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Abstract

Many modern machine learning classifiers are shown to be
vulnerable to adversarial perturbations of the instances. De-
spite a massive amount of work focusing on making classi-
fiers robust, the task seems quite challenging. In this work,
through a theoretical study, we investigate the adversarial risk
and robustness of classifiers and draw a connection to the
well-known phenomenon of “concentration of measure” in
metric measure spaces. We show that if the metric probabil-
ity space of the test instance is concentrated, any classifier
with some initial constant error is inherently vulnerable to
adversarial perturbations.

One class of concentrated metric probability spaces are the
so-called Lévy families that include many natural distribu-
tions. In this special case, our attacks only need to perturb
the test instance by at most O(

√
n) to make it misclassified,

where n is the data dimension. Using our general result about
Lévy instance spaces, we first recover as special case some of
the previously proved results about the existence of adversar-
ial examples. However, many more Lévy families are known
(e.g., product distribution under the Hamming distance) for
which we immediately obtain new attacks that find adversar-
ial examples of distance O(

√
n).

Finally, we show that concentration of measure for product
spaces implies the existence of forms of “poisoning” attacks
in which the adversary tampers with the training data with
the goal of degrading the classifier. In particular, we show
that for any learning algorithm that uses m training examples,
there is an adversary who can increase the probability of any
“bad property” (e.g., failing on a particular test instance) that
initially happens with non-negligible probability to ≈ 1 by

substituting only Õ(
√
m) of the examples with other (still

correctly labeled) examples.

1 Introduction

Learning how to classify instances based on labeled exam-
ples is a fundamental task in machine learning. The goal
is to find, with high probability, the correct label c(x) of a
given test instance x coming from a distribution µ. Thus, we
would like to find a good-on-average “hypothesis” h (also
called the trained model) that minimizes the error probabil-
ity Prx←µ[h(x) 6= c(x)], which is referred to as the risk
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of h with respect to the ground truth c. Due to the explo-
sive use of learning algorithms in real-world systems (e.g.,
using neural networks for image classification) a more mod-
ern approach to the classification problem aims at making
the learning process, from training till testing, more robust.
Namely, even if the instance x is perturbed in a limited way
into x′ by an adversary A, we would like to have the hypoth-
esis h still predict the right label for x′; hence, minimizing
the “adversarial risk”

Pr
x←µ

[h(x′) 6= c(x′) for some x′ “close” to x]

of the hypothesis h under such perturbations, where “close”
is defined by a metric. An attack to increase the risk is
called an “evasion attack” (see e.g., (Biggio, Fumera, and
Roli 2014; Carlini and Wagner 2017)) due to the fact that
x′ “evades” the correct classification. One major motivation
behind this problem comes from scenarios such as image
classification, in which the adversarially perturbed instance
x′ would still “look similar” to the original x, at least in
humans’ eyes, even though the classifier h might now mis-
classify x′ (Goodfellow, McDaniel, and Papernot 2018). In
fact, starting with the work of Szegedy et al. (Szegedy et
al. 2014) an active line of research investigated various at-
tacks and possible defenses to resist such attacks. The race
between attacks and defenses in this area motivates a study
of whether or not such robust classifiers could ever be found.

A closely related notion of robustness for a learning algo-
rithm deals with the training phase. Here, we would like to
know how much the risk of the produced hypothesis h might
increase, if an adversary A tampers with the training data T
with the goal of increasing the “error” (or any “bad” event
in general) during the test phase. Such attacks are referred
to as poisoning attacks (Biggio, Nelson, and Laskov 2012),
and the line of research on the power and limitations of poi-
soning attacks contains numerous attacks and many defenses
designed against them.

The state of affairs in attacks and defenses with regard to
the robustness of learning systems in both the evasion and
poisoning contexts leads us to our main question:

What are the inherent limitations of defense mecha-
nisms for evasion and poisoning attacks? Equivalently,
what are the inherent power of such attacks?
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Our Results

In this work, we draw a connection between the general phe-
nomenon of “concentration of measure” in metric measured
spaces and both evasion and poisoning attacks. A concen-
trated metric probability space (X ,d,µ) with metric d and
measure µ has the property that for any set S of measure at
least half (µ(S) ≥ 1/2), most of the points in X according
to µ, are “close” to S according to d (see Definition 2.4).
We prove that for any learning problem defined over such a
concentrated space, no classifier with an initial constant er-
ror (e.g., 1/100) can be robust to adversarial perturbations.
Namely, we prove the following theorem.

