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1 Introduction

The cusp anomalous dimension Γcusp(φ) was originally introduced in [1] as the ultraviolet

(UV) divergence of a Wilson loop with a cusp with Euclidean angle φ. It describes a wide

range of interesting physical situations. One that will be of special importance in this

paper is its relation to the infrared (IR) divergences of massive scattering amplitudes and

form factors, see [2, 3] and references therein.

In planar N = 4 SYM, using dual conformal symmetry one can argue that the (Eu-

clidean) Regge limit1 s� m2, t of Coulomb branch amplitudes [4] is also governed by this

function Γcusp [5]. In this paper, we use this relation to extract the three-loop value of

Γcusp from the scattering amplitudes.

The two-loop contribution to the cusp anomalous dimension in QCD was computed

in ref. [6] and rederived and simplified in ref. [7]. In supersymmetric theories, it is natural

1We call this limit “Euclidean” because s and t have the same sign, as opposed to the usual Regge limit.
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to define a generalization of the usual Wilson loop. As we discuss below, one can define

a locally supersymmetric Wilson loop that couples to scalars in addition to gluons. The

two-loop result for the latter loop in N = 4 SYM is closely related to the result for the

standard QCD loop, and was obtained in [8, 9]. We reproduced these formulas as a check

of our calculation, see eqs. (2.23) and (2.24).

We find the previously unknown three-loop contribution to be given by

Γ(3)
cusp(ϕ) = −1

2
ξ

{
−1

3
ϕ
(
ϕ2 + π2

)2}
− 1

2
ξ2

{
+

11

15
ϕ5 − 4

3
Li1(e−2ϕ)ϕ4 − ϕ3

[
+

2

3
Li2(e−2ϕ)− 20

3
ζ2

]
+ ϕ2

[
−2ζ3 − 8ζ2 Li1(e−2ϕ) + 2 Li3(e−2ϕ)

]
− ϕ

[
+4ζ2 Li2(e−2ϕ)− 25ζ4 − 9 Li4(e−2ϕ)

]
+ 12 Li5(e−2ϕ)− 12ζ5

}
− 1

2
ξ3

{
−2

5
ϕ5 − ϕ3

[
4

3
Li2(e−2ϕ) +

8

3
ζ2

]
+ ϕ2

[
−2 Li3(e−2ϕ) + 2ζ3

]
− ϕ

[
4H2,2(e−2ϕ) + 4H3,1(e−2ϕ) + 4ζ2 Li2(e−2ϕ) + 4 Li4(e−2ϕ) + 6ζ4

]
−6 Li5(e−2ϕ)−4H2,3(e−2ϕ)−6H3,2(e−2ϕ)−6H4,1(e−2ϕ)+4ζ3 Li2(e−2ϕ)

− 2ζ2 Li3(e−2ϕ) + 2ζ2ζ3 + 3ζ5

}
. (1.1)

Here ξ = tanhϕ/2, and Lin are polylogarithms. Here ϕ = iφ is the lorentzian version of

the angle (a boost angle). The Hi,j are harmonic polylogarithms [10], whose definition we

recall in section 2. This is one of the main results of this paper.

There are several interesting limits of this function.

• In the large angle ϕ→∞ limit, it grows linearly with the angle, Γcusp(ϕ) ∝ ϕΓ∞cusp.

The coefficient Γ∞cusp is the anomalous dimension of a light-like, or null, Wilson loop.

It is also related to the high-spin limit of anomalous dimensions of composite opera-

tors [11–13]. It is determined exactly by an integral equation [14].

• Small angle limit. At φ = 0, we have the straight line, which is 1/2 BPS, and its loop

corrections vanish. The order φ2 correction to the BPS configuration is related to

the energy loss of an accelerated quark. We have Γcusp(φ) = −φ2B(λ,N) + O(φ4),

where the “Bremstrahlung function” B(λ,N) is exactly known [15, 16]. In [15, 16]

this function was also related to other observables, such as the power radiated by a

moving quark, the two point function of the displacement operator on the Wilson

loop and the stress tensor expectation value in the presence of a Wilson line.

• Γcusp(φ) gives the quark anti-quark potential on S3 for a configuration which is sep-

arated by an angle δ = π − φ, see figure 1(b). The limit δ → 0 gives the quark

anti-quark potential potential in flat space. That limit is considered in section 4.

– 2 –
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φ φ

(a) (b)

S3

~n

~n′

δ

Figure 1. (a) A Wilson line that makes a turn by an angle φ in Euclidean space. The vectors ~n,

~n′ denote the direction that sets the coupling to the scalar. (b) Under the plane to cylinder map,

the same line is mapped to a quark anti-quark configuration. The quark and antiquark are sitting

at two points on S3 at a relative angle of δ = π − φ. Of course, they are extended along the time

direction.

In N = 4 super Yang Mills we can also introduce a second angle at a cusp [17]. This

second angle is related to the fact that the locally supersymmetric Wilson loop observable

contains a coupling to a scalar. This coupling selects a direction ~n, where ~n is a point on

S5. The Wilson loop operator is given by [18]

W ∼ Tr[Pei
∮
A·dx+

∮
|dx|~n·~Φ] (1.2)

where we wrote it in Euclidean signature. One can consider a loop with a constant direction

~n, with ∂τ~n = 0. Consider such straight Wilson line making a sudden turn by an angle φ,

see figure 1(a). At the cusp we could consider the possibility of changing the direction ~n

by an angle θ, cos θ = ~n · ~n′, where ~n and ~n′ are the directions before and after the cusp.

In that case the Wilson loop develops a logarithmic divergence of the form

〈W 〉 ∼ e−Γcusp(φ,θ) log
ΛUV
ΛIR (1.3)

where ΛIR/UV are the IR and UV cutoff energies, respectively. Thus, we have a cusp

anomalous dimension, Γcusp(φ, θ), which is a function of two angles φ and θ. The former

is the obvious geometric angle and the latter is an internal angle.

The same generalized cusp anomalous dimension Γcusp(φ, θ) also characterizes the pla-

nar IR divergences that arise when scattering massive W bosons on the Coulomb branch of

N = 4 SYM. There, cos θ = ~n1 · ~n2 is the angle between the Coulomb branch expectation

values 〈~Φ〉 = diag(h1~n1, h2~n2, . . . ) associated to a pair of color adjacent external W bosons

W1,i and Wi,2. This generalized cusp anomalous dimension was computed to leading and

subleading order in weak and strong coupling in refs. [17] and [9], respectively. We expect

that, at three loops, Γcusp(ϕ, θ) can be obtained from the result at θ = 0 of eq. (1.1) by

setting ξ = (coshϕ− cos θ)/ sinhϕ.

– 3 –
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Ladder diagrams give the “most complicated” contribution at three loops. That is the

ξ3 piece in eq. (1.1). More generally, we find that up to three loops ladder diagrams are

the only contribution to the ξL term where L is the number of loops. We expect that to

be true to all loop orders. One can therefore wonder if there is a physical quantity that is

computed by summing only ladder diagrams. We find that this is indeed the case! Having

a second angle θ, there are new limits one can take. In particular one can consider the limit

where iθ → ∞, λ → 0 with λ̂ = λ eiθ/4 (and therefore also λLξL) held fixed. That limit

select the scalar ladders diagrams and is the subject of section 3. The sum of these ladder

diagrams can be performed by finding the ground state of a one dimensional Schrödinger

problem. It is possible to take the large λ̂ limit. We compare this with the strong coupling

answer in the large eiθ limit and we find that they agree. In principle, it did not have to

agree, since the order of limits is different. However, as in the BMN [19] or large charge

limits [20–22], the two limits commute and we get a precise agreement. For a particular

angle, namely φ = 0, we can solve it completely as a function of the coupling.

There are two appendices. In appendix A we comment on direct relations between

integrals appearing in massive form factors and the Wilson loop under consideration. We

explicitly give a sum of two three-loop Wilson loop diagrams that contributes directly

to the three-loop form factor in QCD. We also compute a certain type of Wilson loop

integral with interaction vertices (or equivalently, form factor integral) analytically to all

loop orders. We observe that up to a simple factor, the answer at L loops is a homogeneous

polynomial of degree 2L− 1 in the cusp angle ϕ and π. Finally, appendix B contains the

result for the Regge limit of individual four-point integrals that contribute to Γcusp.

