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Abstract In this paper, we prove the cut-off phenomenon in total variation distance
for the Brownian motions traced on the classical symmetric spaces of compact type,
that is to say:

1. the classical simple compact Lie groups: special orthogonal groups SO(n), special
unitary groups SU(n) and compact symplectic groups USp(n);

2. the real, complex and quaternionic Grassmannian varieties (including the real
spheres, and the complex or quaternionic projective spaces when q = 1): SO(p +
q)/(SO(p) × SO(q)), SU(p + q)/S(U(p) × U(q)) and USp(p + q)/(USp(p) ×
USp(q));

3. the spaces of real, complex and quaternionic structures: SU(n)/SO(n), SO(2n)/

U(n), SU(2n)/USp(n) and USp(n)/U(n).

Denoting μt the law of the Brownian motion at time t, we give explicit lower bounds
for dTV(μt, Haar) if t < tcut-off = α log n, and explicit upper bounds if t > tcut-off. This
provides in particular an answer to some questions raised in recent papers by Chen
and Saloff-Coste. Our proofs are inspired by those given by Rosenthal and Porod
for products of random rotations in SO(n), and by Diaconis and Shahshahani for
products of random transpositions in Sn.
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1 Introduction

1.1 The Cut-off Phenomenon for Random Permutations

This paper is concerned with the analogue for Brownian motions on compact Lie
groups and symmetric spaces of the famous cut-of f phenomenon observed in random
shuffles of cards (cf. [1, 4]). Let us recall this result in the case of “natural” shuffles of
cards, also known as rif f le shuf f les. Consider a deck of n ordered cards 1, 2, . . . , n,
originally in this order. At each time k ≥ 1, one performs the following procedure:

1. One cuts the deck in two parts of sizes m and n − m, the integer m being chosen
randomly according to a binomial law of parameter 1

2
:

P[m = M] = 1

2n

(
n

M

)
.

So for instance, if n = 10 and the deck was initially 123456789X, then one obtains
the two blocks A = 123456 and B = 789X with probability 1

210

(
10

6

)
= 105

512
≃ 0.21.

2. The first card of the new deck comes from A with probability (card A)/n, and
from B with probability (card B)/n. Then, if A′ and B′ are the remaining blocks
after removal of the first card, the second card of the new deck will come from A′

with probability (card A′)/(n − 1), and from B′ with probability (card B′)/(n −
1); and similarly for the other cards. So for instance, by shuffling A = 123456 and
B = 789X, one can obtain with probability 1/

(
10

6

)
≃ 0.0048 the deck 17283459X6.

Denote Sn the symmetric group of order n, and σ (k) the random permutation in Sn

obtained after k independent shuffles. One can guess that as k goes to infinity, the
law P(k) of σ (k) converges to the uniform law U on Sn.

There is a natural distance on the set P(Sn) of probability measures on Sn that
allows to measure this convergence: the so-called total variation distance dTV. Con-
sider more generally a measurable space X with σ -field B(X). The total variation
distance is the metric on the set of probability measures P(X) defined by

dTV(μ, ν) = sup {|μ(A) − ν(A)|, A ∈ B(X)} ∈ [0, 1].

The convergence in total variation distance is in general a stronger notion than the
weak convergence of probability measures. On the other hand, if μ and ν are ab-
solutely continuous with respect to a third measure dx on X , then their total variation
distance can be written as a L 1-norm:

dTV(μ, ν) = 1

2

∫

X

∣∣∣∣
dμ

dx
(x) − dν

dx
(x)

∣∣∣∣ dx.

It turns out that with respect to total variation distance, the convergence of
random shuffles occurs at a specific time kcut-off, that is to say that dTV(P(k),U)

stays close to 1 for k < kcut-off, and that dTV(P(k),U) is then extremely close to 0 for
k > kcut-off. More precisely, in [4] (see also [6, Chapter 10]), it is shown that:

Theorem 1 (Bayer-Diaconis) Assume k = 3
2 log 2

log n + θ . Then,

dTV(P(k),U) = 1 − 2 φ

(−2−θ

4
√

3

)
+ O

(
n−1/4

)
, with φ(x) = 1√

2π

∫ x

−∞
e− s2

2 ds.
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So for θ negative, the total variation distance is extremely close to 1, whereas it is

extremely close to 0 for θ positive.

The cut-off phenomenon has been proved for other shuffling algorithms (e.g.
random transpositions of cards), and more generally for large classes of finite Markov
chains, see for instance [7, 9, 26]. It has also been investigated by Chen and Saloff-
Coste for Markov processes on continuous spaces, e.g. spheres and Lie groups; see in
particular [5, 25, 27] and the discussion of Section 1.4. However, in this case, cut-offs
are easier to prove for the L p>1-norm of pt(x) − 1, where pt(x) is the density of the
process at time t and point x with respect to the equilibrium measure. The case of
the L 1-norm, which is (up to a factor 2) the total variation distance, is somewhat
different. In particular, a proof of the cut-off phenomenon for the total variation
distance between the Haar measure and the marginal law μt of the Brownian motion
on a classical compact Lie group was until now not known—see the remark just
after [5, Theorem 1.2], and also [28, Conjecture 2]. The purpose of this paper is
precisely to give a proof of this L 1-cut-off for all classical compact Lie groups,
and more generally for all classical symmetric spaces of compact type. In the two
next paragraphs, we describe the spaces in which we will be interested (Section 1.2),
and we precise what is meant by “Brownian motion” on a space of this type (cf.
Section 1.3). This will then enable us to explain the results of Chen and Saloff-Coste
in Section 1.4, and finally to state in Section 1.5 which improvements we were able to
prove.

1.2 Classical Compact Lie Groups and Symmetric Spaces

To begin with, let us fix some notations regarding the three classical families of simple
compact Lie groups, and their quotients corresponding to irreducible simply con-
nected compact symmetric spaces. We use here most of the conventions of [14, 15].
For every n ≥ 1, we denote U(n) = U(n,C) the unitary group of order n; O(n) =
O(n, R) the orthogonal group of order n; and USp(n) = USp(n, H) the compact

symplectic group of order n. They are defined by the same equations:

UU† = U†U = In ; OOt = Ot O = In ; SS⋆ = S⋆S = In

with complex, real or quaternionic coefficients, the conjugate of a quaternion w +
ix + jy + kz being w − ix − jy − kz. The orthogonal groups are not connected, so we
shall rather work with the special orthogonal groups

SO(n) = SO(n,R) = {O ∈ O(n,R) | det O = 1} .

On the other hand, the unitary groups are not simple Lie groups (their center is one-
dimensional), so it is convenient to introduce the special unitary groups

SU(n) = SU(n,C) = {U ∈ U(n, C) | det U = 1} .
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Then, for every n ≥ 1, SU(n,C), SO(n, R) and USp(n, H) are connected simple
compact real Lie groups, of respective dimensions

dimR SU(n,C)=n2−1 ; dimR SO(n,R)= n(n−1)

2
; dimR USp(n,H)=2n2+n.

