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The Curvelet Transform for Image Denoising
Jean-Luc Starck, Emmanuel J. Candès, and David L. Donoho

Abstract—We describe approximate digital implementations of
two new mathematical transforms, namely, the ridgelet transform
[2] and the curvelet transform [6], [5]. Our implementations
offer exact reconstruction, stability against perturbations, ease
of implementation, and low computational complexity. A central
tool is Fourier-domain computation of an approximate digital
Radon transform. We introduce a very simple interpolation in
Fourier space which takes Cartesian samples and yields samples
on a rectopolar grid, which is a pseudo-polar sampling set based
on a concentric squares geometry. Despite the crudeness of our
interpolation, the visual performance is surprisingly good. Our
ridgelet transform applies to the Radon transform a special
overcomplete wavelet pyramid whose wavelets have compact
support in the frequency domain. Our curvelet transform uses
our ridgelet transform as a component step, and implements
curvelet subbands using a filter bank of à trous wavelet filters.
Our philosophy throughout is that transforms should be over-
complete, rather than critically sampled. We apply these digital
transforms to the denoising of some standard images embedded
in white noise. In the tests reported here, simple thresholding
of the curvelet coefficients is very competitive with “state of the
art” techniques based on wavelets, including thresholding of
decimated or undecimated wavelet transforms and also including
tree-based Bayesian posterior mean methods. Moreover, the
curvelet reconstructions exhibit higher perceptual quality than
wavelet-based reconstructions, offering visually sharper images
and, in particular, higher quality recovery of edges and of faint
linear and curvilinear features. Existing theory for curvelet
and ridgelet transforms suggests that these new approaches can
outperform wavelet methods in certain image reconstruction
problems. The empirical results reported here are in encouraging
agreement.

Index Terms—Curvelets, discrete wavelet transform, FFT,
filtering, FWT, radon transform, ridgelets, thresholding rules,
wavelets.

I. INTRODUCTION

A. Wavelet Image Denoising

OVER THE last decade, there has been abundant interest
in wavelet methods for noise removal in signals and

images. In many hundreds of papers published in journals
throughout the scientific and engineering disciplines, a wide
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range of wavelet-based tools and ideas have been proposed
and studied. Initial efforts included very simple ideas like
thresholding of the orthogonal wavelet coefficients of the noisy
data, followed by reconstruction. Later efforts found that sub-
stantial improvements in perceptual quality could be obtained
by translation invariant methods based on thresholding of an
undecimated wavelet transform. More recently, “tree-based”
wavelet denoising methods were developed in the context of
image denoising, which exploit the tree structure of wavelet
coefficients and the so-called parent–child correlations which
are present in wavelet coefficients of images with edges. Also,
many investigators have experimented with variations on
the basic schemes—modifications of thresholding functions,
level-dependent thresholding, block thresholding, adaptive
choice of threshold, Bayesian conditional expectation non-
linearities, and so on. Extensive efforts by a large number of
researchers have produced a body of literature which exhibits
substantial progress overall, achieved by combining a sequence
of incremental improvements.

B. Promising New Approach

In this paper, we report initial efforts at image denoising based
on a recently introduced family of transforms—the ridgelet and
curvelet transforms—which have been proposed as alternatives
to wavelet representation of image data. These transforms, to
be described further below, are new enough that the underlying
theory is still under development. Software for computing these
new transforms is still in a formative stage, as various trade-offs
and choices are still being puzzled through.

Although we have completed an initial software development
only, and although the time and effort we have expended in
implementation, and in fine-tuning, is miniscule in comparison
to the efforts which have been made in image denoising by
wavelets, we have been surprised at the degree of success
already achieved. We present in this paper evidence that the
new approach, in this early state of development, already
performs as well as, or better than, mature wavelet image
denoising methods. Specifically, we exhibit higher PSNR on
standard images such asBarbara andLenna , across a range
of underlying noise levels. (At our website, additional examples
are provided.) Our comparisons consider standard wavelet
methods such as thresholding of standard undecimated wavelet
transforms, thresholding of decimated wavelet transforms, and
Bayesian tree-based methods.

While of course the evidence provided by a few examples
is by itselfquite limited, the evidence we present is consistent
with the developing theory of curvelet denoising, which pre-
dicts that, in recovering images which are smooth away from
edges, curvelets will obtain dramatically smaller asymptotic
mean square error of reconstruction than wavelet methods. The

1057–7149/02$17.00 © 2002 IEEE



STARCK et al.: CURVELET TRANSFORM FOR IMAGE DENOISING 671

images we study are small in size, so that the asymptotic theory
cannot be expected to fully “kick in;” however, we do observe
already, at these limited image sizes, noticeable improvements
of the new methods over wavelet denoising.

By combining the experiments reported here with the
theory being developed elsewhere, we conclude that the new
approaches offer a high degree of promise which may repay
further development in appropriate image reconstruction
problems.

C. New Transforms

The new ridgelet and curvelet transforms were developed
over several years in an attempt to break an inherent limit
plaguing wavelet denoising of images. This limit arises from
the well-known and frequently depicted fact that the two-di-
mensional (2-D) wavelet transform of images exhibits large
wavelet coefficients even at fine scales, all along the important
edges in the image, so that in a map of the large wavelet
coefficients one sees the edges of the images repeated at scale
after scale. While this effect is visually interesting, it means that
many wavelet coefficients are required in order to reconstruct
the edges in an image properly. With so many coefficients to
estimate, denoising faces certain difficulties. There is, owing to
well-known statistical principles, an imposing tradeoff between
parsimony and accuracy which even in the best balancing leads
to a relatively high mean squared error (MSE).

