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Abstract

It is well known that absolute instabilities can be located by prescribed mappings from

the complex frequency plane to the wave-number plane through the dispersion relation

D(w, k) = 0. However, in many systems of physical interest the dispersion relation is

polynominal in w while transcendental in k, and the implementation of this mapping

procedure is particularly difficult. If one maps consecutive deformations of the Fourier

integral path (originally along the real k-axis) into the w-plane, points having (8D/8k) = 0

are readily detected by the distinctive feature of their local maps. It is shown that a simple

topological relationship between these points and the image of the real k-axis determines

the stability characteristics of the system, without mapping from the w-plane back into

the k-plane.



I. INTRODUCTION

The space-time evolution of a linear instability is described by the Green's function

defined as

G(x,t)= j dj e(k:~ )D1(w,k) (1)

for one-dimensional perturbations whose frequency, w, and wavenumber, k, are related by

the dispersion relation, D(w, k) = 0. The unstable Green's function can evolve in two

distinctly different ways: it can encompass the origin of excitation, in which case at any

fixed point in space the disturbance grows without bound, or it can grow and propagate

away from the origin so that G(x, t -+ oo) = 0 at any given finite x. In most cases the

Fourier-Laplace integral in Eq.(1) cannot be evaluated for all t. However, for a general

dispersion relation one may obtain the time-asymptotic Green's function by a well known

method of analytic continuation in which the Laplace contour (L) is deformed towards the

lower half of the complex w-plane.[1]

The procedure is shown skematically in Fig. 1. First, the domain of absolute conver-

gence (DAC) of D-(w, k) is defined for real k by mapping the Fourier contour (F) into the

w-plane through the dispersion relation. The DAC in w is everywhere above the highest

branch of this mapping. As the L-contour, originally in the DAC, is deformed towards

the lower half w-plane, its image in the k plane will cross the original F-contour along

the real k-axis. To maintain causality, the F-contour must be deformed off the real k-axis

in such a way as to avoid the crossing. This process of consecutive contour deformations

can be continued until two branches in the mapping of the deformed L-contour, originally

from opposite sides of F, "pinch" the deformed F-contour at a saddle-point in the k-plane.

Such saddle-points are called "pinch-points", distinguishing them from the general class

of multiple roots in the mapping of a given w through D(w, k) = 0. If the corresponding

branch-point in the w-plane has a positive imaginary component it will dominate the time

asymptotic response and G(x, t -+ oo) can be approximated by a simple integral around

the branch cut. This is the case for an absolute instability. On the other hand, if L can

be deformed to the real w-axis, the instability is convective.

A unified treatment of both instability types is obtained by considering the Green's

function at the origin of a reference frame moving with nonrelativistic velocity V[21, so
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that
Sdw' Adk wG(Vt, t) e - ei'DV1(w',k) (2)

where w' = w - kV is the Doppler shifted frequency and Dv(w', k) = D(w' + kV, k). The

above described mappings through Dv(w', k) = 0 will possess pinch-points, for some range

of observer velocities, one of which has the largest temporal growth rate, wi4, for a given V.

By varying the observer velocity one obtains the function w'i(V), which is the asymptotic

pulse since InIG(Vt, t)| = w';(V)t and x = Vt. The edges of the pulse are given by V = V±

where w';(V±) = 0; if the edge velocities, V±, are of the same sign then the instability is

convective, otherwise it is absolute.

We see that the space-time evolution of a linear instability is characterized by the so

called "pinch-points" which are located in a process of analytic continuation where L is

deformed towards the lower half w-plane. As formulated, this process depends on solving

the dispersion relation for k as a function of w. However, in many physical problems the

dispersion relation is a transcendental function of k while only a polynominal function of w.

This is often the case when a medium supports perturbations whose corresponding eigen-

functions are spatially bounded in one direction and the dispersion relation is obtained

by solving a particular eigenvalue problem. In such cases it seems unfortunate that the

procedure which locates pinch-points depends on solving the dispersion relation for k as a

function of w, since the computation of w as a function of k is much easier.

In this paper we will develop a procedure which identifies pinch-points by mappings

only from the k-plane into the w-plane. This has been attempted by previous authors.