2 Γcusp(λ, ϕ) from scattering amplitudes

2.1 Regge limit and soft divergences in massive N = 4 super Yang-Mills

The cusp anomalous dimension Γcusp(ϕ) appears in (supersymmetric) Wilson loops with

(Minkowskian) cusp angle ϕ. It can also be obtained from a leading infrared (soft) diver-

gence of amplitudes or form factors involving massive particles [2].

In particular, it can be extracted from massive amplitudes on the Coulomb branch of

N = 4 SYM [5]. These amplitudes are obtained by giving a vacuum expectation value to

some of the scalars of N = 4 SYM. The string theory dual of this setup [23] suggests that

the amplitudes defined in this way have an exact dual conformal symmetry [4]. Consider

the four-scalar amplitudeM with on-shell conditions p2
i = −(hi−hi+1)2, where hi+4 ≡ hi.

Here hi are four nonzero eigenvalues of the Higgs fields, which we take to all point in the

same direction. The Mandelstam variables are s = (p1 + p2)2 and t = (p2 + p3)2.2 A priori

the amplitude could depend on five dimensionless ratios built from the Poincaré invariants

s, t, h2
i . Dual conformal symmetry implies that it is a function of two variables only,

M(s, t, h1, h2, h3, h4) =M(u, v) , (2.1)

2We follow the − + ++ metric conventions of ref. [4], so that s is negative for positive center of mass

energy. The amplitude will be real for s and t both positive.
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where

u =
h1 h3

s+ (h1 − h3)2
, v =

h2 h4

t+ (h2 − h4)2
. (2.2)

u and v are invariant under dual conformal transformations. M(u, v) is known explicitly at

one loop, where it is given in terms of logarithms and dilogarithms. It is an interesting open

question what its functional dependence is at higher loops. In this paper, we determine

the u→ 0 limit up to three loops.

Following ref. [5], there are two mass configurations that are of special interest two us:

(a) The equal mass configuration hi = m, which implies that the external states are

massless, p2
i = 0, and we have u = m2/s , v = m2/t. In the limit u, v � 1, with u/v

fixed one obtains the (IR-divergent) massless amplitudes at the origin of the Coulomb

branch. In particular, in the four-point case discussed here, the latter are known to

all loop orders. Here m acts as an IR regulator.

(b) The two-mass configuration h1 = h3 = m, h2 = h4 = M , where the on-shell con-

ditions are p2
i = −(M − m)2, and u = m2/s , v = M2/t. In the limit of M � m,

the kinematical configuration is that of Bhabha scattering. Here we have external

massive particles of mass M , and m acts as an IR cutoff if we keep s and t of order

M2. In string theory, the different masses come from strings ending on stacks of D3

branes at different radial coordinates in AdS space. See ref. [4] for more details. In

the planar limit we can view this as the scattering of a massive quarks and a massive

antiquark.

Thanks to dual conformal symmetry, both (a) and (b) are described by the same function

M(u, v).

We will be interested in the limit u� 1 ofM(u, v) [5]. This limit has different physical

interpretations for cases (a) and (b). The two configurations (in the limit) are illustrated

in figure 2. In the interpretation (a) of M(u, v), this is the Regge limit s→∞. In (b), in

the limit we have heavy particles of mass M −m ≈ M that interact by exchanging light

particles of small mass m. The mass of the light particles regulates soft divergences. This

is similar in spirit to giving the photon a small mass in QED. In the planar limit, and from

the point of view of the low energy degrees of freedom, we are scattering a massive quark

and anti-quark pair. Thus there are only two regions that give rise to soft divergences.3 See

figure 2(b). The overall soft IR divergence can be obtained in the eikonal approximation.

This leads naturally to a cusped Wilson loop [24]. One can then identify the coefficient of

the IR divergence of the amplitude with (minus) the coefficient of the UV divergence of

the cusped Wilson loop. Therefore we expect [5]4

log (M(u, v)) −→
u→0

(log u) Γcusp(λ, ϕ) +O(u0) . (2.3)

3If we were scattering massive adjoint particles there would be four regions that give rise to soft diver-

gences.
4Note that we changed the sign and normalization in the definition of Γcusp(λ, ϕ) w.r.t. ref. [5]. We have

Γtherecusp (λ, ϕ) = −2Γherecusp (λ, ϕ).
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m

m

m

0

00

0 0

Figure 2. Sample two-loop diagram contributing to the four-particle amplitude. Solid and wavy

lines denote massive and (almost) massless particles, respectively. The precise masses are given by

the labels. Dual conformal symmetry implies that the same functionM(u, v) describes two different

physical situations: The Regge limit s→∞ of (a) is equivalent to the Bhabha-type scattering (b),

where the outer wavy lines have a small mass that regulates the soft divergences.

Note that there are two soft regions of the amplitude that contribute. These regions

correspond to either the upper or lower propagator of mass m in figure 2(b) having soft

momentum.

We have the perturbative expansion

Γcusp(λ, ϕ) =
∑
L≥1

(
λ

8π2

)L
Γ(L)

cusp(ϕ) , λ = g2
YMN . (2.4)

The logarithmic contribution on the r.h.s. of (2.3) comes from soft exchanges between the

heavy particles. In this soft region, the amplitude can be approximated by form factors.

In this limit, the Minkowskian cusp angle is a natural variable. It is defined as

coshϕ =
p2 · p3√

(p2)2(p3)2
, (2.5)

where p2 and p3 are the (ingoing) momenta forming the cusp. The relation to the Euclidean

cusp angle is φ = iϕ. Using the definition v = M2/(p2 + p3)2 and the on-shell conditions

p2
2 = p2

3 = −M2, we have

coshϕ = 1 +
1

2v
. (2.6)

Another natural variable, which is also used frequently in the literature e.g. on Bhabha

scattering integrals, is

x =

√
1 + 4 v − 1√
1 + 4 v + 1

= e−ϕ. (2.7)

– 6 –
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I1 I2 I3a I3b

Figure 3. Integrals contributing to the four-particle amplitude to three loops. Solid and wavy

lines denote massive and massless propagators, respectively. Overall normalizations of s and t, as

well as a loop-momentum dependent numerator factor in I3b are not displayed.

For 0 < v <∞ (i.e. in the Euclidean region) x is real and ranges from 0 to 1. The inverse

relation to v is

v =
x

(1− x)2
=

1

4 sinh2 ϕ
2

. (2.8)

Notice that this relation is invariant under x → 1/x.5 This symmetry corresponds to

ϕ → −ϕ. In fact, we will find that our results, which are functions of v, are invariant

under this transformation.6

2.2 Evaluation of the four-particle amplitude to three loops

The four-particle amplitude on the Coulomb branch has the perturbative expansion

M = 1 +
∑
L≥1

(
λ

8π2

)L
M(L)(u, v) . (2.9)

To three loops, it is given by [5, 25, 26]

M(1)(u, v) =− 1

2
I1(u, v) , (2.10)

M(2)(u, v) = +
1

4
[I2(u, v) + I2(v, u)] , (2.11)

M(3)(u, v) =− 1

8
[I3a(u, v) + I3a(v, u) + 2I3b(u, v) + 2I3b(v, u)] . (2.12)

Here I1, I2, I3a, I3b are massive scalar four-point integrals. They are shown in Fig 3, and

their precise definition is given in ref. [5], where they have been evaluated in various limits.

Note that the expressions in eq. (2.10)–(2.12) are valid for generic u, v, i.e. for finite values

of the mass(es) [26].

We are interested in the Regge limit u � 1. Note that the rate of divergence of the

scalar integrals without numerators can be predicted a priori. It follows from their topology

5Note that in the physical region, where v has a small imaginary part coming from the Feynman prop-

agator prescription, the sign of this imaginary part has to be included in the x→ 1/x transformation.
6The fact that Γcusp should be analytic around x = 1 or φ = 0 is very clear when we interpret it as a

quark-antiquark potential on the sphere, see figure 1.
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and can be determined by the counting procedure of ref. [27]. For example, the one- and

two-loop integrals have the following small u expansions

I1(u, v) −→
u→0

log u I1,1(v) + I1,0(v) +O(u) , (2.13)

I2(u, v) −→
u→0

log u I2,1(v) + I2,0(v) +O(u) , (2.14)

I2(v, u) −→
u→0

log2 u Ir2,2(v) + log u Ir2,1(v) + Ir2,0(v) +O(u) . (2.15)

(Here the superscript r indicates that the expansion terms in the last line come from I2

rotated by 90 degrees, i.e. with u and v exchanged.) For the integral I3b, which has a loop-

momentum dependent numerator, the counting rules do not apply. Its Regge behavior was

analyzed in ref. [5].

