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THE CUT LOCUS OF A TWO-SPHERE OF REVOLUTION
AND TOPONOGOV’S COMPARISON THEOREM
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Abstract. We determine the structure of the cut locus of a class of two-spheres of
revolution, which includes all ellipsoids of revolution. Furthermore, we show that a subclass
of this class gives a new model surface for Toponogov’s comparison theorem.

1. Introduction. Let γ : [0, t0] → M be a minimal geodesic segment on a complete
Riemannian manifold M. The endpoint γ (t0) of the geodesic segment is called a cut point of
p := γ (0) along γ if any extended geodesic segment γ̃ : [0, t1] → M of γ, where t1 > t0, is
not a minimizing arc joining p to γ̃ (t1) anymore. The cut locus Cp of the point p is defined
by the set of the cut points along all geodesic segments emanating from p. It is known that the
cut locus of a point p on a complete 2-dimensional Riemannian manifold is a local tree (see
[7] or [15]), i.e., for any q ∈ Cp and any neighborhood U around q inM, there exists an open
neighborhood V ⊂ U around q such that any two cut points in V can be joined by a unique
rectifiable Jordan arc in V ∩ Cp. Here a Jordan arc is an arc homeomorphic to the interval
[0, 1]. Furthermore the cut locus of a point on a compact and simply connected 2-dimensional
Riemannian manifold is arcwise connected and a tree, i.e., a local tree without a circle (see
Theorems 4.2.1 and 4.3.1 in [16]).

A compact Riemannian manifold (M, g) homeomorphic to a 2-sphere is called a 2-
sphere of revolution if M admits a point p such that for any two points q1, q2 on M with
d(p, q1) = d(p, q2), where d( , ) denotes the Riemannian distance function, there exists an
isometry f on M satisfying f (q1) = q2, and f (p) = p. The point p is called a pole of
M. Let (r, θ) denote geodesic polar coordinates around a pole p of (M, g). The Riemannian
metric g can be expressed as g = dr2 +m(r)2dθ2 onM \ {p, q}, where q denotes the unique
cut point of p and

m(r(x)) :=
√

g
((

∂

∂θ

)
x

,

(
∂

∂θ

)
x

)
.

It will be proved in Lemma 2.1 that each pole of a 2-sphere of revolution M has a unique cut
point. A pole and its unique cut point are called a pair of poles. Any geodesic emanating from
a pole is a periodic geodesic through its cut point. Each periodic geodesic through a pair of
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poles is called a meridian. In this paper we prove the following structure theorem of the cut
locus of a 2-sphere of revolution.

MAIN THEOREM. Let (M, dr2 + m(r)2dθ2) be a 2-sphere of revolution with a pair
of poles p, q satisfying the following two properties.

(1.1) (M, dr2 + m(r)2dθ2) is symmetric with respect to the reflection fixing r = a,

where 2a denotes the distance between p and q.
(1.2) The Gaussian curvature G of M is monotone along a meridian from the point p

to the point on r = a.

Then the cut locus of a point x ∈ M \ {p, q} with θ(x) = 0 is a single point or a
subarc of the opposite half meridian θ = π (resp. the parallel r = 2a − r(x)) when G is
monotone non-increasing (resp. non-decreasing) along a meridian from p to the point on
r = a. Furthermore, if the cut locus of a point x ∈ M \ {p, q} is a single point, then the
Gaussian curvature is constant.

An ellipsoid of revolution defined by

(1.3)
x2

b2 + y2

b2 + z2

c2 = 1 , b , c > 0 ,

is a typical example satisfying (1.1) and (1.2) in the Main Theorem. As a corollary to the
Main Theorem we have,

COROLLARY. The cut locus of a point (x0, 0, z0) with x0 > 0 on the ellipsoid defined
by (1.3) is a subarc of {(−b sin θ, 0, c cos θ) ; 0 ≤ θ ≤ π} (resp. the parallel z = −z0) if
c > b (resp. c < b ).

Recently we learned that Itoh and Kiyohara ([8]) determined the cut loci and conjugate
loci of all triaxial ellipsoids with unequal axes. Thus the corollary above is also a corollary to
their result. Here we want to emphasize that a 2-sphere of revolution satisfying (1.1) and (1.2)
does not always have positive Gaussian curvature. For example, the surface of revolution (see
Figure 1) generated by the (x, z)-plane curve (m(t), 0, z(t)), where

m(t) :=
√

3

10

(
9 sin

√
3

9
t + 7 sin

√
3

3
t

)
, z(t) :=

∫ t

0

√
1 −m′(t)2dt ,

satisfies (1.1) and (1.2). Moreover the Gaussian curvature is −1 on the equator r = 3
√

3π/2.
The example constructed by Gluck and Singer (see [4]) shows that one cannot impose

any strong restriction on the structure of the cut locus of a point on a surface, even if the surface
is assumed to be a surface of revolution with positive Gaussian curvature. The conditions (1.1)
and (1.2) in the Main Theorem are thus reasonable and yet quite flexible in the sense that they
are satisfied for a larger family of 2-spheres of revolution. We note that the structure of the cut
locus of a very familiar surface of revolution such as a 2-sheeted hyperboloid, a paraboloid
and a standard torus in 3-dimensional Euclidean space has been determined (see [3], [5] and
[17]). The property (1.1) is equivalent to the property

(1.4) m(r) = m(2a − r) for any r ∈ (0, 2a) .
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FIGURE 1. A surface of revolution satisfying (1.1) and (1.2) viewed from three differ-
ent viewpoints. The two families of curves on the surface denote geodesic
circles and geodesics emanating from a point (on the upper right in the first
illustration), respectively.

Since the Gaussian curvature G of a 2-sphere of revolution (M, dr2 +m(r)2dθ2) with a pair
of poles p, q is equal to

(1.5) G(x) = −m
′′(r(x))
m(r(x))

for each x ∈ M \ {p, q}, the property (1.2) is equivalent to the monotonicity of the function
m′′(r)/m(r) on (0, a].

As is well-known, a complete and simply connected surface with constant Gaussian cur-
vature is used as a model surface in Toponogov’s comparison theorem (see [14] for example).
The comparison theorem was first generalized to model surfaces with non-constant Gauss-
ian curvature by Elerath ([3]). His model surface is a surface of revolution generated by a
function y = f (x), whose Gaussian curvature is monotone non-increasing along a meridian.
Furthermore he proves in the paper above that the cut locus of each point on such a surface
is empty or a subset of the meridian opposite to the point. After his work, some surfaces
of revolution have been introduced as model surfaces for the comparison theorem, e.g., an
Hadamard surface of revolution with finite total curvature (see [1, 2]), von Mangoldt surfaces
of revolution and compact von Mangoldt surfaces of revolution with a singular point (see [12,
11]). The comparison theorem for a compact von Mangoldt surface with a singular point is
applied in the proof of a sphere theorem by Kondo and Ohta ([13]). A new model surface,
which we will introduce in Section 6, is a 2-sphere of revolution whose cut locus is a subarc
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of a meridian or a single point. For example, the ellipsoid defined by (1.3) with c > b and the
surface in Figure 1 are model surfaces which are distinct from the model surfaces above.

We refer to [14] for basic tools in Riemannian geometry, and [16] or [18] for some
properties of geodesics on a surface of revolution.

The authors would like to thank Professor Innami for many useful discussions.

2. Preliminaries. Let (M, g) be a 2-sphere of revolution. As is defined in the intro-
duction, the manifold (M, g) is homeomorphic to a 2-sphere and admits a point p such that
for any points q1, q2 ∈ M with d(p, q1) = d(p, q2), where d( , ) denotes the Riemannian
distance function, there exists an isometry f satisfying f (p) = p, f (q1) = q2. The point p
is called a pole of M.

LEMMA 2.1. Each pole p ofM has a unique cut point. Moreover, the unique cut point
of p is also a pole of M.

PROOF. Let q be a farthest point from a pole p. Suppose that there exists a cut point x
of p such that d(p, x) < d(p, q). Let γ : [0, l0] → M denote a unit speed minimal geodesic
segment joining p to q. Since there exists an isometry f on M such that f (p) = p, f (x) =
γ (t0), where t0 := d(p, x), the point γ (t0) is a cut point of p. This is a contradiction. Thus
any cut point of p is a farthest point from p. Since M is simply connected, the cut locus
of p has an endpoint q (see Theorem 4.2.1 in [16]). Hence any cut point q1 of p is also an
endpoint, since there exists an isometry f such that f (q) = q1, f (p) = p. Suppose that p
has two cut points q1 and q2. It follows from Theorems 4.2.1 and 4.2.3 in [16] that q1 and
q2 can be joined in the cut locus of p by a rectifiable Jordan arc c. This is a contradiction,
because each interior point on the curve c is not an endpoint of the cut locus of p. Thus the
point p has a unique cut point q. Let p1, p2 be any points on M with d(p1, q) = d(p2, q).