Theorem 1.1 (Informal). Suppose (X ,d,µ) is a concen-
trated metric probability space from which the test instances
are drawn. Then for any classifier h with Ω(1) initial “er-
ror” probability, there is an adversary who changes the test
instance x into a “close” one and increases the risk to ≈ 1.

In Theorem 1.1, the “error” could be any undesired event
over h, c, x where h is the hypothesis, c is the concept func-
tion and x is the test instance. (See Theorem 3.2.)

The intuition behind the Theorem 1.1 is as follows. Let
E = {x ∈ X | h(x) 6= c(x)} be the “error region” of the hy-
pothesis h with respect to the ground truth concept c(·) on an
input spaceX . Then, by the concentration property ofX and
that µ(E) ≥ Ω(1), we can conclude that at least half of the
space X is “close” to E , and by one more application of the
same concentration property, we can conclude that indeed
most of the points in X are “close” to the error region E .
Thus, an adversary who launches an evasion attack, can in-
deed push a typical point x into the error region by little per-
turbations. This above argument, is indeed inspired by the
intuition behind the previous results of (Gilmer et al. 2018;
Fawzi, Fawzi, and Fawzi 2018), and (Diochnos, Mahlouji-
far, and Mahmoody 2018) all of which use isoperimetric
inequalities for specific metric probability spaces to prove
limitations of robust classification under adversarial pertur-
bations. Indeed, one natural way of proving concentration
results is to use isoperimetric inequalities that characterize
the shape of sets with minimal boundaries (and thus mini-
mal measure after expansion). However, we emphasize that
bounds on concentration of measure could be proved even if
no such isoperimetric inequalities are known, and e.g., ap-
proximate versions of such inequalities would also be suffi-
cient. Indeed, in addition to proofs by isoperimetric inequal-
ities, concentration of measure results are proved using tools
from various fields such as differential geometry, bounds on
eigenvalues of the Laplacian, martingale methods, etc, (Mil-
man and Schechtman 1986). Thus, by proving Theorem 1.1,
we pave the way for a wide range of results against ro-
bust classification for learning problems over any concen-
trated space. To compare, the results of (Gilmer et al. 2018;
Fawzi, Fawzi, and Fawzi 2018; Diochnos, Mahloujifar, and
Mahmoody 2018) have better constants due to their use of
isoperimetric inequalities, while we achieve similar asymp-
totic bounds with worse constants but in broader contexts.

Lévy families. A well-studied class of concentrated met-
ric probability spaces are the so-called Lévy families (see

Definition 3.5) and one special case of such families are
known as normal Lévy families. In such spaces, when the
dimension (seen as the diameter of, or the typical norm
of vectors in (X ,d)) is n, if we expand sets with mea-
sure 1/2 by distance b, they will cover measure at least

1 − k1e
−k2b

2/n for some universal constants k1, k2. When
translated back into the context of adversarial classification
using our Theorem 1.1, we conclude that any learning task
defined over a normal Lévy metric space (X ,d,µ) guar-
antees the existence of (misclassified) adversarial instances

that are only Õ(
√
n)-far from the original instance x, as-

suming that the original error of the classifier is only poly-
nomially large ≥ 1/poly(n). Interestingly, all the above-
mentioned classifier-independent results on the existence of
adversarial instances follow as special cases by applying our
Theorem 1.1 to known normal Lévy families (i.e., the n-
sphere, isotropic n-Gaussian, and the Boolean hypercube
under Hamming distance). However, many more examples
of normal Lévy families are known in the literature (e.g.,
the unit cube, the unit sphere, the special orthogonal group,
symmetric group under Hamming distance, etc.) for which
we immediately obtain new results. In Section 3, we list
some of these examples. 1

Relation to hardness of robust image classification.
Since a big motivation for studying the hardness of classi-
fiers against adversarial perturbations comes from the chal-
lenges that have emerged in the area of image classifica-
tions, here we comment on possible ideas from our work
that might be useful for such studies. Indeed, a natural pos-
sible approach is to study whether or not the metric measure
space of the images is concentrated or not. We leave such
studies for interesting future work. Furthermore, the work
of (Fawzi, Fawzi, and Fawzi 2018) observed that vulnera-
bility to adversarial instances over “nice” distributions (e.g.,
n-Gaussian in their work, and any concentrated distribution
in our work) can potentially imply attacks on real data as-
suming that the data is generated with a smooth generative
model using the mentioned nice distributions. So, as long as
one such mapping could be found for a concentrated space,
our impossibility results can potentially be used for deriving
similar results about the generated data as well.

