (FGF10)

[30]

Human umbilical
cord-derived
mesenchymal stromal
cells (HUMSCs)

In vitro co-culture with urothelial cell conditioned medium Morphologically resemble urothelial cells and express
UPII and cytokeratins [31]

HUMSCs seeded on BAMGs were used to repair bladder
defects in vivo using a canine transplant model

Bladder acellular matrix grafts (BAMGs) seeded with
HUMSCs had better urothelial and muscle
regeneration than did non-seeded grafts

[32]

Human embryonic stem
cells (ESCs)

In vitro culture through definitive endoderm (DE)
intermediary step, then induction to urothelial cells with
urothelial cell-specific medium

Expression of proteins involved in urothelial fate
specification during induction [33]

High production of urothelium determined by
uroplakin expression

Induced pluripotent stem
cells (iPSCs)

In vitro culture through DE intermediary step, then
induction to urothelial cells with urothelial
cell-specific medium

High production of urothelium determined by
uroplakin expression [33,34]

Urinary tract-derived iPSCs cultured in vitro culture with
urothelial cell conditioned medium

Differentiation of urothelial cells expressing UPs,
cytokeratins and claudins [35]
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Table 1. Cont.

Bladder Tissue Layer Cell Source or
Growth Factor Model System Major Findings Reference(s)

Muscle

Adipose-derived stem
cells (ASCs) In vitro culture in smooth muscle differentiation medium

Induced SMCs exhibited upregulation of smooth
muscle proteins and contraction/relaxation properties
in vitro

[36]

Human bone
marrow-derived MSCs

In vitro differentiated smooth muscle cells (via co-culture
with human bladder SMCs or conditioned medium from the
SMCs) were seeded onto scaffolds and transplanted in vivo

Induced smooth muscle cells increased expression of
desmin in vivo and improved contractility in seeded
grafts versus non-seeded grafts in vitro

[22]

Poly (1,8-octaneodiol-co-citrate) elastomeric scaffolds were
seeded with MSCs and transplanted onto cystectomized
rat bladders

MSCs differentiated into SMCs within the graft and
formed more organized muscular networks than did
non-MSC seeded grafts

[37,38]

Urine-derived stem
cells (USCs)

USCs induced into SMCs via conditioned medium in vitro
then seeded onto cellulose scaffolds and implanted
subcutaneously in athymic mice

Increased SMC marker expression and functional
contraction in vitro [27,29]

3D formation of bladder tissue in vivo

Hair follicle stem cells BAMGs seeded with hair follicle stem cells in vitro then
transplanted to the rat bladder

Seeded grafts showed better muscle regeneration than
did non-seeded grafts [39]

Muscle-derived stem cells Small intestinal submucosa (SIS) scaffolds seeded with
muscle-derived stem cells were cultured in vitro

Seeded grafts exhibited spontaneous contractile
activities in vitro [40]

Blood Vessels

Vascular endothelial
growth factor (VEGF)

BAMGs were hydrated with various concentrations of
VEGF and utilized in a porcine model of
bladder augmentation

Significant increase in vascularization,
epithelialization and muscle regeneration in vivo in
VEGF-hydrated BAMGs

[41]

BAMGs seeded with VEGF-loaded nanoparticles were
transplanted onto bladders of rabbits after
partial cystectomy

VEGF-loaded BAMGs showed significant increase in
microvessel density with decreased rate of graft
contracture

[42]

Platelet-derived growth
factor-BB (PDGF-BB)
+ VEGF

Porcine BAMGs were loaded with Platelet derived growth
factor-BB (PDGF-BB) and VEGF and transplanted into
rabbits after partial cystectomy

Porcine BAMGs loaded with PDGF-BB and VEGF
improved smooth muscle regeneration,
vascularization and contractility

[43]

Adipose-derived
endothelial progenitor
cells (ADEPCs)

ADEPCs were isolated from rat adipose tissue and cultured
in vitro

ADEPCs expressed endothelial cell markers and
formed capillary-like structures in BAMGs [44]

CD34+ hematopoietic
stem/progenitor cells
(HPSCs) + Bone
marrow-derived MSCs

CD34+ HPSCs and MSCs were seeded onto poly
(1,8-octaneodiol-co-citrate) elastomeric scaffolds and
transplanted onto rat bladders after partial cystectomy

CD34+ HSPCs and MSCs increased vascularization of
grafts and induced de novo vascularization and
peripheral nerve growth