Since q is the unique cut point of p, it is clear that d(p, p1) = d(p, p2). Hence there exists
an isometry f such that f (p1) = f (p2), f (p) = p. Furthermore, since q is the unique cut
point of p, f (q) = q. This implies that the unique cut point of the pole p is also a pole of
M. �

Let (r, θ) denote geodesic polar coordinates around a pole p of (M, g). The Riemannian
metric g is expressed as g = dr2 +m(r)2dθ2 on M \ {p, q}, where q denotes the unique cut
point of p and

m(r(x)) :=
√

g
((

∂

∂θ

)
x

,

(
∂

∂θ

)
x

)
.

From now on we fix a pair of poles p, q and geodesic polar coordinates (r, θ) around p.
Notice that both functions m(r) and m(2a − r) are extensible to a C∞ odd function around
r = 0, where 2a := d(p, q), and m′(0) = 1 = −m′(2a). By Lemma 2.1, any geodesic
emanating from p (resp. q) passes through q (resp. p). It is easily checked that any unit
speed geodesic emanating from p = µ(0) is a periodic geodesic, i.e., µ(t + 4a) = µ(t) for
any real t . Each geodesic passing through p is called a meridian. Each curve r = c ∈ (0, 2a)
is called a parallel.
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For technical reasons, we introduce the Riemannian universal covering manifold M̃ :=
((0, 2a)× R, dr̃2 +m(r̃)2dθ̃2) of (M \ {p, q}, dr2 +m(r)2dθ2). Let γ̃ (s) = (r̃(s), θ̃ (s)) be
a unit speed geodesic on M̃. There exists a constant ν such that

(2.1) m(r̃(s))2θ̃ ′(s) = m(r̃(s)) cos η(s) = ν

holds for any s,where η(s) denotes the angle 	 ( ˙̃γ (s), (∂/∂θ̃)γ̃ (s))made by ˙̃γ (s) := dγ̃t (∂/∂s)

and (∂/∂θ̃)γ̃ (s). This relation is a well-known formula, which is called the Clairaut relation.
The constant ν is called the Clairaut constant of γ̃ . Since γ̃ is unit speed, we have by (2.1),

(2.2) r̃ ′(s) = ±
√
m(r̃(s))2 − ν2

m(r̃(s))
.

In particular, r̃ ′(s) = 0 if and only if m(r̃(s)) = |ν|. It follows from (2.1) and (2.2) that for a
unit speed geodesic γ̃ (s) = (r̃(s), θ̃ (s)), s1 ≤ s ≤ s2, with the Clairaut constant ν,

(2.3) θ̃(s2)− θ̃ (s1) = ε(r̃ ′(s))
∫ r̃(s2)

r̃(s1)

ν

m(x)
√
m(x)2 − ν2

dx

holds if r̃ ′(s) 	= 0 on (s1, s2), where ε(r̃ ′(s)) denotes the sign of r̃ ′(s), and moreover the
length L(γ̃ ) of γ̃ |[s1,s2] equals

(2.4) L(γ̃ ) = ε(r̃ ′(s))
∫ r̃(s2)

r̃(s1)

m(x)√
m(x)2 − ν2

dx

if r̃ ′(s) 	= 0 on (s1, s2). Since

m√
m2 − ν2

=
√
m2 − ν2

m
+ ν2

m
√
m2 − ν2

,

we have

(2.5) L(γ̃ ) = ε(r̃ ′(s))
∫ r̃ (s2)

r̃(s1)

√
m(x)2 − ν2

m(x)
dx + ν(θ̃(s2)− θ̃ (s1))

if r̃ ′(s) 	= 0 on (s1, s2). Notice that the equations (2.1), (2.2) and (2.4) also hold for a unit
speed geodesic on (M, dr2 +m(r)2dθ2).

Hereafter (M, dr2 +m(r)2dθ2) denotes a 2-sphere of revolution satisfying the two prop-
erties (1.1) and (1.2) stated in the introduction.

LEMMA 2.2. If the derivative function m′ of m is zero at some c ∈ (0, a), then there
exists c1 ∈ (c, a) such that G ◦ µ(c1) = 0 and G ◦ µ is monotone non-increasing on [0, a].
Here µ : [0, 4a] → M denotes a unit speed meridian emanating from p = µ(0) and G
denotes the Gaussian curvature of M.

PROOF. Since m′(c) = m′(a) = 0 by the assumption and (1.4), it follows from the
mean value theorem that there exists a number c1 ∈ (c, a) with m′′(c1) = 0. On the other
hand, by (1.5), we have

(2.6) m′′(t)+G(µ(t))m(t) = 0 .
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ThusG◦µ(c1) = 0. Sincem′(0) = 1 > m′(c) = 0, m′′ must be negative at some c2 ∈ (0, c).
Hence, by (2.6), G ◦ µ(c2) > 0 = G ◦ µ(c1). Since G ◦ µ is monotone on [0, a] and
c2 < c < c1, it is monotone non-increasing on [0, a]. �

LEMMA 2.3. The Gaussian curvature G is negative on r = a if and only if m′(r) is
negative for some r ∈ (0, a). Furthermore, if m′(r0) < 0 for some r0 ∈ (0, a), then there
exist two numbers b1 ≤ b2 in (0, a) such that m′ > 0 on [0, b1) ∪ (a, 2a − b2), m

′ = 0
on [b1, b2] ∪ [2a − b2, 2a − b1] and m′ < 0 on (b2, a) ∪ (2a − b1, 2a]. In particular,
m(b1) = m(b2) is the maximum ofm[0, a] which is greater thanm(a), and the functionG◦µ
is monotone non-increasing on [0, a].

PROOF. Suppose that G is negative on r = a. By (2.6), m′′(a) > 0. Since m′(a) = 0,
it is trivial that m′(r) is negative for any r ∈ (0, a) sufficiently close to a. Suppose that
m′(r0) < 0 for some r0 ∈ (0, a). Since m′(0) = 1 and m′(r0) < 0, there exists c ∈ (0, r0)
such that m′(c) = 0. Thus by Lemma 2.2, G ◦ µ is monotone non-increasing on [0, a] and
zero at some c1 ∈ (c, a). By supposing that G is non-negative on r = a, we will get a
contradiction. Since G ◦ µ is monotone non-increasing, G ◦ µ is non-negative on [0, a]. It
follows from (2.6) that m′ is monotone non-increasing on [0, a].

Thusm′(r) ≥ m′(a) = 0 for any r ∈ [0, a]. This contradicts the existence of the number
r0. HenceG is negative on r = a. Since the proof of the first claim is complete, we will prove
the latter claim. Let r1 ∈ (0, a) denote the minimal number r ∈ (0, a) such thatG ◦µ < 0 on
(r, a]. Since G ◦µ ≥ 0 on [0, r1] andG ◦µ < 0 on (r1, a], it follows from (2.6) that m′′ ≤ 0
on [0, r1] and m′′ > 0 on (r1, a]. Thus for any r ∈ (r1, a)

m′(r1) < m′(r) < m′(a) = 0 .

Therefore the function m|[0,a] attains a maximum at r = b ∈ (0, r1), which is greater than
m(a). Let b1, b2 denote the minimum and maximum ofm−1(m(b)), respectively. Choose any
r2 ∈ (0, a) with m′(r2) = 0. Since m′′ ≤ 0 on [0, r1], for any r, s with 0 < r < r2 < s < r1,

m′(r) ≥ m′(r2) = 0 ≥ m′(s). This means that m(r2) is the maximum of m[0, a]. Thus
b1 ≤ r2 ≤ b2. Now it is clear that the numbers b1 and b2 have the required property in our
lemma. �

LEMMA 2.4. If m′ is non-negative on [0, a], then m′ is positive on (0, b3), where b3

denotes the minimum of m−1(m(a)). Furthermore, m attains the maximum m(a) of m[0, 2a]
at each point of [b3, 2a − b3].

PROOF. Suppose that m′(c) = 0 for some c ∈ (0, b3). By Lemma 2.2 and Lemma 2.3,
G ◦ µ is non-negative on [0, a]. Thus, by (2.6), m′ is monotone non-increasing on [0, a].
Since m′(c) = m′(a) = 0, m′ = 0 on [c, a]. In particular, m(c) = m(a). This contradicts the
assumption of b3. The latter claim is clear from (1.4). �

By Lemmas 2.3 and 2.4, m′ > 0 on [0, b3), where b3 denotes the minimum of
m−1(m(a)). Thus the inverse function ξ(ν) on (0,m(a)) can be defined by

ξ(ν) := (m|[0,b3))
−1(ν) .
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Let p̃u denote the point r̃−1(u)∩ θ̃−1(0), where u ∈ (0, 2a). For each ν ∈ (0,m(u)] let β̃ν(u)

and γ̃ν(u) denote the geodesics with Clairaut constant ν emanating from p̃u = β̃ν
(u)(0) =

γ̃ν
(u)(0) such that

(r̃ ◦ β̃ν(u))′(0) ≥ 0 , (r̃ ◦ γ̃ν(u))′(0) ≤ 0 .

