THE CURVATURE GROUPS OF A PSEUDO-RIEMANNIAN MANIFOLD

SAMUEL I. GOLDBERG & NICHOLAS C. PETRIDIS

1. Introduction

A cochain complex associated with the Levi-Civita connection Γ of an *n*dimensional (pseudo-) Riemannian manifold (M, γ) with metric γ is introduced. Its cohomology groups $H^p(M, \Gamma)$, $p = 1, \dots, n$, called the curvature groups, are investigated, and it is shown that they are isomorphic with the cohomology groups $H^p(M, \mathscr{S})$ of M with coefficients in a subsheaf \mathscr{S} of the sheaf of germs of infinitesimal homothetic transformations of M. This extends the principal result of I. Vaisman [2] concerning locally flat manifolds. The covariant form of the elements of \mathcal{S} defined by duality in terms of the metric γ are closed. Curvature is introduced by means of the integrability conditions of the differential system defining the elements of \mathcal{S} . As a consequence, if the Ricci tensor is nondegenerate everywhere, then the curvature groups vanish. In particular, if γ is an Einstein metric and at least one of the curvature groups is not trivial, then it is Ricci flat. More generally, if the scalar curvature is a nonzero constant, but (M, γ) is not necessarily an Einstein space, then the curvature groups are isomorphic with the cohomology groups of M with coefficients in the sheaf of germs of its parallel vector fields. On the other hand, if \mathcal{S} is not empty and there are no parallel vector fields (locally), then the groups $H^p(M, \Gamma)$ are isomorphic with the corresponding de Rham groups of M.

2. Tensorial *p*-forms

Let P(M, G) be a principal fibre bundle over M with group G, Γ a connection in P, E a finite dimensional vector space, and ρ a linear representation of G in E.

A tensorial *p*-form, $p \ge 1$, of type $\rho(G)$ is a *p*-form φ on *P* with values in *E* satisfying the following conditions:

(i) $\varphi(X_1, \dots, X_p) = 0$, whenever at least one of the $X_i \in T_u(P)$, $i = 1, \dots, p$, is vertical;

(ii) $\varphi(R_{g^*}X_1, \cdots, R_{g^*}X_p) = \rho^{-1}(g)\varphi(X_1, \cdots, X_p), \forall g \in G \text{ where } R_{g^*} \text{ de-}$

Communicated by K. Yano, May 24, 1973. The first author was partially supported by the National Science Foundation.

notes the linear mapping induced on the tangent space $T_u(P)$ by the right translation R_g by which G operates on P.

For p = 0 we have a tensor of type $\rho(G)$, which is a mapping $u \to \varphi(u)$ of P into E such that

$$\varphi(R_g(u)) = \rho^{-1}(g)\varphi(u) ,$$

which we shall consider as a 0-form of type $\rho(G)$.

Given a tensorial *p*-form φ on *P* of type $\rho(G)$ a *p*-form on *M* can be defined as follows. Let $\{U_{\alpha}\}$ be an open covering of *M* by coordinate neighborhoods, and $\psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times G$ diffeomorphisms with corresponding transition functions $\psi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$. For each U_{α} , we define

(1)
$$\varphi_{\alpha}(X_{1}, \cdots, X_{p}) = \rho(\sigma_{\alpha}(u))\varphi(X_{1}^{*}, \cdots, X_{p}^{*}) ,$$
$$\psi_{\alpha}(u) = (\pi(u), \sigma_{\alpha}(u)) ,$$

where $X_j \in T_x(M)$, X_j^* is the unique horizontal lift of X_j to $u \in \pi^{-1}(U_{\alpha})$, $j = 1, \dots, p$, and $\pi(u) = x$. We see immediately that for $x \in U_{\alpha} \cap U_{\beta}$,

$$\varphi_{\alpha}(X_1, \cdots, X_p) = \rho(\psi_{\alpha\beta})\varphi_{\beta}(X_1, \cdots, X_p) \; .$$

Conversely, if for a given coordinate covering $\{U_{\alpha}\}$ of M with corresponding transition functions $\psi_{\alpha\beta}$ there exist local forms φ_{α} with values in E satisfying (1), then a tensorial *p*-form φ on P of type $\rho(G)$ is determined. For example, if for a given covering $\{U_{\alpha}\}$ of M a connection Γ is defined by its 1-forms $\{\omega_{\alpha}\}$, then the curvature forms defined by

$$\Omega_{\alpha} = d\omega_{\alpha} + \frac{1}{2}[\omega_{\alpha}, \omega_{\alpha}]$$

determine a tensorial 2-form on P of type ad G with values in the Lie algebra of G.

