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A b s t r a c t  

The CURRY chip is • ¢ombin•tor reduction machine 
in VLSI. Normal order evaluation is implemented 
using a pointer reversal scheme that stores the stack 
in the celia representing the function. Program eval- 
uation maps an input stream to an output stream, 
Methods used to write el•able programs for the chip 
are given, along with experience gained using super 
combinators. 

1 I n t r o d u c t i o n  

Turner [Tur79b] implemented a functional program- 
ruing langu~e  b u e d  on combin•tors, • small finite 
set of functions that  form the basis for defining all 
control structures in his language. HIS system can be 
~ e d  to represent functions that  compute numbers in 
a form in which all bound variables are removed. The 
absence of variables allows an extremely simple mode 
of function ewaJu•tion. 

The combin•tor programming t /s tem des~ibed 
within builds on the above work by demonstrating 
a system that  can be implemented in VLSI, and 
which executes interesting programs, such as • corn- 
prier that translates abstractions into combinatore. 
A novel feature of the VLSI implementation is an 
evaluation method that  requires no additional stor- 
age for an evaluation stack. This method is equally 
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useful in software implementations of combinator re- 
duction m~hlnes. 

The paper is divided into two main topics. The 
t int  describes the VLSI implementation of • combi- 
n•tor machine that has been fabricated using • sill- 
con compiler. The second gives the experience gained 
by writing • compiler of abstractions into combing- 
tots for the CURRY chip, using • simulator. In 
this paper, programs are denoted using the syntax of 
the A-calcuins[Bar84, page 22], even though a slightly 
more sophisticated notation was used in writing the 
actual programs. 

2 S e q u e n t i a l  C o m b l n a t o r  Ma-  
ch ines  

The CURRY chip implements a sequential combin~- 
tor machine in silicon[RamS5]. Similar to many pre- 
vions works, • sequential combinstor machine repre- 
sents • function as • graph in computer memory and 
the proce~ of evaluation conskts of overwriting func- 
tions with simpler but equivalent repreeentations of 
the functions. A novel handling of the stack, and the 
selection of • fixed set of combinators that can fit on 
• chip, diferentiste the CURRY chip from previous 
efforts. 

2.1 Combinators 
A function is represented as one of the twelve corn- 
bin•tots in Table I or as an application. The combi- 
n•tors are atomic, but an •ppfic•tion is • pointer to 
a pair of functions. The cell which contains the pair 
d functions is divided into • head and • tail. The 
cell represents the function obtained by applying the 
function in the head to the one in the tail. 

Comhinators direct the replacement of functions 
by simpler but equivalent repreeent~tiom of functions 
using the rules in Table 1. For example, the rule for 
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n .  

I 
J 
Y 
R 
K 
T 
S' 
C' 
S 
B 
C 
P 

Az.l 
Fix 
Read 
Azy.z 
Azy.yz 
Azy.S(Bzy) 
Azy.C(Bzy) 

Azyz.zzy 
Azyz.zzy 

Table 1: CURRY Chip Combinators 

K states that the second argument is ignored and the 
first is the value. 

VxVy(Kzy) = - - .  

The rule for K is implemented by overwriting 
(Kzy) by (Iz) as shown in Figure I. Figures 2 and 3 
give the rules for combinators S and Y respectively. 
See [Tur79b] for more on these rules. 

2 .2  E v a l u a t i o n  

Reduction is the process of replacing a function's rep- 
resentation by a simpler, but equivalent represent&- 
tion. Normal order evaluation I is the name for the 
order in which applications are reduced. Roughly 
speaking, functions are given their arguments uneval- 
uated in this order. This order may be implemented 
with the following evaluation algorithm: When a 
combinator is in the head of the application being 
reduced, use the rule given in Table 1. When the 
head of the application contains another application, 
recursively reduce the head. If the result of such a 
reduction is a combinator, use the rule given in Ta- 
ble I. Otherwise, recursively reduce the head again. 
The reduction of the application is complete when no 
rules apply. 

When the reduction of an application leads to a re- 
quest to reduce its function part, a stack is often used 
to store the original application. CURRY is unique 
in storing the stack in the cells that are on the stack. 
Motivated by [SW67], the idea is an extension of the 
method used to evaluate strict functions in [SCN84]. 