We wish to determine the coefficients of the logarithms in the Regge limit. In order

to compute Γcusp at three loops, we need all lower-loop coefficient functions (including the

O(u0)) ones, and the log u terms at three loops. Note that all O(u) terms can be safely

dropped. This is an advantage over dimensional regularization.

The four-particle integrals in the Regge limit are very closely related to form factor

integrals. One could in principle use the method of differential equations [28] in order to

compute the latter. Here, we use a shortcut by making a convenient ansatz for the result.

In order to do that, it is helpful to have an idea of the kind of functions that can appear in

general. The solutions to the type of differential equations mentioned above can typically

be written in terms of harmonic polylogarithms (HPLs) [10] of argument x. These functions

are defined recursively by integrating the following kernels,

f1(x) =
1

1− x
, f0(x) =

1

x
, f−1(x) =

1

1 + x
. (2.16)

The starting point for the recursion are the weight one functions

H1(x) = − log(1− x) , H0(x) = log(x) , H−1(x) = log(1 + x) . (2.17)

Higher weight HPLs are defined in the following way,

Ha1,a2,...,an(x) =

x∫
0

fa1(t)Ha2,...,an(t) dt . (2.18)

The subscript of H is called the weight vector. We use an abbreviation common in the

literature. If m zeros are to the left of ±1, they are removed and ±1 replaced by ±(m+ 1).

For example,

H0,0,1,0,−1(x) = H3,−2(x) . (2.19)

In related studies of massive vertex-type integrals, this set of functions was sufficient to

describe all occurring integrals, see e.g. [29–31].

Motivated by this fact, we wrote down an ansatz in terms of harmonic polylogarithms

for each integral, and determined the coefficients in this ansatz by evaluating various limits,

– 8 –
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for x→ 0, or x→ 1, and by comparing against generic data points obtained from numerical

integration. In doing so, we found the Mathematica implementation of harmonic polyloga-

rithms [32] and the Mellin-Barnes tools [33] useful. Following this procedure, we were able

to find analytical formulas for all coefficient functions needed to compute Γcusp at three

loops.

As an example, at one loop, we have.

I1,1 = ξ 2 log x , (2.20)

I1,0 = ξ
[
−π2 − 4H1,0(x)− 4H−1,0(x)

]
. (2.21)

Here we introduced the useful abbreviation ξ = (1−x)/(1 +x). The formulas are valid for

0 < x < 1 and can be analytically continued to other regions, as we describe below.

The results for the two- and three-loop integrals are given in appendix B. We now

proceed to present the result for Γcusp.

2.3 Analytic three-loop result for Γcusp

The perturbative expansion of the cusp anomalous dimension is

Γcusp(λ, ϕ) =
∑
L≥1

(
λ

8π2

)L
Γ(L)

cusp(ϕ) , , λ = g2
YMN , (2.22)

where gYM is the Yang-Mills coupling, and N the number of colors. As was already

mentioned, the result up to two-loop results was known.

As explained above, we compute Γ
(3)
cusp(ϕ) by evaluating the (Euclidean) Regge limit of

the four-particle amplitude, thanks to eq. (2.3). The Regge limit of all integrals contributing

to eq. (2.9) can be found in appendix B.

We find the following results to three loops, valid in the Euclidean region x > 0,

Γ(1)
cusp(ϕ) = −1

2
ξ [2 log x] , (2.23)

Γ(2)
cusp(ϕ) = −1

2
ξ

[
−2

3
log x

(
log2 x+ π2

)]
− 1

2
ξ2

[
2

3
log3 x+ 2 log x

(
ζ2 + Li2(x2)

)
− 2Li3(x2) + 2ζ3

]
, (2.24)

Γ(3)
cusp(ϕ) = −1

2
ξ

[
1

3
log x

(
log2 x+ π2

)2]
− 1

2
ξ2 [8ζ2H−2,0(x)− 4ζ3H0,0(x)− 8ζ2H2,0(x) + 16ζ2H−1,0,0(x)− 40ζ2H0,0,0(x)

− 16ζ2H1,0,0(x) + 32H−4,0(x)− 32H4,0(x) + 24H−2,0,0,0(x)− 24H2,0,0,0(x)

+32H−1,0,0,0,0(x)− 88H0,0,0,0,0(x)− 32H1,0,0,0,0(x)− 25ζ4H0(x)− 12ζ5]

− 1

8
ξ3 [16ζ3H0,0(x)− 32ζ2H−2,0(x) + 32ζ2H2,0(x) + 64ζ2H0,0,0(x)− 128H−4,0(x)

+ 128H4,0(x) + 64H−3,−1,0(x)− 64H−3,0,0(x)− 64H−3,1,0(x) + 64H−2,−2,0(x)

– 9 –
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−1 10

x

Figure 4. Analytic structure of Γcusp. The Euclidean region is x > 0. Below threshold, x is a

phase, x = eiφ. Above threshold, we have that −1 < x < 0, with x having an infinitesimal positive

imaginary part. The zigzag line denotes branch cuts along [−∞, 0].

− 64H−2,2,0(x)− 64H2,−2,0(x) + 64H2,2,0(x)− 64H3,−1,0(x) + 64H3,0,0(x)

+ 64H3,1,0(x)− 64H−2,0,0,0(x) + 64H2,0,0,0(x) + 192H0,0,0,0,0(x)− 32ζ3H−2(x)

+32ζ3H2(x)− 32ζ2H−3(x) + 24ζ4H0(x) + 32ζ2H3(x) + 8ζ2ζ3 + 12ζ5] . (2.25)

The one- and two-loop results were known and confirm those quoted in the literature [8, 9],

see also [6, 7]. The three-loop result is new.

Using simple relations between harmonic polylogarithms of argument x2 and x, and

their product algebra (see e.g. [32]), we can rewrite the ξ2 and ξ3 terms at three loops in a

simpler way. Moreover, replacing the HPLs Hn(x2) appearing in the ξ2 term by classical

polylogarithms Lin(x2), as at two loops, leads to eq. (1.1) given in the introduction. This

is the main result of this section.

Let us discuss the branch cut structure of Γcusp. The formulas presented above are

valid in the Euclidean region, 0 < x < 1. They are manifestly real for 0 < x < 1. Some

of the functions have branch cuts along x ∈ [−∞, 0] or x ∈ [1,∞]. Recall that we expect

the results to have the symmetry x → 1/x. Therefore the latter branch cuts should be

spurious. One may check this in the case of polylogarithms using the identity

Im (Lin(x+ i0)) =
π

(n− 1)!
logn−1 x , x > 1 , (2.26)

where i0 indicates that x has an infinitesimally small positive imaginary part. In general,

one can easily verify this property, as well as the x → 1/x symmetry, using relations

between HPLs of argument x and 1/x [10, 32].

In the physical region, we have to remember the i0 prescription of the Feynman prop-

agators. The sign of i0 depends on whether we discuss the Wilson loop, or the scattering

amplitudes (and it depends on the metric conventions.) We will take x to have a small

positive imaginary part. There is a threshold which corresponds to the creation of two

massive on-shell particles at x = −1 (or, equivalently, v = −1/4, i.e. t = −4M2), which
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naturally divides the physical region into two domains, above threshold and below thresh-

old. Below threshold, x lies on the unit circle in the complex plane, x = exp(iφ), whereas

above threshold x is real and satisfies −1 < x < 0. The analytic continuation to these

physical regions is discussed in [30]. We summarize the analytic structure for complex x

in figure 4.

We stress that the final result for Γcusp is much simpler than the individual contri-

butions presented in appendix B. We already mentioned that there are different ways of

writing the final result. More interesting than what specific functions are used to express

the result in might be the question whether its symbol [34, 35] has any special features. In

fact our ansatz that the result could be expressed just in terms of harmonic polylogarithms

implies that only the entries 1 ± x, x can appear in the symbol. Inspecting the above

results, we see that the symbol can be written in a way such that its entries are either x

or (1 − x2)/x.7 This property is reflected in the fact that we only needed harmonic poly-

logarithms with indices 0 and 1 (when using x2 as argument). It is also remarkable that

the index 1 appears at most twice. Finally, we remark that the first entry of the symbol is

always x, as required by the branch cut structure of the loop integrals.

Let us now consider various interesting limits of Γcusp.