The special case of product distributions. One natural
family of metric probability spaces for which Theorem 1.1
entails new impossibility results are product measure spaces
under Hamming distance. Results of (Amir and Milman
1980; Milman and Schechtman 1986; Talagrand 1995) show
that such metric probability spaces are indeed normal Lévy.
Therefore, we immediately conclude that, in any learning
task, if the instances come from any product space of dimen-
sion n, then an adversary can perturb them to be misclassi-

1More formally, in Definition 3.5, the concentration function

is e−k2b
2
·n, however in many natural examples that we discuss in

Section 3, the original norm required to be a Lévy family is ≈ 1,
while the (expected value of the) “natural” norm is ≈ n where n is
the dimension.
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fied by only changing O(
√
n) of the “blocks” of the input. A

special case of this result covers the case of Boolean hyper-
cube that was recently studied by (Diochnos, Mahloujifar,
and Mahmoody 2018). However, here we obtain impossibil-
ities for any product space. As we will see below, concentra-
tion in such spaces are useful beyond evasion attacks.

Poisoning attacks from concentration of product spaces.
One intriguing application of concentration in product mea-
sure spaces is to obtain inherent poisoning attacks that can
attack any deterministic learner by tampering with their
training data and increase their error probability during the
(untampered) test phase. Indeed, since the training data is
always sampled as T ← (µ, c(µ))m where c is the concept
function and m is the sample complexity, the concentration
of the space of the training data under the Hamming dis-
tance (in which the alphabet space is the full space of labeled
examples) implies that an adversary can always change the
training data T into T ′ where T ′ by changing only a “few”
examples in T while producing a classifier h that is more
vulnerable to undesired properties.

Theorem 1.2 (Informal). Let L be any deterministic learn-
ing algorithm for a classification task where the confidence
of L in producing a “good” hypothesis h with error at most
ε is 1 − δ for δ ≥ 1/poly(m). Then, there is always a poi-

soning attacker who substitutes only Õ(
√
m) of the training

data, where m is the total number of examples, with another
set of correctly labeled training data, and yet degrades the
confidence of the produced hypothesis h to almost zero. Sim-
ilarly, an attack with similar parameters can increase the av-
erage error of the generated hypothesis h over any chosen
test instance x from any initial probability 1

poly(m) to ≈ 1.

More generally, both attacks of 1.2 follow as special case
of a more general attack in which the adversary can pick
any “bad” property of the produced hypothesis h that hap-
pens with probability at least ≥ 1/poly(m) and increase
its chance to hold with probability ≈ 1 by changing only

Õ(
√
m) of the training examples (with other correctly la-

beled examples). In fact, by allowing the bad property to be
defined over the distribution of the produced hypothesis, we
will not need L to be deterministic.

Our attacks of Theorem 1.2 are offline in the sense that the
adversary needs to know the full training set T before substi-
tuting some of them. We note that the so-called p-tampering
attacks of (Mahloujifar, Diochnos, and Mahmoody 2018)
are online in the sense that the adversary can decide about its
choices without the knowledge of the upcoming training ex-
amples. However, in that work, they could only increase the
classification error by O(p) through tampering by p fraction
of the training data, while here we get almost full error by
only using p ≈ O(

√
m), which is much more devastating.

Related Work

Evasion attacks. In the context of evasion attacks, the
most relevant to our main question above are the re-
cent works of Gilmer et al. (Gilmer et al. 2018), Fawzi
et al. (Fawzi, Fawzi, and Fawzi 2018), and Diochnos et

al. (Diochnos, Mahloujifar, and Mahmoody 2018). In all of
these works, isoperimetric inequalities for specific metric
probability spaces (i.e., for uniform distributions over the
n-sphere by (Gilmer et al. 2018), for isotropic n-Gaussian
by (Fawzi, Fawzi, and Fawzi 2018), and for uniform distri-
bution over the Boolean hypercube by (Diochnos, Mahlou-
jifar, and Mahmoody 2018)) were used to prove that prob-
lems on such input spaces are always vulnerable to adver-
sarial instances.2 Other concurrent works have also demon-
strated the role of concentration of measure in guarantee-
ing the existence of adversarial examples in certain metric
probability spaces (Dohmatob 2018; Shafahi et al. 2018). In
particular, Shafahi et al. had a tighter analysis of the robust-
ness of classification over input distributions that are uni-
form over the n-dimension sphere and hyper-cube, both of
which are special cases of Normal Levy families studied in
this work. The work of Schmidt et al. (Schmidt et al. 2018)
shows that, at least in some cases, being robust to adver-
sarial instances requires more data. However, the work of
Bubeck et al. (Bubeck, Price, and Razenshteyn 2018) proved
that assuming the existence of classifiers that are robust to
evasion attacks, they could be found by “few” training ex-
amples in an information theoretic way. There is also a re-
cent line of work that which provides robustness guaran-
tees on individual instances, up to certain degree (Kolter
and Wong 2017; Raghunathan, Steinhardt, and Liang 2018;
Sinha, Namkoong, and Duchi 2017; Wong et al. 2018).

