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Abstract
A number of accounts of human and animal behavior posit the operation of parallel and competing
valuation systems in the control of choice behavior. Along these lines, a flexible but
computationally expensive model-based reinforcement learning system has been contrasted with a
less flexible but more efficient model-free reinforcement learning system. The factors governing
which system controls behavior—and under what circumstances—are still unclear. Based on the
hypothesis that model-based reinforcement learning requires cognitive resources, we demonstrate
that having human decision-makers perform a demanding secondary task engenders increased
reliance on a model-free reinforcement learning strategy. Further, we show that across trials,
people negotiate this tradeoff dynamically as a function of concurrent executive function demands
and their choice latencies reflect the computational expenses of the strategy employed. These
results demonstrate that competition between multiple learning systems can be controlled on a
trial-by-trial basis by modulating the availability of cognitive resources.

Accounts of decision-making across cognitive science, neuroscience, and behavioral
economics posit that decisions arise from two qualitatively distinct systems, which differ,
broadly, in their reliance on controlled versus automatic processing (Daw, Niv, & Dayan,
2005; Dickinson, 1985; Kahneman & Frederick, 2002; Loewenstein & O’Donoghue, 2004).
This distinction is thought to be of considerable practical importance, for instance, as a
possible substrate for compulsion in drug abuse (Everitt & Robbins, 2005) and other
disorders of self-control (Loewenstein & O’Donoghue, 2004).

However, one challenge for investigating such a division of labor experimentally is that, on
typical formulations, most behaviors are ambiguous as to which system produced them, and
their contributions can often only be conclusively distinguished by procedures that are both
laborious and theory-dependent (Dickinson & Balleine, 2002; Gläscher et al., 2010).
Moreover, although different theories share a common rhetorical theme, there is less
consensus as to what are the fundamental, defining characteristics of the two systems,
making it a challenge to relate data grounded in different models’ predictions. One
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particularly large gap in this regard is between research in human cognitive psychology,
which is typically grounded in a distinction between procedural versus explicit learning and
elucidated using manipulations such as working memory (WM) load (Foerde, Knowlton, &
Poldrack, 2006; Zeithamova & Maddox, 2006) and another tradition of more invasive
animal research on parallel brain structures for instrumental learning (Dickinson & Balleine,
2002; Yin & Knowlton, 2006), usually investigated with two-stage learning/transfer
paradigms such as latent learning or reward devaluation. This latter domain has been of
recent interest to human cognitive neuroscientists because of the close relationship between
traditional associative learning models and the reinforcement learning (RL) algorithms that
have been used to characterize activity in dopaminergic systems in both humans and animals
(temporal-difference learning, TD; O’Doherty et al., 2003; Schultz, Dayan, & Montague,
1997).

For these reasons, RL theories may provide new leverage for reframing and formalizing the
dual-system distinction in a manner that spans both animal and human traditions. One
contemporary theoretical framework leverages the distinction between two families of RL
algorithms: model-based and model-free RL (Daw et al., 2005). TD-based theories of the
dopamine system are model-free in the sense that they directly learn preferences for actions
using a principle of repeating reinforced actions (akin to Thorndike’s “law of effect”)
without ever explicitly learning or reasoning about the structure of the environment. Model-
based RL, by contrast, learns an internal “model” of the proximal consequences of actions in
the environment (such as the map of a maze) in order to prospectively evaluate candidate
choices. This algorithmic distinction closely echoes theories of instrumental conditioning in
animals (Dickinson, 1985), but the computational detail of Daw et al. (2005) framework
leads to relatively specific predictions that afford clear identification of each system’s
contribution to choice behavior.

Consistent with prior work suggesting the parallel operation of distinct valuation systems
(Dickinson & Balleine, 2002), people appear to exhibit a mixture of the signatures of both
strategies in their choice patterns (Daw et al., 2011). However, it remains to be seen whether
these two forms of choice behavior reflect any of the characteristics associated with
controlled and automatic processing in human cognitive neuroscience, and even more
fundamentally whether they really capture distinct and separable processes. Underlining the
question, recent fMRI work unexpectedly revealed overlapping neural signatures of the two
strategies (Daw et al., 2011).