For simplicity, put c̃ν(s) := γ̃
(a)
ν (s). If ν ∈ (0,m(a)), then c̃ν is tangent to the arc r̃ = ξ(ν)

at a point c̃ν(t1(ν)), and c̃ν intersects the arc r̃ = a again at c̃ν(t0(ν)), where

t0(ν) := min{ t > 0; r̃(c̃ν(t)) = a} .
By (2.3), we get

(2.7) θ̃ (c̃ν(t0(ν)))− θ̃ (c̃ν(0)) = 2(θ̃(c̃ν(t1(ν)))− θ̃ (c̃ν(0))) = ϕ(ν) ,

where ϕ : (0,m(a)) → R is the function defined by

(2.8) ϕ(ν) := 2
∫ a

ξ(ν)

ν

m(t)
√
m(t)2 − ν2

dt .

LEMMA 2.5. If ν ∈ (0,m(a)), then any t ∈ R,
T̃ν(c̃ν(t)) = c̃ν(t + t0(ν))

holds, where T̃ν is an isometry on M̃ defined by

T̃ν(r̃, θ̃ ) := (2a − r̃ , θ̃ + ϕ(ν)) .

PROOF. It is clear from (1.4) that T̃ν is an isometry. Hence β(t) := T̃ν(c̃ν(t)) is a
geodesic on M̃ with Clairaut constant ν. By (2.1) and (2.2), we have β̇(0) = dT̃ν( ˙̃cν(0)) =
˙̃cν(t0(ν)) and β(0) = c̃ν(t0(ν)). By uniqueness, we have β(t) = c̃ν(t + t0(ν)). �

The next lemma is a direct consequence of Lemma 7.3.2 in [16] (or Lemma 1.3 in [17]),
(2.1) and the first variational formula.

LEMMA 2.6. Let q1, q2 be two points on M satisfying r(q1) = r(q2) ∈ (0, 2a). If
0 ≤ θ(q1) < θ(q2) ≤ π, then d(x, q1) < d(x, q2) for any point x ∈ M \ {p, q} with
θ(x) = 0.Moreover, for any two points q1, q2 inDν, ν ∈ (0,m(a)), satisfying r̃(q1) = r̃(q2)

and 0 < θ̃(q1) < θ̃(q2), dν(c̃ν(0), q1) < dν(c̃ν(0), q2) holds. Here Dν denotes the domain
bounded by the two geodesic segments r̃−1(a)∩ θ̃−1[0, θ̃(c̃ν(t0(ν)))] and c̃ν[0, t0(ν)], and dν
denotes the Riemannian distance function on the closure of (Dν, dr̃2 +m(r̃)2dθ̃2).

Since both geodesics β̃ν (u) and γ̃ν (u) depend smoothly on ν ∈ (0,m(u)), we get Jacobi
fields Xν, Yν defined by

(2.9) Xν(t) := ∂

∂ν
(β̃ν

(u)(t)) , Yν(t) := ∂

∂ν
(γ̃ν

(u)(t)) .

It is clear that Xν(0) = 0 = Yν(0). Both Jacobi fields above can be explicitly expressed in
terms of the function m (see [16] or [18]). By Corollary 7.2.1 in [16] we have

LEMMA 2.7. Let γ : [0, s] → M̃ be a geodesic segment such that (r̃ ◦ γ )′(t) 	= 0 on
[0, s). Then γ |[0,s] has no conjugate point of γ (0).
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Let γ : R → M̃ be a unit speed geodesic emanating from p̃u with Clairaut constant
ν ∈ (0,m(u)). It follows from (2.2) that the geodesic γ lies in the strip {(r̃, θ̃ ) ; ξ1(ν) ≤ r̃ ≤
ξ2(ν)}, where (ξ1(ν), ξ2(ν)) denotes the maximal open interval containing u such thatm > ν

on (ξ1(ν), ξ2(ν)). Furthermore, it follows from (1.4), Lemmas 2.3 and 2.4 that ξ1(ν) = ξ(ν)

and ξ2(ν) = 2a − ξ(ν) if ν < m(a). If m′(ξ1(ν)) 	= 0 and m′(ξ2(ν)) 	= 0, then γ is tangent
to both parallel arcs r̃ = ξ1(ν) and r̃ = ξ2(ν) infinitely many times and interchangeably,
i.e., γ is tangent to r̃ = ξ1(ν) (resp. r̃ = ξ2(ν)), right after it is tangent to r̃ = ξ2(ν) (resp.
r̃ = ξ1(ν)). If m′(ξi(ν)) = 0 for some i, then γ is asymptotic to the parallel arc r̃ = ξi(ν) as
t goes to infinity.

LEMMA 2.8. If a unit speed geodesic γ : R → M̃ is tangent to two distinct arcs
r̃ = ξ1 and r̃ = ξ2, then a pair of points on γ that is tangent to r̃ = ξ1 or r̃ = ξ2 is mutually
conjugate along γ.

PROOF. For each τ ∈ R, let fτ : M̃ → M̃ denote the isometry defined by

fτ (r̃, θ̃ ) := (r̃, θ̃ + τ ) .

The vector field X(t) defined by

X(t) := ∂

∂τ

∣∣∣∣
0
fτ (γ (t))

is a Jacobi field along γ (t). For each τ the geodesic fτ (γ (t)) is tangent to both r̃ = ξ1 and
r̃ = ξ2. Thus Y (t) := X(t)− g̃(X(t), γ̇ (t))γ̇ (t), where g̃ denotes the Riemannian metric on
M̃, is a Jacobi field that vanishes at each point on γ which is tangent to r̃ = ξ1 or r̃ = ξ2.

The Jacobi field Y is non-zero and vanishes at each point on γ tangent to r̃ = ξ1 or r̃ = ξ2.

Therefore the proof is complete. �

LEMMA 2.9. If u ∈ (0, 2a) and ν ∈ (0,m(a)) ∩ (0,m(u)), then there exists a first
conjugate point γ̃ν(u)(tc(u, ν)) of γ̃ν(u)(0) along γ̃ν(u) and

θ̃ (γ̃ν
(u)(tc(u, ν))) = ψ(r̃(γ̃ν

(u)(tc(u, ν))), u, ν)

holds, where

ψ(r, u, ν) := ϕ(ν)−
∫ a

u

f (t, ν)dt +
∫ r

a

f (t, ν)dt = ϕ(ν)−
∫ 2a−u

r

f (t, ν)dt ,

f (t, ν) := ν

m(t)
√
m(t)2 − ν2

.

Furthermore, r̃(γ̃ν (u)(tc(u, ν))) equals the unique solution r of

∂ψ

∂ν
(r, u, ν) = 0 .

PROOF. Since ν > 0 is less than m(a) and (r̃ ◦ γ̃ν(u))′(0) < 0, γ̃ν(u) is tangent to
r̃ = ξ(ν) at a point γ̃ν (u)(s0) first, and then it is tangent to r̃ = 2a − ξ(ν) at a point γ̃ν(u)(s1).
The numbers s0 < s1 are solutions t of (r̃ ◦ γ̃ν(u))′(t) = 0 and s0 is the unique solution t of
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(r̃ ◦ γ̃ν(u))′(t) = 0 on (0, s1). It follows from (1.17) in [18] (or (7.2.21) in [16]) that the Jacobi
field Yν defined by (2.9) is equal to

Yν(t) = ∂ψ

∂ν
(r̃(t), u, ν)

(
− νm(r̃(t))√

m(r̃(t))2 − ν2

(
∂

∂r̃

)
γ̃ν (u)(t)

+
(
∂

∂θ̃

)
γ̃ν (u)(t)

)
on (s0, s1). Here r̃(t) := r̃(γ̃ν

(u)(t)). Since ψ(r, u, ν) = ϕ(ν)− ∫ a
u
f (t, ν)dt + ∫ r

a
f (t, ν)dt,

we have
∂ψ

∂ν
= ϕ′(ν)−

∫ a

u

∂f

∂ν
(t, ν)dt +

∫ r

a

∂f

∂ν
(t, ν)dt .

Hence limr→ξ(ν)+ ∂ψ/∂ν = −∞ and limr→(2a−ξ(ν))− ∂ψ/∂ν = +∞. From the continuity
of ∂ψ/∂ν it follows that there exists a solution r = h(u, ν) of (∂ψ/∂ν)(r, u, ν) = 0. The

uniqueness of the solution is clear, since ∂2ψ/∂r∂ν = m(r)/
√
m(r)2 − ν23

> 0. By (1.4)
and Lemma 2.7, it is trivial that

γ̃ν
(u)(tc(u, ν)) := (r̃, θ̃ )−1(h(u, ν), ψ(h(u, ν), u, ν))

is the first conjugate point of γ̃ν (u)(0) along γ̃ν(u) and ψ(r, u, ν) = ϕ(ν) − ∫ 2a−u
r f (t, ν)dt.

�

3. The case where the Gaussian curvature is monotone non-increasing. Through-
out this section, we assume that the Gaussian curvature G of M is monotone non-increasing
on a meridian from the pole p to the point on r = a, which is called the equator.

LEMMA 3.1. The cut locus Cp0 of a point p0 on r = a is a subset of the opposite half
meridian to p0. Thus ϕ(ν) ≥ π for any ν ∈ (0,m(a)).