[37]

VEGF-expressing
endothelial progenitor
cells (EPCs)

BAMGs were seeded with EPCs modified to express VEGF
and used in a porcine model of partial cystectomy and
transplantation

Seeded BAMGs showed enhanced vascularization
versus non-EPC/VEGF seeded grafts [45]
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2.2.1. Mesenchymal Stem Cells

Stem cell technology began with studies in hematopoietic stem cells found in the bone marrow,
but attention has slowly shifted to mesenchymal stem cells (MSCs), a distinct population of multipotent
adult stem cells. Contrary to previous theories that adult stem cells were organ and lineage specific,
MSCs can differentiate into tissues of mesodermal, ectodermal, and endodermal lineages if nurtured in
the proper microenvironment [46,47]. MSCs are thus an attractive source for bladder tissue engineering.
Indeed, Anumanthan et al. demonstrated that MSCs differentiated into urothelium in the appropriate
microenvironment. Mesenchymal cells from mouse bone marrow were combined with embryonic
rat bladder mesenchymal shells. Histological evaluation revealed bladder tissue formation, and
immunostaining verified uroplakin expression, confirming urothelial differentiation [48]. This was
similarly shown when human bone marrow-derived mesenchymal stem cells were co-cultured with
human urothelial cells and developed urothelial cell features [21]. Tian et al. further revealed that
MSCs can differentiate into urothelium when only cultured in conditioned medium derived from
bladder cell culture optimized for urothelial differentiation, suggesting the feasibility of cell free
differentiation systems [22].

MSCs have also been found to shape the microenvironment by secreting growth factors and
releasing cytokines that influence cell proliferation and angiogenesis [49]. MSCs were shown to
influence cellular migration through paracrine effects in the cardiac model and is postulated to have
similar roles in urological tissue regeneration [50]. MSCs are also pro-angiogenic, a property that is
facilitated by expression of cysteine rich angiogenic inducer 61 (Cyr 61/CCN1). Depletion of this
protein negates the angiogenic effects of MSCs [51]. Though best studied in the stroke model, MSCs
may also have a role in facilitating neural regeneration [52]. Leite et al. compared integration of
bladder acellular matrices in rats treated with intravenous MSCs versus control and demonstrated
neuronal regeneration in the experimental group [53]. As such, MSCs may be more than a potential cell
source for urothelial and smooth muscle regeneration. Further studies are needed to better elucidate
the role and use of MSCs in shaping the microenvironment and in promoting angiogenesis and
neuronal regeneration.

2.2.2. Adult Stem Cells

In recent years, urothelium has also been derived from other sources of adult stem cells with
properties resembling that of bone marrow-derived mesenchymal stem cells. Of these sources, adipose
tissue is most easily accessible. Zhang et al. investigated the potential for adipose-derived stem cells
(ASCs) to differentiate into urothelium. The group mixed ASCs with the immortalized human bladder
urothelium cell line (SV-HUC-1) and implanted the cells into the subcutaneous tissue of athymic
mice. By four weeks, approximately 70% of the ASCs expressed uroplakin Ia and 65% expressed
uroplakin-II [26]. Likewise, co-culture with urothelial cells and conditioned medium induces urothelial
differentiation from ASCs in vitro [23–25]. These studies showed that ASCs are a potential source for
urothelial generation. However, the exact mechanism of differentiation remains to be fully elucidated,
and their ability to function properly remains to be determined as these cells are not epithelial in origin.

Another easily accessible source of adult stem cells is urine, which harbors a subpopulation
of cells with biological characteristics similar to that of mesenchymal stem cells. These cells, called
“urine-derived stem cells” or USCs, have capacity for multipotent differentiation and pro-angiogenic
paracrine effects [27,54]. Urine is easily obtainable without risk to the donor. A single USC may undergo
60–70 population doublings and result in large populations. Bharadwaj et al. further demonstrated
that more than 90% of USCs, when cultured in appropriate conditions, expressed urothelial specific
proteins including uroplakin-III and uroplakin Ia within 14 days of culture, suggesting that USCs
may be a robust source of urothelium in bladder engineering [28]. While the use of autologous cells
helps circumvent rejection of bioengineered tissue, most patients with bladder cancer or end stage
bladders are not suitable donors. However, studies have shown that the incidence of upper tract
disease in patients with known bladder tumors is low, ranging from 0.7%–3.4% [55,56]. As such,
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Bharadwaj et al. hypothesized that the upper tracts of patients with bladder malignancy are usually
normal and demonstrated that urine collected from the upper tracts contain USCs with expansion and
differentiation capabilities that make them suitable autologous alternatives for urothelium in bladder
engineering [57].