Poisoning attacks. In the context of poisoning attacks,
some classical results about malicious noise (Valiant 1985;
Kearns and Li 1993; Bshouty, Eiron, and Kushilevitz 2002)
could be interpreted as limitations of learning under poison-
ing attacks. On the positive (algorithmic) side, the works
of Diakonikolas et al. (Diakonikolas et al. 2016) and Lai
et al. (Lai, Rao, and Vempala 2016) showed the surpris-
ing power of algorithmic robust inference over poisoned
data with error that does not depend on the dimension
of the distribution. These works led to an active line of
work (e.g., see (Charikar, Steinhardt, and Valiant 2017;
Diakonikolas, Kane, and Stewart 2017; 2018; Diakoniko-
las et al. 2018; Prasad et al. 2018; Diakonikolas, Kong, and
Stewart 2018) and references therein) exploring the possibil-
ity of robust statistics over poisoned data with algorithmic
guarantees. The works of (Charikar, Steinhardt, and Valiant
2017; Diakonikolas, Kane, and Stewart 2018) performed
list-docodeable learning, and (Diakonikolas et al. 2018;
Prasad et al. 2018) studied supervised learning. Demonstrat-
ing the power of poisoning attacks, Mahmoody and Mahlou-
jifar (Mahloujifar and Mahmoody 2017) showed that, as-
suming an initial Ω(1) error, a variant of poisoning attacks

2More formally, Gilmer et al. (Gilmer et al. 2018) designed
specific problems over (two) n-spheres, and proved them to be
hard to learn robustly, but their proof extend to any problem de-
fined over the uniform distribution over the n-sphere. Also, Fawzi
et al. (Fawzi, Fawzi, and Fawzi 2018) used a different notion of
adversarial risk that only considers the hypothesis h and is inde-
pendent of the ground truth c, however their proofs also extend to
the same setting as ours.
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that tamper with ≈ p fraction of the training data without
using wrong labels (called p-tampering) could always in-
crease the error of deterministic classifiers by Ω(p) in the
targeted poisoning model (Barreno et al. 2006) where the
adversary knows the final test instance. Then Mahloujifar
et al. (Mahloujifar, Diochnos, and Mahmoody 2018) im-
proved the quantitative bounds of (Mahloujifar and Mah-
moody 2017) and also applied those attacks to degrade the
confidence parameter of any PAC learner under poisoning
attacks. Both attacks of (Mahloujifar and Mahmoody 2017;
Mahloujifar, Diochnos, and Mahmoody 2018) were online,
in the sense that the adversary does not know the future ex-
amples, and as we will see their attack model is very relevant
to this work. Koh and Liang (Koh and Liang 2017) studied
finding training examples with most influence over the final
decision over a test instance x–enabling poisoning attacks.
Note that here, we prove the existence of O(

√
m) examples

in the training set that can almost fully degrade the final de-
cision on x, assuming Ω(1) initial error on x. The work of
Bousquet and Elisseeff (Bousquet and Elisseeff 2002) stud-
ied how specific forms of stability of the hypothesis (which
can be seen as robustness under weak forms of “attacks” that
change one training example) imply standard generalization
(under no attack). Our work, on the other hand, studies gen-
eralization under attack while the adversary can perturb a
lot more (but still sublinear).

Other definitions of adversarial examples. The works of
Madry et al. (Madry et al. 2018) and Schmidt et al. (Schmidt
et al. 2018) employ an alternative definition of adversar-
ial risk inspired by robust optimization. This definition is
reminiscent of the definition of “corrupted inputs” used by
Feige et al. (Feige, Mansour, and Schapire 2015) (and re-
lated works of (Mansour, Rubinstein, and Tennenholtz 2015;
Feige, Mansour, and Schapire 2018; Attias, Kontorovich,
and Mansour 2018)) as in all of these works, a “success-
ful” adversarial instance x′ shall have a prediction h(x′) that
is different from the true label of the original (uncorrupted)
instance x. However, such definitions based on corrupted in-
stances do not always guarantee that the adversarial exam-
ples are misclassified. In fact, even going back to the original
definitions of adversarial risk and robustness from (Szegedy
et al. 2014), many papers (e.g., the related work of (Fawzi,
Fawzi, and Fawzi 2018)) only compare the prediction of the
hypothesis over the adversarial instance with its own predic-
tion on the honest instance, and indeed ignore the ground
truth defined by the concept c.) In various “natural” settings
(such as image classification) the above two definition and
ours coincide. We refer the reader to the work of Diochnos
et al. (Diochnos, Mahloujifar, and Mahmoody 2018) where
these definitions are compared and a taxonomy is given.