PROOF. Without loss of generality, we may assume θ(p0) = 0. First, we will prove
that the cut locus of p0 is a subset of the union of the opposite half meridian θ = π to p0 and
the equator. We will then get a contradiction by assuming the existence of a cut point of p0

which does not lie on the union of r = a and θ = π .
Since M is a 2-sphere of revolution satisfying (1.2), we may assume that there exists a

cut point q0 of p0 in r−1(0, a) ∩ θ−1(0, π). The cut point q0 is not a unique cut point of p0,
for example the point pπ on r = a with θ(pπ ) = π is a cut point of p0. Let c : [0, δ] → Cp0

be a unit speed rectifiable Jordan arc joining q0 = c(0) and pπ = c(δ). It follows from
Corollary 4.2.1 in [16] or Lemmas 2, 3 and 4 in [9] that the set of all normal cut points in
c[0, δ] forms an open and dense subset in the cut locus Cp0 . Here a cut point q of p0 is
said to be normal if q is not conjugate to p0 along any minimal geodesic segment joining q
and p0 and there exist exactly two minimal unit speed geodesic segments α and β joining
p0 = α(0) = β(0) and q. Since q0 ∈ θ−1(0, π)∩ r−1(0, a), we may choose a positive δ0 < δ

such that c[0, δ0] ⊂ θ−1(0, π) ∩ r−1(0, a) and c(δ0) is a normal cut point of p0. Thus we
get the 2-disc domain D(α, β) bounded by α and β in θ−1(0, π) ∩ r−1(0, a). Notice that
neither α nor β intersects r = a except at p0 = α(0) = β(0) by the property (1.2). Since
there exists an endpoint of Cp0 in D(α, β), we may assume that q0 is an endpoint of Cp0 .
Thus q0 is a conjugate point of p0 along any minimizing geodesic segment joining p0 and q0.
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Since d(p, c(t)) is a Lipschitz function, it follows from Theorem 7.29 in [20] that the function
d(p0, c(t)) is differentiable for almost all t and

(3.1) d(p0, c(δ0))− d(p0, q0) =
∫ δ0

0

d

dt
d(p0, c(t))dt

holds. For each normal cut point c(t), t ∈ [0, δ0] on the curve, there exists a pair of two min-
imal unit speed geodesic segments αt and βt joining p0 to c(t). The angle 	 (α̇t (d(p0, c(t))),

β̇t (d(p0, c(t)))) is less than π , since (θ ◦ αt)′(s) and (θ ◦ βt)′(s) are always positive by
(2.1). Furthermore, it follows from the first variational formula that the curve c bisects the
angle 	 (α̇t (d(p0, c(t))),β̇t (d(p0, c(t)))) at c(t) for each normal cut point c(t) and hence
(d/dt)d(p0, c(t)) is positive for any normal cut points c(t). Therefore by (3.1), we get
d(p0, c(δ0)) > d(p0, q0), i.e., γ is shorter than β. Here γ : [0, d(p0, q0)] → M denotes
a minimal geodesic segment joining p0 to q0. Since the geodesic segment γ lies in D(α, β),
without loss of generality, we may assume that

(3.2) 	 (β̇(0), (∂/∂r)p0
) < 	 (γ̇ (0), (∂/∂r)p0

) < 	 (α̇(0), (∂/∂r)p0
) .

From the first variational formula, we have

(r ◦ β)′(0) > (r ◦ γ )′(0) > (r ◦ α)′(0) .
Thus the number s0 := sup{s ∈ (0, d(p0, q0)] ; r(α(t)) < r(γ (t)) < r(β(t)) f or any t ∈
(0, s]} is positive. By supposing s0 < d(p0, q0), we will get a contradiction. Since (r ◦ γ )(t),
(r ◦ α)(t) and (r ◦ β)(t) are continuous,

(3.3) r(γ (s0)) = r(β(s0)) or r(γ (s0)) = r(α(s0))

holds. Hence, by Lemma 2.6, we have

(3.4) θ(γ (s0)) = θ(β(s0)) or θ(γ (s0)) = θ(α(s0)) ,

since d(p0, γ (s0)) = d(p0, β(s0)) = d(p0, α(s0)) = s0. By (3.3) and (3.4), we get γ (s0) =
β(s0) orγ (s0) = α(s0), which is impossible. Therefore s0 = d(p0, q0), i.e.,

(3.5) r(α(s)) ≤ r(γ (s)) ≤ r(β(s))

for any s ∈ [0, d(p0, q0)]. Since the Gaussian curvature is monotone non-increasing along
the meridian through p0 from the pole p to p0, by (3.5), we get

(3.6) G(α(s)) ≥ G(γ (s)) ≥ G(β(s))

for any s ∈ [0, d(p0, q0)]. Thus, by the Rauch comparison theorem, there exists a conju-
gate point α(tR), tR ∈ [0, d(p0, q0)], of p0 along α. This contradicts the minimality of α.
Therefore we have proved that the cut locus of p0 is a subset of the union of r = a and
θ = π .

We have to prove that Cp0 is a subset of θ = π . Suppose there exists a cut point q1 of p0

on r = a with θ(q1) 	= π . We may assume that q1 ∈ θ−1(0, π)∩ r−1(a) and q1 is the nearest
cut point of p0 from p0, since M is a 2-sphere of revolution. Let γ1 : [0, d(p0, q1)] → M be
the unit speed subarc of r = a joining p0 to q1. Since r = a is a geodesic and q1 is the nearest
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cut point of p0 from p0, γ1 is a minimal geodesic segment. Let c1 : [0, d(q1, pπ )] → M be
a unit speed rectifiable curve in Cp0 joining q1 to pπ . Since Cp0 is a subset of the union of
θ = π and r = a, the curve c1 is a subarc of r = a, and hence a geodesic segment. Let
α1 : [0, d(p0, pπ )] → M be a unit speed minimal geodesic segment joining p0 to pπ . By
applying the same argument as above for γ1, c1 and α1, we get a contradiction. Therefore
the cut locus of p0 is a subset of the opposite half meridian to p0. If ϕ(ν0) < π for some
ν0 ∈ (0,m(a)), then the geodesic c̃ν0 meets r̃ = a at a point p̃ in θ̃−1(0, π). This means there
exists a cut point of p0 in θ−1(0, π) ∩ r−1(0, a], which is a contradiction. �

Let Dν , ν ∈ (0,m(a)), denote the domain bounded by the two geodesic segments
r̃−1(a) ∩ θ̃−1[0, c̃ν(t0(ν))] and c̃ν[0, t0(ν)], and dν the Riemannian distance function on the
closure (D̄ν, dr̃2 +m(r̃)2dθ̃2) of (Dν, dr̃2 +m(r̃)2dθ̃2). It is clear that any minimizing arc in
D̄ν with respect to dν is a geodesic segment on (M̃, dr̃2 +m(r̃)2dθ̃2). Let γ : [0, t0] → D̄ν

denote a minimal geodesic segment with respect to dν . The endpoint γ (t0) is called a cut point
of γ (0) if any extended geodesic segment of γ lying in D̄ν is not minimizing with respect to
dν anymore. In the same way as in the proof of Lemma 3.1, we get the following two lemmas.

LEMMA 3.2. For each ν ∈ (0,m(a)),Dν has no cut point of c̃ν(0) with respect to dν .
Furthermore, if there is no conjugate point of c̃ν(0) on c̃ν[0, t] along c̃ν for some t < t0(ν),
then c̃ν[0, t] is a unique minimal geodesic segment in D̄ν joining c̃ν(0) to c̃ν(t).

LEMMA 3.3. For each point x on r−1(0, a) ∩ θ−1(0) there does not exist a cut point
of x in r−1[0, a] ∩ θ−1[0, π).

LEMMA 3.4. The function ϕ is monotone non-decreasing on (0,m(a)). Furthermore,
if ϕ′(ν0) = 0 for some ν0 ∈ (0,m(a)), then G ◦ µ = G ◦ µ(a) > 0 on [ξ(ν0), a] and
ϕ = ϕ(m(a)) := limν→m(a)− ϕ(ν) on [ν0,m(a)]. Recall that µ is a meridian defined in
Lemma 2.2.

PROOF. It follows from Lemma 2.9 that for each ν ∈ (0,m(a)), there exists a first
conjugate point c̃ν(tc(a, ν)) of c̃ν(0) along c̃ν . Since ψ(r, a, ν) = ϕ(ν) + ∫ r

a f (t, ν)dt , we
have

(3.10) ϕ′(ν)+
∫ l(ν)

a

fν(t, ν)dt = 0 ,

where l(ν) := r̃(c̃ν(tc(a, ν))) and fν(t, ν) = m(t)(m(t)2 − ν2)−3/2. First we will prove that
l(ν) ≤ a for any ν ∈ (0,m(a)). Then the first claim of Lemma 3.4 is clear from (3.10). By
supposing l(ν3) > a for some ν3 ∈ (0,m(a)), we get a contradiction.