To investigate these questions, we paired the multistep choice paradigm of Daw and
colleagues (2011; Figure 1) with a demanding concurrent task manipulation designed to tax
WM resources. Concurrent WM load has been demonstrated to drive people away from
explicit or rule-based systems towards reliance on putatively implicit systems in perceptual
categorization (Zeithamova & Maddox, 2006), probabilistic classification (Foerde et al.,
2006), and simple prediction (Otto, Taylor, & Markman, 2011). Contemporary theories
differentiating model-based versus model-free RL hypothesize that increased demands on
central executive resources influence the tradeoff between the two systems because model-
based strategies involve planning processes that putatively draw upon executive resources
(Norman & Shallice, 1986) whereas model-free strategies simply apply the parsimonious
principle of repeating previously rewarded actions (Daw et al., 2005; Dayan, 2009). We
hypothesized that if learning and/or planning in a model-based system were constrained by
the availability of central executive resources, then choice behavior on these trials should,
selectively, reflect reduced model-based contributions and increased model-free
contributions.
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Experiment 1 utilizes a within-subject design in which some trials of the choice task were
accompanied by a concurrent Numerical Stroop task that has been demonstrated to displace
explicit processing resources in perceptual category learning (Waldron & Ashby, 2001). We
hypothesized that if learning and/or planning in a model-based system is constrained by the
availability of central executive resources, then choice behavior on these trials should,
selectively, reflect reduced model-based contributions and increased model-free
contributions. As a corollary, we predicted that response times—a widely used index of
cognitive cost (Payne et al., 1993)—should be slower on trials in which model-based
influence was prevalent in participants’ choices compared to trials in which choice appears
relatively model-free. To further highlight model-based choice’s dependence on central
executive resources, Experiment 2 provides a conceptual replication of this phenomenon.

Experiment 1
Our experimental procedure is described in detail below. Readers seeking an intuitive
understanding of the task and our predictions are encouraged to advance to the Results.

Participants
A total of 43 undergraduates at the University of Texas participated in exchange for course
credit and were paid 2.5 cents per rewarded trial to incentivize choice. The data of 25
participants were used in analyses (participant exclusion criteria are detailed in the
Supplemental Materials).

Materials and Procedure
Participants performed 300 trials of the two-step RL task (Figure 1A) accompanied by a
concurrent Numerical Stroop task on 150 trials selected as WM-load trials. These WM-load
trials were positioned randomly, but with the constraint that the ordering would yield equal
numbers of the three trial types of interest (50 each). Participants were instructed to perform
the WM task as well as possible and make choices with “with what was left over.” After
being familiarized with the RL task structure and goals, they were given 15 practice trials
under WM-load to familiarize themselves with the response procedure.

The RL task followed the same general procedure in both trial types (see Figure 2 for a
timeline). In the first step, two fractal images appeared on a black background (indicating
the initial state), and there was a two-second response window in which participants could
choose the left- or right-hand response using the “Z” or “?” keys respectively. After a choice
was made, the selected action was highlighted for the remainder of the response window
followed by the background color changing according to the second-stage state the
participant had transitioned to. After the transition, the background color changed to reflect
the second-stage state and the selected first-stage action moved to the top of the screen. Two
fractal images, corresponding to the actions available in the second stage, were displayed
and participants again had two seconds to make a response. The selected action was
highlighted for the remainder of the response window. Then, either a picture of a quarter
was shown (indicating that they had been rewarded that trial) or the number zero (indicating
that they had not been rewarded that trial) was shown. The reward probabilities associated
with second-stage actions were governed by independently drifting Gaussian random walks
(SD=0.025) with reflecting boundaries at 0.25 and 0.75. Mappings of actions to stimuli and
transition probabilities were randomized across participants.