• In the large ϕ limit (small v limit), Γcusp(λ, ϕ) is linear in ϕ, and the coefficient of ϕ

is the anomalous dimension of a light-like Wilson loop [6]. We reproduce the result

for illustration, and as a check of our conventions8,

lim
ϕ→∞

Γcusp(λ, ϕ) =
1

2
ϕΓ∞cusp(λ) +O(ϕ0) , (2.27)

where

Γ∞cusp(λ) = 2

(
λ

8π2

)
− 2ζ2

(
λ

8π2

)2

+ 11ζ4

(
λ

8π2

)3

+O(λ4) . (2.28)

These results are correctly reproduced by eqs. (2.23)–(2.25). (In order to take the

limit on the three-loop result, the simpler form given in eq. (1.1) is convenient, since

its logarithmic dependence as x→ 0 is already manifest.) Moreover, since our result

is exact in v, sub-leading terms in this limit can also be obtained. In fact, based on

the discussion in [5], we might expect that a stronger version of eq. (2.27) should

hold, namely

lim
ϕ→∞

Γcusp(ϕ) =
1

2
ϕΓ∞cusp(λ) + G̃0(λ) +O(e−ϕ) , (2.29)

where

G̃0(λ) = −ζ3

(
λ

8π2

)2

+

(
9

2
ζ5 − ζ2ζ3

) (
λ

8π2

)3

+O(λ4) , (2.30)

7The fact that the symbol can be written just in terms of the entries x and (1 − x2)/x implies that it

has a symmetry under x → −x. Note however that this is not a symmetry of the function. In particular,

the latter acquires an imaginary part for x < 0, while it is real for x > 0.
8See footnote 4. We introduced a factor of 1/2 on the r.h.s. of eq. (2.27) in order to have the same

definition for Γ∞
cusp(λ) as in ref. [5], and elsewhere in the literature.
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is the collinear anomalous dimension in Higgs regularization. Equation (2.29) can be

justified if one can show that the limits limv�1 limu�1 and limv�1 limu,v�1 ,u/v fixed

commute for M(u, v). It was observed in ref. [5] that to three loops, these limits

do not commute in general for the individual loop integrals contributing to M(u, v),

however they do commute for M(u, v) to that order.

Assuming that eq. (2.29) holds true, it is interesting that it relates the collinear

anomalous dimension G̃0(a) for massive amplitudes to the cusp anomalous dimension.

• In the opposite limit, small ϕ (large v), we find

Γ(3)
cusp(ϕ) =

15

2
ζ4 ϕ

2 +O
(
ϕ4
)
. (2.31)

Taking into account eq. (2.6) we see that in the limit 1/v ≈ ϕ2. Hence we have, for

the leading terms as ϕ→ 0,

Γcusp(λ, ϕ) = ϕ2

[
1

2

(
λ

8π2

)
− π2

6

(
λ

8π2

)2

+
π4

12

(
λ

8π2

)3

+O(λ4)

]
+O(ϕ4) .

(2.32)

This expansion is in perfect agreement with the three loop expansion of the exact

result in [15, 16].

• The limit x → −1. The point x = −1 corresponds to the threshold v = −4M2 of

creating two massive particles. It corresponds to δ = π − φ → 0, which gives the

quark antiquark potential in flat space, see figure 1. In other words, when the quark

and antiquark are very close to each other on the sphere, their potential is the same

as the one they would have in flat space.

In order to reach this limit, we first have to analytically continue to the physical

region, where x < 0 (and has a small imaginary part coming from the Feynman

prescription). We observe that the terms multiplying ξ, ξ2, ξ3 in Γcusp vanish as

x→ −1 (reached after suitable analytic continuation, as discussed above).

For one and two loops, we verified the limit given in [9]. It is, in our notation (recall

that x = eiφ , φ = iϕ, δ = π − φ),

Γ(1)
cusp(φ→ π) = − 2π

δ
+ . . . , (2.33)

Γ(2)
cusp(φ→ π) = − 8π

δ
log

(
2δ

e

)
+ . . . . (2.34)

At three loops, we find

Γ(3)
cusp(φ→ π) = − 8

3
π4 1

δ2
− 1

δ

[
16π log2

(
2δ

e

)
+

16

3
π3 log

(
2δ

e

)
+16π log

(
2δ

e

)
+ 36πζ3 +

4π3

3
− 24π

]
+ . . . . (2.35)
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Most of these contributions come from the ξ3 terms, though the ξ2 term contributes

with a 1
δ and log δ

δ terms that have been already included in (2.35). The term of

order ξ1 does not contribute in this limit. The logs, as well as the 1/δ2 seem to be in

contradiction with the naive expectation. We will discuss the interpretation of this

result in section 4.

3 A limit that selects the ladder diagrams

As we observed in explicit perturbative computations, the term with the highest power of

ξ seems to be given by ladder diagrams up to three loops. One can wonder if this pattern

continues to all loops. Here we argue that it does and that there is a particular limit of

Γcusp(φ, θ) that isolates such terms.

Notice that such terms contain the highest powers of cos θ. This highest power of cos θ

can only come from a diagram where there are L scalars ending on each Wilson lines at

the Lth loop order. The only such diagrams are ladder diagrams. We conclude that if we

take the scaling limit

λ→ 0 , eiθ →∞ , with λ̂ =
λeiθ

4
= fixed (3.1)

then the ladder diagrams are the only contribution to Γcusp −→ Γlad(λ̂, φ). Note that

after the scaling limit we get a non-trivial function of φ and λ̂. In this section we derive a

Schrödinger problem whose solution is the sum of ladder diagrams. We also solve it exactly

for φ = 0, and for general angles at strong coupling. Notice that in this limit the coupling

to the scalars takes the form Ze±iθ/2 + Z̄e∓iθ/2, where we have “+” for one of the lines and

“−” for the other line. For the first line, in the scaling limit, we get

√
λ

1

2

∫
dt(Zeiθ/2 + Z̄e−iθ/2)→

√
λ̂

∫
dtZ. (3.2)

For the other line, the only surviving term is the coupling to Z̄. In this limit all bulk

interactions vanish and we have the free theory. So the problem is the same as having a

free complex matrix field Z and computing the expectation value in the presence of the

source (3.2), and the corresponding one for Z̄.

3.1 Ladder diagrams and the Schrödinger problem

It is convenient to think about the problem on the sphere. Then the scalar propagators

are
λ

8π2

cos θ

2(cosh(τ − σ) + cosφ)
−→ P (τ, σ) =

λ̂

8π2

1

[cosh(τ − σ) + cosφ]
(3.3)

where we wrote the propagator in the scaling limit (3.1). Here τ and σ are the global time

coordinates of the two endpoints.

As explained in [36] the sum of ladder diagrams can be performed by first introducing

a quantity F (T, S) which is defined as the sum over all planar ladder diagrams, where we

integrate all insertions up to τ ≤ T and σ ≤ S. Then the derivatives of F are

∂T∂SF (T, S) = P (T, S)F (T, S). (3.4)
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Then we write x = T − S and y = (T + S)/2 and we make an ansatz of the form F =∑
n e
−ΩnyΨn(x). Then eq. (3.4) becomes[

−∂2
x −

λ̂

8π2

1

(coshx+ cosφ)

]
ψ(x) = −Ω2

4
ψ(x) = 2ESchψ(x). (3.5)

In principle we could find all the eigenvalues of this problem. Note however, that we are

only interested in the long time behavior of the sum, which is governed by the lowest

eigenvalue, Ω0. We then get Z ∼ eΩ0(Time). The sign of Ω0 is not obviously fixed by (3.5),

but we have fixed it here, with Ω0 > 0, so that get the expected sign at weak coupling,

for example. Note that the Schrödinger problem, (3.5), has a discrete set of bound states

with negative Schrödinger energy,9 ESch, (real Ω) and a continuum with ESch > 0, or Ω

imaginary.

We remark that for given λ̂ and φ, it is possible to compute the ground state energy

numerically.