2 Preliminaries

Definition 2.1 (Notation for metric spaces). Let (X ,d)
be a metric space. We use the notation Diam

d(X ) =
sup {d(x, y) | x, y ∈ Xi} to denote the diameter of X un-
der d, and we use Balldb (x) = {x′ | d(x, x′) ≤ b} to denote
the ball of radius b centered at x. When d is clear from the

context, we simply write Diam(X ) and Ballb(x). For a set
S ⊆ X , by d(x,S) = inf {d(x, y) | y ∈ S} we denote the
distance of a point x from S .

Unless stated, all integrals are Lebesgue integrals.

Definition 2.2 (Nice metric probability spaces). We call
(X ,d,µ) a metric probability space, if µ is a Borel prob-
ability measure over X with respect to the topology defined
by d. Then, for a Borel set E ⊆ X , the b-expansion of E ,
denoted by Eb, is defined as3

Eb = {x | d(x, E) ≤ b} .

We call (X ,d,µ) a nice metric probability space, if the fol-
lowing conditions hold.

1. Expansions are measurable. For every µ-measurable
(Borel) set E ∈ X , and every b ≥ 0, its b-expansion Eb
is also µ-measurable.

2. Average distances exist. For every two Borel sets E ,S ∈
X , the average minimum distance of an element from S
to E exists; namely, the integral

∫
S
d(x, E) · dµ(x) exists.

At a high level, and as we will see shortly, we need the
first condition to define adversarial risk and need the sec-
ond condition to define (a generalized notion of) robustness.
Also, we remark that one can weaken the second condition
above based on the first one and still have risk and robust-
ness defined, but since our goal in this work is not to do a
measure theoretic study, we are willing to make simplify-
ing assumptions that hold on the actual applications, if they
make the presentation simpler.

Notation on learning problems. We use calligraphic let-
ters (e.g., X ) for sets. By x ← µ we denote sampling x
from the probability measure µ. For a randomized algo-
rithm R(·), by y ← R(x) we denote the randomized execu-
tion of R on input x outputting y. A classification problem
(X ,Y,µ, C,H) is specified by the following components.
The set X is the set of possible instances, Y is the set of
possible labels, µ is a distribution over X , C is a class of
concept functions where c ∈ C is always a mapping from
X to Y . We did not state the loss function explicitly, as we
work with classification problems. For x ∈ X , c ∈ C, the
risk or error of a hypothesis h ∈ H is equal to Risk(h, c) =
Prx←µ[h(x) 6= c(x)]. We are usually interested in learning
problems (X ,Y,µ, C,H) with a specific metric d defined
over X for the purpose of defining risk and robustness under
instance perturbations controlled by metric d. In that case,
we simply write (X ,Y,µ, C,H,d) to include d.

Definition 2.3 (Nice classification problems). We call
(X ,Y,µ, C,H,d) a nice classification problem, if the fol-
lowing two conditions hold:

1. (X ,d,µ) is a nice metric probability space.

2. For every h ∈ H, c ∈ C, their error region
{x ∈ X | h(x) 6= c(x)} is µ-measurable.

3The set Eb is also called the b-flattening or b-enlargement of E ,
or simply the b-ball around A.
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The second condition above is satisfied, e.g., if the set of
labelsY (which is usually finite) is countable, and for all y ∈
Y, f ∈ H∪C, the set {x ∈ X | f(x) = y} is µ-measurable.

We now formally define the (standard) notion of concen-
tration function.

Definition 2.4 (Concentration function). Let (X ,d,µ) be a
metric probability space and E ⊆ X be a Borel set. The
concentration function is then defined as

α(b) = 1− inf {µ(Eb) | µ(E) ≥ 1/2} .
Variations of the following Lemma 2.5 below are in (Amir

and Milman 1980; Milman and Schechtman 1986), but the
following version is due to Talagrand (Talagrand 1995).

Lemma 2.5 (Concentration of product spaces under Ham-
ming distance). Let µ ≡ µ1× · · · ×µn be a product proba-
bility measure of dimension n and let the metric be the Ham-
ming distance. For any µ-measurable S ⊆ X such that the
b-expansion Sb of S under Hamming distance is measur-
able, it holds that

µ(Sb) ≥ 1− e−b
2/n

µ(S) .