On WM-load trials, participants additionally had to perform a numerical Stroop task, which
required the participant to remember which of two numbers were physically and numerically
larger (Waldron & Ashby, 2001; Figure 2). These trials were signaled in two ways. First,
during the one-second inter-trial interval preceding the first stage, participants were warned
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with the message “WATCH FOR NUMBERS.” Second, during both stages of the choice
task on WM-load trials, the screen was outlined in red. At the beginning of the first-stage
response window, two digits were presented for 200 ms above the response stimuli,
followed by a white mask for another 200 ms. After second-stage reward feedback was
provided, either the word “VALUE” or “SIZE” appeared on screen, and there was a one-
second response window in which participants were to indicate the side of the screen on
which the number with the larger value or larger size was presented. Participants used the
“Z” or “?” keys to indicate the left and right side respectively. This was followed by one
second of feedback (“CORRECT” or “INCORRECT”) followed by the inter-trial interval
preceding the next trial. If the participant failed to make a choice in the response window of
either response stage or the numerical Stroop judgment, a red X appeared for one second
indicating that their response was too slow, and the trial was aborted. Crucially, the trial
lengths were equated across WM-load and no-WM-load trials.

Results
Participants performed 300 trials of a two-step RL task (Figure 1A). In each two-stage trial,
people made an initial first-stage choice between two options (depicted as fractals), which
probabilistically leads to one of two second-stage “states” (colored green or blue). In each of
these states participants make another choice between two options, which were associated
with different probabilities of monetary reward. One of the first-stage responses usually led
to a particular second-stage state (70% of the time) but sometimes led to the other second-
stage state (30% of the time). Because the second-stage reward probabilities independently
change over time, decision-makers need to make trial-by-trial adjustments to their choice
behavior in order to effectively maximize payoffs.

Model-based and model-free strategies make qualitatively different predictions about how
second-stage rewards influence subsequent first-stage choices. For example, consider a first-
stage choice that results in a rare transition to a second stage wherein that second-stage
choice was rewarded. Under a pure model-free strategy—by virtue of the reinforcement
principle—one would repeat the same first-stage response because it ultimately resulted in
reward. In contrast, a model-based choice strategy, utilizing a model of the transition
structure and immediate rewards to prospectively evaluate the first-stage actions, would
predict a decreased tendency to repeat the same first-stage option because the other first-
stage action was actually more likely to lead to that second-stage state.

These patterns of dependency of choices on the previous trial’s events can be distinguished
by a two-factor analysis of the effect of the previous trial’s reward (rewarded versus
unrewarded) and transition type (common versus rare) on the current trial’s first-stage
choice1. The predicted choice pattern for a pure model-free strategy and a pure model based-
strategy are depicted in Figures 1A and 1B, respectively, derived from model simulations
(Daw et al., 2011, see Supplemental Materials). A pure model-free strategy predicts only a
main effect of reward, while a full crossover interaction is predicted under a model-based
strategy because transition probabilities are taken into account. Following Daw et al. (2011),
we factorially examined the impact of both the transition type (common versus rare) and
reward (rewarded versus not rewarded) on the previous trial upon participants’ tendency to
repeat the same first-stage choice on the current choice. To examine the relationship
between these signatures of choice strategies and the concurrent WM load manipulation

1In general, RL models predict that a trial’s choice depends on learning also from even earlier trials (and below we use fits of these
models to verify that our results hold when these longer-term dependencies are accounted for). However, since in these models, the
most recent trial exerts the largest effect on choice (and this effect becomes exclusive as free learning rate parameters approach 1), this
factorial analysis provides a clear picture of the critical qualitative features of behavior less dependent on the specific parametric and
structural assumptions of the full models.
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(Figure 2), we crossed these factors with a third defining the position of the most recent
WM-load trial relative to the current trial. We sorted trials according to where the most
recent WM-load trial had occurred relative to the current trial, yielding three trial types of
interest. Thus Lag-0, Lag-1, and Lag-2 refer to trials in which WM load occurred on the
current trial, the previous trial, or the trial preceding the previous trial, respectively. Trials in
which WM load had occurred more than once across the current trial and its two
predecessors did not fall into any of these categories, and were excluded from analysis.