3.2 Exact solution for φ = 0

In the particular case of φ = 0, the potential in eq. (3.5) becomes the Pöschl-Teller potential

cosh−2(x/2) [37]. In this case the Schrödinger problem can be solved exactly by a variety

of techniques. By the change of variables

z =
1

1 + ex
(3.6)

one can map equation (3.5) to a hypergeometric equation,

ψ = [z(1− z)]Ω/2F (Ω− Ω0,Ω + Ω0 + 1, 1 + Ω) , Ω0 =
1

2

−1 +

√
λ̂

π2
+ 1

 . (3.7)

Imposing the decaying boundary conditions at x = ±∞ we see that the possible eigenvalues

for the bound states are

Ωn = Ω0 − n , 0 ≤ n < Ω0 (3.8)

where n is an integer. This gives a finite number of bound states, which depends on the

coupling. This is in contrast to the sum over ladders for the anti-parallel lines in flat space

where the number of bound states is infinite beyond a certain coupling [38]. In particular,

the ground state wave function is particularly simple

ψ0 =
1

(coshx/2)Ω0
. (3.9)

We can also easily compute the first correction away from the φ = 0 limit by expanding

the potential in (3.5). The first term is proportional to φ2/ cosh4(x/2). We can sandwich

it between the ground state wave function (3.9) to get the first correction

− 2Ω0δΩ0

4
= − λ̂

4π2
φ2
〈ψ0| 1

(2 cosh2 x/2)2 |ψ0〉
〈ψ0||ψ0〉

= − λ̂

4π2
φ2 Ω0(Ω0 + 1)

4(4Ω0(Ω0 + 2) + 3)
. (3.10)

9Since the potential is negative, there is always at least one bound state.
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Here we used the following formula in order to compute the expectation value,

〈ψ0| 1
(2 cosh2 x/2)2 |ψ0〉
〈ψ0||ψ0〉

=
f(1)

f(−1)
, f(a) =

1∫
0

dz [z(1− z)]Ω0+a . (3.11)

Then the sum over ladders, up to order φ2 is

Γlad =
1−
√
κ+ 1

2
− φ2

16
κ

(
1 +
√

1 + κ

1 + κ+ 2
√
κ+ 1

)
+O(φ4) , κ =

λ̂

π2
. (3.12)

One could also compute the φ4 term by using second order perturbation theory.

We can use eq. (3.12) as a consistency check of our perturbative calculation of the

ladder diagrams. The sum of the ladders at L loops is given by the ξL term of Γ
(L)
cusp that

was computed in section 2. Expanding those terms for small angle, we find

Γlad = κ

[
−1

4
−φ

2

24
+O(φ4)

]
+κ2

[
1

16
+

5φ2

288
+O(φ4)

]
+κ3

[
− 1

32
− 43φ2

3456
+O(φ4)

]
+O(κ4) .

(3.13)

This is in perfect agreement with the small κ expansion of eq. (3.12).

3.3 Perturbative solution in λ̂

Here we show how to solve the Schrödinger equation for any angle perturbatively in the

coupling λ̂.

To leading order at weak coupling we can approximate the potential by a delta function,

since the energy is very small,

1

coshx+ coshϕ
∼ 2ϕ

sinhϕ
δ(x) (3.14)

which makes sure that we get the right result at first order in the coupling.

To obtain the solution at higher orders, we use the following procedure. It is convenient

to perform the change of variables

Ψ(x) = η(x)e−Ω0 x/2. (3.15)

At leading order, we have η(x) = 1, in agreement with eq. (3.14).

Since the exponential factor is the correct solution as x→∞, we can set the boundary

condition η(∞) = 1. This normalizes the solution, but also is stating that we do not have

the growing solution so that we have picked a unique solution of the equations. So, when

we integrate the equation all the way to x = 0 we will find an Ω0 dependent value for

the first derivative at the origin. We note that we can determine Ω0 from η thanks to the

boundary condition

∂xΨ(x)|x=0 = 0 −→ 2 ∂x log η(x)|x=0 = Ω0 (3.16)
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which follows from the x → −x symmetry of the problem and that the ground state

wavefunction is symmetric. Defining a new variable w = e−x we have

∂ww∂wη = −Ω0∂wη + κ̂

[
1

w + eϕ
− 1

w + e−ϕ

]
η , κ̂ =

λ̂

8π2 sinhϕ
. (3.17)

In this form, it is clear that the differential equation has four regular singular points,

w = 0,∞,−eϕ,−e−ϕ, so that it is a particular instance of the Heun equation. Expanding

Ω0 = κ̂Ω
(1)
0 + κ̂2Ω

(2)
0 + . . . and η = 1 + κ̂η(1) + . . .. At order λ̂, eq. (3.17) becomes

∂ww∂wη
(1)(w) =

[
1

w + eϕ
− 1

w + e−ϕ

]
. (3.18)

This equation is easily integrated

η(1) =

w∫
0

dw′

w′

w′∫
0

dw′′
[

1

w′′ + eϕ
− 1

w′′ + e−ϕ

]
(3.19)

where we used the boundary conditions at w = 0 (or x =∞). In fact, in order to determine

Ω
(1)
0 , we only need to carry out the first integration. We find

Ω
(1)
0 = −2∂wη

(1)|w=1 = 2ϕ. (3.20)

Remembering that the contribution to the ladders is given by Γlad = −Ω0, we find perfect

agreement with eq. (2.23), in the limit iθ −→∞ (3.1).

One can see that at any loop order L, the result for Ω
(L)
0 can be written as a (2L−1)-fold

iterated integral, multiplied by a factor of (λ̂/ sinhϕ)L.

3.4 Comparison with strong coupling

At strong coupling the potential becomes very deep and we can approximate the energy

by simply the minimum of the potential, at x = 0. This then gives

Γlad = −Ω0 = −

√
λ̂

2π cos φ2
, for λ̂� 1. (3.21)

We have verified that this is in agreement with the strong coupling computation of ref. [9].

Namely, [9] find that the cusp anomalous dimension at strong coupling has the form

Γcusp ∼
√
λF (φ, θ). (3.22)

If we now take iθ →∞, we find that

F (φ, θ) ∝ eiθ/2

cos φ2
. (3.23)

We see that inserting (3.23) into (3.22) we get (3.21). In order to see this from the formulas

given in [9], one sets q = ir with real r, and expands for small p. In this way one can check

that the coefficient matches precisely with (3.21).
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This matching is a bit surprising. The ladders limit, λ → 0 with λ̂ fixed, is different

from the strong coupling limit λ → ∞ with iθ � 1 fixed. That is, the result could in

principle depend on the order in which the limits iθ → ∞ and λ̂ → ∞ are taken. A

heuristic explanation for this match is the following. As we discussed around (3.2), in

the large eiθ limit one of the Wilson lines is sourcing mainly the Z field and the other

the Z̄ field. Thus the configuration can be viewed as many Z fields with a low density of

derivatives. These derivatives build up the Wilson loop.

The situation is therefore similar to the BMN limit [19], or more precisely the classical

large charge limit discussed in [20–22]. In that limit a similar match with strong coupling

is found for the first two orders in the effective coupling. Here we have checked the leading

order term. In principle, the formulas in [9] should also allow us to compute the subleading

term. From the Schrödinger problem point of view, it is trivial to compute the sublead-

ing term, one simply has to consider the harmonic oscillator approximation around the

minimum of the potential to get

Γlad = −Ω0 = −(
√
λ̂− 2π)

2π cos φ2
+O(1/

√
λ̂) , for λ̂� 1 (3.24)

and further orders could be computed by straightforward perturbation theory.

4 The anti parallel lines limit

When δ ≡ π − φ → 0 we have a quark and anti-quark on the sphere separated by a very

small distance. In this limit we expect to find the quark-antiquark potential in flat space.

However, the approach to the limit is tricky because it does not commute with perturbation

theory. Namely, if we first expand for small δ for fixed λ we get

Γcusp(φ, θ, λ) ∼ −αflat(θ, λ)

δ
+O(δ0) (4.1)

where αflat is the coefficient for a quark antiquark potential in flat space for two straight

lines. That is,

Vflat(r, λ, θ) = −αflat(θ, λ)

r
= − lim

T→∞

1

T
log〈W8〉 (4.2)

where W8 is a rectangular Wilson loop of separation r along a time T . On the other hand

if we first expand in λ and then, for each fixed order in λ, we go to small δ, we do not find

the naively expected behavior (4.1). The reason is that there is a mixing between the color

degrees of freedom of the quark-antiquark pair and low energy degrees of freedom in the

bulk, namely bulk modes of energy of order λ/r. This causes IR divergences in perturbation

theory starting at two loops in N = 4 SYM [36, 39] and at four loops in QCD [40].10 The

origin of this is the following. A quark-antiquark pair in the singlet color combination can

emit a massless adjoint and then be left in the adjoint. The force between the quarks in

the singlet and adjoint channel are different. In the planar approximation, the force in

10Note that in the QCD literature on the quark antiquark potential, the loop order is sometimes defined

differently.
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the adjoint is zero. For example, a long time exchange of a scalar would contribute to the

potential Vflat an expression of the form11

=
λ

2π2

∞∫
εUV

dt

t2
(e−tVsinglet − 1) (4.3)

where Vsinglet = λ
4πr + O(λ2) is minus the singlet potential. This is the binding energy

we loose when we emit an adjoint, in the planar approximation. Here 1/t2 is the large t

approximation to the propagator. The UV cutoff of the effective IR theory, εUV , is of the

order of the separation r.