While this tradeoff is intrinsic to wavelet methods (and also
to Fourier and many other standard methods), there exist, on
theoretical grounds, better denoising schemes for recovering
images which are smooth away from edges. For example,
asymptotic arguments show that, in a certain continuum model
of treating noisy images with formal noise parameter, for
recovering an image which is smooth away from edges,
the ideal MSE scales like whereas the MSE achievable
by wavelet methods scales only like. (For discussions of this
white noise model, see [8], [16].)

To approach this ideal MSE, one should develop new expan-
sions which accurately represent smooth functions using only
a few nonzero coefficients, and which also accurately repre-
sent edges using only a few nonzero coefficients. Then, because
so few coefficients are required either for the smooth parts or
the edge parts, the balance between parsimony and accuracy
will be much more favorable and a lower MSE results. The
ridgelet transform and curvelet transform were developed ex-
plicitly to show that this combined sparsity in representation of
both smooth functions and edges is possible.

The continuous ridgelet transform provides a sparse repre-
sentation of both smooth functions and of perfectly straight
edges. As introduced in [2], theridgelet transformin two
dimensions allows the representation of arbitrary bivariate
functions by superpositions of elements of the form

. Here is a wavelet,
is a scale parameter,is an orientation parameter, and

is a location scalar parameter. These so-called ridgelets are
constant along ridge lines , and along the
orthogonal direction they are wavelets. Because ridgelets at
fine scale are localized near lines ,

it is possible to efficiently superpose several terms with
common ridge lines (i.e., common and different scales

to efficiently approximate singularities along a line. But
ridgelets also work well for representing smooth functions,
in fact they represent functions in the Sobolev space of
functions with two derivatives in mean-square just as efficiently
as wavelets (i.e., comparable numbers of terms for same degree
of approximation).

There are also various discrete ridgelet transforms—i.e., ex-
pansions into a countable discrete collection of generating el-
ements—based on ideas of frames and orthobases. For all of
these notions, one has frame/basis elements localized near lines
at all locations and orientations and ranging though a variety
of scales (localization widths). It has been shown that for these
schemes, simple thresholding of the discrete ridgelet transform
provides near-optimal -term approximations to smooth func-
tions with discontinuities along lines [7], [4], [17]. In short, dis-
crete ridgelet representations solve the problem of sparse ap-
proximation to smooth objects with straight edges.

In image processing, edges are typically curved rather than
straight and ridgelets alone cannot yield efficient representa-
tions. However at sufficiently fine scales, a curved edge is al-
most straight, and so to capture curved edges, one ought to be
able to deploy ridgelets in a localized manner, at sufficiently fine
scales. Two approaches to localization of ridgelets are possible.

1) Monoscale ridgelets: Here, one thinks of the plane as
partitioned into congruent squares of a given fixed side-
length and constructs a system of renormalized ridgelets
smoothly localized near each such square [3].

2) Multiscale ridgelets: Here, one thinks of the plane as
subjected to an infinite series of partitions, based on
dyadic scales, where each partition, like in the monoscale
case, consists of squares of the given dyadic sidelength.
The corresponding dictionary of generating elements
is a pyramid of windowed ridgelets, renormalized and
transported to a wide range of scales and locations, see
Sections II-B and IV.

Both localization approaches will play important roles in this
paper.

Curvelets are based on multiscale ridgelets combined with a
spatial bandpass filtering operation to isolate different scales
[6], [5]. Like ridgelets, curvelets occur at all scales, locations,
and orientations. However, while ridgelets all have global
length and variable widths, curvelets in addition to a variable
width have a variable length and so a variable anisotropy.
The length and width at fine scales are related by a scaling
law width length and so the anisotropy increases with
decreasing scale like a power law. Recent work shows that
thresholding of discrete curvelet coefficients provide near-op-
timal -term representations of otherwise smooth objects with
discontinuities along curves.

Quantitatively, the -term squared approximation error by
curvelet thresholding scales like . This approxi-
mation-theoretic result implies the following statistical result.
By choosing a threshold so that one is reconstructing from the
largest noisy curvelet coefficients in a noisy image
at noise level , one obtains decay of the MSE almost of order
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. In contrast, in analyzing objects with edges, wavelets
give an -term squared approximation error only of size ,
and wavelet thresholding gives a corresponding MSE only of
size and no better.

D. This Paper

So according to theory for a certaincontinuous-space model,
discrete ridgelet transforms and discrete curvelet transforms
provide near-ideal sparsity of representation of both smooth
objects and of objects with edges. In a certain continuous-space
statistical theory, this implies that simple thresholding of noisy
coefficients in these expansions is a near-optimal method of
denoising in the presence of white Gaussian noise.

In this paper we provide an initial test of these ideas in a dig-
ital image processing setting, where images are available on an

-by- grid. We first review some basic ideas about ridgelet and
curvelet representations in the continuum. We next use these
to develop a series of digital ridgelet and digital curvelet trans-
forms taking digital input data on a Cartesian grid. Next we con-
sider a model denoising problem where we embed some stan-
dard images in white noise and apply thresholding in the digital
curvelet transform domain. Finally we discuss interpretations
and possibilities for future work.

Not surprisingly, other researchers have undertaken efforts to
implement ridgelet and curvelet transforms, and develop appli-
cations. In addition to work mentioned in the body of the article,
we would like to point out the work of Do and Vetterli [13],
Donoho and Duncan [18]. We would also like to mention the
articles of Sahiner and Yagle [21]–[23], Olson and DeStefano
[20], Zhaoet al. [30], and Zuidwijk [31], [32] although these
references are less directly related.

