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Perspective

Most common non-parametric approaches based on smoothness
prior, which leads to “local” learning algorithms, e.g. kernel-based.
Smoothness may not be the only way to obtain “simple
functions” : e.g. According to Kolmogorov complexity, sinus(x)
and parity(x) are simple yet they are highly variable (apparently
complex) functions.

Let us clarify the notion of “locality” which leads to the curse of
dimensionality even to learn simple but highly variable functions,
and probably to learn what is required for true AI.

Already established for classical non-parametric learning ⇒
generalize it to modern kernel machines.

If you can read this, be ready for a lot of distractions here... Snowbird Learning Workshop
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Geometric Intuition

If we have to tile the space or the mani-
fold where the bulk of the distribution is
concentrated, then we will need an ex-
ponential number of “patches” :

.. and if you can’t read this, you should go to the optician Snowbird Learning Workshop
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If we have to tile the space or the mani-
fold where the bulk of the distribution is
concentrated, then we will need an ex-
ponential number of “patches” :

For classification problems no need to co-
ver the whole space/manifold, only deci-
sion surface, but still has dim. d − 1.

.. and if you can’t read this, you should go to the optician Snowbird Learning Workshop



Intuitions and Classical Results
Locality of the Kernel

Curse of Dimensionality Arguments
Learning Highly-Varying Functions

Summary
Geometric Intuition
Classical Curse of Dimensionality

Geometric Intuition

If we have to tile the space or the mani-
fold where the bulk of the distribution is
concentrated, then we will need an ex-
ponential number of “patches” :

For classification problems no need to co-
ver the whole space/manifold, only deci-
sion surface, but still has dim. d − 1.

Number of required examples ∝ const
d

.. and if you can’t read this, you should go to the optician Snowbird Learning Workshop
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Kernel Density Estimation

For a wide class of kernel density estimators (Härdle et al., 2004),
the generalization error converges in n−4/(4+d), i.e.

Kernel density estimation seems doomed ! Snowbird Learning Workshop
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Kernel Density Estimation

For a wide class of kernel density estimators (Härdle et al., 2004),
the generalization error converges in n−4/(4+d), i.e.

The required number of examples to reach a given error level is
exponential in d

Kernel density estimation seems doomed ! Snowbird Learning Workshop
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K nearest neighbors

In the context of K nearest neighbors with weighted Lp metrics of
the form dist(x , y) = ‖A(x − y)‖p, (Snapp and Venkatesh, 1998)
show the generalization error can be written as a series expansion
of the form

En = E∞ +
∞

∑

j=2

cjn
−j/d

under smoothness constraints on the class distributions, i.e. again

Nearest neighbor predictor seems doomed ! Snowbird Learning Workshop
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Kernel Methods

f (x) = b +

n
∑

i=1

αiKD(x , xi )

Used in classification (KNN, SVM, ...), dimen-
sionality reduction (kernel PCA, LLE, Isomap,
Laplacian eigenmaps, ...). May be training data
(D) dependent.

SVM’s αi ’s may depend on xj far from xi

Is the rest of the kernel world doomed as well ? Snowbird Learning Workshop
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Kernel Methods

f (x) = b +

n
∑

i=1

αiKD(x , xi )

Used in classification (KNN, SVM, ...), dimen-
sionality reduction (kernel PCA, LLE, Isomap,
Laplacian eigenmaps, ...). May be training data
(D) dependent.

SVM’s αi ’s may depend on xj far from xi

This talk = independent of the way the αi

are learned

Is the rest of the kernel world doomed as well ? Snowbird Learning Workshop
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When a Test Example is Far from Training Examples

If the kernel is local, i.e.

lim
||x−xi ||→∞

K (x , xi ) → ci

then when x gets farther from the training set

f (x) → b +
∑

i

αici

After becoming approx. linear, the predictor becomes either
constant or (approximately) the nearest neighbor predictor (e.g.
with the Gaussian kernel)

Aren’t we all so far from each other ? Snowbird Learning Workshop
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When a Test Example is Far from Training Examples

If the kernel is local, i.e.

lim
||x−xi ||→∞

K (x , xi ) → ci

then when x gets farther from the training set

f (x) → b +
∑

i

αici

After becoming approx. linear, the predictor becomes either
constant or (approximately) the nearest neighbor predictor (e.g.
with the Gaussian kernel)

In high dimensions, a random test point tends to be equally far
from most training examples.