This integral is perfectly finite in the IR. However, if we first expand in λ, then we

see that the term of order λ2 has a logarithmic IR divergence, the term of order λ3 has a

power law IR divergence, etc. If we are on the sphere, we should replace (4.3) by

=
λ

2π2

∞∫
εUV

dt

2(cosh t− 1)
(e−tVsing − 1) (4.4)

where now Vsinglet = λ
4πδ + O(λ2) and εUV is of order δ. If we first expand the integrand

in powers of λ we now get integrals that are perfectly IR convergent. The long time cutoff

is just the size of the sphere that we have set to 1. To first and second orders, namely, at

two and three loops the diagram (4.4) contributes

−
(

λ

8π2

)2 [
8π

log δ

δ
+ . . .

]
−
(

λ

8π2

)3 [8π4

3

1

δ2
+ . . .

]
(4.5)

to Γcusp, in agreement with the leading terms in (2.34) and (2.35). Here we have set

εUV ∼ δ in (4.4). Note, in particular, that the funny 1/δ2 term is coming from a power law

IR divergence in the three loop computation of the quark anti-quark potential in flat space.

The log2(δ) term in the three loop result (2.35) can be obtained from the exponentiation

of the two loop single log term in (4.5), see [39]. If instead of expanding in λ we do the

integral in (4.4) and then expand in δ for δ � λ, then we get the expected behavior

λ

2π2

∞∫
εUV

dt

2(cosh t− 1)
(e−t

λ
4πδ − 1) =

1

δ

[
λ2

8π3
log λ+ . . .

]
(4.6)

at two loops. In order to get the subleading coefficients represented by the dots one needs

to be more careful about the matching of the effective theory in the IR with the full theory,

see [39] for a full discussion12. In the next section we will reproduce the two loop result

11The −1 subtraction in (4.3) is a counter term in the effective IR theory canceling a power UV divergence.
12The integral (4.6) has a logarithmic UV divergence, which is absorbed as part of the matching proce-

dure [39].
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of [39] by resumming ladder diagrams. We also do a similar resummation for the three

loop ladder result. However, in the full theory the non-ladder diagrams do contribute. We

leave the problem of performing the full three loop resummation for the future.

4.1 Ladders diagrams and the quark anti-quark potential

Only ladder diagrams contributed to the one and two loop results (2.33), (2.34) of section 2.

This means that a resummation of ladder diagrams would correctly reproduce the two loop

quark anti-quark potential. Moreover, in section 3 we considered the limit iθ →∞ where

only ladder diagrams survive. To compute the potential between the corresponding special

quarks one has to re-sum these diagrams. Hence, in this section we will perform that

resummation up to three loops.

The Bethe-Salpeter equation maps the sum of ladder diagrams to the ground state

energy of the Schrödinger problem [36][
−∂2

x −
λ̂

4π2(x2 + 1)

]
ψn(x) = −Ω2

n

4
ψn(x) (4.7)

as

Ω0 = −r V (λ) = λ̂c1 + λ̂2c2 + λ̂3c3 + . . . . (4.8)

The computation of Ω0 also contains the IR effects we discussed above. Therefore, the

perturbative expansion in λ̂ for the Schrödinger problem (4.7) is a bit subtle. For exam-

ple, if we applied the same iterative strategy we took in section 3.3 when solving for the

Schrödinger problem on the sphere (3.5), we would get divergent integrals. Instead, we

take a different strategy as we now explain.

We divide the x axis into the large x (IR) region and the small x (UV) region. The

two regions overlap at x ∼ 1/
√
λ̂ where the potential and the energy are of the same order.

In the IR region the equation can be solved straightforwardly. There, the solution up to

two loops is a Bessel function. At three loops we also have to expand the potential to next

order in the 1/x expansion. In the UV region, we start from a constant wave function and

iterate the equation to the desired order. The energy is then obtained by demanding that

the two solutions match in the overlap region x ∼ 1/
√
λ̂. In that way we find

c1 =
1

4π

c2 =
1

8π3

[
log

λ̂

2π
+ γE − 1

]
(4.9)

c3 =
1

32π5

[(
log

λ̂

2π
+ γE

)(
log

λ̂

2π
+ γE + 1

)
− 7

2
− π2

12

]
where γE is the Euler-Mascheroni constant. The two loop result c2 as well as the leading log

in c3 agrees with the computation of [39] using the effective field theory techniques discussed

above. The two loop quark anti-quark potential at finite θ is given by simply substituting

λ̂→ λ(1 + cos θ)/2. At three loops, for the first time, also non ladder diagrams contribute

and the corresponding result differs from c3. We leave that computation to future work.
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One can also study the Schrödinger problem in the limit where λ̂→∞. In that limit

we get a huge potential well and to leading order the ground state energy is simply given

by the value of the potential at x = 0. That is

Ω0 =

√
λ̂

π
+O(1) (4.10)

The exact same value is obtained by taking the iθ →∞ limit of the strong coupling result

of [18]. That is a special case of the match obtained in section 3.4, in the limit φ → π.

In [36] the sum over ladder diagrams was compared to the strong computing computations

in [18, 41] for zero θ and it was found to disagree. However, if one takes a quark antiquark

with a relative θ angle, which was also computed in [18], and one takes the large iθ limit,

then one finds that it matches precisely with (4.10).

At small λ̂, the potential in (4.7) has a single bound state. As we increase λ̂ more

and more bound states go down from the continuum. Beyond a critical value λ̂ > λ̂c = π2

we have an infinite number of bound states [38].13 One may wonder whether also these

can be matched with the modes of the string at strong coupling. We find that unlikely

as generically the string has infinitely many degrees of freedom and not just one. Note

however that the density of states near the top of the potential at Ω∞ = 0 does match

with the string density of states for the relevant mode [38]. This can be interpreted as

the statement that the classical motion for the string mode identified in [38] matches the

classical (or large λ̂) limit of the Schrödinger problem.

5 Conclusions

In this paper we have performed a three loop computation of the cusp anomalous dimension

for the locally supersymmetric Wilson loop in N = 4 super Yang Mills. Equivalently, we

have computed the three loop quark/anti-quark potential on the three sphere. The final

result is eq. (1.1). The computation was done by considering the scattering of massive

W bosons and focusing on the IR divergences, which are given by Γcusp(ϕ). In turn, this

amplitude is related by dual conformal symmetry to the Regge limit of the four point

amplitude of massless particles in the Higgs regularization [4, 5]. We have discussed some

checks of this result. In particular, we have matched the leading φ2 term to the exact

computation in [15, 16]. We have also discussed the limit that corresponds to the quark

anti-quark potential. In this limit, small δ, we get a result that is different from the 1/δ

behavior expected naively, where δ is the relative angle. This is due to some divergences

that appear in perturbation theory in this computation [36, 39, 40]. After taking into

account the long distance effective theory describing these IR effects one can explain the

behavior of the result for small δ. In principle, one should be able to do a resummation

and give the full three loop result for the flat space quark-antiquark potential. This is a

problem we left to the future.

13In [38] it was also argued that this should be the behavior in the full theory for the antiparallel lines in

flat space.
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We have also identified a large iθ limit (3.1) of the generalized cusp anomalous dimen-

sion, Γcusp(φ, θ), where only ladder diagrams contribute. These ladder diagrams can be

summed by solving a simple Schrödinger problem. For general angles the potential does

not appear to be solvable, but one can develop a simple perturbative expansion where one

clearly sees that the answer is given by iterated integrals that give Goncharov polyloga-

rithms. For a particular angle, φ = 0, we could solve the problem and sum the ladder

diagrams for all effective couplings λ̂. It is also possible to get the first term in the φ2 ex-

pansion around φ = 0. The final answer is in (3.12). Also, we have taken the small δ limit

of the Schrödinger problem and expanded the answer to third order in λ̂. We reproduced

the two loop resummed answer in [39]. It is very simple to compute the strong coupling

limit of the result for the ladder diagrams. More precisely, we take the effective coupling λ̂

to be very large. Interestingly we find a precise match with strong coupling string theory

computations. Here one first takes λ to be large, and then takes eiθ →∞. In this limit the

classical string theory answers go like eiθ/2 so that multiplied by
√
λ one gets

√
λ̂ which is

the behavior of the strong coupling ladder diagrams. This agreement was not preordained,

since the scaling limit (3.1) is explicitly pushing us towards the small λ region. It seems

that the origin of this agreement has the same underlying reason as the agreement for the

BMN [19] or large charge limits [20–22].
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A Results for Wilson loop integrals relevant for QCD

It is important to realize that, at weak coupling, Wilson loops depend only mildly on the

particle content. There are two sources of differences between N = 4 SYM and QCD for

these Wilson loops. The first is the additional coupling of the loop to scalars in N = 4

SYM. The second is the specific particle content, which e.g. enters at two loops through

the one-loop gluon propagator correction. We want to stress that many diagrams that have

to be calculated are identical. This means that our result computes a part of the QCD

result.