Lemma 2.6 (McDiarmid inequality). Let µ ≡ µ1 × · · · ×
µn be a product probability measure of dimension n, and
let f : Supp(µ) 7→ R be a measurable function such that
|f(x) − f(y)| ≤ 1 whenever x and y only differ in one
coordinate. If a = Ex←µ[f(x)], then

Pr
x←µ

[f(x) ≤ a− b] ≤ e−2·b
2/n.

3 Evasion Attacks: Finding Adversarial

Examples from Concentration
In this section, we formally prove our main results about
the existence of evasion attacks for learning problems over
concentrated spaces. We start by formalizing the notions of
risk and robustness.

Definition 3.1 (Adversarial risk and robustness). Let
(X ,Y,µ, C,H,d) be a nice classification problem. For h ∈
H and c ∈ C, let E = {x ∈ X | h(x) 6= c(x)} be the error
region of h with respect to c. Then, we define:

• Adversarial risk. For b ∈ R+, the (error-region) adver-
sarial risk under b-perturbation is

Riskb(h, c) = Pr
x←µ

[∃x′ ∈ Ballb(x) ∩ E ] = µ(Eb).

We might call b the “budget” of an imaginary “adver-
sary” who perturbs x into x′. Using b = 0, we recover the
standard notion of risk: Risk(h, c) = Risk0(h, c) = µ(E).

• Target-error robustness. Given a target error ρ ∈ (0, 1],
we define the ρ-error robustness as the expected pertur-
bation needed to increase the error to ρ; namely,

Robρ(h, c) = inf
µ(S)≥ρ

{
E

x←µ

[1S(x) · d(x, E)]
}

where 1S(x) is the characteristic function of membership
in S . Letting ρ = 1, we recover the notion of full robust-
ness Rob(h, c) = Rob1(h, c) = Ex←µ [d(x, E)] that cap-
tures the expected amount of perturbations needed to al-
ways change x into a misclassified x′ where x′ ∈ E .

As discussed in the introduction, starting with (Szegedy
et al. 2014), many papers (e.g., the related work of (Fawzi,
Fawzi, and Fawzi 2018)) use a definitions of risk and ro-
bustness that only deal with the hypothesis/model and is in-
dependent of the concept function. In (Diochnos, Mahlou-
jifar, and Mahmoody 2018), that definition is formalized as
“prediction change” (PC) adversarial risk and robustness.

In the rest of this section, we focus on misclassification as
a necessary condition for the adversarial instances. So, we
use Definition 3.1 to prove our results.

Increasing Risk and Decreasing Robustness

We now formally state and prove our result that the adversar-
ial risk can be large for any learning problem over concen-
trated spaces. Note that, even though the following is stated
using the concentration function, having an upper bound on
the concentration function suffices for using it. Also, we note
that all the results of this section extend to settings in which
the “error region” is substituted with any “bad” event mod-
eling an undesired region of instances based on the given
hypothesis h and concept function c; though the most natu-
ral bad event is that error h(x) 6= c(x) occurs.

Theorem 3.2 (From concentration to large adversarial risk).
Let (X ,Y,µ, C,H,d) be a nice classification problem. Let
h ∈ H and c ∈ C, and let ε = Prx←µ[h(x) 6= c(x)] be the
error of the hypothesis h with respect to the concept c. If ε >
α(b) (i.e., the original error is more than the concentration
function for the budget b), then the following two hold.

1. Reaching adversarial risk at least half. Using only tam-
pering budget b, the adversary can make the adversarial
risk to be more than half; namely, Riskb(h, c) > 1/2.

2. Reaching adversarial risk close to one. If in addition
we have γ ≥ α(b2), then the adversarial risk for the total
tampering budget b1 + b2 is Riskb1+b2(h, c) ≥ 1− γ.

The above theorem provides a general result that applies
to any concentrated space. So, even though we will compute
explicit bounds for spaces such as Lévy families, Theorem
3.2 could be applied to any other concentrated space as well,
leading to stronger or weaker bounds than what Lévy fami-
lies offer. Now, in the following, we go after finding general
relations between the concentration function and the robust-
ness of the learned models.

Simplifying notation. Suppose (X ,d,µ) is a nice metric
probability space. Since our risk and robustness definitions
depend only on the error region, for any Borel set E ⊆ X and
b ∈ R+, we define its b-tampering risk as Riskb(E) = µ(Eb),
and for any such E and ρ ∈ (0, 1], we define the ρ-error

robustness as Robρ(E) = infµ(S)≥ρ

{∫
S
d(x, E) · dµ(x)

}
.