It follows from (2.1) and Lemma 3.2 that for each ν ∈ (ν3,m(a)), the geodesic c̃ν |(0,t0(ν))
lies in Dν3 and cannot meet c̃ν3|(0,t0(ν3)). Furthermore, by Lemma 3.2, any two geodesics c̃ν1 ,
c̃ν2 , ν3 < ν1 < ν2 < m(a), cannot meet in the domain Dν3 . Hence ϕ(ν1) ≥ ϕ(ν2). This
implies that ϕ is monotone non-increasing on [ν3,m(a)). Since geodesic segments c̃ν |[0,t0(ν)]
converge to the geodesic segment c̃m(a)|[0,t0(m(a))] as ν converges tom(a),where t0(m(a)) :=
limν→m(a)− t0(ν), the point c̃m(a)(t0(m(a))) is a conjugate point of p̃a := c̃m(a)(0) along
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c̃m(a). It follows from (2.5) that the length L(c̃ν) of the geodesic segment c̃ν |[0,t0(ν)], ν ∈
[ν3,m(a)), is

L(c̃ν) = 2
∫ a

ξ(ν)

√
m(t)2 − ν2

m(t)
dt + νϕ(ν) .

Since
d

dν
L(c̃ν) = νϕ′(ν) ,

the function L(c̃ν) is monotone non-increasing on [ν3,m(a)). Thus, the geodesic segment
c̃m(a)|[0,t0(m(a))] is not longer than c̃ν3 |[0,t0(ν3)]. Since the Gaussian curvature G̃ of M̃ attains a
minimum on r̃ = a,

G̃(c̃ν3(t)) ≥ G̃(c̃m(a)(t)) = G̃(p̃a)

on [0, t0(ν3)]. It follows from the Rauch comparison theorem that there exists a conjugate
point c̃ν3(t2), t2 ≤ t0(m(a)), of p̃a along c̃ν3 . This is a contradiction. Thus we have proved
that l(ν) ≤ a for any ν ∈ (0,m(a)).

Suppose that ϕ′(ν0) = 0 for some ν0 ∈ (0,m(a)). Let ν ∈ [ν0,m(a)) be any fixed
number. It follows from Lemma 3.2 that the geodesic c̃ν cannot meet the geodesic segment
c̃ν0(0, t0(ν0)). Since ϕ is monotone non-decreasing, c̃ν passes through c̃ν0(t0(ν0)). Hence,
for any ν ∈ [ν0,m(a)), c̃ν passes through the common point c̃ν0(t0(ν0)). The function ϕ is
constant on [ν0,m(a)) and the point c̃ν0(t0(ν0)) is the first conjugate point of p̃a along both
geodesics r̃ = a and c̃ν0 . Since

G̃(p̃a) = G̃(c̃m(a)(t)) ≤ G̃(c̃ν0(t))

for any t ∈ [0, t0(ν0)], it follows from the Rauch comparison theorem that G̃(c̃ν0(t)) = G̃(p̃a)

for any t ∈ [0, t0(ν0)]. Hence G̃ is a positive constant on [ξ(ν0), a]. �

LEMMA 3.5. For any ν ∈ (0,m(a)) and any u ∈ (ξ(ν), 2a − ξ(ν)), 2a− u ≥ h(u, ν)

holds. Furthermore, if 2a − u = h(u, ν), then ϕ′(ν) = 0 and ψ(h(u, ν), u, ν) = ϕ(ν) ≥ π .
Recall that h(u, v) is defined in the proof of Lemma 2.9.

PROOF. It follows from Lemma 2.9 that

(3.11) ϕ′(ν) =
∫ 2a−u

h(u,ν)

fν(t, ν)dt .

Hence, by Lemma 3.4, we get 2a − u ≥ h(u, ν). From Lemmas 2.9 and 3.1, and (3.11), it
follows that ϕ′(ν) = 0 and

ψ(h(u, ν), u, ν) = ϕ(ν) ≥ π

if 2a − u = h(u, ν). �

LEMMA 3.6. If u ∈ (0, a) satisfies m(u) ≥ m(a), then for any ν ∈ (0,m(u)] and any
b > 0 with γ̃ν(u)(b) ∈ θ̃−1(0, π), γ̃ν(u)|[0,b] has no conjugate points of γ̃ν (u)(0) along γ̃ν(u).

PROOF. Let u ∈ (0, a) be any number satisfying m(u) ≥ m(a). By (2.1), γ̃m(u)(u)

does not meet r̃ = a. Thus the geodesic γ̃m(u)(u) meets θ̃ = π at a point γ̃m(u)(u)(tπ ) in
r̃−1(0, a). Let D̃u denote the domain bounded by γ̃m(u)(u)[0, tπ ], θ̃−1(0) ∩ r̃−1(0, u) and
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θ̃−1(π)∩ r̃−1(0, r̃(γ̃m(u)(u)(tπ ))), which is a subset of θ̃−1(0, π)∩ r̃−1(0, a). It follows from
(2.1) and Lemma 3.3 that for any ν ∈ (0,m(u)) and any b > 0 with γ̃ν (u)(b) ∈ θ̃−1(0, π),
γ̃ν
(u)|(0,b) lies in the domain D̃u. Therefore by Lemma 3.3, γ̃ν(u)|[0,b] has no conjugate points

of γ̃ν(u)(0) along γ̃ν (u) for any ν ∈ (0,m(u)) and any b > 0 with γ̃ν(u)(b) ∈ θ̃−1(0, π). From
Lemma 2.7 and Lemma 3.1, it is clear that γ̃m(u)(u)|[0,b] has no conjugate points of γ̃m(u)(u)(0)
along γ̃m(u)(u). �

LEMMA 3.7. Let ν0 ∈ (0,m(a)) be fixed. If the function ψ(h(u, ν0), u, ν0) attains a
local minimum at u = u0 ∈ (ξ(ν0), a), then

(3.12) m(u0) = m(h(u0, ν0))

holds.

PROOF. By differentiating the equation (3.11) with respect to u, we have

(3.13)
∂h

∂u
(u, ν0) = − fν(u, ν0)

fν(h(u, ν0), ν0)

for any u ∈ (ξ(ν0), a). By Lemma 2.9, we have

(3.14)
d

du
(ψ(h(u, ν0), u, ν0)) = f (u, ν0)+ f (h(u, ν0), ν0)

∂h

∂u
(u, ν0)

for any u ∈ (ξ(ν0), a). By combining (3.13) and (3.14), we get

(3.15)
d

du
(ψ(h(u, ν0), u, ν0)) = ν3

0fν(u, ν0)

m(u)2m(h(u, ν0))2
(m(u)2 −m(h(u, ν0))

2).

Since the function ψ(h(u, ν0), u, ν0) attains a local minimum at u = u0 ∈ (ξ(ν0), a),

d

du

∣∣∣∣
u=u0

ψ(h(u, ν0), u, ν0) = 0 .

Hence, by (3.15), the equation (3.12) holds. �

LEMMA 3.8. For any u ∈ (0, a), ν ∈ (0,m(u)], and b > 0 with γ̃ν (u)(b) ∈ θ̃−1(0, π),
γ̃ν
(u)|[0,b] has no conjugate points of γ̃ν (u)(0) along γ̃ν(u).

PROOF. By supposing that the conclusion is false, we will get a contradiction. Thus
there exist some u1 ∈ (0, a), ν0 ∈ (0,m(u1)] and tc > 0 with γ̃ν0

(u1)(tc) ∈ θ̃−1(0, π) such
that γ̃ν0

(u1)(tc) is conjugate to γ̃ν0
(u1)(0) along γ̃ν0

(u1). Since ν0 ≤ m(u1) < m(a) by Lemma
3.6, it follows from Lemmas 2.3, 2.4 and 2.9 that ξ(ν0) ≤ u1 < a and

θ̃ (γ̃ν0
(u1)(tc(u1, ν0))) = ψ(h(u1, ν0), u1, ν0) < π .

The existence of u1 ∈ [ξ(ν0), a) implies that the function ψ(h(u, ν0), u, ν0) =
θ̃ (γ̃ν0

(u)(tc(u, ν0))) attains a local minimum, which is less than π, at u = u0 ∈ [ξ(ν0), a].
Hence we have u0 ∈ (ξ(ν0), a) by Lemmas 2.7, 2.8 and 3.1. From Lemmas 3.6 and 3.7, we
have

m(u0) = m(h(u0, ν0)) < m(a) .
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Hence by Lemmas 2.3, 2.4 and 3.5, u0 = h(u0, ν0). This means that γ̃ν0
(u0)|[0,tc(u0,ν0)] lies in

r̃−1[0, a] ∩ θ̃−1[0, π). Therefore by Lemma 3.3, γ̃ν0
(u0)|[0,tc(u0,ν0)] has no conjugate points of

γ̃ν0
(u0)(0). This is a contradiction. �

THEOREM 3.1. Let (M, dr2 + m2(r)dθ2) be a 2-sphere of revolution with a pair of
poles p, q satisfying the following two properties.

(3.16) (M, dr2 +m2(r)dθ2) is symmetric with respect to r = a, where 2a denotes the
distance between p and q .