The special unitary groups and compact symplectic groups are simply connected;
on the other hand, for n ≥ 3, the fundamental group of SO(n,R) is Z/2Z, and its
universal cover is the spin group Spin(n).

Many computations on these simple compact Lie groups can be performed by
using their representation theory, which is covered by the highest weight theorem; see
Section 2.2. We shall recall all this briefly in Section 2, and give in each case the list
of all irreducible representations, and the corresponding dimensions and characters.
It is well known that every simply connected compact simple Lie group is:

– either one group in the infinite families SU(n), Spin(n), USp(n);
– or, an exceptional simple compact Lie group of type E6, E7, E8, F4 or G2.

We shall refer to the first case as the classical simple compact Lie groups, and as
mentioned before, our goal is to study Brownian motions on these groups.

We shall more generally be interested in compact symmetric spaces; see e.g
[14, Chapter 4]. These spaces can be defined by a local condition on geodesics,
and by Cartan-Ambrose-Hicks theorem, a symmetric space X is isomorphic as a
Riemannian manifold to G/K, where G is the connected component of the identity in
the isometry group of X ; K is the stabilizer of a point x ∈ X and a compact subgroup
of G; and (G, K) is a symmetric pair, which means that K is included in the group
of fixed points Gθ of an involutive automorphism of G, and contains the connected
component (Gθ)0 of the identity in this group. Moreover, X is compact if and only
if G is compact. This result reduces the classification of symmetric spaces to the
classification of real Lie groups and their involutive automorphisms. So, consider an
irreducible simply connected symmetric space, of compact type. Two cases arise:

1. The isometry group G = K × K is the product of a compact simple Lie group
with itself, and K is embedded into G via the diagonal map k �→ (k, k). The
symmetric space X is then the group K itself, the quotient map from G to X ≃ K

being

G → K

g = (k1, k2) �→ k1k−1
2 .

In particular, the isometries of K are the multiplication on the left and the
right by elements of K × K, and this action restricted to K ⊂ G is the action
by conjugacy.

2. The isometry group G is a compact simple Lie group, and K is a closed subgroup
of it. In this case, there exists in fact a non-compact simple Lie group L with
maximal compact subgroup K, such that G is a compact subgroup of the com-
plexified Lie group LC, and maximal among those containing K. The involutive
automorphism θ extends to LC, with K = Gθ = Lθ and the two orthogonal
symmetric Lie algebras (g, deθ) and (l, deθ) dual of each other.
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The classification of irreducible simply connected compact symmetric spaces is
therefore the following: in addition to the compact simple Lie groups themselves,
there are the seven infinite families

Gr(p + q, q, R) = SO(p + q)/(SO(p) × SO(q))

with p, q ≥ 1 (real Grassmannians);

Gr(p + q, q, C) = SU(p + q)/S(U(p) × U(q))

with p, q ≥ 1 (complex Grassmannians);
Gr(p + q, q, H) = USp(p + q)/(USp(p) × USp(q))

with p, q ≥ 1 (quaternionic Grassmannians);

SU(n)/SO(n) with n ≥ 2 (real structures on C
n);

USp(n)/U(n) with n ≥ 1 (complex structures on H
n);

SO(2n)/U(n) with n ≥ 2 (complex structures on R
2n);

SU(2n)/USp(n) with n ≥ 2 (quaternionic structures on C
2n);

and quotients involving exceptional Lie groups, e.g. P2(O) = F4/Spin(9); see [14,
Chapter 10]. For the two last families, one sees U(n) as a subgroup of SO(2n) by
replacing each complex number x + iy by the 2 × 2 real matrix

(
x y

−y x

)
; (1.1)

and one sees USp(n) as a subgroup of SU(2n) by replacing each quaternion number
w + ix + jy + kz by the 2 × 2 complex matrix

(
w + ix y + iz
−y + iz w − ix

)
; (1.2)

USp(n,H) is then the intersection of SU(2n,C) and of the complex symplectic group
Sp(2n,C). We shall refer to the seven aforementioned families as classical simple

compact symmetric spaces (of type non-group); again, we aim to study in detail the
Brownian motions on these spaces.

1.3 Laplace-Beltrami Operators and Brownian Motions on Symmetric Spaces

We denote dηK(k) or dk the Haar measure of a (simple) compact Lie group K, and
dηX(x) or dx the Haar measure of a compact symmetric space X = G/K, which
is the image measure of dηG by the projection map π : G → G/K. We refer to
[15, Chapter 1] for precisions on the integration theory over (compact) Lie groups
and their homogeneous spaces. There are several complementary ways to define a
Brownian motion on a compact Lie group K or a on compact symmetric space G/K,
see in particular [20]. Hence, one can view them:

1. as Markov processes with infinitesimal generator the Laplace-Beltrami
differential operator of the underlying Riemannian manifold;

2. as conjugacy-invariant continuous Lévy processes on K, or as projections of such
a process on G/K;
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3. at least in the group case, as solutions of stochastic differential equations driven
by standard (multidimensional) Brownian motions on the Lie algebra.

The first and the third point of view will be specially useful for our computations. For
the sake of completeness, let us recall briefly each point of view—the reader already
acquainted with these notions can go directly to Section 1.4.

1.3.1 Choice of Normalization and Laplace-Beltrami Operators

To begin with, let us precise the Riemannian structures chosen in each case. In the
case of a simple compact Lie group K, the opposite of the Killing form B(X, Y) =
tr(ad X ◦ ad Y) is negative-definite and gives by transport on each tangent space the
unique bi-K-invariant Riemannian structure on K, up to a positive scalar. We choose
this normalization constant as follows. When K = SU(n) or SO(n) or USp(n), the
Killing form on k is a scalar multiple of the bilinear form X ⊗ Y �→ ℜ(tr(XY))—the
real part is only needed for the quaternionic case. Then, we shall always consider the
following invariant scalar products on k:

〈X | Y〉 = −βn

2
ℜ(tr(XY)), (1.3)

with β = 1 for special orthogonal groups, β = 2 for special unitary groups and unitary
groups, and β = 4 for compact symplectic groups (these are the conventions of
e.g. [18]). Similarly, on a simple compact symmetric space X = G/K of type non-
group, we take the previously chosen Ad(G)-invariant scalar product (the one given
by Eq. 1.3), and we restrict it to the orthogonal complement x of k in g. This x
can be identified with the tangent space of X = G/K at eK, and by transport one
gets the unique (up to a scalar) G-invariant Riemannian structure on X , called the
Riemannian structure induced by the Riemannian structure of G. From now on,
each classical simple compact symmetric space X = G/K will be endowed with this
induced Riemannian structure.

Remark This is not necessarily the “usual” normalization for these quotients: in
particular, when G = SO(n + 1) and K = SO(n) × SO(1) = SO(n), the Riemannian
structure defined by the previous conventions on the n-dimensional sphere X =
Sn(R) differs from the restriction of the standard euclidian metric of Rn+1 by a
factor

√
n + 1. However this normalization does not change the nature of the cut-

off phenomenon that we are going to prove.