The following lemma provides a very useful tool for go-
ing from adversarial risk to robustness; hence, allowing us
to connect concentration of spaces to robustness. In fact, the
lemma could be of independent interest, as it states a rela-
tion between worst-case concentration of metric probability
spaces to their average-case concentration with a targeted
amount of measure to cover.
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Lemma 3.3 (From adversarial risk to target-error robust-
ness). For a nice metric probability space (X ,d,µ), let
E ⊆ X be a Borel set. If ρ = Riskℓ(E), then we have

Robρ(E) = ρ · ℓ−
∫ ℓ

z=0

Riskz(E) · dz.

Now we make a few comments on using Lemma 3.3.

Special case of full robustness. Lemma 3.3 can be used to
compute the full robustness also as

Rob(E) = Rob1(E) = ℓ−
∫ ℓ

z=0

Riskz(E) · dz, (1)

using any ℓ ≥ Diam(X ), because for such ℓ we will have
Riskℓ(E) = 1. In fact, even if the diameter is not finite, we
can always use ℓ =∞ and rewrite the two terms as

Rob(E) =
∫ ∞

z=0

(1− Riskz(E)) · dz, (2)

which might or might not converge.

When we only have lower bounds for adversarial risk.
Lemma 3.3, as written, requires the exact amount of risk for
the initial set E . Now, suppose we only have a lower bound
Lz(E) ≤ Riskz(E) for the adversarial risk. In this case, we
can still use Lemma 3.3, but it will only give us an upper
bound on the ρ-error robustness using any ℓ such that ρ ≤
Lℓ(E) as follows,

Robρ(E) ≤ ℓ−
∫ ℓ

z=0

Lz(E) · dz. (3)

Note that, even though the above bound looks similar to
that of full robustness in Equation 1, in Inequality 3 we can
use ℓ < Diam(X ), which leads to a smaller total bound on
the ρ-error robustness.

We now formally state our result that concentration in the
instance space leads to small robustness of classifiers. Simi-
larly to Theorem 3.2, we note that even though the following
theorem is stated using the concentration function, having an
upper bound on the concentration function would suffice.

Theorem 3.4 (From concentration to small robustness). Let
(X ,Y,µ, C,H,d) be a nice classification problem. Let h ∈
H and c ∈ C, and let ε = Prx←µ[h(x) 6= c(x)] be the
error of the hypothesis h with respect to the concept c. Then
if ε > α(b1) and 1− ρ ≥ α(b2), we have

Robρ(E) ≤ (1− ε) · b1 +
∫ b2

z=0

α(z) · dz.

Normal Lévy Families as Concentrated Spaces

In this subsection, we study a well-known special case of
concentrated spaces called normal Lévy families, as a rich
class of concentrated spaces, leading to specific bounds on
the risk and robustness of learning problems whose test in-
stances come from any normal Lévy family. We start by for-
mally defining normal Lévy families.

Definition 3.5 (Normal Lévy families). A family of met-
ric probability spaces (Xn,dn,µn)i∈N with corresponding
concentration functions αn(·) is called a (k1, k2)-normal
Lévy family if

αn(b) ≤ k1 · e−k2·b
2·n.

The following theorem shows that classifying instances
that come from a normal Lévy family has the inherent vul-
nerability to perturbations of size O(1/

√
n)

Theorem 3.6 (Risk and robustness in normal Lévy families).
Let (Xn,Yn,µn, Cn,Hn,dn)n∈N be a nice classification
problem with a metric probability space (Xn,dn,µn)n∈N
that is a (k1, k2)-normal Lévy family. Let h ∈ Hn and
c ∈ Cn, and let ε = Prx←µ[h(x) 6= c(x)] be the error of
the hypothesis h with respect to the concept c.

1. Reaching adversarial risk at least half. If b >√
ln(k1/ε)/

√
k2 · n, then Riskb(h, c) ≥ 1/2.

2. Reaching Adversarial risk close to one. If

b >
√
ln(k1/ε) + ln(k1/γ)/

√
k2 · n, then it holds

that Riskb(h, c) ≥ 1− γ.

3. Bounding target-error robustness. For any ρ ∈ [ 12 , 1],
we have

Robρ(h, c) ≤
(1− ε)

√
ln( k1

ε
)

√
k2 · n

+
erf

(√
ln( k1

(1−ρ)
)
)
· k1

√
π

2
√
k2 · n

.

Here we remark on its interpretation in an asymptotic
sense, and discuss how much initial error is needed to
achieve almost full adversarial risk.