Fainberg et.al. [3] formulated a criterion for absolute instability which depended only on

the image of the real k-axis in the w-plane and the subsequent position of the highest

branch-point beneath this image. When the "pinch-point" technique, summarized above,

was developed, Briggs [4] compared it with the method of Fainberg, which he showed

to be insufficient. Later, Derfler [5] supplemented Fainberg's criterion by mappings from

the k-plane only. Recently, however, in an attempt to implement Derfler's technique, we

found it to be unreliable. This lead us to develop the criterion which is proved rigoursly

in Section II. In Section III, the pinch-points of two mathematical dispersion relations are

found by mapping the appropriate contours from the k-plane into the w-plane and the
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latter example is shown to be a case for which Derfier's criteria fail. We will conclude with

a recent example from hydrodynamics [6] in which our technique is valuable.

I. THE MAPPING PROCEDURE

The instability is first examined by mapping the F-contour into the w-plane. Since

the mapping of a given k into the w-plane is generally multi-valued, the various images of

the F-contour will be called wFa, where a is a positive integer. Consider the case when the

mapping reveals only one unstable branch, this branch shall be called wp and the subscript

a will be dropped (as in Fig. 1). The inverse mapping of WF into the k-plane will generate a

set of n contours, kp(wF) with 3 = 1, 2,...n, where n is the order of the dispersion relation

in k, which goes to infinity when the functional dependence on k is transcendental. There

is always a unique contour in the set kp(wF) which corresponds to F, as shown in Fig. 2.

The mapping of a given w into the k-plane may be rendered single-valued by constructing

a multi-sheeted w-plane with n Riemann sheets. The contour Wp is actually a set of n

contours in the multi-sheeted w-plane, each corresponding to a single contour in the set

kp(wF). Hence there is a unique contour, ('F, which is defined in the multi-sheeted w-plane

and maps only onto F. Similarly, if there are two unstable branches, WF1 and wF2, then

there are two contours in the multi-sheeted w-plane, cZ'F and WF2, which map only onto

F.

Simultaneous solutions of D(w, k) = 0 and 9D(w, k)/8k = 0 are branch-points in the

w-plane. In particular, a given w = wo, which satisfies D(wo, k) = 9D(wo, k)/8k = 0 for

a specific value of k = ko, where 82 D(wo, k)/0k 2 # 0, has only n-1 distinct images in the

k-plane, so that the point w = wo corresponding to k = ko connects two sheets of the

multi-sheeted w-plane. On each of these two sheets consider a vertical ray, R1 and R2

respectively, which connects an w on L to the branch-point at w = Wo (as in Figures 3,

4, and 5). The images of R1 and R2 in the k-plane merge at the point k = k0 . For the

branch-point at w = wo to correspond to a pinch-point, it is necessary and sufficient that

the k-plane images of R 1 and R2 start on opposite sides of F. This is simply a re-statement

of the original criteria shown skematically in (Fig.2) and its implementation still requires

mapping from the w-plane into the k-plane. On the other hand, it follows that if the

images of R1 and R2 start on opposite sides of F and merge at a single point (not on F),
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then one, or perhaps both, of these images must cross F. Furthermore, the total combined

number of crossings made by both images must be odd. Since only the contours OFa map

onto F, the image of R 1 crosses F in the k-plane only when R 1 crosses one of the contours

WFcg in the w-plane. The same is true for R2 . Therefore, one may count the number of

times each of the vertical rays, R1 and R 2 , crosses each of the contours W-Fa; only when the

total combined number of crossings is odd does the branch-point at w = wo correspond to

a pinch-point. Furthermore, the same must hold true for a higher-order branch-point (one

for which 82D(w, k)/8k 2 also vanishes) if the connected Riemann sheets are considered in

pairs [7].

Application of this criterion to the simple proto-type shown in Fig. 3a, reveals that

branch-points covered only once by C'F always correspond to pinch-points. Topologically

identical cases were studied by Fainberg (31 and the same result was concluded. On the

other hand, a branch-point located beneath two contours, WFp and "P2 (as in Fig. 4),

does not correspond to a pinch-point, since R1 crosses each contour once, while R2 makes

no crossings. An example of this type was studied by Briggs [4] to show that the various

branches of the mapping of a given k into the w-plane cannot always be handled separately,

as stated by Fainberg. We point out in addition that an example can be constructed where

there is only one branch, yet Fainberg's technique still fails. Consider a contour cDF which

loops around a single branch-point from above, as shown in Fig. 5. Each of the rays, R1

and R2 , crosses Zp once, so that the combined number of crossings is even. Therefore the

enclosed branch-point does not correspond to a pinch-point and does not contribute to the

asymptotic response, even though it lies in the upper-half plane beneath (Dp, as considered

sufficient by Fainberg. Derfier [5] supplemented Fainberg's criterion by assuming that if

k = k, is a pinch-point, then the vertical line passing through k0 , when mapped into the

w-plane, must start and end on different Riemann sheets. However, numerous counter

examples can be constructed for which Derfler's assertion is invalid. In particular, his

criteria fail for examples of the type shown in Fig. 5 (8]. Our criterion, which is completely

general, may be used, together with the following procedure, to determine the stability

characteristics of any dispersion relation.