Strategy as a function of concurrent WM load
We hypothesized that if WM load interferes with model-based decision-making, behavior on
Lag-0 trials should appear model-free (Figure 1B), as participants do not have the cognitive
resources to carry out a model-based strategy on those trials. Conversely, we hypothesized
that behavior on Lag-2 trials would reflect a mixture of both model-based and model-free
strategies (Figures 1B and C)—mirroring the results of Daw and colleagues’ (2011) study—
as these trials involved no WM load either on the choice trial or on the preceding trial and
thus participants could bring their full cognitive resources to bear on these trials. We
reasoned further that if WM load disrupts participants’ ability to integrate information
crucial for model-based choice then behavior on Lag-1 trials should appear model-free
(mirroring Lag-0 trials). On the other hand, if participants are able to integrate this
information while under load and apply it on the subsequent trial then behavior on Lag-1
trials should resemble a mixture of both strategies, mirroring Lag-2 trials.

Figure 3 plots participants’ choices as a function of previous reward and transition type,
broken down by WM condition. The pattern of results on Lag-2 trials suggests that
participants’ choices on these trials reflect both the main effect of reward (characteristic of
model-free RL) and its interaction with the rare or common transition (characteristic of
model-based RL), consistent with the previous single-task result (Daw et al., 2011). In
contrast, choices on Lag-0 and Lag-1 trials (Figures 3B and C) appear sensitive only to
reward on the previous trial and not to the transition type. Qualitatively, these choice
patterns resemble a pure model-free strategy (Figure 2A), suggesting that WM load
interferes with model-based choice. To quantify these effects of WM load on choice
behavior, we conducted a mixed-effects logistic regression (Pinheiro & Bates, 2000) to
explain the first-stage choice on each trial t (coded as stay versus switch) using binary
predictors indicating if reward was received on t-1 and the transition type (common or rare)
that had produced it. Further, we estimated these factors under each trial type—Lag-0,
Lag-1, and Lag-2, represented by binary indicators—and, to capture any individual
differences, specified all coefficients as random effects over subjects. The full regression
specification and coefficient estimates are reported in Table 1.

We found a significant main effect of reward for each trial type (ps<.05), indicating that
participants had a general tendency to repeat rewarded first-stage responses, consistent with
spared use of a model-free strategy, and suggesting that the concurrent task demands did not
produce trivially random or otherwise unstructured behavior. However, we found a
significant three-way interaction between Lag-2, reward, and transition type
(lag-2×reward×transition, p<.05) suggesting that the interaction characteristic of a model-
based choice strategy was evident in Lag-2 trials as hypothesized. Neither interaction
between Lag-0, reward, and transition type nor Lag-1, reward, and transition type were
significant indicating that this model-based interaction was not present in these trial types
(ps>.25).

To examine whether these differences between trial types were themselves significant, a
planned contrast revealed that the size of the Lag-2 three-way interaction (lag-2×reward×
transition, indicative of model-based learning) was significantly larger than the same
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interactions at both the Lag-1 and Lag-0 levels (p<.05). Further, we found no differences in
model-free behavior between any of the trial types (e.g., Lag-0×reward, Lag-1×reward, and
Lag-2×reward) considered (ps>.30). All of these results are consistent with the hypothesis
that concurrent demand selectively interferes with model-based learning and/or planning
while sparing model-free decision-making.

Choice Response Times
We also predicted that model-based choice, by virtue of its hypothesized cognitive costs,
should incur larger RTs at the first-stage choice than model-free choices (Keramati et al.,
2011). We compared Lag-2 trials (in which behavior reflected the influence of a model-
based strategy; Figure 3A) with Lag-1 trials (in which behavior appeared only to reflect a
model-free strategy; Figure 3B). The comparison between the two single-task trial types that
exhibit different degrees of model usage provides a clean test of the hypothesis: in Lag-0
trials, the RTs are confounded by the demands of the concurrent task itself. A mixed-effects
linear model (see Supplemental Materials) carried out on first-stage RTs revealed that
participants exhibited significantly larger RTs on Lag-2 choices than on Lag-1 choices
(Figure 4;β=2.05,p<.05),_suggesting that model-based choice—evident on Lag-2 trials—
indeed bore the signature of a cognitively costly process. Put another way, choice was faster
on Lag-1—where behavior appeared model-free—supporting the notion that the process
governing choice on those trials was cognitively less expensive.