Remark The bilinear form in Eq. 1.3 is only proportional to minus the Killing form,
and not equal to it; for instance, the Killing form of SO(n, R) is

(n − 2) tr(XY) = −2n − 4

n
〈X | Y〉 ,

and not − 〈X | Y〉. This leads to a factor 2 between our mixing times and those of
[5, 25, 27, 28]. However, the normalization of formula 1.3 enables one to relate the
Brownian motions on the compact Lie groups to the “standard” Brownian motions
on their Lie algebras, and to the classical ensembles of random matrix theory (see
the SDEs at the end of this paragraph).
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The Laplace-Beltrami operator on a Riemannian manifold M is the differential
operator of degree 2 defined by

� f (m) =
∑

1≤i, j≤d

gij(∇Xi
∇X j

f (m) − ∇∇Xi
X j

f (m)),

where (X1, . . . , Xd) is a basis of Tm M, (gij)i, j is the inverse of the metric tensor
(gij =

〈
Xi

∣∣ X j

〉
Tm M

)i, j, and ∇X Y denotes the covariant derivative of a vector Y along
a vector X and with respect to the Levi-Civita connection. In the case of a compact
Lie group K, this expression can be greatly simplified as follows (see for instance [20,
Section 2.3]). Fix once and for all an orthonormal basis (X1, X2, . . . , Xd) of k. On
another tangent space Tk K, one transports each Xi by setting

X l
i (k) = {de Rk}(Xi) ∈ Tk K,

where Rk is the multiplication on the right by k. One thus obtains a vector field
X l

i = ∂
∂xi

which is left-invariant by construction and right-invariant because of the
Ad(K)-invariance of the scalar product on k. Then,

� =
d∑

i=1

∂2

∂x2
i

. (1.4)

Definition 2 A (standard) Brownian motion on a compact Riemannian manifold M

is a continuous Feller process (mt)t∈R+ whose infinitesimal generator restricted to
C 2(M) is 1

2
�.

In the following, on a compact Lie group K or a compact symmetric space G/K,
we shall also assume that m0 = e or m0 = eK almost surely. We shall then denote μt

the marginal law of the process at time t, and pK
t (k) = dμt

dηK
(k) or pX

t (x) = dμt

dηX
(x) the

density of μt with respect to the Haar measure. General results about hypoelliptic
diffusions on manifolds ensure that these densities exist for t > 0 and are continuous
in time and space; we shall later give explicit formulas for them (cf. Section 2).

1.3.2 Brownian Motions as Continuous Lévy Processes

By using the geometry of the spaces considered and the language of Lévy processes,
one can give another equivalent definition of Brownian motions. The right incre-

ments of a random process (gt)t∈R+ with values in a (compact) Lie group G are the
random variables rs

t = g−1
s gt, so gt = gs rs

t for any times s ≤ t. Then, a left Lévy process

on G is a càdlàg random process such that:

1. For any times 0 = t0 ≤ t1 ≤ · · · ≤ tn, the right increments r
t0
t1 , r

t1
t2 , . . . , r

tn−1

tn are
independent.

2. For any times s ≤ t, the law of rs
t only depends on the difference t − s: r0

t−s

law= rs
t .

Denote Pt the operator on the space C (G) of continuous functions on G defined by
(Pt f )(g) = E[ f (ggt)]; and μt the law of gt assuming that g0 = eG almost surely. For
h ∈ G, we also denote by Lh the operator on C (G) defined by Lh f (g) = f (hg). If
(gt)t∈R+ is a left Lévy process on G starting at g0 = eG, then:

1. The family of operators (Pt)t∈R+ is a Feller semigroup that is left G-invariant,
meaning that Pt ◦ Lh = Lh ◦ Pt for all h ∈ G and for all time t. Conversely, any
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such Feller semigroup is the group of transitions of a left Lévy process which is
unique in law.

2. The family of laws (μt)t∈R+ is a semigroup of probability measures for the
convolution product of measures

(μ ∗ ν)( f ) =
∫

G2

f (gh) dμ(g) dν(h).

Hence, μs ∗ μt = μs+t for any s and t. Moreover, this semigroup is continuous,
i.e., the limit in law limt→0 μt exists and is the Dirac measure δe. Conversely, given
such a semigroup of measures, there is always a corresponding left Lévy process,
and it is unique in law.

Thus, left Lévy processes are the same as left G-invariant Feller semigroups
of operators, and they are also the same as continuous semigroups of probability
measures on G. In particular, on a compact Lie group, they are characterized by
their infinitesimal generator

Lf (g) = lim
t→∞

Pt f (g) − f (g)

t

defined on a suitable subspace of C (G). Hunt’s theorem (cf. [17]) then characterizes
the possible infinitesimal generators of (left) Lévy processes on a Lie group; in
particular, continuous left-Lévy processes correspond to left-invariant differential
operator of degree 2.

Assume then that (gt)t∈R+ is a continuous Lévy process on a simple compact Lie
group G, starting from e and with the additional property that (hgth

−1)t∈R+ and
(gt)t∈R+ have the same law in C (R+, G) for every h. These hypotheses imply that
the infinitesimal generator L, which is a differential operator of degree 2, is a scalar
multiple of the Laplace-Beltrami operator �. Thus, on a simple compact Lie group
K, up to a linear change of time t �→ at, a conjugacy-invariant continuous left Lévy

process is a Brownian motion in the sense of Definition 2. Similarly, on a simple
compact symmetric space G/K, up to a linear change of time, the image (gt K)t∈R+

of a conjugacy-invariant continuous left Lévy process on G is a Brownian motion in
the sense of Definition 2. This second definition of Brownian motions on compact
symmetric spaces has the following important consequence:

Lemma 3 Let μt be the law of a Brownian motion on a compact Lie group K or on

a compact symmetric space G/K. The total variation distance dTV(μt, Haar) is a non-

increasing function of t.

Proof First, let us treat the case of compact Lie groups. If f1, f2 are in L 1(K, dηK),
then their convolution product f1 ∗ f2 is again in L 1(K), with

‖ f1 ∗ f2‖L 1(K) ≤ ‖ f1‖L 1(K) ‖ f2‖L 1(K).

Now, since μs+t = μs ∗ μt, the densities of the Brownian motion also satisfy pK
s+t =

pK
s ∗ pK

t . Consequently,

2 dTV(μs+t, ηK) = ‖pK
s+t − 1‖L 1(K) = ‖(pK

s − 1) ∗ pK
t ‖L 1(K)

≤ ‖pK
s − 1‖L 1(K) ‖pK

t ‖L 1(K) = ‖pK
s − 1‖L 1(G) = 2 dTV(μs, ηK).
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The proof is thus done in the group case. For a compact symmetric space X = G/K,
denote pG

t the density of the Brownian motion on G, and pX
t the density of the

Brownian motion on X . Since the Brownian motion on X is the image of the
Brownian motion on G by π : G → G/K, one has:

∀x = gK, pX
t (x) =

∫

K

pG
t (gk)dk.