Normal order evaluation is implemented by main- 
t~ining two pointers, /#~ and stack. ~ a  points to 
the function being evaluated, and stack points to the 
stack which contains the arguments of the function. 

*More precisely, head normal order evaluation. 

The stack is a linked list of cells in which the func- 
tion part contains a pointer to the rest of the stack. 
When fun points to a combinator, the arguments to 
the combinator are obtained from stack and the com- 
binator's rule is applied, resulting in new values for 
fun and stack. Functions are often popped from the 
stack at this time. When/un points to an application, 
the function part is put into fun, stack is put into the 
function part, and "stack is made to point to the ap- 
plication. As a result, the application is pushed onto 
the stack. The applicatlon's function cell is used to 
hold the stack. See Figure 4 for a step-by-step display 
of the reduction of ( S K I  J) =~ J. 

2 . 3  I n p u t  a n d  O u t p u t  

Reduction of the function (RI) initiates a request 
for an input bit. That function is replaced with 
(PK(RI))  when the input is low, and (PJ(RI))  when 
the input is high. 

Output is obt~ned from a stream. A stream $ is 
recursively defined to be a function of the form (PB $) 
where B is K or J .  The output is low when B is K 
and high when 8 is J .  

A program for the CURRY chip consists of con- 
stants combined by function application. A program 
is further restricted to those functions having a sig- 
nature of a map from a stream to a stream. The 
program is applied to (R/) to obtain the stream for 
output. The top level loop for the CURRY chip in- 
volves reducing the first element of the stream to K 
or J ,  then replacing the stream by the next stream 
and looping, as shown is Figure 5. Thus, the entire 
evaluation process is driven by requests for output. 

stream 4-- (fun (It I ) ) ;  
loop 

p r i n t  (eval  (head s t ream)) ;  
8 t r e t n  ~- ( t a i l  s t ream);  

repeat. 

Figure 5: CURRY Top Level Loop 

3 H a r d w a r e  S u p p o r t  for Re-  
d u c t i o n  

3.1 Data Types 
A function is represented as a 23-bit object with three 
fields: a 21-bit data field, a lobit atom field, and an- 
other 1-bit field used only by the garbage collector. 
The atom field determines how the content of the data 
field is to be interpreted. When the atom field is false, 
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Figure 1: K Reduction 
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(S x y z ) .  (x z (y z)) 

Figure 2: S Reduction 
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Figure 3: Y Reduction 
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Figure 4: Reduction via Pointer Reversal 
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the function is an application, and the data is an ad- 
dress pointing to an application cell which contains 
a pair of functions as shown in Figure 6. When the 
atom field is true, the function is one of the combin~- 
tons from Table 1, and the data field identifies which 
combinator. Alternatively, the function is the stack 
bottom symbol (.L). The codes for all atoms known 
by the CURRY chip are given in Table 2. The atomic 
functions are grouped into three categories based on 
the number of arguments used during a reduction. 

21 bits I bit I bit I bit 

TAIL 'DATA UNUSED ATOM GC 

Figure 6: An Application Cell 

Atom Binary Value 
.L 00000001 
I 00010010 
J 00100010 
Y 01000010 
R 10000010 
K 00010100 
T 00100100 
S' 01000100 
C 'w 10000100 
8 00011000 
B 00101000 
C' 01001000 
P I0001000 

Table 2: Representation of atoms 

The choice of the sises of the objects was motivated 
by the following two considerations: The CURRY 
chip has 22 + 2 .  (addrem 8ise) pins; 21-bit addre~es 
allow the use of a 64 pin case. 21-bit addresses allow 
acce~ to 2 million 6-byte application ce]k. The half 
million applicakion cells mind in the C implementation 
of CURRY has been adequateJRam85). 

Given byte addrem~ble memory, all parts of appli- 
cations can be addressed using 24-bit addremes with 
the restriction that  the two low order bits must never 
be simultaneously on. This amounts to reducing the 
effective addre~ space by 25 percent and is caused 
by the interest in 6 byte objects rather than 8 byte 
objects. 