Reinforcement Learning Model
One limitation of the foregoing regression analysis is that it only considers the influence of
reinforcement occurring on the immediately preceding trial. Most RL models, in contrast,
posit a decaying influence of all previous trials. We extended our regression analysis by
fitting a dual-system RL model—a computational instantiation of the principles governing
two hypothesized choice systems (Daw et al., 2011; Gläscher et al., 2010)—to behavior in
this task. This model consists of a model-free system that updates estimates of choice values
using TD learning, and a model-based system that learns a transition and reward model of
the task and uses these to compute choice values on the fly (see Supplemental Materials).
The values are linearly mixed according to a weight parameter that determines the balance
between model-free and model-based control—weights closer to 0 indicate model-free
control whereas weights closer to 1 indicate model-based control. The mixed value is then
used to generate choices according to a softmax rule (Sutton & Barto, 1998). To
accommodate the present paradigm, we fit two separate mixing weights: one for Lag-0/1
trials and one for Lag-2 trials. We found that Lag-2 weights were significantly larger than
the Lag-0/Lag-1 weights (Figure 5;t=2.94,p<.01) suggesting that participants’ behavior was
more model-based at longer lags, corroborating the results of the regression analysis.

Experiment 2
Because this within-subjects WM load manipulation is rather intricate and novel, we sought
to provide a between-subjects replication of the study using a separate WM load
manipulation in which one group of participants concurrently counted auditory tones
(Foerde et al., 2006). In brief, we found that the behavior exhibited by Single-task
participants resembled the mixture of strategies observed in Lag-2 trials while Dual-task
participants would resemble the model-free pattern of choice observed in Lag-0 and Lag-1
conditions (Figure 6, Table 2, see Supplemental Materials for study details).
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Discussion
A number of dual-systems accounts of choice behavior posit a distinction between two
systems distinguished by, among other things, the extent to which central executive or
prefrontal resources are employed (Dickinson & Balleine, 2002; McClure et al., 2004). Still,
the contributions of the two putative systems have proven laborious to isolate behaviorally
(Valentin et al., 2007) or with neuroimaging (Daw et al., 2011). Informed by a contemporary
theoretical framework which makes quantitative predictions about the behavioral signatures
of the two systems and the arbitration of behavioral control amongst the two (Daw et al.,
2005), we demonstrate how human decision-makers trade-off the concurrent cognitive
demands of the environment with their usage of computationally expensive choice
strategies. In particular, when burdened with concurrent WM load, decision-makers relied
on a pure reinforcement-based strategy—akin to model-free RL—eschewing the transition
structure of the environment. When unencumbered by these demands, participants’ choices
reflected a mixture of model-based and model-free strategies, mirroring previous results
(Daw et al., 2011).

The present results are evocative of past research revealing that concurrent cognitive
demand shifts the onus of learning from explicit/declarative systems to procedural learning
systems (Foerde et al., 2006). It is important to note while previous work has revealed that
concurrent demands can shift response strategies people employ, these studies rely on
comparing results across multiple task methodologies chosen to favor either strategy
(Waldron & Ashby, 2001; Zeithamova & Maddox, 2006) or post-hoc assessments of
declarative knowledge (Foerde et al., 2006). The two-step RL task, in contrast, affords
unambiguous identification of model-based and model-free choice strategies’ simultaneous
contributions within the same task, and permits dynamic assessment of trial-by-trial
arbitration of control between the two systems. Here, accordingly, we present evidence of
for a difference in strategy use between trial types that occurred fully interleaved, consistent
with rapid strategic switching within participant and task.