As a consequence,

‖pX
s+t − 1‖L 1(X) =

∫

G

∣∣pX
s+t(gK) − 1

∣∣ dg =
∫

G

∣∣∣∣
∫

K

(pG
s+t(gk) − 1) dk

∣∣∣∣dg

=
∫

G

∣∣∣∣
∫

K×G

(
pG

s (h−1gk) − 1
)

pG
t (h) dk dh

∣∣∣∣ dg

=
∫

G

∣∣∣∣
∫

G

(pX
s (h−1gK) − 1) pG

t (h) dh

∣∣∣∣ dg

≤
∫

G×G

∣∣pX
s (h−1gK) − 1)

∣∣ ∣∣pG
t (h)

∣∣ dh dg

= ‖pX
s − 1‖L 1(X) ‖pG

t ‖L 1(G) = ‖pX
s − 1‖L 1(X),

so dTV(μs+t, ηX ) ≤ dTV(μs, ηX ) also in the case of symmetric spaces. ⊓⊔

Remark Later, this property will allow us to compute estimates of dTV(μt, ηX) only
for t around the cut-off time. Indeed, if one has for instance an (exponentially small)
estimate of 1 − dTV(μt0 , ηX ) at time t0 = (1 − ε) tcut-off, then the same estimate will
also hold for 1 − dTV(μt, ηX ) with t < t0.

Remark Actually, the same result holds for the L p-norm of pt(x) − 1, and in
the broader setting of Markov processes with a stationary measure; see e.g. [5,
Proposition 3.1]. Our proof is a little more elementary.

1.3.3 Brownian Motions as Solutions of SDE

A third equivalent definition of Brownian motions on compact Lie groups is by mean
of stochastic differential equations. More precisely, given a Brownian motion (kt)t∈R+

traced on a compact Lie group K, there exists a (trajectorially unique) standard d-
dimensional Brownian motion (Wt)t∈R+ on the Lie algebra k that drives stochastic
differential equations for every test function f ∈ C 2(K) of (kt)t∈R+ (cf. [20]). So for
instance, on a unitary group U(n, C), the Brownian motion is the solution of the SDE

U0 = In ; dUt = i Ut · dHt − 1

2
Ut dt,

where (Ht)t∈R+ is a Brownian hermitian matrix normalized so that at time t = 1 the
diagonal coefficients are independent real gaussian variables of variance 1/n, and
the upper-diagonal coefficients are independent complex gaussian variables with real



436 P.-L. Méliot

and imaginary parts independent and of variance 1/2n. In the general case, let us
introduce the Casimir operator

C =
d∑

i=1

Xi ⊗ Xi. (1.5)

This tensor should be considered as an element of the universal enveloping alge-
bra U(k). Then, for every representation π : K → GL(V), the image of C by the
infinitesimal representation dπ : U(k) → End(V) commutes with dπ(k). In partic-
ular, for an irreducible representation V, dπ(C) is a scalar multiple κV idV of idV .
Assume that K is a classical simple Lie group. Then its “geometric” representation
is irreducible, so

∑d
i=1(Xi)

2 = αk In if one sees the Xi’s as matrices in M(n, R) or
M(n,C) or M(n, H). The stochastic differential equation satisfied by a Brownian
motion on K is then

k0 = eK ; dkt = kt · dBt + αk

2
kt dt,

where Bt =
∑d

i=1 W i
t Xi is a standard Brownian motion on the Lie algebra k. The

constant αk is given in the classical cases by

αsu(n) = −n2 − 1

n2
; αso(n) = −n − 1

n
; αsp(n) = −2n + 1

2n

see [18, Lemma 1.2]. These Casimir operators will play a prominent role in the
computation of the densities of these Brownian motions (cf. Section 2.2), and also
at the end of this paper (Section 4.1), see Lemma 23.

1.4 Chen-Saloff-Coste Results on L p-Cut-Offs of Markov Processes

Fix p ∈ [1, ∞), and consider a Markov process X = (xt)t∈R+ with values in a measur-
able space (X,B(X)), and admitting an invariant probability η. One denotes μt,x the
marginal law of xt assuming x0 = x almost surely, and

d
p
t (X) = max

x∈X

(∫

X

∣∣∣∣
dμt,x

dη
(y) − 1

∣∣∣∣
p

η(dy)

) 1
p

,

with by convention

d
p
t (X) =

{
2 if p = 1,

+∞ if p > 1,

when μt,x is not absolutely continuous with respect to η. This is obviously a gener-
alization of the total variation distance to the stationary measure. In virtue of the
remark stated just after Lemma 3, t �→ d

p
t (X) is always non-increasing. A sequence

of Markov processes (X(n))n∈N with values in measurable spaces (X (n),B(X (n)))n∈N

is said to have a max-L p-cut-of f with cut-of f times (or mixing times, or times to

equilibrium) (t(n))n∈N if

lim
n→∞

(
sup

t>(1+ε)t(n)

d
p
t (X(n))

)
=0 ; lim

n→∞

(
inf

t<(1−ε)t(n)
d

p
t (X(n))

)
= lim sup

n→∞
d

p
0 (X(n))= M>0
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for every ε ∈ (0, 1)—usually M will be equal to 2 or +∞. A generalization of Theo-
rem 1 ensures that these L p-cut-offs occur for instance in the case of riffle shuffles
of cards, with t(n) = 3 log n

2 log 2
for every p ∈ [1, +∞). We refer to [26] (in particular

Section 2.4) for a detailed analysis of this notion in the case of finite Markov chains,
and for the connections with the notions of spectral gap or hypercontractivity, and
with the logarithmic Sobolev and the Nash inequalities.

In [5, Theorems 3.3 and 4.2], Chen and Saloff-Coste shown that a general criterion
due to Peres ensures a L p>1-cut-off for a sequence of reversible Markov processes;
but then one does not know necessarily the value of the mixing time t(n). Call spectral

gap λ(X) of a Markov process X the largest c ≥ 0 such that for all f ∈ L 2(X, η) and
all time t, ‖(Pt − η) f‖L 2(X) ≤ e−tc ‖ f‖L 2(X), where (Pt)t∈R+ stands for the semigroup
associated to the Markov process.

Theorem 4 (Chen-Saloff-Coste) Fix p ∈ (1, ∞). One considers a family of Markov

processes (X(n))n∈N with self-adjoint operators Pt and spectral gaps λ(n), and one

assumes that limt→∞ d
p
t (X(n)) = 0 for every n. For ε0 > 0 f ixed, set

t(n) = inf
{
t : d

p
t (X(n)) ≤ ε0

}
.

The family of Markov processes has a max-L p-cut-of f if and only if Peres’ criterion

is satisf ied:

lim
n→∞

λ(n) t(n) = +∞.