Notice that only 25 bits of the 24-bit data words are 
used. A pomible use of the remaining bit is for one-bit 
reference counts. One-bit reference counts offer asim- 
pie method for reducing the amount of garbage gener- 
ated by evaluation [SCN84]. Cell, that are refes~nced 
by only one pointer are marked with a flag. When 

that pointer is discarded, the cell can be nfe ly  re- 
turned to free storage. When another pointer points 
to the cell, the cell must be unmarked and can only be 
returned to free storage using the usual garbage col- 
lector. Unfortunately, the inclusion of one-bit refer- 
ence counts would have made the sise of the CURRY 
chip too large. Hardware memory that keeps track 
of reference counts[WisS5] is another attractive op- 
tion for reducing garbage collection costs as long the 
CURRY chip is not slowed down by that memory. 

Another po~ible use of the extra bit in a data word 
is to differentiate between two types of pointers. In 
addition to the existing type of pointer, one would 
add a list pointer type. A cell pointed to by a list 
pointer would be defined to have the same mean- 
ing as a pointer to the pair of cells used to represent 
(P~'Y'). List structure would then be represented us- 
ing half the number of cells used before. The extra bit 
could also be used to differentiate between two types 
of atomic data, allowing the addition of an integer 
data type. As before, adding more data types would 
have made the sise of the CURRY chip too large. 

8 . 2  C o m p u t i n g  w i t h  t h e  C U R R Y  
Chip 

The CURRY chip k one of four units required to make 
a computing system. The other units consist of mem- 
ory, s garbage collector, sad t controller nsed to link 
the system to the outside world. The four units are 
tied together with • 24-bit address bus and a 24-bit 
data bus. There is nothing special about the memory 
except for the fact that 24-bit addresses with the two 
low order bits on, are invalid. The garbage collector is 
a chip fabricated in the Jams manner as the CURRY 
chip and uses the algorithm given in [HSSBS0I for in  
implementation of SCHEME[Cli85] on t cldp[SSS0]. 
The marking algorithm uasd is described in [SW67]. 
Its implementation is straightforward and de~ribed 
in [Ramu]. 

The computing syJtem has two modes, and the con- 
troller has a diferent task in both modes. When the 
system is in RUN mode, the CURRY chip and the 
garbage collector work to evaluate functions in mem- 
ory, and the controller mediates the input and output 
of the CURRY chip. When the system is in BOOT 
mode, the CURRY chip and the garbage collector are 
disabled, and the controller can be directed to load a 
.memory image into the system or copy the existing 
memory image out. Figure 7 gives a block diazrsm 
~owing how the four units are counected to make a 
computing system. 

These is no bus contention in this desizn. When 
the system is in BOOT mode, only the controller 
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Data Command Status 

*: - . . - . . . - - .  
_ _  L.._ 

/ 
~ 24 bits CONTROL 

A - - -  CURRY 

GC ~quest GC 

/ 22 bits GARBAGE COLLECTOR 

i 
• Q 24-bit address bus 24-bit data bus 

24 bits MEMORY bits 

Figure 7: A Complete Computint System 

127 



can use the bus. When the system is in RUN mode, 
a simple protocol between the garbage collect6r and 
the CURRY chip decides which will use the bus. 

The interface to the outside world is via an 8-bit 
bidirectional port, and some Command and status 
signals. The controller accesses memory in one-byte 
units and thus requires 24-bit addressing. Since the 
garbage collector and the CURRY chip access mem- 
ory in three-byte units, 22-bit addressing suffices. 

The CURRY chip and the garbage collector chip 
were synthesized using a silicon compiler called 
MetaSyn~[Sou83]. The CURRY chip has about nine 
thousand transistors, consumes 1.11 watts and is 5.6 
mm by 7.5 mm when 3 micron nMOS technology is 
used. The timing predictor conservatively estimated 
a clocking frequency of 0.4 Mhs. The garbage col- 
lector chip is 5.25 mm by 6.24 mm, consumes 0.91 
watts, and clocks at a predicted frequency of 3.2 
Mhs. It was also implemented in 3 micron nMOS. 
Both chips have been received from fabrication, and 
more than a majority of both chips have passed low 
speed simulation tests. High speed tests of the chips 
have yet to be completed, but  we estimate a speed 
of at least 20 thonsand reductions of applications per 
second (RAPS) at 0.4 Mhs. Subsequent work has 
demonstrated a chip design capable of running at 1.2 
Mhs, corresponding to 60 thousand RAPS. A de- 
tailed algorithmic description of the CURRY chip is 
in [Ramsel. 