(3.17) The Gaussian curvature G of M is monotone non-increasing along a meridian
from the point p to the point on r = a.

Then, for any x ∈ M\{p, q}, the cut locus of x is a single point or a subarc of the
opposite half meridian. Furthermore, if the cut locus of a point x ∈ M \ {p, q} is a single
point, then the Gaussian curvature is constant.

PROOF. Suppose that for some point x0 ∈ M\{p, q} there exists a cut point y0 of x0

which does not lie in the opposite half meridian to x0. We may assume that the geodesic polar
coordinates (r, θ) around p are chosen in such a way that θ(x0) = 0 < θ(y0) < π.

Furthermore, from Lemma 3.1 and (3.16), we may assume r(x0) ∈ (0, a). Let α :
[0, d(x0, y0)] → M be a unit speed minimal geodesic segment joining x0 to y0. We may
assume that y0 is conjugate to x0 along α. Indeed, suppose that y0 is not a conjugate point
of α(0) along α. Then there exists a minimal geodesic β joining x0 to y0, which is distinct
from α. Since the cut locus has an endpoint z0 in the domain bounded by α and β, z0 is
a conjugate point of x0 along any minimal geodesic segment joining x0 to z0. Hence we
may assume that y0 is conjugate to x0 along α. Since 0 = θ(x0) < θ(y0), the Clairaut con-
stant ν1 of α is positive by (2.1). Thus α = Π ◦ γ̃ν1

(u)|[0,d(x0,y0)] or Π ◦ β̃ν1
(u)|[0,d(x0,y0)],

where u := r(x0) and Π : M̃ → M \ {p, q} denotes the covering projection. Suppose that
r(y0) ≤ a. It follows form Lemma 3.8 that α = Π◦β̃ν1

(u)|[0,d(x0,y0)] and α meets r = a twice.
Hence by Lemma 3.1, θ(y0) ≥ ϕ(ν1) ≥ π, which is a contradiction. Therefore, r(y0) > a.

By (3.16), we may assume that α = Π ◦ γ̃ν1
(u)|[0,d(x0,y0)]. This implies that there exists a

conjugate point γ̃ν1
(u)(d(x0, y0)) ∈ θ̃−1(0, π) of γ̃ν1

(u)(0) ∈ θ̃−1(0) along γ̃ν1
(u). This con-

tradicts Lemma 3.8. Thus we have proved the first claim of Theorem 3.1. Suppose that the
cut locus of a point x ∈ M \ {p, q} is a single point. We may assume that θ(x) = 0 and
r(x) ∈ (0, a]. It is clear that the single cut point of x is (r, θ)−1(2a−u, π), where u := r(x).

Thus for each ν ∈ (0,m(u)), γ̃ν(u) passes through the common point (r̃, θ̃ )−1(2a − u, π).

This means that ϕ(ν) = π for each ν ∈ (0,m(u)). By Lemma 3.4, the Gaussian curvature is
constant. �

4. The case where the Gaussian curvature is monotone non-decreasing. Through-
out this section, we assume that the Gaussian curvature G of M is monotone non-decreasing
on a meridian from the pole p to the point on the equator. From Lemmas 2.2 and 2.3,m′ > 0
on (0, a). By the same argument as the proof of Lemma 3.1, we may prove the following
lemma.



CUT LOCUS OF A TWO-SPHERE OF REVOLUTION 393

LEMMA 4.1. The cut locus Cp0 of a point p0 on the equator is a subset of the equator.
Therefore ϕ(ν) ≤ π for any ν ∈ (0,m(a)).

LEMMA 4.2. The function ϕ is monotone non-increasing on (0,m(a)) and ϕ(0) :=
limν→0+ ϕ(ν) = π. Moreover, if ϕ(ν0) = π for some ν0 ∈ (0,m(a)), then ϕ = π on
(0,m(a)) and the Gaussian curvature is a positive constant.

PROOF. It is trivial from geometrical observation that limν→0+ ϕ(ν) = π. Choose any
numbers ν1 < ν2 from the interval (0,m(a)). Since arccos(ν2/m(a)) < arccos(ν1/m(a)), it
follows from (2.1) and Lemma 4.1 that the geodesic segment c̃ν1 |[0,t0(ν1)] does not enter the
domainDν2 bounded by c̃ν2[0, t0(ν2)] and the geodesic segment r̃−1(a)∩ θ̃−1[0, c̃ν2(t0(ν2))].
Thus, by (2.7), ϕ(ν1) ≥ ϕ(ν2). Furthermore suppose that ϕ(ν1) = ϕ(ν2). This means that the
two geodesics c̃ν1 and c̃ν2 meet at q0 := c̃ν1(t0(ν1)). From Lemma 4.1, for each ν ∈ [ν1, ν2],
the geodesic c̃ν passes through the point q0. Thus q0 is a conjugate point of c̃ν1(0) along c̃ν
for each ν ∈ [ν1, ν2]. By repeating the proof of the equation (3.5), we get the inequality
r̃(c̃ν1(t)) < r̃(c̃ν2(t)) < a for any t ∈ (0, t0(ν1)). Thus

G̃(c̃ν1(t)) ≤ G̃(c̃ν2(t))

for any t ∈ [0, t0(ν1)], where G̃ denotes the Gaussian curvature of M̃. Since q0 is a conjugate
point of c̃ν1(0) along c̃ν for each ν ∈ [ν1, ν2], it follows from the Rauch comparison theo-
rem that G̃(c̃ν1(t)) = G̃(c̃ν2(t)) holds for any t ∈ [0, t0(ν1)]. Thus from the monotonicity
of G̃, G̃ is constant on r̃−1(It ), for each t ∈ (0, t0(ν1)), where It denotes the closed inter-
val It := [r̃(c̃ν1(t)), r̃(c̃ν2(t))]. If we fix tν ∈ (0, t0(ν1)), then for any t sufficiently close
to tν , It ∩ Itν is non-empty. Therefore G̃ is constant on r̃−1[ξ(ν1), a]. Notice that ξ(ν1)

equals min{r̃(c̃ν1(t)) ; t ∈ [0, t0(ν1)]} by (2.2). This means that the function ϕ is constant
on [ν1,m(a)]. Suppose that ϕ(ν0) = π = limν→0+ ϕ(ν) for some ν0 ∈ (0,m(a)). From the
monotonicity of ϕ, ϕ(ν) = ϕ(ν0) = π for any ν ∈ (0, ν0]. By the argument above, ϕ is
constant on (0,m(a)). �

LEMMA 4.3. For each u ∈ (0, 2a) and ν ∈ (0,m(u)), the geodesic segments
β̃ν
(u)|[0,t0(ν)] and γ̃ν(u)|[0,t0(ν)] bound a 2-disk domain D̃(u, ν). Furthermore, if ϕ(ν) >

ϕ(m(u)), then

β̃m(u)
(u)(0, t0(m(u))] ∪ {2a − u} × [ϕ(m(u)), ϕ(ν)) ⊂ D̃(u, ν) ,

where ϕ(m(a)) := limν→m(a)− ϕ(ν) and t0(m(a)) := limν→m(a)− t0(ν).

PROOF. Let ν ∈ (0,m(u)) and u ∈ (0, 2a) be fixed. Since M̃ is symmetric with respect
to r̃ = a, we may assume that u ∈ (0, a]. Furthermore, we may assume u ∈ (0, a), because
the conclusion of Lemma 4.3 is clear if u = a. Let S : M̃ → M̃ denote an isometry defined by
S(r̃, θ̃ ) := (r̃, θ̃ − θ̃ (c̃ν(t1))), where t1 denotes a parameter value of c̃ν such that r̃ ◦ c̃ν(t1) =
u, (r̃◦c̃ν)′(t1) < 0. Since the geodesic γ̄ (t) := S(c̃ν(t+t1)) satisfies γ̄ (0) = γ̃ν

(u)(0), ˙̄γ (0) =
˙̃γ ν(u)(0), we have S(c̃ν(t + t1)) = γ̄ (t) = γ̃ν

(u)(t) by uniqueness. Since Tν ◦ S = S ◦ Tν, it
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follows from Lemma 2.5 that Tν(γ̃ν(u)(t)) = γ̃ν
(u)(t + t0(ν)). Hence it is clear that

(4.1) (2a − u, ϕ(ν)) = T̃ν(γ̃ν
(u)(0)) = γ̃ν

(u)(t0(ν)) .

Similarly, we get

(4.2) (2a − u, ϕ(ν)) = T̃ν(β̃ν
(u)(0)) = β̃ν

(u)(t0(ν)) .

By (4.1) and (4.2), both geodesics γ̃ν (u) and β̃ν (u) meet at (2a − u, ϕ(ν)) again. Fix any
s ∈ (r̃ ◦ γ̃ν(u))−1(u, 2a−u). Let β̃ν(u)(tν(s)) (resp. β̃m(u)(u)(tm(u)(s))) denote the intersection
of the geodesic segment β̃ν (u)|[0,t0(ν)] (resp. β̃m(u)(u)|[0,t0(m(u))]) and r̃ = r̃(s) := r̃ ◦ γ̃ν(u)(s).
By (2.3),

(4.3) θ̃ ◦ β̃ν(u)(tν(s)) =
∫ r̃ (s)

u

f (t, ν)dt

and

(4.4) θ̃ ◦ β̃m(u)(u)(tm(u)(s)) =
∫ r̃ (s)

u

f (t,m(u))dt .