In this case, the sequence (t(n))n∈N gives the values of the cut-off times. A lower
bound on t(n) also ensures the cut-off phenomenon; but then, the mixing time remains
unknown. Nevertheless, an important application of this general criterion is (see [5,
Theorem 1.2]):

Corollary 5 (Saloff–Coste) Consider the Brownian motions traced on the special or-

thogonal groups SO(n,R), with the normalization of the metric detailed in the previous

paragraph. They exhibit for every p ∈ (1,∞) a cut-of f with t(n) asymptotically between

2 log n and 4 log n—notice that t(n) depends a priori on p.

Indeed, the spectral gap stays bounded and has a known non-negative limit (which
we shall compute later, see the table on page 32), whereas for any p ∈ [1, +∞), t(n)

was shown in [25, Theorem 1.2] and [27, Theorems 1.1 and 1.2] to be a O(log n), and
more precisely

– in the window [(2 − o(1)) log n, (4 + o(1)) log n] for simple compact Lie groups;
– in the window [(1 − o(1)) log n, (2 + o(1)) log n] for simple compact symmetric

spaces.

The proofs of these estimates were relying on precise logarithmic Sobolev inequal-
ities and arguments of hypercontractivity for the simple compact Lie groups. The
lower bound in the case of compact Lie groups was also known based on simple ar-
guments of representation theory (cf. [25, Section 7]), that we shall use and generalize
at the end of this paper (see Section 4). In [28, Conjecture 2], it is also conjectured
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that the correct value of the mixing time for p ∈ [1, +∞) is the lower bound of
Corollary 5, that is to say that for all simple compact Lie groups,

t(n) ≃ 2 log n.

The main result of our paper is a proof of this conjecture, for every classical simple
compact Lie group or classical simple compact symmetric space, and with a cut-off
time equal to 2 log n or to log n depending on the type of the space considered.

1.5 Statement of the Main Results and Discriminating Events

Theorem 6 Let μt be the marginal law of the Brownian motion traced on a classical

simple compact Lie group, or on classical simple compact symmetric space. There

exists positive constants α, γb , γa, c, C and an integer n0 such that in each family, for

all n ≥ n0,

∀ε ∈ (0, 1/4), dTV(μt, Haar) ≥ 1 − c

nγb ε
if t = α (1 − ε) log n; (1.6)

∀ε ∈ (0,∞), dTV(μt, Haar) ≤ C

nγaε/4
if t = α (1 + ε) log n. (1.7)

The constants α, γb and γa are determined by the type of the space considered, and

then one can make the following choices for n0, c and C:

K or G/K β α γb γa n0 c C

SO(n,R) 1 2 2 2 10 36 6

SU(n,C) 2 2 2 4 2 8 10

USp(n,H) 4 2 2 2 3 5 3

Gr(n, q, R) 1 1 1 1 10 32 2

Gr(n, q,C) 2 1 1 2 2 32 2

Gr(n, q,H) 4 1 1 1 3 16 2

SO(2n,R)/U(n, C) 1 1 2 1 10 8 2

SU(n,C)/SO(n, R) 2 1 2 2 2 24 8

SU(2n,C)/USp(n,H) 2 1 2 2 2 22 8

USp(n,H)/U(n,C) 4 1 2 1 3 17 2

As the function t �→ dTV(μt, Haar) is non-increasing in t, the aspect of this function
in the scale t ∝ log n is then always as on Fig. 1. The constants c and C in Theorem 6
can be slightly improved by raising the integer n0; and the restriction n ≥ n0 will only
be used to ease certain computations and to get reasonable constants c and C. On

Fig. 1 Aspect of the function
t �→ dTV(μt, Haar) for the
Brownian motion on a classical
simple compact Lie group or
on a classical simple compact
symmetric space
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the other hand, notice that the constant α is equal to 2 for Lie groups, and to 1 for
symmetric spaces.

Remark A proof of this result for compact symmetric spaces of rank 1 (the spheres
and projective spaces) is given in [25], where the case of tori is also studied (as far as
we know these were the only known cases of Theorem 6). As the case of tori is quite
instructive, let us detail it a bit before giving the scheme of proof of Theorem 6 (again,
see also [28]). The Fourier expansion of the heat kernel of the circle T = R/2πZ is

pt(x) = 1√
2π t

∑

k∈Z

e− (x−k)2

2t =
∑

v∈Z

e− v2t
2 eivx

(see the examples after Theorem 11), so on the n-dimensional torus T(n),

pt(x1, . . . , xn)=
∑

v∈Zn

e− ‖v‖2 t
2 ei〈v | x〉 ; ‖pt − 1‖2

L 2 =
∞∑

m=1

(
card{v ∈ Z

n | ‖v‖2 = m}
)

e−mt.

For m fixed, the number of integer-valued n-dimensional vectors with euclidian norm
equal to

√
m can clearly be bounded by 2m times the number of ways of splitting m

into n non-negative integers, that is to say 2m
(

n+m−1

n−1

)
≃ (2n)m. As a consequence,

the m-th term of the series is of order 1
nεm if t = (1 + ε) log n, and ‖pt − 1‖2

L 2 → 0

when t = (1 + ε) log n and n goes to infinity, at speed roughly of order n−ε . We shall
explain later how to deduce from this the cut-off in L p for any p ∈ [1, +∞) (see
the proof of Theorem 7), so basically this is the proof of the cut-off phenomenon for
Brownian motions on tori. Theorem 6 says that exactly the same happens for simple
compact Lie groups; and the spirit of the proof is the same, but the quantities card{v ∈
Zn | ‖v‖2 = m} get replaced by far more complex expressions, that are related to
Weyl’s formula for dimensions of irreducible representations of compact Lie groups.

A result similar to Theorem 6 has been proved by Rosenthal and Porod in [22–24]
for random products of (real, or complex, or quaternionic) reflections. Our proofs are
really inspired by their proofs, though quite different in the details of the computa-
tions. For the upper bound (Eq. 1.7), it has long been known that if λ(Xn) denotes the
spectral gap of the heat semigroup associated to the infinitesimal generator L = 1

2
�,

then for n fixed, the total variation distance dTV(μt, ηXn
) decreases exponentially fast

(see e.g. [19]):

dTV(μt, ηXn
) ≤ C(Xn) e−λ(Xn) t.

Consider now the family of spaces (Xn)n∈N, and assume that C(Xn) = C nδ , and that
λ(Xn) stays almost constant to λ—this last condition is ensured by the normalization
(Eq. 1.3). Then, one obtains for t = (1 + ε) δ

λ
log n the bound

dTV(μt, ηXn
) ≤ C

nδε
.

Thus in theory, the upper bound (Eq. 1.7) follows from the calculations of the
constants C(Xn) and λ(Xn) in each classical family. It is very hard to find directly
a constant C(Xn) that works for every time t. But on the other side, by using the
representation theory of the classical simple compact Lie groups (cf. Section 2),
one can determine series of negative exponentials that dominates the total variation
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distance; see Proposition 12. In these series, the “least negative” exponentials give
the correct order of decay λ(Xn). It remains then to prove that the other terms can
be uniformly bounded. This is tedious, but doable, and these precise estimates are
shown in Section 3: we shall adapt and improve the arguments of [6, 22–24].