The procedure requires one to map a section of the k-plane into a specified region (S)
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located beneath c'F (Fig.6). The image of S in the k-plane is bounded on one side by the

F-contour. A set of vertical rays along the range of unstable wave-numbers is mapped into

the w-plane. Each ray is terminated as its image leaves the specified region (Fig. 6b). These

rays, originally parallel in the k-plane, may have images which intersect, thus indicating a

branch-point somewhere in S. The singularity is identified by the angle-doubling property

of its local map, i.e. (w - wo) ~ (k - ko) 2 . This is the case in Fig. 6b, which shows the

branch-point nested at the edge of a typical "cusp"-like trajectory. If a branch-cut is taken

downward from the singularity one obtains a mapping consistent with the multi-sheeted

structure implied by the contour C'F (Fig. 6c). In this case the branch-point is covered only

once by WF and thus corresponds to a pinch-point. Of course, the same technique works

for higher order branch-points, the only difference is in the local map, characterized by the

first non-vanishing derivative of w as a function of k. In many problems it is simpler to

replace the vertical rays shown in Fig. 6a with a set of horizontal contours that represent

deformations of the Fourier integral path (Fig. 7a). In the w-plane, these contours will

progress downward from WF and form a cusp as they approach the singularity (Fig. 7b).

Once again the branch-point is located by the angle-doubling (tripling, etc.) property of

its local map. Finally, this same procedure can be systematically generalized for dispersion

relations with multiple unstable branches. The subtleties of the analysis are displayed in

the second example considered in the next section.

III. TWO MATHEMATICAL EXAMPLES

Consider the simple dispersion relation,

D(w, k) = w - {(k - i)3 + i - kV] (3)

which has a parametric dependence on V. For all V, the range of unstable wave-numbers

is -2/V3 < k, < 2/,3, with a maximum growth rate of wi = 4/3 at k, = w, = 0. The

branch-points can easily be found by setting dw/dk = 0, which gives

k, = i VV (4a)

-2V
(1 - V)i i S( 3) (4b)

5



Now applying the technique developed in section II we will map the F contour into

the w-plane for V=1. A set of lines parallel to F with increasing ki will have images in

the w-plane as shown in Fig. 8a. The images form cusps at w = ±2/3, which corresponds

to the values given by equation (4b) with V=1. Both singularities are covered once by ('F

so that each corresponds to a pinch-point. As V decreases from unity these branch-points

move into the upper half w-plane and their separation along the real w-axis decreases, so

that for an arbitrary value of 0 < V < 1 the picture remains qualitatively similar to the

case when V = 1. However, when V = 0 the two branch-points merge at w = i and as V

becomes slightly negative only the lower branch-point remains beneath c'F (Fig. 8b); the

upper branch point slips out onto the third Riemann sheet where it no longer corresponds

to a pinch-point. As V decreases further the branch-point beneath (Lp moves upward until

at V = -1 it moves onto c'p at w = (4/3) i, thus attaining the maximum growth rate.

As V decreases below -1, the singularity moves downward in the w-plane and remains

beneath c'p (Fig. 8c). Finally, we see that the temporal growth rate associated with the

pinch-point is given for all V by the imaginary part of w- in Eq. (4b), so that if V were

the observer velocity, then Fig. 9 would be the pulse shape.

We now consider a more complex example that will show off some of the subtleties

involved in the analysis. The dispersion relation has the form encountered in coupled mode

problems

D(w, k) = [w - wi(k)][w - w 2(k) -y (5a)

where we let

w1(k) = k + 3i (5b)

w2 (k) = 2i - 2k -ik 2  (5c)

and y is a coupling parameter. Notice that general analytic expressions can no longer be

obtained for the branch-points, since the result of setting D(w,k) = 9D(w,k)/9k = 0 is

a fifth order equation in k. Here we obtain results for y = 0.1. The mapping of F into

the w-plane yields two branches, WF1 and WP2, where WF1 is the highest (Fig. 10a). If

the F-contour is deformed into the lower half k-plane one of its two images will progress
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downward from w'F while the other progresses upward from WF2. In particular, a set of

k-plane contours with ki=constant < 0 is mapped into the w-plane resulting in Fig. 10b.