In general, the exterior differential of a *p*-form does not preserve its tensorial character. However, the covariant differential does and is defined as follows. Let φ be a *p*-form on *P* with values in *E*. The covariant differential $\nabla \varphi$, with respect to a given connection Γ on *P* is a (p + 1)-form defined by

$$\nabla\varphi(X_1,\cdots,X_{p+1})=d\varphi(hX_1,\cdots,hX_{p+1}),$$

where d is the exterior differential operator and hX_i , $i = 1, \dots, p + 1$, denotes the horizontal component of $X_i \in T_u(P)$ with respect to the connection Γ .

If φ is a *p*-form of type $\rho(G)$, then $\nabla \varphi$ is a tensorial (p + 1)-form of the same type. For example, the connection form ω of Γ on *P* is a 1-form of type ad *G*, and

$$(2) \qquad \qquad \Omega = \nabla \omega$$

is a tensorial 2-form of the same type defining the curvature form of Γ . The Bianchi identity gives

$$(3) \nabla \Omega = 0.$$

The local forms $\nabla \varphi_{\alpha}$ of $\nabla \varphi$, corresponding to a covering $\{U_{\alpha}\}$ of M, are given by

(4)
$$(\nabla \varphi)_{\alpha} = d\varphi_{\alpha} + \tilde{\rho}(\omega_{\alpha}) \wedge \varphi_{\alpha},$$

where $\tilde{\rho}$ is the representation of the Lie algebra of G in E, induced by ρ , and the ω_{α} are the connection forms on M corresponding to the given covering.

From now on, P(M, G) will be the bundle of frames with structure group G = GL(n, R), the general linear group over the reals R, where $n = \dim M$, and $E = R^n$. The canonical or solder form η of P is the R^n -valued 1-form on P defined by

$$\eta(X) = u^{-1}\pi(X)$$

for $X \in T_u(P)$, where the frame $u \in P$ is considered as a linear mapping $u: \mathbb{R}^n \to T_{\pi(u)}(M)$. The form η is a tensorial 1-form on P with values in \mathbb{R}^n , and the torsion of the connection Γ is assumed to be zero, i.e.,

$$(5) \qquad \qquad \overline{\nu}\eta = 0 \; .$$

If φ^i , $i = 1, \dots, n$, are the components of φ_{α} , and (ω_j^i) , (Ω_j^i) the matrices of ω_{α} , Ω_{α} respectively, then formulas (2) and (4) become

(6)
$$\Omega_i^j = -d\omega_i^j + \omega_i^k \wedge \omega_k^j,$$

(7)
$$(\nabla \varphi)^i = d\varphi^i + \omega^i_j \wedge \varphi^j$$
.

Moreover,

(8)
$$(\nabla^2 \varphi)^i = -\Omega^i_j \wedge \varphi^j$$
.

(The summation convention is employed here and in the sequel.)

If f is a scalar-valued q-form on M, then by applying (7)

(9)
$$(\nabla(\varphi \wedge f))^i = \nabla \varphi^i \wedge f + (-1)^p \varphi^i \wedge df .$$

3. Tensorial *p*-jet forms

In the following by a tensor *p*-form on *M* of type $\rho(G)$ we will understand the forms defined on *M* by a tensorial *p*-form on *P* of type $\rho(G)$, as given by

549

(1). It is easy to see that the tensor *p*-forms of type $\rho(G)$ on *M* define a module \mathscr{T}^p over the ring \mathfrak{F} of differentiable functions on *M*, and (8) shows that the *p*-forms $\{\overline{V}^2T\}$ define an \mathfrak{F} -submodule \mathscr{D}^p of \mathscr{T}^p .

A tensorial p-jet form of type $\rho(G)$ on M is a pair (T, S) of tensor forms of type $\rho(G)$ and of degrees p and p + 1, respectively [1]. Let J^p denote the \mathfrak{F} module of these forms, and let K^p be the submodule of J^p defined by the jetforms (T, S) with $S \in \mathscr{D}^{p+1}$. If M is a Riemannian manifold of constant curvature, the modules K^p for $p = 1, \dots, n - 1$ are isomorphic with the modules L^p defined by the pairs (λ, α) , where λ is an \mathbb{R}^n -valued tensor p-form and α is a scalar p-form [2]. More generally, instead of Ω one may consider a k-form Θ on an n-dimensional manifold M which is locally expressible as $dy^1 \wedge \dots \wedge dy^k$, and tensorial jet-forms (T, S) defined in an analogous manner. In particular, the curvature form of a manifold of constant curvature has this local representation.