Examples of Normal Lévy Families. Here, we list some
natural metric probability spaces that are known to be nor-
mal Lévy families. For the references and more examples
we refer the reader to excellent sources (Ledoux 2001;
Giannopoulos and Milman 2001; Milman and Schechtman
1986). There are other variants of Lévy families, e.g., those
called Lévy (without the adjective “normal”) or concen-
trated Lévy families (Alon and Milman 1985) with stronger
concentration, but we skip them and refer the reader to the
cited sources and general tools of Theorems 3.2 and 3.4 on
how to apply any concentration of measure results to get
bounds on risk and robustness of classifiers. 1. Unit sphere
with uniform distribution under Euclidean or Geodesic dis-
tance. 2. Rn under Gaussian distribution and Euclidean dis-
tance. 3. Unit cube and unit ball under the uniform distribu-
tion and Euclidean distance. 4. Product distributions under
Hamming distance. 5. Symmetric group under with uniform
distribution and under Hamming distance.

4 Poisoning Attacks from Concentration of

Product Measures

In this section, we design new poisoning attacks against any
deterministic learning algorithm, by using the concentration
of space in the domain of training data. We start by defining
the confidence and error parameters of learners.

Now, we formally define the class of poisoning attacks
and their properties.
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Definition 4.1 (Poisoning attacks). Let (X ,Y,µ,H, C) be a
classification with a learning algorithm L. Then, a poison-
ing adversary A for (L,X ,Y,µ,H, C) is an algorithm that
takes as input a training set T ← (µ, c(µ))m and outputs
a modified training set T ′ = A(T ) of the same size4. We
also interpret T and T as vectors with m coordinates with
a large alphabet and let HD be the Hamming distance for
such vectors of m coordinates. For any c ∈ C, we define the
following properties for A.

• A is called plausible, if y = c(x) for all (x, y) ∈ T ′.
• A has tampering budget b ∈ [m] if for all T ←
(µ, c(µ))m, T ′ ← A(T ), we have HD(T ′, T ) ≤ b.

• A has average tampering budget b, if we have:

E
T←(µ,c(µ))m,T ′←A(T )

[HD(T ′, T ))] ≤ b.

Before proving our results about the power of poisoning
attacks, we need to define the confidence function of a learn-
ing algorithm under such attacks.

Definition 4.2 (Confidence function and its adversarial vari-
ant). For a learning algorithm L for a classification problem
(X ,Y,µ,H, C) and for a predicate p : H → {0, 1}, we use
ConfA to define the adversarial confidence in the presence
of a poisoning adversary A as follows

ConfA(m, c, p) = Pr
T←(µ,c(µ))m,h←L(A(T ))

[p(h) = 0].

By Conf(·), we denote L’s confidence function without
any attack; namely, Conf(·) = ConfI(·) for the trivial (iden-
tity) attacker I that does not change the training data.

Increasing a Bad Event’s Probability by Poisoning

The following theorem formalizes (the first part of) Theo-
rem 1.2. We emphasize that by choosing the adversary af-
ter the concept function is fixed, we allow the adversary to
depend on the concept class. This is also the case in e.g., p-
tampering poisoning attacks of (Mahloujifar, Diochnos, and
Mahmoody 2018). However, there is a big distinction be-
tween our attacks here and those of (Mahloujifar, Diochnos,
and Mahmoody 2018), as our attackers need to know the en-
tire training sequence before tampering with them, while the
attacks of Mahloujifar et al. were online.

Theorem 4.3. Consider a classification problem
(X ,Y,µ,H, C), a deterministic learner L, a concept
c ∈ C and a bad predicate p : H → {0, 1}. Also let
Conf(m, c, p) = 1− δ be the original confidence of L.

1. For any γ ∈ [0, 1], there is a plausible poisoning adver-

sary A with tampering budget at most
√
− ln(δ · γ) ·m

such that, A makes the adversarial confidence to be as
small as γ. Namely, ConfA(m, c, p) ≤ γ.

2. There is a plausible poisoning adversary A with aver-

age tampering budget
√
− ln(δ) ·m/2 eliminating all the

confidence. Namely, ConfA(m, c, p) = 0.

4Requiring the sets to be equal only makes our negative attacks
stronger.

Remark 4.4 (Examples of undesired predicates). The pred-
icate p in above theorem could be any undesirable prop-
erty. For instance, it could be a Boolean function indicat-
ing weather the error of the hypothesis is greater than some
threshold. Or it could be equal to one if the hypothesis out-
puts a wrong label on a specific target instance.
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