II. CONTINUOUS RIDGELET TRANSFORM

The 2-D continuous ridgelet transform in can be defined
as follows [2]. We pick a smooth univariate function
with sufficient decay and satisfying the admissibility condition

(1)

which holds if, say, has a vanishing mean . We
will suppose that is normalized so that .

For each , each and each , we define
the bivariateridgelet by

(2)

this function is constant along lines const .
Transverse to these ridges it is a wavelet. Given an integrable
bivariate function , we define its ridgelet coefficients by

We have the exact reconstruction formula

(3)

valid a.e. for functions which are both integrable and square in-
tegrable. Furthermore, this formula is stable as one has a Par-
seval relation

(4)

Hence, much like the wavelet or Fourier transforms, the identity
(3) expresses the fact that one can represent any arbitrary func-
tion as a continuous superposition of ridgelets. Discrete analogs
of (3) and (4) exist; see [2] or [17] for a slightly different ap-
proach.

A. Radon Transform

A basic tool for calculating ridgelet coefficients is to view
ridgelet analysis as a form of wavelet analysis in the Radon do-
main. We recall that the Radon transform of an objectis the
collection of line integrals indexed by
given by

(5)

where is the Dirac distribution. The ridgelet coefficients
of an object are given by analysis of the Radon

transform via

Hence, the ridgelet transform is precisely the application of a
one-dimensional (1-D) wavelet transform to the slices of the
Radon transform where the angular variableis constant and

is varying.

B. Ridgelet Pyramids

Let denote a dyadic square
and let be the collection of all such

dyadic squares. We write for the collection of all dyadic
squares of scale. Associated to the squares we con-
struct a partition of energy as follows. With a nice smooth
window obeying , we dilate
and transport to all squares at scale , producing a collec-
tion of windows such that the s, , make up a
partition of unity. We also let denote the transport operator
acting on functions via

With these notations, it is not hard to see that

and, therefore, summing the above equality across squares at a
given scale gives

(6)
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The identity (6) expresses the fact that one can represent
any function as a superposition of elements of the form

; that is, of ridgelet elements localized near the
squares . For the function is the ridgelet
(2) with parameters obeying

and, thus, is a windowed ridgelet, supported near
the square , hence the namelocal ridgelet transform.

The previous paragraph discussed the construction of local
ridgelets of fixed length, roughly ( fixed). Letting the scale

vary defines the multiscale ridgelet dictionary
by

that is, a whole pyramid of local ridgelets at various lengths and
locations. This is, of course, a massively overcomplete repre-
sentation system and no formula like (6) is available for this
multiscale ridgelet pyramid, because it is highly overcomplete.

III. A PPROXIMATEDIGITAL RIDGELET TRANSFORM

So a basic strategy for calculating the continuous ridgelet
transform is first to compute the Radon transform and
second, to apply a 1-D wavelet transform to the slices .
In this section we develop a digital procedure which is inspired
by this viewpoint, and is realizable onby numerical arrays.

A. Fourier Strategy for Digital Radon Transform

A fundamental fact about the Radon transform is the projec-
tion-slice formula [12]

This says that the Radon transform can be obtained by applying
the 1-D inverse Fourier transform to the 2-D Fourier transform
restricted to radial lines going through the origin.

This of course suggests that approximate Radon transforms
for digital data can be based on discrete fast Fourier transforms.
This is a widely used approach, in the literature of medical
imaging and synthetic aperture radar imaging, for which the
key approximation errors and artifacts have been widely dis-
cussed. In outline, one simply does the following, for gridded
data , .

1) 2-D FFT. Compute the 2-D FFT of giving the array
, .

2) Cartesian to Polar Conversion. Using an interpolation
scheme, substitute the sampled values of the Fourier
transform obtained on the square lattice with sampled
values of on a polar lattice: that is, on a lattice where
the points fall on lines going through the origin.

3) 1-D IFFT. Compute the 1-D IFFT on each line, i.e., for
each value of the angular parameter.

The use of this strategy in connection with ridgelet transforms
has been discussed in the articles [14], [15].

Fig. 1. Illustration of the digital polar grid in the frequency domain for ann

byn image(n = 8). The figure displays the set of radial lines joining pairs of
symmetric points from the boundary of the square. The rectopolar grid is the set
of points—marked with circles—at the intersection between those radial lines
and those which are parallel to the axes.

B. A Polar Sampling Scheme for Digital Data

For our implementation of the Cartesian-to-polar conversion,
we have used a pseudo-polar grid, in which the pseudo-radial
variable has level sets which are squares rather than circles.
Starting with Oppenheim and Mersereau [19] this grid has often
been called theconcentric squaresgrid in the signal processing
literature; in the medical tomography literature it is associated
with thelinogram, while in [1] it is called the rectopolar grid; see
this last reference for a complete bibliographic treatment. The
geometry of the rectopolar grid is illustrated on Fig. 1. We select

radial lines in the frequency plane obtained by connecting the
origin to the vertices lying on the boundary of the array

, i.e., such that or . The polar grid
( serves to index a given radial line while the position of

the point on that line is indexed by) that we shall use is the
intersection between the set of radial lines and that of Cartesian
lines parallel to the axes. To be more specific, the sample points
along a radial line whose angle with the vertical axis is less or
equal to are obtained by intersectingwith the set of hori-
zontal lines . Sim-
ilarly, the intersection with the vertical lines

defines our sample points when-
ever the angle betweenand the horizontal axis is less or equal
to . The cardinality of the rectopolar grid is equal to as
there are radial lines and sampled values on each of these
lines. As a result, data structures associated with this grid will
have a rectangular format. We observe that this choice corre-
sponds to irregularly spaced values of the angular variable.