Let \tilde{L}^p denote the submodule of L^p defined by those elements $(\lambda, \alpha) \in L^p$ such that $\nabla^2 \lambda = 0$. Note that $\tilde{L}^p = L^p$ for p = n - 1, n, and that $(\eta \wedge \varphi, \alpha) \in \tilde{L}^p$ for any scalar-valued (p - 1)-form φ and p-form α on M. We define an operator D^p on \tilde{L}^p as follows:

(10)
$$D^p(\lambda, \alpha) = (\nabla \lambda - \eta \wedge \alpha, d\alpha)$$
.

Clearly, $D^p: \tilde{L}^p \to \tilde{L}^{p+1}$, and from (10) we have $D^{p+1} \circ D^p = 0$. In the sequel, we shall occasionally write D for $D^p, p = 0, 1, \dots, n$.

A multiplication between the elements of $\tilde{L} = \bigoplus_{p=0}^{n} \tilde{L}^{p}$ is defined as follows :

(11)
$$(\lambda, \alpha) \times (\mu, \beta) = (\lambda \wedge \beta + \alpha \wedge \mu, 2\alpha \wedge \beta)$$

where $(\lambda, \alpha) \in \tilde{L}^p$, $(\mu, \beta) \in \tilde{L}^q$. Clearly, $(\lambda, \alpha) \times (\mu, \beta) \in \tilde{L}^{p+q}$, and we have

$$(\lambda, lpha) imes (\mu, eta) = (-1)^{pq}(\mu, eta) imes (\lambda, lpha) \; .$$

A simple computation shows that

$$D[(\lambda, \alpha) \times (\mu, \beta)] = D(\lambda, \alpha) \times (\mu, \beta) + (-1)^p(\lambda, \alpha) \times D(\mu, \beta)$$

Thus \tilde{L} is a graded ring, and D is a derivation on \tilde{L} .

Note that (i) if one of the factors (λ, α) , (μ, β) is *D*-closed, then the product is *D*-closed; (ii) if one of the factors is *D*-closed and the other is *D*-exact, then the product is *D*-exact.

Consider the cochain complex

$$ilde{L} = \left(igoplus_{p=0}^n ilde{L}^p, D^p
ight)$$
 ,

and assume that the Poincaré lemma for D holds, viz., on an open ball in R^n

550

every *D*-closed element of \tilde{L}^p , p > 0, is *D*-exact. This is certainly the case if M is locally flat. On the other hand, if we consider the submodules of \tilde{L}^p , $p \le n-1$, consisting of the pairs $(\eta \land \varphi, \alpha)$, the Poincaré lemma is again valid. The cohomology groups

(12)
$$H^p(\tilde{L}) = \operatorname{Ker} D^p / \operatorname{Im} D^{p-1}, \qquad p = 1, \cdots, n$$

will be called the *curvature groups of the connection* Γ . We shall also write $H^{p}(M, \Gamma)$ for $H^{p}(\tilde{L})$, and define $H^{0}(M, \Gamma)$ to be Ker D^{0} .

4. s-fields

Suppose now that the manifold M is pseudo-Riemannian with metric γ . The system of first order partial differential equations

(13)
$$\nabla_j X^k = f \delta^k_j ,$$

where δ_j^k is the Kronecker delta and f is a C^{∞} function, defines an infinitesimal conformal transformation X of (M, γ) . This system may be written in the form

(14)
$$\nabla_j \xi_i = f \gamma_{ij} ,$$

where $\xi_i = \gamma_{ik} X^k$. The 1-form $\xi = \xi_i dx^i$ defined by duality in terms of the metric is therefore closed. Hence by the Poincaré lemma ξ is (locally) the gradient of a function. The (special) infinitesimal conformal transformations characterized by (13) will be called *s*-fields. The *s*-fields define an additive abelian group S but not an \mathfrak{F} -module.