Since f (t, ν) < f (t,m(u)), we get

(4.5) θ̃ ◦ β̃ν (u)(tν(s)) < θ̃ ◦ β̃m(u)(u)(tm(u)(s)) .
By (1.4) and (2.3),

(4.6) θ̃ ◦ γ̃ν (u)(s) = ϕ(ν)−
∫ 2a−u

r̃(s)

f (t, ν)dt .

Since f (t, ν) < f (t,m(u)) and ϕ(ν) ≥ ϕ(m(u)),

ϕ(ν)−
∫ 2a−u

r̃(s)

f (t, ν)dt > ϕ(m(u))−
∫ 2a−u

r̃(s)

f (t,m(u))dt

=
∫ r̃ (s)

u

f (t,m(u))dt .

(4.7)

Hence, by (4.3), (4.5), (4.6) and (4.7),

(4.8) θ̃ ◦ β̃ν (u)(tν(s)) < θ̃ ◦ β̃m(u)(u)(tm(u)(s)) < θ̃ ◦ γ̃ν(u)(s)
holds for any s ∈ (r̃ ◦ γ̃ν (u))−1(u, 2a−u). Therefore, the proof of Lemma 4.3 is complete. �

THEOREM 4.1. Let (M, dr2 + m(r)2dθ2) be a 2-sphere of revolution with a pair of
poles p, q satisfying the following two properties.

(4.9) (M, dr2 + m(r)2dθ2) is symmetric with respect to r = a, where 2a denotes the
distance between p and q.

(4.10) The Gaussian curvature of M is monotone non-decreasing along a meridian
from p to the point on r = a.

Then for any x ∈ M \ {p, q}, the cut locus of x is a point or a subarc of the parallel
r = 2a − r(x). Furthermore, if the cut locus of x ∈ M \ {p, q} is a single point, then the
Gaussian curvature is constant.
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PROOF. Fix any point x ∈ M \{p, q}.We may choose geodesic polar coordinates (r, θ)
around p satisfying θ(x) = 0. Put r(x) =: u ∈ (0, 2a). If ϕ(ν) = π for some ν ∈ (0,m(a)),
then the conclusion of our theorem is trivial by Lemma 4.2. Thus we may assume that ϕ(ν) <
π for any ν.

For each ν ∈ [−m(u),m(u)], let βν(x) and γν(x) denote the unit speed geodesic with
Clairaut constant ν emanating from x = βν

(x)(0) = γν
(x)(0) such that (r ◦ βν(x))′(0) ≥ 0

and (r ◦ γν(x))′(0) ≤ 0. It is trivial that Π ◦ β̃ν(u) = βν
(x) and Π ◦ γ̃ν(u) = γν

(x) for
each ν ∈ (0,m(u)], where Π : M̃ → M \ {p, q} denotes the covering projection. Since
ϕ(ν) < π for any ν ∈ (0,m(a)), the geodesic segments β̃ν (u)[0, t0(ν)] and γ̃ν(u)[0, t0(ν)]
lie in θ̃−1[0, π), where θ̃ := θ ◦ Π. Since Π : θ̃−1(−π, π) → θ−1(−π, π) maps homeo-
morphically, it follows from Lemma 4.3 that βν(x)[0, t0(ν)] and γν(x)[0, t0(ν)] bound a 2-disk
domain for each ν ∈ (0,m(u)). Fix any ν1 ∈ (0,m(u)) with ϕ(ν1) ∈ (ϕ(m(u)), π). Let
α : [0, l1] → M denote a unit speed minimal geodesic segment joining x to γν1

(x)(t0(ν1)).

Since θ(x) = 0 and 0 < θ(α(l1)) = ϕ(ν1), the Clairaut constant ν2 of α is positive and
α = βν2

(x)|[0,l1] or γν2
(x)|[0,l1]. Suppose that ϕ(ν2) < ϕ(ν1). Then α|[0,l1] meets the curve

θ = ϕ(ν2) at the point α(t0(ν2)) = βν2
(x)(t0(ν2)) = αν2

(x)(t0(ν2)). Thus l1 > t0(ν2). If ν2 =
m(u), then by Lemma 2.8, α(t0(ν2)) is conjugate to x along α = βm(u)

(x) = αm(u)
(x). This

is impossible, since α|[0,l1] is minimal. Therefore ν2 < m(u). Since both minimal geodesic
segments βν2

(x)|[0,t0(ν2)] and γν2
(x)|[0,t0(ν2)] have the same length and meet at γν2

(x)(t0(ν2)) =
βν2

(x)(t0(ν2)), α cannot be minimal. Thus ϕ(ν2) ≥ ϕ(ν1). Suppose that ϕ(ν2) > ϕ(ν1).

Thus ν2 < ν1 by Lemma 4.2. By (2.1) and Lemma 4.3, α does not pass through
r−1(2a − u) ∩ θ−1[ϕ(m(u)), ϕ(ν2)). In particular, α does not pass through the point
r−1(2a − u) ∩ θ−1(ϕ(ν1)) = γν1

(x)(t0(ν1)) = α(t1). This is impossible. Hence ϕ(ν1) =
ϕ(ν2). Therefore for any ν ∈ (0,m(u)) with ϕ(ν) ∈ (ϕ(m(u)), π), both geodesic segments
βν
(x)|[0,t0(ν)] and γν(x)|[0,t0(ν)] are minimal. This implies that any point of r−1(2a − u) ∩

θ−1[ϕ(m(u)), 2π − ϕ(m(u))] is a cut point of x.
Since a limit geodesic segment of a sequence of minimal geodesic segments is

also minimal, both geodesic segments β0
(x)|[0,t0(0)] and γ0

(x)|[0,t0(0)], where t0(0) :=
limν→0+ t0(ν) = a, are minimal. Now it is clear that the cut locus of x is r−1(2a − u) ∩
θ−1[ϕ(m(u)), 2π − ϕ(m(u))], because any minimal geodesic segment emanating from x is
a subarc of βν(x)|[0,t0(ν)] or γν(x)|[0,t0(ν)] for some ν ∈ [−m(u),m(u)]. In particular, the cut
locus of x is a subarc of the parallel r = 2a − r(x). The latter claim is clear from Lemma
4.2. �

5. Examples. Let t0 be any value in (π/2, 3π/4). It is clear that sin t0 > − cos t0 >
0. For each δ ∈ (0, π − t0), let Gδ : [0,∞) → R be a C∞ monotone non-increasing function
such that Gδ = 1 on [0, t0] and Gδ = −1 on [t0 + δ,∞).

LEMMA 5.1. There exists δ0 > 0 such that for any δ ∈ (0, δ0)

mδ > −mδ ′ > 0

on [t0, t0 + δ0], where mδ denotes the solution of the differential equation



396 R. SINCLAIR AND M. TANAKA

(5.1) m′′
δ (t)+Gδ(t)mδ(t) = 0

with initial condition mδ(0) = 0,m′
δ(0) = 1. In particular,mδ > 0 on (0, t0 + δ0].

PROOF. Let (R2, 〈 , 〉) denote a 2-dimensional vector space R2 with canonical inner
product 〈 , 〉. Let F : R → R denote the function defined by

F(t) := √〈X(t),X(t)〉 ,
where X(t) := (mδ(t) − sin t,m′

δ(t) − cos t). Since Gδ = 1 on [0, t0], F (t) = 0 on [0, t0].
Since

X′(t) = (m′
δ(t)− cos t,−Gδ(t)(mδ(t)− sin t))+ (0, (1 −Gδ(t)) sin t) ,

by (5.1), it follows from the triangle inequality that

(5.2) |X′(t)| ≤ F(t)+ 2 ,

where |X′(t)| := √〈X′(t),X′(t)〉, |X(t)| := √〈X(t),X(t)〉. Thus, by the Schwarz inequal-
ity, we get

(5.3) F ′(t) ≤ |X′(t)| ≤ F(t)+ 2

for any t with F(t) 	= 0. Since

(e−tF (t))′ = e−tF ′(t)− e−tF (t) ,

we have, by (5.3),

(5.4) F (t) = et
∫ t

t1

(e−tF (t))′dt ≤ 2et
∫ t

t1

e−t dt = 2(e(t−t1) − 1)

for any t > t1, where t1(≥ t0) denotes the maximum of F−1(0). In particular,

(5.5) |mδ(t)− sin t| ≤ F(t) ≤ 2(e(t−t0) − 1)

and

(5.6) |m′
δ(t)− cos t| ≤ F(t) ≤ 2(e(t−t0) − 1)

hold for any t ≥ t0. It is clear that

(5.7) sin t − |mδ(t)− sin t| ≤ mδ(t)

and

(5.8) cos t − |m′
δ(t)− cos t| ≤ m′

δ(t) ≤ cos t + |m′
δ(t)− cos t| .