A lesser studied but potential source of urothelium is hair follicle stem cells, which are capable
of differentiating into cells with urothelial-like phenotype. The dermal papilla cells and cells in the
adjacent region known as the dermal sheath have multipotent properties and have been directed
towards adipocyte and osteocyte phenotypes [58]. Drewa et al. showed that urothelial conditioned
medium increased expression of urothelial markers cytokeratin 7, 8, and 18 on hair follicle stem
cells and decreased expression of hair follicle stem cell marker cytokeratin 15, suggesting that
these cells may develop a urothelial-like phenotype in the appropriate environment. However, true
urothelial differentiation could not be confirmed, as expression of uroplakin was not evaluated [59].
Although promising, the use of hair follicle stem cells in bladder tissue bioengineering requires more
comprehensive study.

2.2.3. Fetal Stem Cells

Fetal and postnatal stem cells have also been studied as potential players in bladder engineering.
Human amniotic fetal stem cells can be extracted from amniotic fluid without disturbance to the
embryo. They have been shown to differentiate into multiple tissue types including skin, nerve,
heart, cartilage, and kidney [60–64]. When cultured in bladder cell conditioned medium, these
cells were shown to adopt elongated and polygonal shapes typical of urothelium and to display
urothelial markers including uroplakin II, cytokeratin 8, and Fibroblast growth factor 10 (FGF10) [30].
Human umbilical cord-derived mesenchymal stromal cells (HUMSCs) are a post-natal tissue source of
multipotent cells. Wu et al. demonstrated that these cells are induced into urothelium when cultured in
urothelial cell conditioned medium [31]. HUMSCs were seeded into bladder acellular matrix grafts for
repair of bladder defects in canine models, and seeded grafts were found to be superior to unseeded
grafts [32].

2.2.4. Pluripotent Stem Cells

The use of mesenchymal stem cells, adult stem cells, and fetal/post-natal stem cells is limited
by their poorly understood differentiation processes and the unknown long term function and safety
profile of epithelial differentiation of mesenchymal lineage cells. The pluripotent nature of embryonic
stem cells (ESCs) and induced pluripotent stem cells (iPSCs) therefore make them attractive candidates
in cell therapy. Urothelial differentiation from pluripotent stem cells was first described in the murine
model by Oottamasanthien et al., who directed mouse ESCs towards urothelial lineage through tissue
recombination experiments with murine embryonic bladder mesenchyme [65]. In vitro experiments
later demonstrated the significant role of retinoic acid in differentiation of murine ESCs and iPSCs to
urothelium [66].

Building on the knowledge gained from mouse models, researchers have successfully induced
urothelium from human ESCs and iPSCs. Our group reported a protocol detailing in vitro
differentiation of urothelium from human ESCs and iPSCs using urothelial specific medium.
The induction from stem cells to urothelial cells, through the definitive endoderm step, recapitulated
known processes of differentiation during embryogenesis. This protocol induced 60% of the human
ESCs to differentiate into urothelium, which was confirmed by uroplakin expression [33]. Kang et al.
later demonstrated that human iPSCs may be induced into bladder urothelium through the definitive
endoderm differentiation step using a chemically defined culture system, which would ultimately be
necessary for clinical translation [34]. Moad et al. cultured iPSCs derived from urinary tract tissue in
conditioned medium and produced a mixed urothelial/stromal cell culture [35]. These studies present
human ESCs and iPSCs as potential sources of urothelium for future tissue engineering.
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2.3. Muscularis Propia Generation