A combination of the upper bound (Eq. 1.7) (which improves by a factor 2 the
previously known results) and of the lower bound of Corollary 5 suffices to prove
Theorem 6. Nonetheless, we give in Section 4 a new proof of the lower bound
(Eq. 1.6), that do not require arguments of analysis on Riemannian manifolds (log-
Sobolev estimates, etc.), and that is more closely related to the proof of the upper
bound. This new proof relies on discriminating events, that have a probability close
to 1 with respect to a marginal law μt with t < tcut-off, and close to 0 with respect to
the Haar measure. For instance, in the case of riffle shuffles, the sizes of the rising

sequences of a permutation enable one to discriminate a random shuffle of order
k < kcut-off from a uniform permutation; see [4, Section 2]. In the case of a Brownian
motion on a classical compact Lie group, this is the trace of the matrices that allows to
discriminate Haar distributed elements and random Brownian elements before cut-
off time. Indeed, consider for instance a random unitary matrix Un of size n, taken
under the Haar measure or under the marginal law μt of the Brownian motion at a
given time t. Then, tr Un is a complex valued random variable, and we shall see that

E
[
|tr Un − m|2

]
≤ 1,

where m is the mean of tr Un; and this, for any n ≥ 1 and any time t ≥ 0 if Un ∼ μt.
However, m = 0 under the Haar measure, whereas |m| ≫ 1 for t < tcut-off. So, the
trace of a Brownian unitary matrix before cut-off time will never “look the same” as
the trace of an Haar distributed unitary matrix, see Fig. 2 hereafter.

Up to a minor modification, the same argument will work for special orthogonal
groups and compact special orthogonal groups—in this later case, the trace of a
quaternionic matrix of size n is defined as the trace of the corresponding complex
matrix of size 2n, cf. the remark at the end of Section 1.2. Over the classical simple
compact symmetric spaces, the trace of matrices will be replaced by a zonal spherical
function “of minimal non-zero weight”; these minimal zonal spherical functions are
also those that give the order of decay of the series of negative exponentials that
dominate dTV(μt, Haar) after the cut-off time. This argument for the lower bound

Fig. 2 Aspect of the density of
the trace tr Un of a random
unitary matrix, with
Un ∼ Haar for the left peak,
and Un ∼ μt<tcut-off for the right
peak (using Mathematica)
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was already known, and it has been used successfully in [25] to prove the cut-off
phenomenon over spheres, and the lower bound for compact Lie groups; we have
extended it to the case of general compact symmetric spaces.

An important consequence of Theorem 6 and of its proof is that one also has a
max-L p-cut-off for every p ∈ [1, ∞], and now with a known value of the mixing
time.

Theorem 7 For every p ∈ [1, +∞], the family of Brownian motions (Xn)n∈N traced on

simple compact Lie groups (Kn)n∈N in one of the three classical families (respectively,

on simple compact symmetric spaces of type non-group (Xn)n∈N in one of the seven

classical families) has a max-L p-cut-of f. If p ∈ [1, +∞), it is with respect to the

sequence t(n) = 2 log n (respectively, t(n) = log n). If p = +∞, it is with respect to the

sequence t(n) = 4 log n (respectively, t(n) = 2 log n).

Proof Since the Brownian motions considered are invariant by action of the isometry
group, the max-L p-cut-offs are equivalent to simple L p-cut-offs for Brownian
motions started from a fixed point. Then, the proof follows quite directly from
Theorem 6 and from the previous works of Chen and Saloff-Coste. Thus,

– Theorem 6 clearly treats the case p = 1.
– The upper bound of Theorem 6 will be shown by using Cauchy-Schwarz in-

equality and by estimating the L 2-norm of |pt − 1|. Thus, from the very proof
of Eq. 1.7, we shall get the same upper bounds for the L 2-mixing times, and
since they correspond to the lower bounds proven in [27, Theorem 1.1 and
1.2], the case p = 2 will also be treated. Actually, it will be easy to get back
these L 2-lower bounds (for Lie groups and for symmetric spaces) directly from
Proposition 12, by looking at the term of the series expansion of ‖pt − 1‖2

L 2

that corresponds to the discriminating weight in the sense of Lemma 13 and of
Section 4.

– From [5, Theorem 5.3], we then get the two following facts: there is a L p-cut-off
for every p ∈ (1, +∞] (because there is one for p = 2, and the heat kernels are
obviously self-adjoint), and the value of the mixing time in L ∞ is twice the value
of the mixing time in L 2. In particular, the case p = +∞ is treated. Again, the
computations of Section 3 allows one to recover this case, since the dominating
series that will appear there have expansions almost identical to the expansions
of |pt(e) − 1| = d∞

t .
– By Jensen’s inequality, the cut-off times are increasing in p (cf. the comparison

theorem of mixing times [5, Proposition 5.1]), and they are here equal for p =
1 and p = 2, so they stay the same in between, and the case p ∈ (1, 2) is also
treated.

– Finally, the only difficult case is when p ∈ (2, +∞). By using the fact that
the logarithmic Sobolev constant is uniformly bounded from below for simple
compact Lie groups and symmetric spaces, it follows again from the case p = 2,
see the arguments of [25, Sections 5 and 6, in particular the third statement in
Theorem 6.1] and of [26, Theorem 2.4.10].

The last case p ∈ (2, +∞) is the only place in this paper where advanced arguments
of analysis of heat kernels on Riemannian manifolds are used and required. ⊓⊔
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1.6 Organization of the Paper

In Section 2, we recall the basics of representation theory and harmonic analysis
on compact symmetric spaces, with a particular emphasis on explicit formulas since
we will need them in each case. All of it is really classical and of course well-
known by the experts, but it is necessary in order to fix the notations related to the
harmonic analysis of the classical compact Lie groups and compact symmetric spaces.
In Section 3, we use the explicit expansion of the densities to establish precise upper
bounds on ‖pt − 1‖L 2(X,η); by Cauchy-Schwarz we obtain similar upper bounds on
dTV(μt, η). The main idea is to control the growth of the dimension of an irreducible
spherical representation involved in the expansion of pt when the corresponding
highest weight grows in the lattice of weights (Section 3.2). The crucial fact, which
was apparently unknown, is that precisely at cut-off time, the quantity

{
(Dλ)2 e−tcut-off Bn(λ) in the group case,

Dλ e−tcut-off Bn(λ) in the non-group case,

stays bounded for every n and every λ; Dλ being the dimension of the irreducible or
spherical irreducible representation of label λ, and −Bn(λ) the associated eigenvalue
of the Laplace-Beltrami operator. Combining this argument with a simple analysis of
the generating series

∑

λ partition

x|λ| =
∏

i≥1

1

1 − xi
,

this is sufficient to get a correct upper bound after cut-off time.
Section 4 is then devoted to the (new) proof of the lower bounds. We use in

each case a “minimal” zonal spherical function (the trace of matrices in the case
of groups; see Section 4.1), and we compute its expectation and variance under Haar
measure and Brownian measures (Section 4.2). A simple application of Bienaymé-
Chebyshev’s inequality will then show that the chosen zonal spherical function is
indeed discriminating. An algebraic difficulty occurs in the case of symmetric spaces
G/K of type non-group, as one has to compute the expansion in zonal functions of
the square of the discriminating zonal function, and this is far less obvious than in the
case of irreducible characters. The problem is solved by writing the discriminating
zonal function in terms of the coefficients of the matrices in the isometry group G,
and by computing the joint moments of these coefficients under a Brownian measure.
The combinations of negative exponentials appearing in these formulas are then
in correspondence with the expansions of the squares of the discriminating zonal
spherical functions.