These results complement previous fMRI investigations using the present task, since a
finding of convergent neural correlates for the two strategies (Daw et al., 2011) left open the
question of whether they were actually psychologically or functionally distinct. Here, our
behavioral result provides a compelling demonstration that model-based and model-free
valuation are dissociable and further underscores the utility of within-subjects manipulations
for dissociating the behavioral contributions of putatively separate neural systems. Finally,
the distinction as we operationalize it is arguably of more biological relevance than previous
attempts, since the model-free strategy upon which participants appear to fall back under
load is exactly that predicted by prominent neurocomputational accounts of the dopamine
system (Montague, Dayan, & Sejnowski, 1996).

It is also worth noting that model-based choice relies on at least two constituent processes:
1) learning of second-stage reward probabilities and environment transition probabilities
from feedback, and 2) planning, by using these reward probabilities and environment
transition probabilities prospectively to inform subsequent first-stage choice (Sutton, 1990).
Insofar as the learning relevant to the choice on trial t occurs on earlier trials (and
specifically, for the effects quantified here on the preceding trial, t-1), but the planning
occurs on the trial itself, we might expect WM load occurring at lag-1 (i.e., on trial t-1) to
primarily affect learning and WM load at lag-0 (trial t) to primarily affect planning. By this
logic, our finding of a similar strategic deficit at both lags may suggest that WM load
disrupted both putative sub-processes. That said, it is possible that these processes are not as
temporally isolated as we ascribe (e.g., action planning on trial t may begin as soon as the
feedback is received on the preceding trial), or that results also reflect other executive
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demands not isolated to a single trial (e.g. switching between dual and single tasks from t-1
to t), making this interpretation tentative. Future work should aim to disambiguate more
precisely whether concurrent executive demands incapacitate planning, learning, or some
combination thereof, perhaps by using more specifically directed distractor tasks.

Finally, although the model-based strategy we observe in the lag-2 trials is, by definition,
not predicted by a model-free RL system of the sort associated with the dopamine system, it
is clearly possible to produce model-free switching (win-stay-lose-shift) via a deliberative or
explicit strategy. Indeed, this is the question that the present manipulation was designed to
address, and the finding that the model-free, but not the model-based, behavior is robust to
concurrent load is consistent with the prediction that it arises from a distinct, striatal
procedural learning system which itself is also model-free. Still, it is possible in principle
that load promotes a shift to increased reliance on a cheaper—but still declarative in nature
—win-stay-lose-shift strategy. However, the best-fitting learning rates recovered in our
computational modeling (Supplemental Table 1) were low2, supporting the idea that these
influences arose from an incremental learning process characteristic of implicit learning
rather than a rule-based win-stay lose-shift strategy.