The integrability conditions of (13) yield

(15)
$$X^{r}R^{i}{}_{rjk} = \nabla_{k}f\delta^{i}_{j} - \nabla_{j}f\delta^{i}_{k} ,$$

where $\Omega_{i}^{i} = R^{i}_{ikl} dx^{k} \wedge dx^{l}$. Contracting (15) gives

(16)
$$X^{r}R_{rj} = -(n-1)\nabla_{j}f,$$

where $R_{jk} = R^{i}_{jki}$ is the Ricci tensor of (M, γ) . Substituting (16) in (15), we get

where the tensor field

$$W^{i}_{jkl} = R^{i}_{jkl} - \frac{1}{n-1} (R_{jk} \delta^{i}_{l} - R_{jl} \delta^{i}_{k})$$

is the Weyl projective curvature tensor. Thus (17) gives a necessary condition

for (13) to have a solution. In particular, this condition is satisfied if (M, γ) is projectively flat.

In the sequel, we will be particularly interested in the case where f = constant in (13). In this case, from (15)

(18)
$$X^r R^i_{\ rik} = 0$$
,

which is satisfied if γ is Ricci flat, as can be seen from (16). From (16) we see that if f is constant and the Ricci tensor is nondegenerate at each point of M, then there are no nontrivial solutions of the system (13). The vector fields satisfying (13) with f = constant are infinitesimal homothetic transformations.

5. Cohomology with coefficients in the sheaf of germs of *s*-fields

Let \tilde{S} be the subspace of *s*-fields characterized as solutions of (13) with f = c (constant) which we shall call *homothetic s-fields*. There is a mono-morphism

$$i: \tilde{S} \to \tilde{L}^{_0}$$

given by i(X) = (X, c). Let \mathscr{S} be the sheaf of germs of homothetic *s*-fields of M and $\mathscr{L}^p, p \ge 0$, the sheaves of germs associated with the modules \tilde{L}^p . The mapping $D: \tilde{L}^p \to \tilde{L}^{p+1}$ induces a mapping $\mathscr{L}^p \to \mathscr{L}^{p+1}$ which we again denote by D. We then have a sequence of sheaf homomorphisms

(19)
$$0 \longrightarrow \mathscr{S} \xrightarrow{i} \mathscr{L}^0 \xrightarrow{D} \mathscr{L}^1 \xrightarrow{D} \cdots \xrightarrow{D} \mathscr{L}^n \longrightarrow 0$$

This sequence is exact. Exactness at \mathscr{L}^0 is clear. In fact, if $(X, f) \in \mathscr{L}^0$ and $D(X, f) = (\nabla X - \eta f, df) = 0$, then df = 0 and $\nabla X = f\eta$ which imply f = c and $\nabla X = c\eta$, i.e.,

$$\nabla_j X^i = c \delta^i_j \; .$$

Hence (X, f) = i(X). Exactness at \mathscr{L}^p , p > 0, is a consequence of the Poincaré lemma for D. The \mathscr{L}^p , $p = 0, 1, \dots, n$, being fine sheaves the sequence (19) gives a fine resolution of \mathscr{S} . Hence we obtain

Theorem 1. The curvature groups of a (pseudo-) Riemannian manifold are isomorphic with the cohomology groups of the space with coefficients in the sheaf of germs of homothetic s-fields.

Corollary 1. The curvature groups of a (pseudo-) Riemannian manifold whose Ricci tensor is nondegenerate everywhere are trivial.

Corollary 2. The curvature groups of an Einstein space with nonvanishing scalar curvature vanish. Hence an Einstein space with at least one nonvanishing curvature group is Ricci flat.

The proof of Corollary 1 follows immediately from the last paragraph of § 4, and Corollary 2 is a consequence of Corollary 1.

If the scalar curvature is a nonzero constant, it is an easy consequence of (16) that the system

$$\nabla_{i}X^{i} = c\delta^{i}_{i}$$

cannot have a solution except possibly when c = 0. Hence

Theorem 2. The curvature groups of a Riemannian manifold with constant nonzero scalar curvature are isomorphic with the cohomology groups of the manifold with coefficients in the sheaf of germs of its parallel vector fields.

Remark. If the Ricci tensor is nondegenerate everywhere, then a *D*-closed 1-form (λ, α) can be expressed as $(-f\eta, df)$ for some C^{∞} function f. For, by Corollary 1, $(\lambda, \alpha) = D(X, f) = (\nabla X - f\eta, df)$. But $\nabla^2 X = 0$ which by (8) implies $X^i R_{ifkl} = 0$, and by contraction $X^i R_{if} = 0$, from which X is zero.