2 Fourier Expansion of the Densities

In this section, we explain how to compute the density pK
t (k) or pX

t (x) of the marginal
law μt of the Brownian motion traced on a classical compact symmetric space. This
computation is done in an abstract setting for instance in [19] or [2], and we shall give
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at the end of this section its concrete counterpart in each classical case, see Theorem
11. The main ingredients of the computation are:

1. Peter-Weyl’s theorem and its refinement due to Cartan, that ensures that the
matrix coefficients of the irreducible representations of K (respectively, of the
irreducible spherical representations of G) form an orthogonal basis of L 2(K, η)

(respectively, of L 2(G/K, η)); see Section 2.1.
2. the classical highest weight theory, that describes the irreducible representations

of a compact simple Lie group and give formulas for their dimensions and
characters; see Section 2.2.

On these subjects, we refer to the two books by Helgason [14, 15], and also to
[3, 10, 11, 13, 29] for the representation theory of compact Lie groups. We shall
only recall what is needed in order to have a good understanding of the formulas
of Theorem 11. We shall also fix all the notations related to the harmonic analysis on
(classical) compact symmetric spaces.

2.1 Peter-Weyl’s Theorem and Cartan’s Refinement

Let K be a compact (Lie) group, and K̂ be the set of isomorphism classes of irre-
ducible complex linear representations of K. Each class λ ∈ K̂ is finite-dimensional,
and we shall denote Vλ the corresponding complex vector space; ρλ : K → U(Vλ)

the representation morphism; Dλ = dimC Vλ the dimension of the representation;
χλ(·) = tr ρλ(·) the character; and χ̂λ(·) = χλ(·)/Dλ the normalized character. An
Hermitian scalar product on End(Vλ) is 〈M | N〉End(Vλ) = Dλ tr(M†N). For every
class λ and every function f ∈ L 2(K), we set

f̂ (λ) =
∫

K

f (k) ρλ(k) dk;

this is an element of End(Vλ). We refer to [3, 10] for a proof of the following results.

Theorem 8 (Peter-Weyl) The (non-commutative) Fourier transform F : f �→∑
λ∈K̂ f̂ (λ) realizes an isometry and an isomorphism of (non-unital) algebras between

L 2(K, η) and
⊕

λ∈K̂ End(Vλ). So, if f ∈ L 2(K), then

f (k) =
∑

λ∈K̂

Dλ tr
(

f̃ (λ) ρλ(k)
)

=
∑

λ∈K̂

Dλ tr
(∫

K

f (h−1k) ρλ(h) dh

)
(2.1)

‖ f‖2
L 2(K) =

∑

λ∈K̂

∥∥ f̂ (λ)
∥∥2

End(Vλ)
=
∑

λ∈K̂

Dλ tr
(

f̂ (λ)† f̂ (λ)
)

(2.2)

where f̃ (λ) = f̂ −(λ) =
∫

K f (k−1) ρλ(k) dk.

Assume now that f is in L 2(K, η)K, the subalgebra of conjugacy-invariant func-
tions. The Fourier expansion (Eq. 2.1) and the Parseval identity (Eq. 2.2) become
then

f (k) =
∑

λ∈K̂

(Dλ)2 χ̂λ( f −) χ̂λ(k) ; ‖ f‖2
L 2(K)

=
∑

λ∈K̂

|χλ( f )|2,
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and in particular, the irreducible characters χλ form an orthonormal basis of
L 2(K)K. Cartan gave a statement generalizing Theorem 8 for L 2(G/K, η), where
X = G/K is a simply connected irreducible compact symmetric space. Call spherical

an irreducible representation (Vλ, ρλ) of G such that (Vλ)K, the space of vectors
invariant by ρλ(K), is non-zero. Then, it is in fact one-dimensional, so one can
find a vector eλ of norm ‖eλ‖2 = 1, unique up to multiplication by z ∈ T, such that
(Vλ)K = Ceλ. Denote then C λ(G/K) the set of functions from G to C that can be
written as

f (g) = fv(g) =
〈
v
∣∣ ρλ(g)(eλ)

〉
with v ∈ Vλ. (2.3)

Such a function is right-K-invariant, so it can be considered as a function from
G/K to C.

Theorem 9 (Cartan) Let ĜK be the set of spherical irreducible representations of G.

The space L 2(G/K, η) is isometric to the orthogonal sum
⊕

λ∈ĜK C λ(G/K). This

decomposition corresponds to the Fourier expansion

f (gK) =
∑

λ∈ĜK

Dλ tr
(∫

G

f (h−1gK) ρλ(h) dh

)
(2.4)

for f ∈ L 2(G/K).

In each space C λ(G/K), the space of left K-invariant functions is one-
dimensional, and it is generated by the zonal spherical function φλ(gK) =〈
eλ
∣∣ ρλ(g)(eλ)

〉
. These spherical functions form an orthogonal basis of L 2(X)K when

λ runs over spherical representations. So, a K-invariant function writes as

f (gK) =
∑

λ∈ĜK

Dλ φλ( f −) φλ(gK),

where φλ( f ) =
∫

G/K
f (x) φλ(x) dx =

〈
eλ
∣∣ ∫

G
f (gK) ρλ(g)(eλ) dg

〉
.

To conclude with, notice that the decomposition of Theorem 9 is the decom-
position of L 2(G/K, η) in common eigenspaces of the elements of D(G/K), the
commutative algebra of G-invariant differential operators on X . Thus, there are
morphisms of algebras cλ : D(G/K) → C such that

L( f λ) = cλ(L) f λ

for every λ ∈ ĜK, every L ∈ D(G/K) and every f λ ∈ C λ(G/K).

