MATHEMATICS OF COMPUTATION

Volume 83, Number 290, November 2014, Pages 2853-2863
S 0025-5718(2014)02855-X|

Article electronically published on June 20, 2014

THE CURSE OF DIMENSIONALITY FOR NUMERICAL
INTEGRATION OF SMOOTH FUNCTIONS

A. HINRICHS, E. NOVAK, M. ULLRICH, AND H. WOZNIAKOWSKI

ABSTRACT. We prove the curse of dimensionality for multivariate integration
of C" functions: The number of needed function values to achieve an error e
is larger than ¢, (1 + ﬁ/)d for € < €g, where ¢,y > 0. The proofs are based
on volume estimates for » = 1 together with smoothing by convolution. This
allows us to obtain smooth fooling functions for r > 1.

1. INTRODUCTION

We study multivariate integration for different classes F,; of smooth functions
f: R4 = R. Our emphasis is on large values of d € N. We want to approximate

W Saf) = [ J@de for JeF,
Dy

up to some error € > 0, where Dy C R? has Lebesgue measure 1. The results in this

paper hold for arbitrary sets Dg, the standard example of course is Dy = [0, 1]<.
We consider (deterministic) algorithms that use only function values, and classes

F,; of functions bounded in absolute value by 1 and containing all constant functions

f(z) = ¢ with |¢|] < 1. An algorithm that uses no function value at all must be a

constant, Ag(f) = b, and its error is at least

max [ Sa(f)] = 1.

We call this the initial error of the problem, it does not depend on d. Hence
multivariate integration is well scaled and that is why we consider ¢ < 1.

Let n(e, F;) denote the minimal number of function values needed for this task
in the worst case settin. By the curse of dimensionality we mean that n(e, Fy) is
exponentially large in d. That is, there are positive numbers ¢, €y and « such that

(2) n(e,Fy) > c(1+7)? forall e<eg and infinitely many d € N.

For many natural classes F,; the bound in (2)) will hold for all d € N. This applies
in particular to the classes considered in this paper.
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I'We add that n(e, Fy) is the information complexity of multivariate integration over Fy and
is proportional to the (total) complexity as long as Fy is convex and symmetric. The last two
assumptions are needed to guarantee that a linear algorithm is optimal and its implementation
cost is linear in n(e, Fy).
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There are many classes F,; for which the curse of dimensionality has been proved;
see [BL[7] for such examples. However, it has not been known if the curse of dimen-
sionality occurs for probably the most natural class which is the unit ball of r times
continuously differentiable functions,

Co={feC"®RY) | [ID°fl <1 forall [B|<r},

where 8 = (51,82, - ., Ba), with nonnegative integers 3;, |3 = ijl B;j, and D?
denotes the operator of 8; times differentiation with respect to the jth variable for
j=1,2,...,d. By |- || we mean the sup norm, |D?f|| = sup,cga |(D? f)(z)|.

For r = 0, we obviously have n(e,C9) = oo for all ¢ < 1 and all d € N. Therefore,
from now on we always assume that » > 1. For r = 1, the curse of dimensionality
for C} follows from the results of Sukharev [§]. Whether the curse holds for r > 2
has been an open problem for many years.

The class C; for Dy = [0,1]? (and functions and norms restricted to Dg) was
already studied in 1959 by Bakhvalov [2]; see also [4]. He proved that there are two
positive numbers a4, and Ag, such that

(3) ad,r e < n(e,Cq) < Aqr e " forallde Nande € (0,1).

This means that for a fixed d and for € tending to zero, we know that n(e,C}) is of
order e~%/" and the exponent of e~ grows linearly in d. Unfortunately, Bakhvalov’s
result does not allow us to conclude whether the curse of dimensionality holds for
the class Cj;. In fact, if we reverse the roles of d and €, and consider a fixed € and d
tending to infinity, the bound (@) on n(e,C}) is useless. We prove the following
result and hereby solve Open Problem 1 from [5]:

Main Theorem. The curse of dimensionality holds for the classes C} with the
super-exponential lower bound

n(e,Ch) > ¢, (1—e)d¥+3  foralld e N and e € (0,1),
where ¢, € (0,1] depends only on r.

We also prove that the curse of dimensionality holds for even smaller classes of
functions F,; for which the norms of arbitrary directional derivatives are bounded
proportionally to 1/v/d.