C. Interpolation to Rectopolar Grid

To obtain samples on the rectopolar grid, we should, in gen-
eral, interpolate from nearby samples at the Cartesian grid. In
principle, compare [1], [15], the interpolation of Fourier trans-
forms is a very delicate matter because of the well-known fact
that the Fourier transform of an image is highly oscillatory, and
the phase contains crucial information about the image. In our
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approach, however, we use a crude interpolation method: we
simply impute for the value of the Fourier transform
taken at the point on the Cartesian grid nearest to.

There are, of course, more sophisticated ways to realize
the Cartesian-to-polar conversion; even simple bilinear inter-
polation would offer better theoretical accuracy. A very high
accuracy approach used in [14] consists in viewing the data

as samples of the trigonometric polynomial
defined by

(7)

on a square lattice; that is, with
with

. There turns out [14], [1] to be an exact
algorithm for rapidly finding the values of on the polar
grid. The high-accuracy approach can be used in reverse,
allowing for exact reconstruction of the original trigonometric
polynomial from its rectopolar samples.

Our nearest-neighbor interpolation, although admittedly
simple-minded, happens to give good results in our application.
In fact numerical experiments show that in overall system
performance, it rivals the exact interpolation scheme. This is
explainable as follows. Roughly speaking, the high-frequency
terms in the trigonometric polynomial are associated with
pixels at the edge of the underlyingby grid. Our crude in-
terpolation evidently will fail at reconstructing high-frequency
terms. However, in the curvelet application—see below—we
use a window function to downweight the contributions of our
reconstruction near the edge of the image array. So, inaccura-
cies in reconstruction caused by our crude interpolation can
be expected to be located mostly in regions which make little
visual impact on the reconstruction.

A final point about our implementation. Since we are inter-
ested in noise removal artifact removal is very important. At
the signal-to-noise ratios (SNRs) we consider, high-order-ac-
curacy interpolation formulas which generate substantial arti-
facts (as many high-order formulas do) can be less useful than
low-order-accuracy schemes which are relatively artifact-free.
A known artifact of exact interpolation of trigonometric poly-
nomials: substantial long-range disturbances can be generated
by local perturbations such as discontinuities. In this sense, our
crude interpolation may actually turn out to be preferable for
some purposes.

D. Exact Reconstruction and Stability

The Cartesian-to-rectopolar conversion we have suggested
here is reversible. That is to say, given the rectopolar values
output from this method, one can recover the original Cartesian
values exactly. To see this, take as given the following:Claim:
the assignment of Cartesian points as nearest neighbors of rec-
topolar points happens in such a way that each Cartesian point
is assigned as the nearest neighbor of at least one rectopolar
point. It follows from this claim that each value in the orig-
inal Cartesian input array is copied into at least one place in
the output rectopolar array. Hence, perfect reconstruction is ob-

viously possible in principle—just keeping track of where the
entries are have been copied to and undoing the process.

Our reconstruction rule obtains, for each point on the Carte-
sian grid, thearithmetic mean of all the values in the rectopolar
grid which have that Cartesian point as their nearest point. This
provides a numerically stable left inverse. Indeed, if applied to
a perturbed set of rectopolar values, this rule gives an approxi-
mate reconstruction of the original unperturbed Cartesian values
in which the approximation errors are smaller than the size of
the perturbations suffered by the rectopolar values. (This final
comment is reassuring in the present denoising context, where
our reconstructions will always be made by perturbing the em-
pirical rectopolar FT of the noisy data.) Phrased in mathematical
terms this gives

where is a given point on the Cartesian grid and is the
set of rectopolar points that are closest to. Stability in , for
instance, follows from the observation

since is a partition of the set of rectopolar points, sum-
ming this last inequality across the Cartesian grid gives

.
It remains to explain the italicized claim, because, as we have

seen, from it flows the exact reconstruction property and sta-
bility of the inverse. Consider the rectopolar points in the hour-
glass region made of “basically vertical lines,” i.e., lines which
make an angle less than with vertical, and more specifically
those points on a single horizontal scan line. Assuming the scan
line is not at the extreme top or bottom of the array, these points
are spacedstrictly less than one unit apart, where our unit is the
spacing of the Cartesian grid. Therefore, when we consider a
Cartesian grid point belonging to this scan line and ask about
the rectopolar points and which are closest to it on the
left and right, respectively, these two points cannot be as much
as one unit apart: . Therefore, at least one of
the two points must be strictly less than 1/2 unit away from the
Cartesian Point, i.e., either or

. Without loss of generality suppose that .
Then clearly has as its closest Cartesian point. In short,
every Cartesian point in the strict interior of the “hourglass” as-
sociated with the “basically vertical” lines arises as the strict
closest Cartesian point of at least one rectopolar point. Sim-
ilar statements can be made about points on the boundary of
the hourglass, although the arguments supporting those state-
ments are much simpler, essentially mere inspection. Similar
statements can be made about the points in the transposed hour-
glass. The italicized claim is established.

E. One-Dimensional Wavelet Transform

To complete the ridgelet transform, we must take a 1-D
wavelet transform along the radial variable in Radon space. We
now discuss the choice of digital 1-D wavelet transform.
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Experience has shown that compactly supported wavelets
can lead to many visual artifacts when used in conjunction
with nonlinear processing—such as hard-thresholding of
individual wavelet coefficients—particularly for decimated
wavelet schemes used at critical sampling. Also, because of
the lack of localization of such compactly supported wavelets
in the frequency domain, fluctuations in coarse-scale wavelet
coefficients can introduce fine-scale fluctuations; this is un-
desirable in our setting. Here we take a frequency-domain
approach, where the discrete Fourier transform is reconstructed
from the inverse Radon transform. These considerations lead
us to use band-limited wavelet—whose support is compact
in the Fourier domain rather than the time-domain. Other
implementations have made a choice of compact support in the
frequency domain as well [14], [15]. However, we have chosen
a specific overcomplete system, based on work of Starcket
al. [26], [28], who constructed such a wavelet transform and
applied it to interferometric image reconstruction. The wavelet
transform algorithm is based on a scaling functionsuch that

vanishes outside of the interval . We defined the
scaling function as a renormalized -spline

and as the difference between two consecutive resolutions

Because is compactly supported, the sampling theorem shows
than one can easily build a pyramid of
elements, see [28] for details.