We see that the images progressing downward from WF1 form a saddle-map with those

progressing upward from WF2. For values of k; < -0.1 the images move towards opposite

sides of the wi-axis forming cusps at w = (2.7i ± .3). Furthermore, since WF1 in Fig. 10b

may be placed on a single Riemann sheet and identified as (DF1, both branch-points located

beneath it correspond to pinch-points. Taking the branch-cut between the two singularities

results in the multi-sheeted diagram shown in Fig. 10c. Also shown in Fig. 10c is a third

branch-point which lies beneath CF2. This is easily found by assuming w ; W2 (k) and

dw2 (k)/dk = 0. Before our criterion can be applied to the third branch point one must

deform the horizontal branch cut so that it does not cover the singularity in question (Fig.

10d) [9]. The third branch-point now appears on sheet one beneath both (F1 and pF2;

therefore it does not corresond to a pinch-point.

The contours C1 and C2 , shown in Fig. 10e, are the images of the line k,. = -0.08.

We see that C1 nearly passes through the singularity at w = (2.7i - 0.3); in fact, it loops

around the branch-point passing from sheet one onto sheet two and then back onto sheet

one (see Fig. 10c). Even though C1 starts and ends on the same Riemann sheet, the

enclosed branch-point corresponds to a pinch-point, thus violating Derfier's criteria [5].

IV. A PHYSICAL EXAMPLE

It is well known that vortices are observed in the wake of fluid flowing past a long

cylinder. Flows with Reynolds numbers greater than about forty generate a staggered

array of vortices known as the von Karman vortex street. Vortices are formed at a specific

frequency and are separated by a unique distance. Flows with Reynolds numbers smaller

than forty are observed to produce vortices only when the cylinder is driven to oscillate by

an external source. In this case vortices are created at the frequency of the source and are

convected downstream by the flow. These phenomena have been recently explained by an

absolute versus convective instability analysis of the time-averaged flow in the wake [6].

The local dispersion relation for waves propagating parallel to the flow is obtained

by solving the inviscid Orr-Sommerfeld equation in a strip about x = xo, where the

unperterbed flow is described by the velocity profile U(y, xo) (Fig. 11). In particular, the
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stream function of the pertubation, 4(y)exp[ik(x - xo) - iwt], satisfies

(kU - W)(d-2  k)-k d 2U (6)
dy2 dy2

where the domain of y is truncated by assuming that d2U/dy 2 is identically zero for

y > y > d. As a result, 0(y) must match to a decaying exponential at y=yl; the other

boundary condition is obtained by requiring 4(y) to be either symmetric or anti-symmetric.

Equation (6) can now be solved on the domain 0 < y :5 y using a finite difference scheme

which results in a matrix eigenvalue problem of the form

wBap(k)Op = Aap(k)4p (7)

where the matrix elements are functions of k. Furthermore, the functional dependence on

k is transcendental as prescribed by the boundary condition at y = yI* The result is that

Eq. (7) is convenient for mapping a given k into the complex w-plane, but cannot readily

be inverted for k as a function of w.

Measurements of the average flow for a given Reynolds number, Re, allow one to

construct the local velocity profile, U(y, x,,). Once U(y, xo) and the symmetry of 4(y) are

specified, Eq.(7) provides a unique mapping from the k-plane into the w-plane. For a variety

of Re and xo, Triantafyllou et. al. [6] find a single unstable contour, wF, which does not

overlap itself. This contour can be placed on a single Riemann sheet of the multi-sheeted

w-plane, where it is labeled CF. Deformations of the F-contour into the lower-half k-plane

have images which progress downward from WF until a cusp is formed. The singularity

located by this cusp corresponds to a pinch-point (as proven in Section II) and when it is

in the upper half w-plane the system is absolutely unstable. For low over-critical Reynolds

numbers (Re>40), the near wake is found absolutely unstable when 0(y) is symmetric