We now discuss how we obtain lower bounds on n(e, Fy) for numerical integration
defined on convex and symmetric classes Fy. The standard proof technique is to
find a fooling function f € F, that vanishes at the points P = {21, 2z9,...,2,} at
which we sample functions from Fjy, and the integral of f is as large as possible.
All algorithms that use function values at x;’s must give the same approximation
of the integral for f and —f. Thus, each such algorithm makes an error of at least
|Sa(f) — Sa(—f)|/2 = |Sa(f)| for one of the functions. That is why the integral of
f is a lower bound on the worst case error of all algorithms using function values
at x;’s. If, for all choices of 1,2, ..., %y, there are functions f € F; vanishing at
x;’s with integrals larger than e, then n(e, Fy) > n.

We start with the fooling function

fo(x) = min {1, ﬁ dist(x,Pg)} for all z € RY,
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where
Ps = | Bi (=)
i=1

and B¢(xz;) is the ball with center z; and radius 5v/d. The function fy is Lipschitz.
By a suitable smoothing via convolution we construct a fooling function f, € CJ
with frlP =0.

2. PRELIMINARIES

In this section, we precisely define our problem. Let Fj; be a class of continuous
functions f : R — R such that S;(f) (see () exists for every f € F;. We
approximate the integral Sy(f), f € Fy4, by algorithms

A a(f) = bna(f(z1), f(@2),..., flzn)),

where z; € R? can be chosen adaptively and ®n,d : R™ — Ris an arbitrary mapping.
Adaption means that the selection of z; may depend on the already computed values
f(z1), f(z2),..., f(zj—1). The (worst case) error of the algorithm A, 4 is defined

as
e(An,a) = sup [Sa(f) — Ana(f).
f€Fq
The minimal number of function values to guarantee that the error is at most ¢ is
defined as

n(e,Fy) =min{n € N| 3 A, 4 such that e(4,q) <e}.

Hence we minimize n over all choices of adaptive sample points x; and mappings
®n,d- It is well known that, as long as the class Fy; is convex and symmetric, we
may restrict the minimization of n by considering only nonadaptive choices of x;
and linear mappings ¢, 4. Furthermore,

(4) n(e, Fy) zmin{nEN | inf sup  |Sa(f)] §5};
PCRYE#P=n feFy, flp=0

see [4, Prop. 1.2.6] or [9, Theorem 5.5.1]. In this paper, we always consider convex
and symmetric F; so that we can use the last formula for n(e, F;). For more details
see, e.g., Chapter 4 in [5].

As already mentioned, our lower bounds are based on a volume estimate of a
neighborhood of certain sets in R%; see also [3]. In the following, we denote by As
the (5v/d)-neighborhood of A C R?, which is defined by

(5) A5 = {z e R?| dist(z, A) < §Vd},

where dist(z, A) = inf,c 4 ||z — al|2 denotes the Euclidean distance of x from A.
Furthermore, we denote by B¢(z) the d-dimensional ball with center z € R? and
radius 6v/d, i.e.,
Bl(z) = {y e R*| |l —yll, < v/},
We will need some standard volume estimates for Euclidean balls. Recall that
the volume of a Euclidean ball of radius 1 is given by

/2

Vi=Faram)
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From Stirling’s formula for the I' function, we have
M(z+1)=+V2rxz® e ™t forall x> 0,
where 6,, € (0,1); see [1 p. 257]. This leads to the estimate

Mz +1)>+V2rz (g) for all z> 0.

Combining this estimate with the volume formula for the ball, we obtain for all
d €N,

d/2 d
£re oV 27re) d
6)  Ma(Bi) = (6va) Vi < (svay L) < (6v2re) |
(6) d( 5 ( )) ( ) d ( ) Vrd Vrd ( )
where A4 is the Lebesgue measure. The volume formula for the Euclidean unit ball
also shows the recurrence relation

Va-1 d Vi3
= fi 11 d>4.
Vi d—1 Vy_o ora -

This easily implies
2 Vi 2 Vas
Vvd Vi \/ 2 Va2

The last inequality can be used in an inductive argument leading to

(7) 2 Vi

NZRZ
This will be needed later.

for all d > 4.

<1 forall d>2.