While Daw and colleauges (2011) relied in part upon individual differences in model-based
choice to examine the two systems’ neural substrates, we were able to explicitly manipulate
reliance upon these strategies within-subject and within-task. As it is well documented that
there are considerable individual differences in WM capacity and/or executive function
(Conway, Kane, & Engle,2003; Miyake et al., 2000), a significant portion of the individual
variability reported by Daw and colleagues may be attributable to individual differences in
WM capacity, and likewise, these differences could potentially modulate the effects of WM
load reported here. Exactly how individual limitations in cognitive capacity and/or executive
control modulate model-based choice warrants additional examination. Further,
characterizing more precisely how humans balance the contributions of model-based and
model-free choice is of considerable practical importance because contemporary accounts of
a number of serious disorders of compulsion ascribe this behavior to abnormal expression of
habitual or stimulus-driven control systems (Everitt & Robbins, 2005; Loewenstein &
O’Donoghue, 2004).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A) State transition and reward structure in the Two-step task. Each first-stage choice (black
background) is predominantly associated with one or the other of the second-stage states
(green and blue backgrounds), and leads there 70% of the time. These second-stage choices
are probabilistically reinforced with money (see main text for a detailed explanation). (B)
Choice behavior predicted by a model-free strategy, which predicts that a first-stage choice
resulting in reward is more likely to be repeated on the subsequent trial regardless of
whether that reward occurred after a common or rare transition. (C) A Model-based based
choice strategy predicts that rewards after rare transitions should affect the value of the
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unchosen first-stage option, leading to a predicted interaction between the factors of reward
and transition probability (reprinted from Daw et al., 2011).
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Figure 2.
Timeline of events in No WM-load trials (top; second-stage response was not rewarded) and
WM-Load trials (bottom; second stage response was rewarded). Critically, event timing was
equated across the two trial types.
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Figure 3.
Average proportion of “stay” trials as a function of reward on previous trial (rewarded
versus unrewarded) and transition type on previous trial (common versus rare) across the
three trial types of interest. Lag-0, Lag-1, and Lag-2 WM-load refers to trials in which
concurrent WM load occurred with the present trial, the previous trial, or the trial preceding
the previous trial, respectively. Behavior on Lag-2 trials, in which no WM load was imposed
on the current or previous trial, reflects the contribution of a model-based strategy.
Conversely, behavior on Lag-0 and Lag-1 trials, in which concurrent WM load was
respectively imposed on the current and previous trial, reflects only the contribution of a
model-free strategy, suggesting that cognitive demand reverted subjects to model-free
choice. Error bars depict standard error of the mean.
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Figure 4.
Individual subjects’ choice response times (RT) difference between Lag-2 WM-load trials
and Lag-1 WM-load trials. Subjects with positive differences exhibited slower RTs on Lag-2
trials (where behavior appeared more model-based) than on Lag-1 trials (where behavior
appeared more model-free). Differences in median adjusted RTs are reported in
milliseconds.
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Figure 5.
Best-fitting mixing weights across Lag-2 versus Lag-0/1 WM-load trials resulting from
fitting the RL algorithm to subjects’ choices (see text). Error bars indicate standard errors.
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Figure 6.
Average proportion of “stay” trials as a function of reward on previous trial (rewarded
versus unrewarded) and transition type on previous trial (common versus rare) across
Single-Task (A) and Dual-Task (B) conditions in Experiment 2. Corroborating the results of
Experiment 1, concurrent WM load reverted participants to a pure model-free strategy,
while participants unfettered by concurrent WM demands exhibited a mixture of model-
based and model-free influences.
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Table 1

Logistic regression coefficients indicating the influence of WM-load lag, outcome of previous trial, and
transition type of previous trial upon first-stage response repetition in Experiment 1. Asterisks denote
significance at the .05 level.

Coefficient Estimate (SE) p-value

(Intercept) 1.00 (0.18) < .0001*

lag-0 −0.23 (0.14) 0.118

lag-1 −0.43 (0.12) < .0001*

lag-0 × reward 0.34 (0.13) 0.010*

lag-1 × reward 0.19 (0.09) 0.031*

lag-2 × reward 0.23 (0.12) 0.044*

lag-0 × transition 0.07 (0.09) 0.434

lag-1 × transition −0.07 (0.08) 0.390

lag-2 × transition 0.02 (0.09) 0.776

lag-0 × reward × transition 0.06 (0.09) 0.478

lag-1 × reward × transition −0.07 (0.08) 0.383

lag-2 × reward × transition −0.23 (0.09) 0.011*
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Table 2

Logistic regression coefficients indicating the influence of WM load condition, outcome of previous trial, and
transition type of previous trial upon first-stage response repetition in Experiment 2. Asterisks denote
significance at the .05 level.

Coefficient Estimate (SE) p-value

(Intercept) 1.15 (0.13) < .0001*

load −0.25 (0.13) 0.058

reward 0.42 (0.07) 0.000*

transition 0.01 (0.03) 0.823

load × reward 0.01 (0.07) 0.824

load × transition −0.02 (0.03) 0.433

reward × transition −0.11 (0.04) 0.005*

load × reward × transition 0.08 (0.04) 0.047*
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