Moreover, there is a direct relation between some of the Wilson loop integrals we

are interested in, and the infrared divergent part of form factor integrals discussed in the

literature. These connections are very helpful. First of all, they give an idea about the kind

of functions that can appear in such calculations. In some cases the relations are even more
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(a) (b) (c)

Figure 5. Crossed ladder diagrams that appear in the computation of Γcusp at two and three loops.

concrete, and they provide two different ways of computing the same object. We will give

two examples. The first one relates the ξ2 term in Γ
(2)
cusp to a known form factor integral.

Inversely, we point out that our analytic result at three loops, obtained from scattering

amplitudes, implies that some three-loop Wilson line integrals that are relevant for QCD

are now known. In the second example, we discuss the horizontal ladder diagram, which

contributes to the ξ term. This is just one contribution to the ξ term but there are other

contributions which are not these ladder diagrams. Here, the Wilson loop picture turns

out to be extremely simple, and allows us to derive an all-orders result for this class of

integrals. Of course, to get the QCD answers we need to set ξ = cosφ
sinφ .

A.1 Results for crossed ladder integrals at two and three loops

It is easy to see from the Wilson loop computation that the term proportional to ξ2 at

two loops comes from the ladder with two rungs and a contribution from the squared one-

loop ladder. It is well known that this combination results in a crossed ladder Wilson line

integral, see figure 5(a). The relevant UV divergent part of that integral can be equivalently

obtained from the IR pole of the form factor integral of the same topology. The latter is

given by V6l4m1;−1 in ref. [29]. Comparing to eq. (2.24), we find perfect agreement.

Having obtained the full three-loop result for Γcusp by evaluating the four-point am-

plitude in the Regge limit as described in section 2, we can provide an analytical answer

for some of the Wilson loop diagrams, and equivalently, form factor integrals that are of

more general interest. In fact, the ξ3 terms in Γ
(3)
cusp come from summing ladder diagrams

only. Taking into account the exponentiation of lower-loop graphs, they correspond to the

sum of the Wilson loop diagrams shown in figure 5(b,c). Therefore, we have that

[figure 5(b) + figure 5(c)] ∼ log Λ ×
[
ξ3 term in eq. (1.1)

]
+O(Λ0) , (A.1)

where Λ is some UV cutoff. Similarly, in dimensional regularization log Λ would be replaced

by 1/ε. Being built from pure gluon propagators, these diagrams also appear e.g. in the

QCD calculation of Γcusp at three loops, or equivalently when computing massive form

factors at three loops.

A.2 Exact result for a class of diagrams

Here we compute the Regge limit of the horizontal ladder diagrams, see figure 6(a), to all

loop orders, by relating them to known off-shell ladder diagrams [42]. We do not know
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(a) (b) (c)

... ... ...

Figure 6. Horizontal ladder diagram (a) in the soft limit m2/s→ 0. Thick solid lines denote heavy

particles of mass M , thin solid lines denote particles of mass m, and wavy lines denote massless

particles. The leading IR divergence of (a) is given by twice the IR divergence of the vertex integral

(b). The divergent part of the latter is captured by the eikonal limit, leading to the Wilson line

integral (c). The doubled lines in the latter denote the Wilson line contour. At L > 1 loops, the

massless coordinate space integral in the interior can be identified with the off-shell ladder integral

Φ(L−1).

if there is a physical limit that isolates only these diagrams. For massive scalar integrals,

there is a useful counting procedure to determine their rate of divergence in the Regge

limit [27]. Applied to the present case, we find the following behavior,

I
(L)
horizontal ladder(u, v) −→

u→0
log u R(L)(ϕ) +O(u0) . (A.2)

We want to compute the function R(L)(ϕ) that multiplies the logarithm. It is well known

that there are simplifications for that term at the level of Feynman parameter integrals [27].

Here, we follow a different approach. We find it more convenient to think of the limit

u → 0 as the soft limit in the Bhabha scattering picture, as discussed above. At L loops,

it is clear that the leading soft divergence comes from regions where all loop momenta are

soft. There is a factor of 2 because there are two relevant regions. In this limit, it is easy to

see that the ladder becomes a three-point diagram with eikonal lines, cf. figure 6(b). The

latter can be represented as a double line integral, cf. figure 6(c), and we obtain a result

proportional to (for L > 1),

I
(L)
horizontal ladder ∼

eikonal

∞∫
0

dτ1dτ2
(p2 + p3)2

y2
12

Φ(L−1)

(
y2

1

y2
12

,
y2

2

y2
12

)
, (A.3)

where

yµ1 (τ1) = τ1p
µ
2 , yµ2 (τ2) = τ2p

µ
3 , y12 = y1 − y2 , (A.4)

and where Φ(L) are known off-shell ladder integrals. They are given by a linear combination

of logarithms and polylogarithms of homogeneous degree 2L [42].

By taking the eikonal limit, we have in fact introduced UV divergences for small τ1,2,

and as a result, the integral in eq. (A.3) is formally zero. The coefficient of the IR logarithm

we want to compute is given by minus the coefficient of the UV logarithm. The latter can
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be easily extracted from the small τ1,2 region of the integral, by introducing a cut-off for

the radial integration. Collecting all proportionality factors, we find

R(L)(ϕ) = −2
coshϕ− 1

sinhϕ

1∫
0

dz

z
Φ̃(L−1)

(
1

1 + 2z coshϕ+ z2
,

z2

1 + 2z coshϕ+ z2

)
, (A.5)

where Φ̃ are rescaled off-shell ladder integrals,

Φ̃(L)(x, y) = λ(x, y)Φ(L)(x, y) , λ(x, y) =
√

(1− x− y)2 − 4xy . (A.6)

For L = 2, eq. (A.5) has appeared in the Wilson loop computation of ref. [8] and was

evaluated analytically in ref. [9]. Here we show how to perform the integration for any L.

The integral can be easily evaluated by using the following integral representation for

Φ(L) [42], valid for x > y,

Φ(L)(x, y) = − 1

L!(L− 1)!

1∫
0

dt

yt2 + (1− x− y)t+ x

[
log t log

(y
x
t
)]L−1

log
(y
x
t2
)
. (A.7)

Plugging this formula into eq. (A.5), we notice that the change of variables t = ρ e−τ , z =

ρ eτ makes one integration trivial (after expanding powers of logarithms into sums), while

the remaining one reduces to a known integral.14 In this way, we arrive at the result

R(L+1)(ϕ) = ξ g(L)

[
π

(
∂

∂x

)2L sinh(xϕ)

sin(xπ)

]
x=0

. (A.8)

Here g(L) is given by a sum,

g(L) = − 2−2L+3

L!(L− 1)!

L−1∑
m1,m2=0

(
L− 1

m1

)(
L− 1

m2

)
3L−1−m2

1 +m1 +m2
((−1)m1 + (−1)m2) , (A.9)

and hence it evaluates to rational numbers at any L. Inspecting eq. (A.8), (A.9) we see

that

R(L+1)(ϕ) = ξ
(−1)L+1(4π)2L+1

(2L+ 1)!
iB2L+1

(
π − iϕ

2π

)
, (A.10)

where Bn(x) is the Bernoulli polynomial. Up to the ξ factor, the answer for R(L) is a

polynomial in π and ϕ! The polynomial is homogeneous, and of degree 2L− 1.