4 S o f t w a r e  

Two sizable programs have been written for the 
CURRY chip. CCP is a compiler that translates ab- 
stractions into combinators. LCP is a loader that 
converts textual representations of combinators into 
running programs. 

A simulator of the CURRY chip has been coded in 
C[KR78], and was used to test the above programs. 
The simulator performed 18 thousand RAPS on a 
VAX-11/780 as measured by CPU time, while pro- 
riding enough memory for haft a million application 
cells. The times used to calculate this speed include 
the time spent in pointer reversal and garbage collec- 
tion. When run on machines using a virtual memory 
operating system, the garbage collector described in 
[Cla76] proved superior compared with [SW67]. 

1. Az.eY'=~ (~q(Az.6c)~z.~r). 
2. ~=.z=~ I. 
s. A=.y =~ (Ky); variable y ~ z. 
4. U¢) =~ ¢. 
5. (J¢) =~ z. 
6. (KEY') ~ ¢. 
7. (T¢7) =~ (Te). 
8. (S(K¢))  =~ ( se ) .  
9. (S¢(K~))  =~ (C¢~'). 

lo. (S(S¢~)9)  ~ ( S ' ¢ ~ ) .  
11. (B0  =~ Z. 
12. (VET) =~ P. 
xs. ( B e 0  =~ ¢. 
14. (S¢(KY)) =. (K(¢Y)).  
15. (C(B¢~')) =~ (C'¢~}. 

Table 3: Compilation Rules 

4.1 Compi la t i on  

Programs for the CURRY chip were written in a lan- 
guage called CHURCH. A C program translates a 
CHURCH source into abstractions. The program 
CCP translates the abstractions into combinators. 
Since CCP was written in the language CHURCH, 
its performance, as estimated using the simulator, be- 
came an interesting object of study. 

The abstraction compilation algorithm simply im- 
plements the rules in Table 3. Earlier rules take prece- 
dence over later rules so there is no ambiguity in the 
algorithm. Rules 1-3 are due to Sch~nfinkel[Sch24], 
the first to show that variables could be eliminated 
from abstractions. Rules 1-3, 8, 9, 13 and 14 com- 
prise one formulation of Curry's algorithm [CF58, 
page 190]. Turner further refined the compilation al- 
gorithm by adding rules 10 and 15 [Tur79a]. This 
algorithm produces expressions that are related to 
the size of the input by a polynomial, whereas the 
previous algorithms were exponential. Rules 11 and 
13 implement r/-conversion, which is characterized by 
the rule Az.£z =~ £ when z is not in £ [Bar84, page 
160]. This rule is valid when all objects are functions 
as is the case in CHURCH. Rule 11 was shown to 
be important in one experiment. Removal of the rule 
resulted in functions that were 30% larger. The re- 
maining rules 4-7 and 123, implement some simple 
conversions that reduce the size of the final function. 

CCP starts with an environment in which a symbol 
is bound to Y. 

21~detsLogic, MscPitts, and MetaSyn are trademsrb of 
Metalogi¢, Inc. 8Ruk 12 wta not always used in the reported ~perimants. 
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4 .2  Programming Methodology 
As mentioned above, two nontrivial programs have 
been written for the CURRY chip. CCP, the program 
tha t  translates abstractions into combinators, is 750 
lines of code, the loader is 400 lines of code. Many 
of the usual techniques for writing programs using 
combinators were applied, such as the identification 
of K with true, J with false and P with pair [Bar84, 
pages 132-135]. Two programming practices proved 
useful during the development of the programs. The 
first practice allows the input stream to determine 
how program units are composed, while the second 
practice allows separate compilation. 