This transform enjoys the following features.

• The wavelet coefficients are directly calculated in the
Fourier space. In the context of the ridgelet transform,
this allows avoiding the computation of the 1-D inverse
Fourier transform along each radial line.

• Each subband is sampled above the Nyquist rate, hence,
avoiding aliasing—a phenomenon typically encountered
by critically sampled orthogonal wavelet transforms [25].

• The reconstruction is trivial. The wavelet coefficients
simply need to be co-added to reconstruct the input signal
at any given point. In our application, this implies that
the ridgelet coefficients simply need to be co-added to
reconstruct Fourier coefficients.

This wavelet transform introduces an extra redundancy factor,
which might be viewed as an objection by advocates of or-
thogonality and critical sampling. However, we note that our
goal in this implementation is not data compression/efficient
coding—for which critical sampling might be relevant—but in-
stead noise removal, for which it well-known that overcomplete-
ness can provide substantial advantages [9].

F. Combining the Pieces

Fig. 2 shows the flowgraph of the ridgelet transform. The
ridgelet transform of an image of size is an image of size

, introducing a redundancy factor equal to four.
We note that, because our transform is made of a chain of

steps, each one of which is invertible, the whole transform is

Fig. 2. Ridgelet transform flowgraph. Each of the2n radial lines in the Fourier
domain is processed separately. The 1-D inverse FFT is calculated along each
radial line followed by a 1-D nonorthogonal wavelet transform. In practice, the
1-D wavelet coefficients are directly calculated in the Fourier space.

invertible, and so has the exact reconstruction property. For the
same reason, the reconstruction is stable under perturbations of
the coefficients.

Last but not least, our discrete transform is computationally
attractive. Indeed, the algorithm we presented here has low com-
plexity since it runs in flops for an image.

G. Digital and Discrete Ridgelet Transforms

Quite frankly, there is an apparent discrepancy between the
theory of ridgelets and our proposed digital implementation
which requires some justification. In our digital ridgelet
pyramid, the number of orientations is constant, i.e., indepen-
dent of scale whereas in the theory, the number of orientations
is inversely proportional to the scale [2]. In other words, the
theory imposes a downsampling on the set of orientations by
a factor two as one proceeds to the coarser scale. In some
sense, our digital implementation increasingly oversamples the
angular variable at coarser scales.

There is an analogy here with wavelet algorithms for noise
removal. In the orthonormal wavelet pyramid, the number of
elements per scale and location is fixed—independent of scale.
Yet undecimated wavelet transforms traditionally in use for
denoising do not exhibit this principle. There are increasingly
many elements per scale and location at coarser scales. The
practical benefits of such redundant systems are well-estab-
lished. Because we are working in a denoising setting, there
is an advantage in having more orientations than necessary
at coarse scales. To continue with this analogy, undecimated
wavelet transforms are thought to be translation invariant.
Likewise, the digital ridgelet transform we introduced here is
in some sense “rotation invariant.”

We want to make unmistakably clear that the digital ridgelet
transform we presented is intendedfor noise removal purposes.
Other strategies may be pursued for other intentions.
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H. Smooth Partitioning: Local Ridgelet Transforms

A digital version of the ideas presented in Section II-B de-
composes the original by image into smoothly overlapping
blocks of sidelength pixels in such a way that the overlap be-
tween two vertically adjacent blocks is a rectangular array of
size by ; we use overlap to avoid blocking artifacts. For an

by image, we count such blocks in each direction.
The partitioning introduces redundancy, as a pixel belongs to

4 neighboring blocks. We present two competing strategies to
perform the analysis and synthesis:

1) The block values are weighted (analysis) in such a way
that the co-addition of all blocks reproduce exactly the
original pixel value (synthesis).

2) The block values are those of the image pixel values (anal-
ysis) but are weighted when the image is reconstructed
(synthesis).

Of course, there are intermediate strategies and one could apply
smooth windowing at both the analysis and synthesis stage as
discussed in Section II-B, for example. In the first approach, the
data are smoothly windowed and this presents the advantage to
limit the analysis artifacts traditionally associated with bound-
aries. The drawback, however, is a loss of sensitivity. Indeed,
suppose for sake of simplicity that a vertical line with intensity
level intersects a given block of size. Without loss of gen-
erality assume that the noise standard deviation is equal to 1.
When the angular parameter of the Radon transform coincides
with that of the line, we obtain a measurement with a signal in-
tensity equal to while the noise standard deviation is equal
to [in this case, the value of the SNR is ]. If weights
are applied at the analysis stage, the SNR is roughly equal to

. Experiments have shown that
this sensitivity loss may have substantial effects in filtering ap-
plications and, therefore, the second approach seems more ap-
propriate since our goal is image restoration.