For example, at two and three loops, we immediately reproduce eqs. (B.1) and (B.10),

obtained by an independent computation using Mellin-Barnes methods. At four loops, we

obtain

R(4)(ϕ) = −ξ 8

945

(
31ϕπ6 + 49ϕ3 π4 + 21ϕ5 π2 + 3ϕ7

)
. (A.11)

14Gradshteyn and Ryzhik, “Table of Integrals, Series, and Products”, Academic Press, Sixth Edition,

p. 549, equation (14).
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Let us perform a consistency check on this result by taking the limit x→ 0. In the latter,

ξ → 1, and ϕ = − log x stays invariant. We can see that this is consistent with eq. (A.1)

of ref. [43], where this limit was previously computed.

At L loops, we know from unitarity cuts that these ladders appear with coefficient

(−λ/(16π2))L in the amplitude. Therefore, they give the following contribution to Γcusp

Γ(horizontal ladders)
cusp =

∑
L≥1

(
−λ

16π2

)L
R(L)(ϕ)

=
i ξ

4π

∑
L≥1

λL

(2L− 1)!
B2L−1

(
π − iϕ

2π

)
. (A.12)

In summary, we have computed the leading Regge limit of the horizontal ladder di-

agram shown in figure 6(a), or equivalently, the coefficient of the pole term in the corre-

sponding massive form factor integral shown in figure 6(b), at any loop order L. Up to an

overall factor of ξ = (coshϕ− 1)/ sinhϕ, the result is a homogeneous polynomial of degree

2L− 1 in ϕ and π.

Interestingly, the horizontal ladders result (A.10) also appears in the TBA integrability

approach to the cusp anomalous dimension [44]. There, it appears as the leading Lüscher

contribution with L+ 1 scalar insertions at the cusp.

The computations are superficially different. Let us now give an argument for this

agreement.15 The calculation of the Lüscher contribution would be the following. Considers

a Wilson loop with two cusps, and with ZL and Z̄L inserted at the two cusps, respectively.

Here Z = Φ5 + iΦ6 are complex scalar fields. The Wilson lines connecting the cusps

are smooth and couple to scalars different from Φ5 and Φ6. At tree level, one only has

Wick contractions between the Z and Z̄ fields. We are interested in the first wrapping-type

diagrams, where a field is emitted from one Wilson line, interacts with the Z-Z̄ propagators,

and is absorbed by the other Wilson line. This term will be linear in ξ. We will focus on

the term where the scalars are emitted and absorbed. We now argue that this calculation

would lead to a result proportional to (A.10).

The argument consists of two steps. First, notice that there is only one type of Feynman

diagram we need to consider. The reason is that the SU(4) charges of the scalars have to

flow through the diagram. The only way to connect the diagram in a planar way is to use

four-scalar vertices. We are interested in the scaling dimension of the cusp with operator

insertion, so we need to compute only the UV divergences of this diagram. The latter come

from the integration regions close to the cusps. We can focus on one cusp to compute them.

When doing so, at leading order the propagators connecting to the other cusp factor out,

and we are left with the diagram of figure 6(c). This shows that the two calculations have

to agree, up to the overall coefficient.

One may wonder whether there is a situation where only the infinite class of integrals

computed here contributes to a physical quantity. In section 3, we saw that this was the

case for a similar class of ladder diagrams, which could be singled out by taking the large

iθ limit, where θ determines how the Wilson lines couple to the scalars. More generally,

15They agree up to a minus sign.

– 25 –



J
H
E
P
0
5
(
2
0
1
2
)
0
9
8

we can think of the scattering amplitude depending on several angles on S5, as explained

in the introduction. Then, the limit of section 3 just selects the vertical ladder diagrams.

It seems possible that a similar limit selects the horizontal ladder diagrams.

B Results for individual integrals up to three loops

Here we present analytic formulas for the integrals contributing to Γcusp to three loops.

The Regge limit of the one-loop integral was already given in the main text. At two loops,

we find

I2,1 = ξ

[
4

3
π2 log x+

4

3
log3 x

]
, (B.1)

I2,0 = ξ [−16H−3,0(x)− 16H3,0(x)− 16H2,0,0(x)− 8H0,0,0,0(x)

−24ζ2H0,0(x)− 4ζ3H0(x)− 42ζ4] , (B.2)

Ir2,2 = ξ2
[
2 log2 x

]
, (B.3)

Ir2,1 = ξ2 [−16ζ2H0(x)− 16H2,0(x)− 16H−1,0,0(x)− 8H0,0,0(x)− 16H1,0,0(x)− 4ζ3] ,

(B.4)

Ir2,0 = ξ2 [32ζ2H−1,0(x) + 24ζ2H0,0(x) + 32ζ2H1,0(x) + 16H−3,0(x) + 16H3,0(x)

− 32H−2,−1,0(x) + 16H−2,0,0(x) + 32H−1,2,0(x) + 32H1,2,0(x) + 16H2,0,0(x)

+ 32H2,1,0(x) + 32H−1,−1,0,0(x) + 16H−1,0,0,0(x) + 32H−1,1,0,0(x) + 8H0,0,0,0(x)

+ 32H1,−1,0,0(x) + 16H1,0,0,0(x) + 32H1,1,0,0(x)

−16ζ2H−2(x) + 8ζ3H−1(x) + 8ζ3H1(x) + 32ζ2H2(x) + 60ζ4 .] . (B.5)

At three loops, we have

I3a(u, v) −→
u→0

log u I3a,1 +O(u0) , (B.6)

I3a(v, u) −→
u→0

log3 u Ir3a,3 + log2 u Ir3a,2 + log u Ir3a,1 +O(u0) , (B.7)

I3b(u, v) −→
u→0

log2 u I3b,2 + log u I3b,1 +O(u0) , (B.8)

I3b(v, u) −→
u→0

log u Ir3b,1 +O(u0) . (B.9)

We found the following coefficient functions,

I3a,1 = ξ
4

45

[
7π4 log x+ 10π2 log3 x+ 3 log5 x

]
, (B.10)

which is in agreement with the calculation for general L, c.f. eq. (A.8),

Ir3a,3 =
1

6
(I1,1)3 , (B.11)

Ir3a,2 = ξ3 [−40ζ2H0,0(x) + 16H−3,0(x)− 48H3,0(x)− 64H2,0,0(x)

−48H−1,0,0,0(x)− 64H0,0,0,0(x)− 48H1,0,0,0(x)− 8ζ3H0(x)] , (B.12)

Ir3a,1 = ξ3 [32ζ3H−1,0(x)+16ζ3H0,0(x)+32ζ3H1,0(x)− 32ζ2H−2,0(x)+224ζ2H2,0(x)

+160ζ2H−1,0,0(x)+256ζ2H0,0,0(x)+160ζ2H1,0,0(x)+256H4,0(x)− 64H−3,−1,0(x)
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+128H−3,0,0(x)− 64H−3,1,0(x)− 64H−2,−2,0(x)− 64H−1,−3,0(x)+192H−1,3,0(x)

− 64H1,−3,0(x)+192H1,3,0(x)− 64H2,−2,0(x)+256H2,2,0(x)− 64H3,−1,0(x)

+256H3,0,0(x)+192H3,1,0(x)− 192H−2,−1,0,0(x)+160H−2,0,0,0(x)+64H−2,1,0,0(x)

+256H−1,2,0,0(x)+256H1,2,0,0(x)+64H2,−1,0,0(x)+288H2,0,0,0(x)+320H2,1,0,0(x)

+192H−1,−1,0,0,0(x)+256H−1,0,0,0,0(x)+192H−1,1,0,0,0(x)+272H0,0,0,0,0(x)

+192H1,−1,0,0,0(x)+256H1,0,0,0,0(x)+192H1,1,0,0,0(x)− 16ζ3H−2(x)+48ζ3H2(x)

−96ζ2H−3(x)+204ζ4H0(x)+160ζ2H3(x)+32ζ2ζ3+12ζ5] , (B.13)

and for I3b(u, v):

I3b,2 =
1

2
I1,1I2,1 , (B.14)

I3b,1 = ξ2 [−128H4,0(x)− 64H−3,0,0(x)− 96H3,0,0(x)− 144H2,0,0,0(x)− 128H1,0,0,0,0(x)

− 216H0,0,0,0,0(x)− 32ζ2H2,0(x)− 176ζ2H0,0,0(x)− 64ζ2H1,0,0(x)

−16ζ3H0,0(x)− 152ζ4H0(x)− 24ζ5] . (B.15)

Finally, we have

Ir3b,1 =ξ

[
8

15
log5 x+

8

9
π2 log3 x+

16

45
π4 log x

]
. (B.16)

We remark that the factorization of the leading terms Ir2,2, I
r
3a,3, I3b,2 can be understood

from the analysis of [27, 43], where the systematics of the Regge limit were investigated.
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