(Fig. 12a). As Zo is increased, the singularity in the w-plane gradually moves downward,

finally going into the lower half plane for x0 > 3.5d (Fig. 12b). At the same Re, the

anti-symmetric mode is also unstable, but the corresponding pinch singularity is always in

the lower-half w-plane. On the other-hand, for under-critical Reynolds numbers (Re<40)

both modes lead to a convective instability, which is consistent with the observation that

in this regime vortices are formed only when an external excitation of the cylinder is
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provided. For over-critical Reynolds numbers the formation frequency and the vortex

spacing are predicted accurately by the real parts of the frequency and wave-number of the

pinch-point. Furthermore, the preferred mode characteristics predicted by the analysis are

consistent with observations. Namely, the symmetric mode, which must lead to a staggered

array of vortices, is time-asymptotically dominant over the anti-symmetric mode, which

could only produce a non-staggered array. Thus the analysis shows that in the wake of a

cylinder there is a region of absolute instability, where the vortex street is formed, followed

by convectively unstable region where the vortex street propagates and maintains itself.

Trintafyllou et. al. [6] also analyzed the stability of a turbulent profile at Re=140,000 and

again found good agreement with the observed characteristics of the vortex formation.
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FIGURE CAPTIONS

Figure 1. Contour deformations for the time-asymptotic evaluation of the Fourier-Laplace inte-

gral; wp is the highest image of F in the w-plane; ki(L) and k 2 (L) are two images of

L in the k-plane; the images of L' pinch the deformed F-contour at the saddle-point

marked x; the corresponding branch-point is shown with its branch-cut taken straight

down.

Figure 2. Various branches in the mapping of wF into the k-plane.

Figure 3. Simple topological configuration for a branch-point which corresponds to a pinch-

point:

(a) The contours R 1 and R 2 are defined in the multi-sheeted w-plane;

(b) Mapping of R 1 and R 2 into the k-plane - only the image of R 1 crosses F. Note

that k(L 1 ) corresponds to ki(L) in the notation of Fig. 1.

Figure 4. Branch-point which does not correspond to a pinch-point indicating the failure of

Fainberg's criteron for the case of multiple contours Z7F,.

Figure 5. Branch-point beneath a single overlapping contour (D'.

Figure 6. Mappings from the k-plane into region (S) of the w-plane bounded by (DF and the

dashed line.

(a) Vertical rays terminated as their images leave S; x marks a saddle-point;

(b) Corresponding images in the w-plane; contour (5) shows typical "cusp"-like form

near branch-point;

(c) Branch-cut consistent with Fig. (6b); contours 4, 5, 6, and 7 pass through the cut

onto another sheet.

Figure 7. Consecutive deformations of the F-contour in an attempt to detect the pinch-point

(marked x):

(a) Horizontal line segments mapped into the w-plane;

(b) Images in the w-plane show singularity beneath Cap. (The dashed line is shown in

connection with Fig. 6.)

Figure 8. Contours k; = const. are mapped from the k-plane through Eq. (3) for various values

of V:
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(a) V = 1; A, B, and C are the consecutive images of ki = 0.3, 0.6, and 0.9; segment

C detects branch-points at w = ±2/3;

(b) V = -0.1; A, B, and C are the consecutive images of k; = 0.2, 0.4, and 0.7;

(c) V = -1.5; A and B are the consecutive images of ki = -0.1 and -0.22.

Figure 9. From Eq. (4b), the imaginary part of the lower branch-point as a function of V gives

the asymptotic pulse shape.

Figure 10. Mappings from the k-plane through Eq. (5):

(a) Image of the F-contour in the w-plane for -1.5 < k,. < 1.5;

(b) A, B, C, and are the consecutive images of k; = -0.1, -0.15, and -0.3.

(c) Three-sheeted w-plane showing the two branch- points detected in Fig. (10b) and

a third which lies beneath (7.F2 C1 and C2 are the two images of k,. = -0.08, showing

the failure of Derfier's criteria. (The drawings are not to scale.)

(d) Deformation of horizontal branch-cut shows that the lower branch-point in Fig.

10c does not correspond to a pinch-point.

(e) For the test of Derfier's criteria, C1 and C2 are the images of k,. = -0.08.

Figure 11. Average flow in the wake of a cylinder: U, is the incident flow, U(y, x,) is the profile

at x = z,.

Figure 12. Parallel deformations of the F-contour mapped into the w-plane for flow at a Reynolds

number of 56; contours A through D are the consecutive images of ki = -0.50, -0.75,

-1.0, and -1.1. In (a) the profile is taken at a distance of two diameters behind the

cylinder, while in (b) the distance is 3.5 diameters. (The wave-number and frequency

are normalized to d and d/U., respectively.) [6]
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