We calculate a pixel value, from its four corre-
sponding block values of half-size , namely, ,

, and with and
, in the following way:

(8)

with . Of course, one might select any other
smooth, nonincreasing function satisfying, ,
, and obeying the symmetry property

.
It is worth mentioning that the spatial partitioning introduces

a redundancy factor equal to four.
Finally, we note that in order to be in better agreement with

the theory one should of course introduce a normalizing factor
depending upon the block-size. However, since we are con-
cerned about denoising and the thresholding of individual co-
efficients, the normalization is a nonissue. Renormalizing coef-
ficients automatically renormalizes corresponding thresholds in
the exact same way, see Section V.

Fig. 3. Curvelet transform flowgraph. The figure illustrates the decomposition
of the original image into subbands followed by the spatial partitioning of each
subband. The ridgelet transform is then applied to each block.

IV. DIGITAL CURVELET TRANSFORM

A. Discrete Curvelet Transform of Continuum Functions

We now briefly return to the continuum viewpoint of Sec-
tion II-B. Suppose we set an initial goal to produce a decom-
position using the multiscale ridgelet pyramid. The hope is that
this would allow us to use thin “brushstrokes” to reconstruct the
image, with all lengths and widths available to us. In particular,
this would seem allow us to trace sharp edges precisely using a
few elongated elements with very narrow widths.

As mentioned in Section II-B, the full multiscale ridgelet
pyramid is highly overcomplete. As a consequence, convenient
algorithms like simple thresholding will not find sparse decom-
positions when such good decompositions exist. An important
ingredient of the curvelet transform is to restore sparsity by re-
ducing redundancy across scales. In detail, one introduces in-
terscale orthogonality by means of subband filtering. Roughly
speaking, different levels of the multiscale ridgelet pyramid are
used to represent different subbands of a filter bank output. At
the same time, this subband decomposition imposes a relation-
ship between the width and length of the important frame ele-
ments so that they are anisotropic and obeywidth length .

The discrete curvelet transform of a continuum function
makes use of a dyadic sequence of scales, and a

bank of filters with the property that
the passband filter is concentrated near the frequencies

, e.g.,

In wavelet theory, one uses a decomposition into dyadic sub-
bands . In contrast, the subbands used in the discrete
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Fig. 4. A few curvelets.

curvelet transform of continuum functions have the nonstandard
form . This is nonstandard feature of the discrete
curvelet transform well worth remembering.

With the notations of Section II-B, the curvelet decomposi-
tion is the sequence of the following steps.

• Subband Decomposition. The object is decomposed into
subbands

• Smooth Partitioning. Each subband is smoothly win-
dowed into “squares” of an appropriate scale (of
sidelength )

• Renormalization. Each resulting square is renormalized to
unit scale

(9)

• Ridgelet Analysis. Each square is analyzed via the discrete
ridgelet transform.

In this definition, the two dyadic subbands and
are merged before applying the ridgelet trans-

form.

B. Digital Realization

In developing a transform for digital by data which is
analogous to the discrete curvelet transform of a continuous
function , we replace each of the continuum concepts
with the appropriate digital concept mentioned in sections
above. In general, the translation is rather obvious and direct.
However, experience shows that one modification is essential;
we found that, rather than merging the two the two dyadic
subbands and as in the theoret-
ical work, in the digital application, leaving these subbands
separate, applying spatial partitioning to each subband and
applying the ridgelet transform on each subband separately led
to improved visual and numerical results.

We believe that the “à trous” subband filtering algorithm is
especially well-adapted to the needs of the digital curvelet trans-
form. The algorithm decomposes anby image as a super-
position of the form

where is a coarse or smooth version of the original image
and represents “the details of” at scale , see [28] for
more information. Thus, the algorithm outputs subband
arrays of size . [The indexing is such that, here,
corresponds to the finest scale (high frequencies).]

C. Algorithm

We now present a sketch of the discrete curvelet transform
algorithm:

1) apply the à trous algorithm with scales;
2) set ;
3) for do

a) partition the subband with a block size and
apply the digital ridgelet transform to each block;

b) if then ;
c) else .

The sidelength of the localizing windows is doubledat every
otherdyadic subband, hence maintaining the fundamental prop-
erty of the curvelet transform which says that elements of length
about serve for the analysis and synthesis of theth sub-
band . Note also that the coarse description of the
image is not processed. Finally, Fig. 3 gives an overview of
the organization of the algorithm.

This implementation of the curvelet transform is also redun-
dant. The redundancy factor is equal to whenever
scales are employed. Finally, the method enjoys exact recon-
struction and stability, because this invertibility holds for each
element of the processing chain.

Fig. 4 shows a few curvelets at different scales, orientations
and locations.
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V. FILTERING

We now apply our digital transforms for removing noise from
image data. The methodology is standard and is outlined mainly
for the sake of clarity and self-containedness.

Suppose that one is given noisy data of the form

where is the image to be recovered andis white noise, i.e.,
. Unlike FFTs or FWTs, our discrete ridgelet

(resp. curvelet) transform is not norm-preserving and, therefore,
the variance of the noisy ridgelet (resp. curvelet) coefficients
will depend on the ridgelet (resp. curvelet) index. For instance,
letting denote the discrete curvelet transform matrix, we have

. Because the computation of is pro-
hibitively expensive, we calculated an approximate valueof
the individual variances using Monte-Carlo simulations where
the diagonal elements of are simply estimated by evalu-
ating the curvelet transforms of a few standard white noise im-
ages.

Let be the noisy curvelet coefficients ( ). We use
the following hard-thresholding rule for estimating the unknown
curvelet coefficients

if (10)

if (11)

In our experiments, we actually chose a scale-dependent value
for ; we have for the first scale while for
the others .