6. Relation between the curvature groups and de Rham groups

Let Σ^p be the \mathfrak{F} -module of vector-valued forms of the type $\eta \wedge \varphi$, where φ is a scalar-valued (p-1)-form. The covariant differential $V: \Sigma^p \to \Sigma^{p+1}$ is then given by

(20)
$$\nabla(\eta \wedge \varphi) = -\eta \wedge d\varphi ,$$

and it is a trivial fact that $\nabla^2(\eta \wedge \varphi) = \nabla(\nabla(\eta \wedge \varphi)) = 0$.

Consider the cochain complex $\Sigma = (\bigoplus_{p=1}^{n} \Sigma^{p}, \nabla^{p})$, where $\nabla^{p} = \nabla : \Sigma^{p} \to \Sigma^{p+1}$, and let

$$H^p(\Sigma) = \operatorname{Ker} \nabla^p / \operatorname{Im} \nabla^{p-1}$$

denote its *p*-th cohomology group. Define $H^1(\Sigma) = \text{Ker } \nabla^1$.

The correspondence $\varphi \to \eta \land \varphi$ establishes a 1-1 mapping of the module of *p*-forms on *M* onto Σ^{p+1} , $p = 0, 1, \dots, n-1$. It is easy to see from (20) that under this mapping *d*-closed forms are mapped into *V*-closed forms, and *d*-exact forms into *V*-exact forms.

A multiplication " \cdot " between the elements of Σ is defined by

$$(\eta \wedge \varphi) \cdot (\eta \wedge \psi) = \eta \wedge \varphi \wedge \psi \in \Sigma^{p+q-1},$$

where φ and ψ are scalar-valued (p-1)- and (q-1)-forms, respectively. It is easily seen that

$$(\eta \wedge \varphi) \cdot (\eta \wedge \psi) = (-1)^{pq} (\eta \wedge \psi) \cdot (\eta \wedge \varphi) ,$$

 $\nabla [(\eta \wedge \varphi) \cdot (\eta \wedge \psi)] = \nabla (\eta \wedge \varphi) \cdot \eta \wedge \psi + (-1)^{p-1} \eta \wedge \varphi \cdot \nabla (\eta \wedge \psi) .$

Thus Σ is a graded ring, and ∇ is a derivation on Σ .

Lemma 1. The p-dimensional de Rham cohomology groups of M are isomorphic with the groups $H^{p+1}(\Sigma)$, $p = 0, 1, \dots, n-1$. Moreover, their cohomology rings are also isomorphic.

The group \tilde{S} of homothetic s-fields may also be characterized as solutions of

Note that if (21) has a solution for some $c \neq 0$, then it has a solution for every $c \in R$. We therefore have a sequence of homomorphisms

(22)
$$0 \xrightarrow{i} \tilde{S} \xrightarrow{V} \Sigma^1 \xrightarrow{V} \Sigma^2 \xrightarrow{V} \cdots \xrightarrow{V} \Sigma^n \longrightarrow 0$$
.

As before, let \mathscr{S} be the sheaf of germs of homothetic *s*-fields of M, and let $\mathscr{S}^p, p = 1, \dots, n$, denote the sheaves of germs associated with Σ^p . The sequence (22) induces the sequence of sheaf homomorphisms

(23)
$$0 \xrightarrow{i} \mathscr{G} \xrightarrow{\overline{P}} \mathscr{G}^{1} \xrightarrow{\overline{P}} \mathscr{G}^{2} \xrightarrow{\overline{P}} \cdots \xrightarrow{\overline{P}} \mathscr{G}^{n} \xrightarrow{\overline{P}} 0$$

Lemma 2. Let (M, γ) be a (pseudo-) Riemannian manifold. If (21) has a solution for some $c \neq 0$ but no nonzero solution for c = 0 (locally), then the sequence (23) is exact.

Proof. Exactness at \mathscr{S} follows from the assumption that there are no parallel vector fields. Now let $f\eta \in \Sigma^1$ be \mathcal{V} -closed; then $\mathcal{V}(f\eta) = -\eta \wedge df$ implies $f = c \neq 0$ (for, otherwise $f\eta = 0$). By hypothesis, there exists an $X \in \mathscr{S}$ such that $\mathcal{V}X = c\eta$. Let $\eta \wedge \varphi$ be a \mathcal{V} -closed form in $\Sigma^p, p \leq n - 1$. Then $\mathcal{V}(\eta \wedge \varphi) = -\eta \wedge d\varphi = 0$ implies $d\varphi = 0$, so by the Poincaré lemma $\varphi = d\sigma$, locally. Hence $\eta \wedge \varphi = -\mathcal{V}(\eta \wedge \sigma)$.