While the urothelium maintains the body-urine barrier through tight junctions, the muscularis
propria is integral in maintaining the structural and mechanical properties of the bladder that facilitate
filling and emptying. Smooth muscle cells have been derived from multiple stem cell sources
(Table 1). Rodgriguez et al. cultured adipose-derived stem cells in smooth muscle differentiation
medium and noted upregulated expression of smooth muscle proteins including smooth muscle
cell-specific α actin, calpoin, and myosin heavy chain. These cells have also been shown to contract
in response to carbachol, an effect that was blocked by atropine [36]. Smooth muscle cells have
also been derived from bone marrow mesenchymal stem cells and have been shown to improve the
contractility of seeded scaffolds [22,67]. Sharma et al. augmented partially cystectomized rats with poly
(1,8-octaneodiol-co-citrate) elastomeric films seeded with human mesenchymal stem cells and showed
that the MSCs were able to differentiate into smooth muscle cells and form more defined and organized
muscular networks at 10 weeks post-transplant [37,38]. Bodin et al. seeded bacterial cellulose scaffolds
with urine-derived stem cells and directed their differentiation towards urothelium and smooth muscle
using specific conditioned medium, facilitating 3-dimensional growth of bladder tissues that are
promising for future bladder engineering [29]. Hair follicle stem cell seeded acellular grafts also
resulted in better muscle regeneration compared to that of unseeded grafts [39]. Incorporation of
muscle-derived stem cells into small intestinal submucosa scaffolds also resulted in the presence
of spontaneous contractile activities, which may be promising for reengineering contractile bladder
augments [40]. Further studies are needed to more effectively generate cohesive muscular layers that
mimic the function of a natural bladder.

2.4. Neovascular Generation

Recent clinical trials utilizing bioengineered bladder grafts emphasized that neovascularization of
the graft is critical to prevent graft contracture and necrosis. Most research has focused on promoting
angiogenesis or ingrowth of vessels into grafts using angiogenic agents such as vascular endothelial
growth factor (VEGF) (Table 1). Loai et al. rehydrated bladder acellular matrices with different
concentrations of VEGF and assessed angiogenesis and urothelial regeneration in mouse and porcine
models. They found increased microvascular density in the grafts treated with 2 ng/g of VEGF
compared to control. Similarly, grafts treated with VEGF had increased vascularization and increased
urothelium and smooth muscle regeneration in the porcine model [41]. Increased microvascular
density was also seen in bladder acellular matrices modified with VEGF loaded nanoparticles [42].
Incorporation of platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth
factor (VEGF) with porcine bladder acellular matrices also improved smooth muscle regeneration,
vascularization, and bladder tissue contractility [43].

While promotion of angiogenesis with VEGF and similar agents may be sufficient in small
bioengineered grafts, large tissues would require more extensive and rapid neovascularization that
cell seeding may better facilitate. Indeed, we previously showed that graft neovascularization occurs
through angiogenesis of host vessels into the proximal regions of the grafts with subsequent inoculation
between host and donor vessels, which suggests that bioengineered grafts with vessels would promote
early perfusion [68]. To date, there are few studies on the use of stem cells in vasculogenesis in
bioengineered bladders. One recent study had shown that adipose-derived endothelial progenitor cells
were able to form capillary like structures in bladder acellular matrices, suggesting these cells might
serve as angiogenic cell sources in engineering bladder tissue [44]. Sharma et al. also demonstrated
that co-transplantation of CD34+ hematopoietic stem/progenitor cells and MSCs resulted in improved
and de novo vascularization and peripheral nerve growth in the grafts [37]. Bladder acellular
matrix grafts seeded with endothelial progenitor cells modified to express VEGF exhibited enhanced
neovascularization in a porcine model of partial cystectomy, suggesting that cell seeding of grafts
combined with VEGF gene therapy may be the future of bladder engineering [45].
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3. Future Directions

The ideal engineered bladder is composed of a biocompatible material that is able to sustain the
mechanical forces necessary for bladder filling and emptying. The engineered urothelial layer should
contain tight junctions that form an effective barrier between the bladder mesenchyme and urine.
The engineered bladder should also provide environmental cues that support neovascular ingrowth
and not be rejected by the host immune system. Technological advents have allowed researchers to
generate reliable protocols to induce urothelial and smooth muscle cells from various sources including
adult stem cells, bone marrow-derived mesenchymal stem cells, fetal/post-natal cells, embryonic stem
cells, and induced pluripotent stem cells. While induced urothelial cells display urothelial markers,
their ability to form watertight junctions remains to be determined. Further work is also needed to
ensure proper muscle alignment and adequate neovascularization. Current research is ongoing on
seeding techniques that will enable us to replicate anatomically correct and physiologically functional
engineered bladders [69,70]. While great advancements have been made in stem cell engineering and
urothelial differentiation, future studies will likely highlight effective seeding techniques and methods
to promote angiogenesis and neural regeneration to create the ideal, dynamic urinary reservoir.
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