3. CONVOLUTION
In this section, we fix £ € N and study the convolution
Jei=fxgix. . xgk

of a function f defined on R? with (normalized) indicator functions g;. We are
interested in properties of fr in terms of the properties of the initial function f.
Recall that the convolution of two functions f and ¢ on R? is defined by

(f * g)(x /fx—t t)dt for all z € R%

Fix a number § > 0 and a sequence (aj)é?:l with a; > 0 such that

k
ZO&j S 1.
j=1

For example, we may take a;j = 1/k for j =1,2,...,k. For j =1,...,k, we define
the ball
B, = {xeRd} lzll2 < ay m}

and the function g;: R? — R by

Ip(x) 1 1 if z € By,
3) 50 = 3255 = {

0 otherwise.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE CURSE OF DIMENSIONALITY 2857

Thus, the convolution of a function f with g; can be written as
1
(f*gj)(x) = ~—%~ / f(z+t)dt forall zecR%L
! Ad(B;) /g,

We will frequently use the following probabilistic interpretation. Let Y; be a random
variable that is uniformly distributed on B;. Then the convolution of f with g; can
be written as the expected value

(f *95)(x) = E[f(z+Y)].

The next theorem is the basis for the induction steps of the proofs of our main
results. For f: R? — R, we use the Lipschitz constant

Lin(/) — sup 1@ = W)
wty 1T —yll2
Define
C"= {f:Rd%R\ Def...Delfis continuous for all £ < r
and all 64,...,0, € Sd_l},

where S is the unit sphere in R? and D% f(x) = limj_,¢ %(f(:v + hby) — f(a:))
is the derivative in the direction of 6.

Theorem 1. For k € N and f € C", define
fe=Ff*xq*...xgx with g; from ().
Ford > 2, let Q C R? and let Qs be its neighborhood defined as in (B). Then:
(2) if f(x) =0 for all x € Qs, then fr(x) =0 for all x € Q,

(1) Lip(fx) < Lip(f),
(iii) if [, fz+t)dz > € forallt € R with ||t||s < 6v/d, then Jp, fe(z)dz > ¢,
)

(iv) for all £ <r and all 61,0s,...,0, € ST,
Lip(Dg‘f Dle-1 .D91fk> < Lip(D‘g’f Dot .Delf),
(v) fr € C™* and for all¢ <r, all j=1,...,k and all 01,02, ...,0,; € ST1,

J

Lip(D"w DOeri ...D"lfk) < <| [ 51
(8%
=1

The parts (i)—(iv) of this theorem show that some properties of the initial func-
tion f are preserved by convolutions. Part (v) states that we gain one “degree of
smoothness” with every convolution, losing only a multiplicative constant for its
Lipschitz constant.

) Lip(DW Dot D91f>.

Proof. First note that we can write f as
fu(@) = E[f(z+Y)], forall zeR%

where Y is a random variable with probability density function g; * ... * gx. By
construction of g;’s which are the indicator functions of the balls whose sum of the

radii is at most 6v/d, we have
{teRY| gy %...xgp(t) >0} C {t eR| |t]2 < 6Vd},

which implies that z +Y € Qs almost surely for every x € Q. Thus, f(z) =0 for
all z € Qs implies that f(z) = 0 for all x € Q, which is property ().
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Property (i) is proven by

[fr(@) = fu@)| = [E[f(e+Y) = fly+Y)]| < E[lf(z+Y) ~ fly +Y)]
< Lip(/) E[|(z +Y) = (y + Y)l5] = Lip(f) & = yll,-

To prove (iii), we use Fubini’s theorem and we obtain

[ iy ar = /Dd]E[f(erY)] de =E[[ ftv)a] >

Dg
by assumption.

For the proof of properties (iv) and (v), let 6 = (61, ...,0,) € (S?~1)*. We write
D? for D% ... D% Clearly, f € C" and ¢ < r implies that D’ f € C"~* C C. Since
fi is at least as smooth as f, both D?f and D? f;, are well defined.

We need the well-known fact that D?(f * g) = (D?f) * g if f € C* and g has
compact support. For g = g1 * ... % gi, we have

|D9fk(37) - Dgfk:(y)| = ’((D‘gf) * g) (z) — ((Def) N g)(y)\
/Rd [(Def(x—l-t) - Dgf(y+t)] g(t)dt

< Lip(0'$) o=l [ ate)de

= Lip(D’f) [l —yll,

for all z,y € R?. The last equality follows since the g is normalized. This proves
().