VI. FILTERING EXPERIMENTS

A. Who Else?

In our first example, a Gaussian noise with a standard devia-
tion equal to 20 was added to the classicalLenna image (512

512). Several methods were used to filter the noisy image.
1) Thresholding of Monoscale ridgelet transforms with scale

( block size) (8, 16, 32, and 64).
2) Thresholding of Curvelet transform.
3) Wavelet denoising methods in the following four families.

a) Bi-orthogonal wavelet transform using the
Dauchechies-Antonini 7/9 filters (FWT-7/9)
and hard thresholding.

b) Undecimated bi-orthogonal wavelet transform
(UWT-7/9) with hard thresholding; we used
for the finest scale, and three for the others.

c) Multiscale entropy processing using the undeci-
mated wavelet transform. This method is discussed
in [27], [29].

d) Wavelet-domain Hidden Markov Models
(WHMM) using Daubechies orthonormal wavelets
of length eight. This method [10] attempts to
model the joint probability density of the wavelet
coefficients and derives the filtered coefficients
using an empirical Bayesian approach. We used
this rather than a competing method of Simoncelli
[24] owing to availability of a convenient software
implementation.

We use the PSNR as an “objective” measure of performance.
In addition, we used our own visual capabilities to identify ar-
tifacts whose effects may not be well-quantified by the PSNR
value. The sort of artifacts we are particularly concerned about
may be seen on display in the upper right panel of Fig. 5, which
displays a wavelet reconstruction. This image has a number
of problems near edges. In reconstructing some edges which
should follow smooth curves one gets edges which are poorly
defined and very choppy in reconstruction (for example in the
crown of the hat); also some edges which are accurately recon-
structed exhibit oscillatory structure along the edge which is not
present in the underlying image (for example in the shoulder and
the hat brim). We refer to all such effects as artifacts.

Our experiments are reported on Figs. 5 and 6. The latter
figure represents a detail of the original image and helps the
reader observe the qualitative differences between the different
methods (see Table I). We observe the following.

• The curvelet transform enjoys superior performance over
local ridgelet transforms, regardless of the block size.

• The undecimated wavelet transform approach outputs a
PSNR comparable to that obtained via the curvelet trans-
form (the PSNR is slightly better for the multiscale en-
tropy method).

• The curvelet reconstruction does not contain the quantity
of disturbing artifacts along edges that one sees in wavelet
reconstructions. An examination of the details of the re-
stored images (Fig. 6) is instructive. One notices that the
decimated wavelet transform exhibits distortions of the
boundaries and suffers substantial loss of important detail.
The undecimated wavelet transform gives better bound-
aries, but completely omits to reconstruct certain ridges in
the hatband. In addition, it exhibits numerous small-scale
embedded blemishes; setting higher thresholds to avoid
these blemishes would cause even more of the intrinsic
structure to be missed.

• The curvelet reconstructions display higher sensitivity
than the wavelet-based reconstructions. In fact both
wavelet reconstructions obscure structure in the hatband
which was visually detectable in the noisy panel at upper
left. In comparison, every structure in the image which is
visually detectable in the noisy image is clearly displayed
in the curvelet reconstruction.

These observations are not limited to the particular experi-
ment displayed here. We have observed similar characteristics in
many other experiments; see Fig. 11 for another example. Fur-
ther results are visible at http://www-stat.stanford.edu/~jstarck.

To study the dependency of the curvelet denoising procedure
on the noise level, we generated a set of noisy images (the noise
standard deviation varies from five to 100) from bothLenna
andBarbara . We then compared the three different filtering
procedures based, respectively, on the curvelet transform and on
the undecimated/decimated wavelet transforms. This series of
experiments is summarized in Fig. 7 which displays the PSNR
versus the noise standard deviation. These experimental results
show that the curvelet transform outperforms wavelets for re-
moving noise from those images, as the curvelet PSNR is sys-
tematically higher than the wavelet PSNRs—and this, across a
broad range of noise levels. Other experiments with color im-
ages led to similar results.
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Fig. 5. (Top left) Noisy image and (top right) filtered images using the decimated wavelet transform, (bottom left) the undecimated wavelet transform and the
(bottom right) curvelet transform.

B. Recovery of Linear Features

The next experiment (Fig. 8) consists of an artificial image
containing a few bars, lines and a square. The intensity is con-
stant along each individual bar; from left to right, the intensities
of the ten vertical bars (these are in fact thin rectangles which
are four pixels wide and 170 pixels long) are equal to ,

. The intensity along all the other lines is equal to 1,
and the noise standard deviation is 1/2. Displayed images have
been -transformed in order to better see the results at low
SNR.

The curvelet reconstruction of the nonvertical lines is
obviously sharper than that obtained using wavelets. The
curvelet transform also seems to go one step further as far as
the reconstruction of the vertical lines is concerned. Roughly
speaking, for those templates, the wavelet transforms stops
detecting signal at a SNR equal to one (we defined here the
SNR as the intensity level of the pixels on the line, divided by
the noise standard deviation of the noise) while the cut-off value
equals 0.5 for the curvelet approach. It is important to note
that the horizontal and vertical lines correspond to privileged
directions for the wavelet transform, because the underlying
basis functions are direct products of functions varying solely
in the horizontal and vertical directions. Wavelet methods will
given even poorer results on lines of the same intensity but

tilting substantially away from the Cartesian axes. Compare the
reconstructions of the faint diagonal lines in the image.

C. Recovery of Curves

In this experiment (Fig. 9), we have added a Gaussian noise to
“War and Peace,” a drawing from Picasso which contains many
curved features. Fig. 9 bottom left and right shows, respectively,
the restored images by the undecimated wavelet transform and
the curvelet transform. Curves are more sharply recovered with
the curvelet transform.

The authors are working on new methods (some of which
will be based on the curvelet transform) to extract and recover
curves from noisy data with greater accuracy and, therefore, this
example is merely to be taken for illustrative purposes.