4.2.1 Rou t ine s  

While the overall signature of a CHURCH program is 
a map from a stream to a stream, it was found useful 
to divide the program into units called routines. The 
signature of a routine is a map from some optional 
input values, a stream and a continuation, giving a 
stream. Henceforth, a finite part of a stream will 
be called a string. The output associated with the 
routine consists of concatenating the string produced 
by the routine to the stream constructed by applying 
the continuation to values computed by the routine, 
continuations being used as described in [Sto77]. 

CCP contains many examples of routines. The 
p r i n t e r  routine takes a value to be printed, a stream, 
and continuation. It concatenates a string, represent- 
ing the value, to the result of applying the continu- 
ation to the stream. The get_token routine takes 
only a stream and a continuation. It produces no 
string; instead its value is the result of applying the 
continuation to both the token it produces and to the 
new input stream. The p r i n t e r  is an example of a 
routine that does not compute a value. Hence, its 
continuation is applied only to a stream. In contrast, 
get_token is an example of a routine that computes 
one value. Hence, its continuation is applied to that 
value as well as a stream. 

Routines can be used in the same manner as sub- 
routines in other programming languages by follow- 
ing the convention that the continuation represents a 
return address. Routines can also be used to imple- 
ment more general control structures[Wad85], since 
continuations are not restricted to be functions de- 
fined in the same section of a program that invokes 
the routine. 

4.2.2 Modules  

Given the size of the programs CCP and LCP, it be- 
came necessary to break these programs into units 

that could be compiled separately, Each compilation 
unit is a function represented by constants combined 
by function application. Compilation units are com- 
billed into a load~ble function by applying to the last 
unit, the result of making the proceeding units into 
a loadable function. The first compilation unit is re- 
sponsible for combining the remaining units into a 
running program. One useful method for combining 
the units involves modules. 

Modules are used to share common definitions. 
Modules are functions that export their definitions 
to other functions. Definitions within a module are 
imported to a function by applying the module to the 
function. An example of a module that exports ~, Y" 
and ~ is ~/ . /£Y'~.  A function that binds the three 
imports to a, b and c is Aab¢.X. 

4 . 3  S u p e r  C o m b i n a t o r s  

Super combinators were introduced in [Hug82] as a 
means of speeding up combinator reduction. Instead 
of using a fixed set of combinators in the representa- 
tion of a function, the compiler carefully chooses the 
set of combinators used for each function. These su- 
per combinators promote sharing of common subex- 
pressions and lessen the total number of reductions. 

On machines that use a fixed set of combinators, 
such as is the CURRY chip, one must further compile 
the super combinators into the machine's fixed set of 
combinators. One reduction of a super combinator is 
replaced by many reductions, but the total number 
of reductions could be lessened due to the offsetting 
influence of increased sharing of common subexpres- 
sions. 

A super combinator version of CCP was created 
by applying Hughes' algorithm to produce a super 
combinator version of the abstractions. These were 
compiled into combinators using the old version of 
CCP, noting the number of reductions required to 
perform the translation. The super combinator ver- 
sion of CCP was loaded, and also used to compile 
the super combinator version of the abstractions. As 
expected, the super comhinator version required less 
storage (2.5~) in the combinator machine. The su- 
per combinator version of CCP required 11~ more 
reductions to translate a compilation unit indepen- 
dent of the size of the unit being compiled. Super 
combinators appear not to be helpful for CCP on the 
CURRY chip. 

5 C o n c l u s i o n  

A combinator programming system that has been im- 
plemented in VLSI, has been shown to support the 
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writing of two sisable programJ for the hardware. A 
novel feature of the CURRY chip is an evaluation 
method that requires no additional storage for am 
evaluation stack. Future planned topics of research 
include the implementation of this system on a par- 
allel processor[BCHPS6], while adjoining a nondeter- 
minktic ¢ombinator[ODo85} to the existing fixed set, 
which will allow the specification of interrupt driven 
programs. 

[Note added in proof: Kevin Greene[Gre85] re- 
portl that D. A. Turner, A. Norman, and M. Scheevel 
have also independently discovered the pointer rever- 
sal evaluation scheme.] 
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