For (v), we need to prove that f; € C"T* with f, = f € C" by assumption, and
then it is enough to show that for all m < r+k and all § = (6,,,...,6,) € (ST 1)™,

Lip(D11) < 50 Lin(D7fus).

where 0 = (0,,_1,...,0;) € (S¥~1)m~1L,
Assume inductively that fp 1 € C™~ ! which holds for k¥ = 1. This implies
DO(fr—1 % gr) = (D fr—1) * gr, and

D fi(x) = D (D fu_1) * gi) (x)

- Df’m()\d(lBk) /Rd D f_i(z+1t)1p,(t) dt)

1 _
= Dem Dé’ _ 1
Na(Br) (/%/R fer (@ + 5+ h) L, (5 + ) dhds)
1 _
Xa(Br) /% (/R Jr—1(z + s+ hoy,) Bk(5+h9m)dh) ds,

where ;- is the hyperplane orthogonal to 6,,. For any function f on R of the form

with some continuous function g we have

f'(x) = g(x +a) — g(z —a).
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Therefore, we obtain

1

_ Défk_l (gc + 5 — hmax(s) Hm)] ds
with
hmax(s) = max{h >0| s+ hb,, € B}.

For each s € By N 6;-, define the points 51 = s + hmax(8) 0 € By, and
S92 = 8 — himax(8) 0, € Bg. Then

1 5 ;
Aa(Bg) /Bme,ln UD fkfl(l"f'sl) -D fk*l(x-i-SQ)

|D? fiu(z) — D fi(y)| <

- Défkq(y +51) + Défkfl(y + s2) ‘ ] ds

1 P ;
= Aa(Br) /Bme,{; UD fer(z+s1) =D fk—l(y—FSl)’

+ ‘Défk_1 (l‘ =+ 82) —Défk_l (y =+ 82) ‘ :| ds

2 /\d—l(Bk N 9#1)

< B Lip(D? fx 1) |z =yl -

In particular, this shows the implication
frieC™ ™l = freC™

for all k € N. Taking m = r + k we have f; € C"t*, as claimed.

For m < r + k, it remains to bound 2\q_1 (B N 6;5)/Aa(By). Recall that By, is
a ball with radius dayv/d and that V; is the volume of the Euclidean unit ball in
R<. We obtain from () that

2/\d—1(Bk09#L) _ 2(50%\/&)(171 Vi1 2 Va1 1

= = < .
Aa(Bx) (SapVd)d  Va Sapvd Va ~ dag

This concludes the proof that

J
Lip (Deeﬂ' Doei-t | .Delfk) < (H #) Lip (D"f plet . .D"lf),
i 0k
but since the order of convolution is arbitrary, we obtain in the same way,

Lip(De“-? pleri-1 | po fk) < <H 51 >Lip(D9@ ple-r . ph f),
ieJ

3

for all J C {1,...,k} with #J = j. In particular, this implies (v). O
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4. MAIN RESULTS

Let P = {x1,...,2,} C R? be a collection of n points. As pointed out in the
introduction, we want to construct functions that vanish at P and have a large
integral. For this, we choose

. .
fo(x) = min {1, Vi dlst(x,P5)} for all z € RY,

where
Ps = | Bi(z:)
i=1

and B{(z;) is the ball with center z; and radius 5Vd.
The function dist(-, Ps) is Lipschitz with constant 1. Hence, for § < 1,

1
sVd
Additionally, fo(z) = 0 for all € P;s by definition.
Using these facts we can apply Theorem [Il to prove the curse of dimensionality

for the following class of functions that are defined on R?. For a fixed r € N, we
now take a; = --- =, = i and define

Firs={f:RT >R | feC" satisfies (I0)- (12},

(9) Lip(fo) =

where
(10) Il < 1
() Lin(f) < S,
k
(12) vk<r: omax Lip(D%...D%f) < 5—\1/8 (g) ,
Theorem 2. For anyr € N and 6 € (0, 1],
1 for d=1,

n(e, Fyrs) > (1—¢) { for all e € (0,1).

(6v 18e7r)_d for d>2,
Hence the curse of dimensionality holds for the class Fy, 5 for 6 < 1/v/18em.

This result shows that the growth rate of n(e, Fyy,s) in d can be arbitrarily large
if we choose § small enough.