Aren’t we all so far from each other ? Snowbird Learning Workshop
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Local-Derivative Kernels

SVM : f (x) not local (depends on xi far from x) through αi ’s !
The derivative of f is

∂f (x)

∂x
=

n
∑

i=1

αi
∂K (x , xi )

∂x

Especially lonely are those who stay local Snowbird Learning Workshop
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Local-Derivative Kernels

SVM : f (x) not local (depends on xi far from x) through αi ’s !
The derivative of f is

∂f (x)

∂x
=

n
∑

i=1

αi
∂K (x , xi )

∂x

Local-derivative kernel

When ∂f /∂x is (approximately) contained in the span of the
vectors (x − xj) with xj a neighbor of x

∂f (x)

∂x
≃

∑

xj∈N (x)

γj(x − xj)

x
xi

Especially lonely are those who stay local Snowbird Learning Workshop
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Classification : ∂f /∂x is the decision surface normal vector

Constraining ∂f /∂x in the span of the neighbors is a very strong
constraint, possibly leading to high-variance estimators.
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LLE is local-derivative
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Tangent Planes and Decision Surfaces

Manifold learning : ∂f /∂x span manifold’s tangent plane
Classification : ∂f /∂x is the decision surface normal vector

Constraining ∂f /∂x in the span of the neighbors is a very strong
constraint, possibly leading to high-variance estimators.

SVMs with Gaussian kernel are local-derivative

LLE is local-derivative

Isomap is local-derivative

Kernel PCA with Gaussian kernel is local-derivative

Don’t worry, there are more images coming... Snowbird Skiing Workshop
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Tangent Planes and Decision Surfaces

Manifold learning : ∂f /∂x span manifold’s tangent plane
Classification : ∂f /∂x is the decision surface normal vector

Constraining ∂f /∂x in the span of the neighbors is a very strong
constraint, possibly leading to high-variance estimators.

SVMs with Gaussian kernel are local-derivative

LLE is local-derivative

Isomap is local-derivative

Kernel PCA with Gaussian kernel is local-derivative

Spectral clustering with Gaussian kernel is local-derivative

Don’t worry, there are more images coming... Snowbird Skiing Workshop
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Locality. Show that crucial properties of f (x) (e.g. tangent plane,
decision surface normal vector) depend mostly on examples in ball
N (x).
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Locality. Show that crucial properties of f (x) (e.g. tangent plane,
decision surface normal vector) depend mostly on examples in ball
N (x).

Smooothness. Show that within N (x), crucial property of f (x)
must vary slowly ( = smoothness within N (x) ).
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General Curse of Dimensionality Argument

Locality. Show that crucial properties of f (x) (e.g. tangent plane,
decision surface normal vector) depend mostly on examples in ball
N (x).

Smooothness. Show that within N (x), crucial property of f (x)
must vary slowly ( = smoothness within N (x) ).

Complexity. Consider targets that vary sufficiently so that one
needs to consider O(const

d) different neighborhoods, with
significantly different properties in each neighborhood.

... in the meantime, please enjoy the colors Snowbird Skiing Workshop
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Spectral Manifold Learning Algorithms

Many manifold learning algorithms can be seen as kernel machines
with data-dependent kernel (LLE, Isomap, kernel PCA, Laplacian
Eigenmaps, charting, etc...).

Locality

Shown for the estimated tangent plane.

Our sincere apologies to color-blind people Snowbird Skiing Workshop
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Spectral Manifold Learning Algorithms

Many manifold learning algorithms can be seen as kernel machines
with data-dependent kernel (LLE, Isomap, kernel PCA, Laplacian
Eigenmaps, charting, etc...).

Locality

Shown for the estimated tangent plane.

Smoothness of f (·)

The tangent plane varies slowly within N (x), since it is in the span
of vectors x − xi .

Our sincere apologies to color-blind people Snowbird Skiing Workshop
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Spectral Manifold Learning Algorithms

Many manifold learning algorithms can be seen as kernel machines
with data-dependent kernel (LLE, Isomap, kernel PCA, Laplacian
Eigenmaps, charting, etc...).

Locality

Shown for the estimated tangent plane.

Smoothness of f (·)

The tangent plane varies slowly within N (x), since it is in the span
of vectors x − xi .

Non-Smoothness of Target

If the underlying manifold has high curvature in many places, we
are doomed...

Our sincere apologies to color-blind people Snowbird Skiing Workshop
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Ex : Translation of a High Contrast Image

tangent directions

tangent image

tangent directions

tangent image

shifted
image

high−contrast image

N.B. ∃ examples of non-local learning with no domain-specific
prior knowledge which worked on learning such manifolds
(rotations and translations), (Bengio and Monperrus, 2005),
generalizing far from training examples.