D. Denoising of a Color Image

In a wavelet based denoising scenario, color RGB images are
generally mapped into the YUV space, and each YUV band is
then filtered independently from the others. The goal here to
see whether the curvelet transform would give improved results.
We used four of the classical color images, namelyLenna ,
Peppers , Baboon , and Barbara (all images except per-
hapsBarbara are available from the USC-SIPI Image Data-
base [11]. We performed the series of experiments described in
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Fig. 6. (Top left) Noisy image and (top right) the restored images after denoising by means of the DWT, (bottom left) UWT, and (bottom right) the curvelet
transform. The diagonal lines of the hat have been recovered with much greater fidelity in the curvelet approach.

TABLE I
TABLE OF PSNR VALUES AFTER FILTERING THE NOISY IMAGE [Lenna +

GAUSSIAN WHITE NOISE (SIGMA = 20)]. IMAGES ARE AVAILABLE AT

http://www-stat.stanford.edu/~jstarck/lena.html

Section VI-A and summarized our findings on Fig. 10 which
again displays the PSNR versus the noise standard deviation
for the four images. In all cases, the curvelet transform out-
performs the wavelet transforms in terms of PSNR—at least
for moderate and large values of the noise level. In addition,
the curvelet transform outputs images that are visually more

pleasant. Fig. 11 illustrates this last point. For other examples,
please check http://www-stat.stanford.edu/~jstarck.

VII. CONCLUSION

In this paper, we presented a strategy for digitally im-
plementing both the ridgelet and the curvelet transforms.
The resulting implementations have the exact reconstruction
property, give stable reconstruction under perturbations of the
coefficients, and as deployed in practice, partial reconstructions
seem not to suffer from visual artifacts.

There are, of course, many competing strategies to translate
the theoretical results on ridgelets and curvelets into digital rep-
resentations. Guided by a series of experiments, we arrived at
several innovative choices which we now highlight.

1) Subband Definition. We split the nonstandard frequency
subband —arising in theoretical treatments
of curvelets [5]—into the two standard dyadic frequency
subbands and and we pro-
cessed each of them individually. This seems to give
better result.

2) Subband Filtering. The à trous algorithm is well-adapted
to the decomposition into subbands. For instance, an al-
ternative strategy using a decimated 2-D wavelet trans-
form introduces visual artifacts near strong edges, in the
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Fig. 7. PSNR versus noise standard deviation for different denoising methods. The three methods based on the curvelet, undecimated and decimated wavelet
transforms are represented with a continuous, dashed, and dotted line, respectively. The left panel corresponds toLenna , and the right toBarbara .

Fig. 8. Top panels: a geometric image and that same image contaminated with a Gaussian white noise. The bottom left and right panels display the restored
images using the undecimated wavelet transform and the curvelet transform, respectively.

form of curve fragments at 90orientation to the under-
lying edge direction.

3) Wavelet underlying the Ridgelet Transform. Our ridgelet
transform uses a 1-D wavelet transform based on wavelets
which are compactly supported in the Fourier domain. If a
wavelet, compactly supported in space, is used instead, it
appears that thresholding of ridgelet/curvelet coefficients
may introduce many visual artifacts in the form of ghost
oscillations parallel to strong linear features.

A remark aboutwhich principles are important: because we
are working in a denoising setting, the attraction of traditional
transform desiderata—critical sampling and orthogonality—is
weak. Instead, redundancy, and overcompleteness seem to offer
advantages, particularly in avoiding visual artifacts.

The work presented here is an initial attempt to address the
problem of image denoising using digital analogs of some new
mathematical transforms. Our experiments show that curvelet
thresholding rivals sophisticated techniques that have been the

object of extensive development over the last decade. We find
this encouraging, particularly as there seem to be numerous
opportunities for further improvement. Areas for further work
clearly include improved interpolation schemes, and improved
folding strategies for space partitioning, to mention a few. On
the other hand, the digital curvelet transform is nonorthogonal,
quite redundant and as a consequence, the noisy coefficients
are correlated and one should clearly design thresholding rules
taking into account this dependency. There is an obvious tree
structure with parent and children curvelet coefficients that
might also be used effectively in this setting.

We also look forward to testing our transforms on larger
datasets in order to fully exploit the multiscale nature of the
curvelet transform. Images of size 2048 2048 or 4096

4096 would be a reasonable target, as those resolutions
will undoubtedly become standard over the next few years.
As images scale up, the asymptotic theory which suggests
that curvelets outperform wavelets may become increasingly
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Fig. 9. Top panels: a Picasso picture (War and Peace) and that same image contaminated with a Gaussian white noise. The bottom left and right panels display
the restored images using the undecimated wavelet transform and the curvelet transform, respectively.

Fig. 10. PSNR versus noise standard deviation using different filtering methods. YUV and curvelet, YUV and undecimated wavelet, and YUV and decimated
wavelet transforms are represented, respectively, with a continuous, dashed, and dotted line. The upper left panel corresponds toLenna (RGB), the upper right to
pepper (RGB), the bottom left toBaboon (RGB), and the bottom right toBarbara (RGB).

relevant. The quality of the local reconstructions as illustrated
on the “zoomed restored images” obtained via the curvelet

transform are especially promising. We hope to report on this
issue in a forthcoming paper.



STARCK et al.: CURVELET TRANSFORM FOR IMAGE DENOISING 683

Fig. 11. Upper left: noisyBarbara image. Upper right: restored image after applying the curvelet transform. Details of the restored images are shown on the
bottom left panel (undecimated wavelet transform) and right (curvelet transform) panel.
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