Proof. Since the initial error for the classes Fy,s is 1, we obtain n(e, Fy,5) > 1
for all € € (0,1). This proves the statement for d = 1.

For d > 2, we use Theorem[lwith k = r, @ = P and f.(x) = foxg1*...xg-(2).
Here, the g;’s are as in Theorem[Il Recall that we have chosen a; = ... =, = 1/7
and a; = 0 for j > r. The properties of the initial function fo and Theorem [
immediately imply that f, satisfies (I0)—(I2Z). It remains to bound its integral.
Note that fo(z) =1 for all x ¢ Pys. Clearly, f.(z) > 0 for all x € R9. Since f,.(x)
depends only on the values fo(z +t) for t € R? with ||t||, < §V/d, it follows that
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fr(z) =1 for x ¢ P3s. We thus obtain

fr(z)dz > / fr(x)dz = 1 — Ag(P3s N Dg)

Dy Dg\Pss
> 1— \g(Ps3s) > 1 —nAa(BSs)
d
n (36\/ 2671')
>1—-—7

NeT
>1_n@&@af,

where the next to last inequality follows from the bound in (). Hence | Da fr(z)de
< ¢ implies that

n>(1—e¢)(6v/18m)~%
Since this holds for arbitrary P, the result follows. ]
By Theorem 2] we know how the parameter § comes into play. For p > 0, let
1
v 18em

For this 4, we obtain a somehow stronger form of the curse of dimensionality for

5 = d—p/(r+1)

the class
Fupp = {f:R'>R | f € satisfies (I3)-(5)},
where
(13) I < 1
(14) Lip(f) < d- =t V18er,
(15) Ve <r: max  Lip(D"...D%f) < d 350 ok (ViSer) "

61,...,0,€SI—1
Theorem 3. For anyr € N and p > 0,
n(e, Farp) > (1—e)d?¥ T+ forall deN and e € (0,1).
Hence the curse of dimensionality holds for the class ﬁd,r,p-
Note that the classes ﬁdmp are contained in the classes
Cp={feC | |DPf <1 forall |8]<r},

if p < 1/2 and d is large enough. This holds if

1/(1/2-p)
(16) d > (rr (18677)(”'1)/2) .

From this we easily obtain the main result already stated in the introduction.
Main Theorem. For any r € N, there exists a constant ¢, € (0,1] such that
n(e,Ch) > ¢, (1—e)d¥®+3)  forall deN and e € (0,1).

Hence the curse of dimensionality holds for the class C}.
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Proof. The case d = 1 is trivial since the initial error for the classes C} is again 1.

For d > 2, we know from Theorem [3land the discussion thereafter that n(e, Cy) >
(1—¢)dP¥(+1) for all p < 1/2 if d > dy, where dy = do(r, p) is the right-hand side
of (I8). This implies

n(e,Ch) > ¢np (1 —e)dP¥C*Y forall d>2,

with

Er,p _ dapdo/(T"Fl)7
which depends only on r and p. The choice p* = (r + 1)/(2r + 3) yields the result
with Cpr = Er,p* . O

Note that ¢, in the last theorem is super-exponentially small in 7.

Remark 1. The reader might find it more natural to define classes of functions
Fy,(Dg) that are defined only on Dy C R<. Not all such functions can be extended
to smooth functions on R?, and even if they can be extended then the norm of
the extended function could be much larger. Our lower bound results for functions
defined on R? can be also applied for functions defined on Dy C R? and this makes
them even stronger.

Remark 2. Note that the possibility of super-exponential lower bounds on the
complexity depends on the definition of the Lipschitz constant. For the class

Fd—{f:[(),l]d—HR| sup M<1},

oweoald 17— ylloo

Sukharev [§] proved that the product mid-point rule is optimal with error e, =
ﬁn’l/d for n = m?. Hence, roughly, n(e, F4) ~ 2-%~¢ and the complexity is
“only” exponential in d for e < 1/2.

Remark 3. We mention two results for the very small class
Fi=CF ={f € C=(0,1%) | D°f <1 forall 8eNg}.

O. Wojtaszczyk [10] proved that limg o n(e, Fy) = oo for every e < 1, hence
the problem is not strongly polynomially tractable. It is still open whether the
curse of dimensionality holds for this class F;. The same class Fy was studied for
the approximation problem in [6]. For this problem the curse of dimensionality is
present even if we allow algorithms that use arbitrary linear functionals.
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