By combining (5.5), (5.6), (5.7) and (5.8), we may get the conclusion of Lemma 5.1. �

LEMMA 5.2. If δ ∈ (0, δ0), then there exist constants a (> t0 + δ), and C > 0 such
that mδ(t) = C cosh(t − a) on [t0 + δ,∞).
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PROOF. Sincemδ is a solution ofm′′
δ (t)−mδ(t) = 0 on [t0+δ,∞), there exist constants

A,B such that mδ(t) = Aet + Be−t on [t0 + δ,∞). By Lemma 5.1, A and B are positive
constants andmδ > 0 on (0,∞). Sincem′

δ(t0+δ) < 0 and limt→∞mδ(t) = +∞, there exists
a constant a > t0 + δ such that m′

δ(a) = 0. Hence B = e2aA and mδ(t) = 2Aea cosh(t − a)

on [t0 + δ,∞). �

PROPOSITION 5.1. There exists a C∞ Riemannian metric g on a 2-sphere S2 such
that (S2, g) is a 2-sphere of revolution satisfying (1.1) and (1.2), whose Gaussian curvature
is −1 on the equator.

PROOF. Choose any δ ∈ (0, δ0) and fix it. Letm0 : [0, 2a] → R be the function defined
by m0(t) = mδ(t) for t ∈ [0, a] and m0(t) = mδ(2a − t) for t ∈ [a, 2a]. Here a denotes the
constant guaranteed in Lemma 5.2. By Lemmas 5.1 and 5.2, m0 is C∞ on [0, 2a]. It is clear
that m0 satisfies (1.1). Let (S2, g0) denote a 2-sphere with radius 2a/π and (r0, θ0) geodesic
polar coordinates around a point on (S2, g0). The new Riemannian metric dr2

0 +m0(r0)
2dθ2

0
defines a C∞ metric on S2. It is clear from (1.5) and Lemma 5.2 that the Gaussian curvature
of (S2, dr2

0 +m0(r0)
2dθ2

0 ) is −1 on the equator. �

REMARK. By imitating the above, we can construct a 2-sphere of revolution whose
Gaussian curvature is −1 (resp. 1) at the poles (resp. on the equator).

6. Toponogov’s comparison theorem. Let M be a complete n-dimensional
Riemannian manifold with a base point p ∈ M. The manifold M is said to have radial
sectional curvature at p bounded from below by a function K : [0, l] → R if for every unit
speed minimal geodesic γ : [0, b] → M,with b ≤ l, emanating from p = γ (0), the sectional
curvature KM of M satisfies

KM(σt ) ≥ K(t)

for any t ∈ [0, b] and any 2-dimensional linear space σt spanned by γ̇ (t) and a tangent vector
toM at γ (t). The following is the Toponogov comparison theorem for a 2-sphere of revolution
whose cut locus is a subarc of a meridian or a single point.

THEOREM 6.1. LetM be a complete Riemannian n-manifold with a base point p such
that the radial sectional curvature ofM at p is bounded from below by G ◦ µ : [0, 2a] → R.

Here, G denotes the Gaussian curvature of a 2-sphere of revolution M̃, µ a meridian of M̃
and 2a the distance between its two poles. Suppose that the cut locus of any point on M̃
distinct from its two poles is a subarc of the half meridian opposite to the point. Then for
each geodesic triangle �(pxy) ⊂ M, there exists a geodesic triangle �(p̃x̃ỹ) ⊂ M̃, where
p̃ = µ(0), such that

(6.1) d(p, x) = d(p̃, x̃) , d(p, y) = d(p̃, ỹ) , d(x, y) = d(x̃, ỹ)

and such that

(6.2) 	 (pxy) ≥ 	 (p̃x̃ỹ) , 	 (pyx) ≥ 	 (p̃ỹx̃) , 	 (xpy) ≥ 	 (x̃p̃ỹ) .
Here, 	 (pxy) denotes the angle at the vertex x of the geodesic triangle �(pxy).
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PROOF. Let x,y : [0, 1] → M be any two distinct minimal geodesics emanating from
the base point p. Put x := x(1) and y := y(1). We will prove the existence of a geodesic
triangle �(p̃x̃ỹ) corresponding to the geodesic triangle �(pxy) satisfying (6.1) and (6.2).
We may assume that 	 (xpy) < π, because the case where 	 (xpy) = π is reduced to this
case by the limit argument. Let T be the set of all positive numbers t such that, for any
u ∈ (0, t), there exists a geodesic triangle �(p̃x̃(u)ỹ(u)) corresponding to �(px(u)y(u))
satisfying (6.1) and (6.2) with x = x(u) and y = y(u).

First we will prove that the set T is non-empty. From the Rauch comparison theorem, for
any sufficiently small positive t, there exists a geodesic triangle �(p̃x̃(t)ỹ(t)) corresponding,
i.e., satisfying (6.1) with x = x(t) and y = y(t), to �(px(t)y(t)) such that 	 (x(t)py(t)) ≥
	 (x̃(t)p̃ỹ(t)). On the other hand, it follows from Theorem 1.2 in [12] that there exists a
geodesic triangle �(p̃x̂(t)ŷ(t)) corresponding to �(px(t)y(t)) for any sufficiently small t
such that

	 (px(t)y(t)) ≥ 	 (p̃x̂(t)ŷ(t)), 	 (py(t)x(t)) ≥ 	 (p̃ŷ(t)x̂(t)) .
Since the corresponding geodesic triangle to �(px(t)y(t)) exists uniquely, up to a rotation
about p̃ for sufficiently small positive t, we may assume that �(p̃x̃(t)ỹ(t)) = �(p̃x̂(t)ŷ(t)).
Hence T is non-empty. By assuming the supremum t0 of the set T to be less than 1, we will
get a contradiction. Hence there exists a geodesic triangle �(p̃x̃(t0)ỹ(t0)) corresponding to
�(px(t0)y(t0)) such that equality holds in one of the inequalities (6.2) for x = x(t0) and y =
y(t0). From the corollary to GACT-I in [12], there exists a piece of totally geodesic surface
bounded by �(px(t0)y(t0)) which is isometric to the interior of �(p̃x̃(t0)ỹ(t0)). Therefore,
by the Rauch comparison theorem, there exists a positive δ such that for any t ∈ (t0, t0 +
δ) there exists a geodesic triangle �(p̃x̃(t)ỹ(t)) corresponding to �(px(t)y(t)) satisfying
(6.1) with x = x(t), y = y(t) and 	 (x(t)py(t)) ≥ 	 (x̃(t)p̃ỹ(t)). Since π > 	 (xpy) =
	 (x(t0)py(t0)) ≥ 	 (x̃(t0)p̃ỹ(t0)), we may assume that the edge x̃(t)ỹ(t) does not intersect
the cut locus of x̃(t) for any t ∈ (t0, t0+δ). Fix any t1 ∈ (t0, t0+δ). From the unique existence
of a geodesic triangle corresponding to �(px(t1)y(t1)) satisfying (6.1) with x = x(t1) and
y = y(t1), we get the geodesic triangle �(p̃x̃(t1)ỹ(t1)) satisfying (6.1) and (6.2) with x =
x(t1) and y = y(t1). This contradicts the definition of t0. Hence the supremum of the set T
is 1. �

COROLLARY 6.1. The perimeter of any geodesic triangle on the manifold M is at
most 4a. Furthermore, if equality holds in any one of the inequalities (6.2), then there exists
a piece of totally geodesic surface bounded by �(pxy) which is isometric to the interior of
�(p̃x̃ỹ).
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ronde de Géométrie différentielle (Luminy, 1992), 531–559, Sémin. Congr. 1, Soc. Math. France, Paris,
1996.

[16] K. SHIOHAMA, T. SHIOYA AND M. TANAKA, The geometry of total curvature on complete open surfaces,
Cambridge Tracts in Math., 159, Cambridge University Press, Cambridge, 2003.

[17] M. TANAKA, On the cut loci of a von Mangoldt’s surface of revolution, J. Math. Soc. Japan 44 (1992), 631–
641.

[18] M. TANAKA, On a characterization of a surface of revolution with many poles, Mem. Fac. Sci. Kyushu
Univ. Ser. A 46 (1992), 251–268.

[19] M. TANAKA, Characterization of a differentiable point of the distance function to the cut locus,
J. Math. Soc. Japan 55 (2003), 231–243.

[20] R. L. WHEEDEN AND A. ZYGMUND, Measure and integral, Marcel Decker, Inc., New York, 1977.

MATHEMATICAL BIOLOGY UNIT

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY

OKINAWA INDUSTRIAL TECHNOLOGY CENTER ANNEX

12–2 SUZAKI, URUMA, OKINAWA 904–2234
JAPAN

E-mail address: sinclair@oist.jp

DEPARTMENT OF MATHEMATICS

TOKAI UNIVERSITY

HIRATSUKA CITY, KANAGAWA 259–1292
JAPAN

E-mail address: m-tanaka@sm.u-tokai.ac.jp