Spectral manifolds are doomed ! Snowbird Skiing Workshop
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The 1-Norm Soft Margin SVM with Gaussian Kernel

Locality

As shown in (Keerthi and Lin, 2003), the SVM becomes constant
when σ → 0 or σ → ∞ ⇒ notion of locality w.r.t σ.
Local-derivative : Locality of normal vector of decision surface.

SVMs are doomed ! Snowbird Skiing Workshop
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The 1-Norm Soft Margin SVM with Gaussian Kernel

Locality

As shown in (Keerthi and Lin, 2003), the SVM becomes constant
when σ → 0 or σ → ∞ ⇒ notion of locality w.r.t σ.
Local-derivative : Locality of normal vector of decision surface.

Smoothness of f (·)

When there are training examples at a distance of the order of σ,
the normal vector is almost constant in a ball whose radius is small
with respect to σ.

SVMs are doomed ! Snowbird Skiing Workshop
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Simple but Highly Variable Functions : Difficult to Learn

decision surface

Class −1

Class 1

This “complex” sinusoidal decision surface can-
not be learned with less than 10 Gaussians. Ho-
wever, in “C” language, it has a high prior.

(Am I repeating myself ?) SVMs are doomed ! Snowbird Skiing Workshop
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Simple but Highly Variable Functions : Difficult to Learn

decision surface

Class −1

Class 1

This “complex” sinusoidal decision surface can-
not be learned with less than 10 Gaussians. Ho-
wever, in “C” language, it has a high prior.

Corollary of (Schmitt, 2002)

If ∃ a line in R
d that intersects m times with the decision surface S

(and is not included in S), then one needs at least ⌈m
2 ⌉ Gaussians

(of same width) to learn S with a Gaussian kernel classifier.

(Am I repeating myself ?) SVMs are doomed ! Snowbird Skiing Workshop
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The Parity Problem

parity :

(b1, . . . , bd) ∈ {0, 1}d 7→

{

1 if
∑d

i=1 bi is even
−1 otherwise

Theorem

A Gaussian kernel classifier needs at least 2d−1 Gaussians (i.e.
support vectors) to learn the parity function (when Gaussians have
fixed width and are centered on training points).

(Just in case you missed it) SVMs are doomed ! Snowbird Skiing Workshop
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Then What ?

• Local Kernel machines won’t scale to highly
variable functions in high manifold dimension.
Good news : SVMs interpolate between very lo-
cal and very smooth (vary σ). Bad news : if
target function structured but not smooth...

Maybe we are NOT DOOMED after all ! Snowbird Skiing Workshop
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• The no-free-lunch thm : no universal recipe
without appropriate prior.
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Then What ?

• Local Kernel machines won’t scale to highly
variable functions in high manifold dimension.
Good news : SVMs interpolate between very lo-
cal and very smooth (vary σ). Bad news : if
target function structured but not smooth...

• The no-free-lunch thm : no universal recipe
without appropriate prior.
• Is there hope ?

Maybe we are NOT DOOMED after all ! Snowbird Skiing Workshop
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Then What ?

• Local Kernel machines won’t scale to highly
variable functions in high manifold dimension.
Good news : SVMs interpolate between very lo-
cal and very smooth (vary σ). Bad news : if
target function structured but not smooth...

• The no-free-lunch thm : no universal recipe
without appropriate prior.
• Is there hope ?
• Humans seem to do learn such functions !
• There might be loose enough priors on general
classes of functions that allow non-local learning
algorithms to learn them.

Maybe we are NOT DOOMED after all ! Snowbird Skiing Workshop
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Then What ?

• Local Kernel machines won’t scale to highly
variable functions in high manifold dimension.
Good news : SVMs interpolate between very lo-
cal and very smooth (vary σ). Bad news : if
target function structured but not smooth...

• The no-free-lunch thm : no universal recipe
without appropriate prior.
• Is there hope ?
• Humans seem to do learn such functions !
• There might be loose enough priors on general
classes of functions that allow non-local learning
algorithms to learn them.

• Let us explore priors / learning algorithms
beyond the smoothness prior.

Maybe we are NOT DOOMED after all ! Snowbird Skiing Workshop
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Questions Coffee time !

*Clap* *Clap* *Clap* *Clap* *Clap* *Clap* Snowbird Skiing Workshop
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