Since the sheaves \mathscr{S}^p , $p = 1, \dots, n$, are fine, the sequence (23) gives a fine resolution of \mathscr{S} under the assumptions of Lemma 2.

Theorem 3. Under the assumptions of Lemma 2 the groups $H^{p+1}(\Sigma)$ are isomorphic with the cohomology groups $H^p(M, \mathcal{S})$, $p = 1, \dots, n-1$.

Theorem 3 together with Theorem 1 yields

Corollary 3. Under the assumptions of Lemma 2, the groups $H^{p+1}(\Sigma)$ are isomorphic with the curvature groups $H^p(M, \Gamma)$, $p = 1, \dots, n - 1$.

Corollary 3 and Lemma 1 give

Corollary 4. Under the assumptions of Lemma 2, the curvature groups $H^p(M, \Gamma)$ are isomorphic with the p-dimensional de Rham groups, $p = 1, \dots, n-1$.

Corollary 4 also follows in a strightforward manner from Theorem 1 by observing that under the assumptions of Lemma 2, the sheaf \mathscr{S} is isomorphic to the sheaf of real constants. In fact, for a germ $X \in \mathscr{S}$ we get a unique constant c from $\nabla X = c\eta$. On the other hand, for any $c \in R$ the germ X such that $\nabla X = c\eta$ is unique, since $\nabla X_i = c\eta$, i = 1, 2, implies $\nabla (X_1 - X_2) = 0$.

7. Concluding remarks

The curvature groups of type $\rho(G)$ as defined in [2] are the cohomology groups of the sequence of *p*-jet forms $\{(T, S)\}, S = -\Omega \land Q = V^2Q$, where *T* is a tensor *p*-form and *Q* is a tensor (p - 1)-form. Thus *S* belongs to the "ideal generated by curvature". There is a chain operator $D: (T, S) \rightarrow (VT - S, V^2T - VS)$.

Another definition of this cohomology may be given as follows. Consider the quotient module \mathcal{T}/\mathcal{D} , where \mathcal{T}^p is the module of tensor *p*-forms of type $\rho(G)$ and $\mathcal{D}^p = \overline{V^2}\mathcal{T}^{p-2} = -\Omega \wedge \mathcal{T}^{p-2}$. Since $\overline{V\Omega} = 0$, \mathcal{D} is invariant under \overline{V} , so \mathcal{T}/\mathcal{D} is operated on by \overline{V} with $\overline{V^2} = 0$. We claim that $(T, S) \to T + \mathcal{D}$ is a chain map which induces an isomorphism of the cohomology of $\mathcal{T} \oplus \mathcal{D}$ onto the cohomology of \mathcal{T}/\mathcal{D} .

In the special case where \mathscr{T} is the module of tangent vector-valued forms, there are two other chain maps connecting \mathscr{T}/\mathscr{D} with the de Rham complex \wedge . These are $\wedge^p \to \mathscr{T}^{p+1}/\mathscr{D}$ given by $\varepsilon(\eta)$, where $\varepsilon(\eta)$ denotes exterior multiplication by the solder form η , and the alternating operator $\mathscr{A}: \mathscr{T}^p/\mathscr{D} \to \wedge^{p+1}$. The curvature identity shows that $\mathscr{A}\mathscr{D} = 0$ so that the map $\mathscr{T}/\mathscr{D} \to \wedge$ is well-defined.

The operator $\epsilon(\eta)$ raises the degree of the tensor and the degree of the coefficient form by 1. It is a chain map since torsion is zero, i.e., $\nabla \eta = 0$. (There are similar chain maps, for other degrees, of tensor forms other than those of degree 1.)

As for the alternating operator \mathscr{A} , we can skew-symmetrize with respect to it and the form indices, thereby getting a chain map which raises the form degree by 1 and lowers the tensor degree by 1.

Bibliography

- [1] K. Kodaira & D. C. Spencer, *Multifoliate structures*, Ann. of Math. 74 (1961) 52-100.
- [2] I. Vaisman, The curvature groups of a space form, Ann. Scuola Norm. Sup. Pisa 22 (1968) 331-341.

UNIVERSITY OF ILLINOIS EASTERN ILLINOIS UNIVERSITY