2.2 Highest Weight Theorem and Weyl’s Character Formula

The theory of highest weights of representations enables us to identify K̂ or ĜK,
and to compute the coefficients cλ(�) associated to the Laplace-Beltrami operator.
If G is a connected compact Lie group, its maximal tori are all conjugated, and
every element of K is contained in a maximal torus T. Denote W = Norm(T)/T

the Weyl group of G, and call weight of a representation V of G an element of t∗, or
equivalently a group morphism ω : T → T such that Vω = {v ∈ V | ∀t ∈ T, t · v =
ω(t) · v} �= 0. Every representation V of G is the direct sum of its weight subspaces
Vω, and this decomposition is always W-invariant. Besides, the set of all weights of
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all representations of G is a lattice Z� whose rank is also the dimension of T. We
take a W-invariant scalar product on the real vector space R� = Z� ⊗Z R, e.g., the
dual of the scalar product given by Eq. 1.3, where R� is identified with t∗ by mean
of ω �→ deω for ω ∈ Z�. We also fix a closed fundamental set C for the action of the
Weyl group on R�. We call dominant a weight ω that falls in the Weyl chamber C.
A root of G is a non-zero weight of the adjoint representation. The set of roots � is a
root system, which means that certain combinatorial relations are satisfied between
its elements. There is a unique way to split � in a set �+ of positive roots and a set
�− = −�+ such that

C = {x ∈ R� | ∀α ∈ �+, 〈x | α〉 ≥ 0}.

Call simple a positive root α that cannot be written as the sum of two positive roots;
and simple coroot an element α̌ = 2α

〈α | α〉 with α simple root. Then, a distinguished
basis of the lattice Z� is given by the fundamental weights ̟1,̟2, . . . , ̟r, the dual
basis of the basis of coroots. Hence, the sets of weights and of dominant weights have
the following equivalent descriptions:

Z� =
r⊕

i=1

Z̟i =
{

x ∈ R�
∣∣ ∀α ∈ �,

〈x | α〉
〈α | α〉 ∈ Z

}
;

Dom(Z�) =
r⊕

i=1

N̟i =
{

x ∈ R�
∣∣ ∀α ∈ �,

〈x | α〉
〈α | α〉 ∈ N

}
.

Suppose now that G is a semi-simple simply connected compact Lie group, and
consider the partial order induced by the convex set C on R�. Recall that the
Weyl group W is a Coxeter group generated by the symmetries along the simple
roots α1, α2, . . . , αr; so in particular, it admits a signature morphism ε : W → {±1}.
Weyl’s theorem ensures that every irreducible representation V of G has a unique
highest weight ω0 for this order, which is then of multiplicity one and determines the
isomorphism class of V. Moreover, the restriction to T of the irreducible character
associated to a dominant weight λ is given by

χλ(t) =
∑

σ∈W ε(σ) σ(λ + ρ)(t)∑
σ∈W ε(σ) σ(ρ)(t)

, (2.5)

where ρ is the half-sum of all positive roots, or equivalently the sum of the funda-
mental weights. This formula degenerates into the dimension formula

Dλ = dim Vλ =
∏

α∈�+
〈λ + ρ | α〉

∏
α∈�+

〈ρ | α〉 . (2.6)

These results make Eq. 2.1 essentially explicit in the case of a conjugacy invariant
function on a semi-simple compact Lie group K; in particular, we shall see in a
moment that the highest weights are labelled by partitions or similar combinatorial
objects in all the classical cases.

The case of a compact symmetric space X = G/K of type non-group is a little
more involved. Denote θ an involutive automorphism of a semi-simple simply
connected compact Lie group G, with K = Gθ . Set P = {g ∈ G | θ(g) = g−1}; one has
then the Cartan decomposition G = KP. In addition to the previous assumptions,
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one assumes that the maximal torus T ⊂ G is chosen so that θ(T) = T and P ∩ T is
a maximal torus in P (one can always do so up to conjugation of the torus). Then,
Cartan-Helgason theorem ([15, Theorem 4.1]) says that the spherical representations
in ĜK are precisely the irreducible representations in Ĝ that are trivial on K ∩ T =
Tθ . This subgroup Tθ of T ≃ Tr is always the product of a subtorus Ts≤r with an
elementary abelian 2-group (Z/2Z)t; this will correspond to additional conditions on
the size and the parity of the parts of the partitions labeling the highest weights in ĜK

(in comparison to Ĝ), cf. Section 2.3. The corresponding zonal spherical functions φλ

do not have in general an expression as simple as Eq. 2.5; see however [16, Part 1]. For
most of our computations, this will not be a problem, since we shall only use certain
properties of the spherical functions—e.g., their orthogonality and the formula for
the dimension Dλ—and not their explicit form; see however Section 4.1.

The last ingredient in the computation of the densities is the value of the
coefficient cλ(�) such that

�( f λ)

2
= cλ(�) f λ

for every function f λ either in Rλ(K) = Vect({k �→ (ρλ(k))ij, 1 ≤ i, j ≤ Dλ}) in the
group case, or in C λ(G/K) in the case of a symmetric space. In the group case,
by comparing the definition of the Casimir operator 1.5 with the definition of the
Laplace-Beltrami operator 1.4, one sees that 2cλ(�) is also κλ, the constant by
which the Casimir operator C acts via the infinitesimal representation dρλ : U(k) →
End(Vλ)—cf. the remark at the end of Section 1.3. This constant is equal to

κλ = − 〈λ + 2ρ | λ〉 , (2.7)

see [2, Eq. 3.4] and the references therein, or [18] and [10, Chapter12] for a case-
by-case computation. These later explicit computations follow from the following
expressions of the Casimir operators (see [18, Lemma 1.2]):

Cso(n) =
∑

1≤i< j≤n

(
Eij − E ji√

n

)⊗2

Csu(n) = 1

n

n∑

i=1

iEii ⊗ iEii −
1

n2

n∑

i, j=1

iEii ⊗ iE jj+
∑

1≤i< j≤n

(
Eij −E ji√

2n

)⊗2

+
(

iEij+iE ji√
2n

)⊗2

Cusp(n) = 1

2n

n∑

i=1

iEii ⊗ iEii + jEii ⊗ jEii + kEii ⊗ kEii

+
∑

1≤i< j≤n

(
Eij−E ji√

4n

)⊗2

+
(

iEij+iE ji√
4n

)⊗2

+
(

jEij+jE ji√
4n

)⊗2

+
(

kEij +kE ji√
4n

)⊗2

where Eij are the elementary matrices in M(n, k) with k = R, C or H—beware that
the tensor product are over R, since we deal with real Lie algebras.

In the case of a compact symmetric space, the same formula 2.7 gives the action
of �G/K on C λ(G/K). Indeed, remember that the Riemannian structures on G and
G/K are chosen in such a way that for any f ∈ C ∞(G) that is right K-invariant,
�G/K( f )(gK) = �G( f )(g). Consider then a function in C λ(G/K), viewed as a
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function on G. In definition 2.3, f appears clearly as a linear combination of matrix
coefficients of the spherical representation λ, so the previous discussion holds.

2.3 Densities of a Brownian Motion with Values in a Compact Symmetric Space

Let us now see how the previous results can be used to compute the density pK
t (k)

or pX
t (x) of a Brownian motion on a compact Lie group or symmetric space. These

densities are in both cases K-invariant, so they can be written as

pK
t (k) =

∑

λ∈K̂

aλ(t) χ̂λ(k) or pX
t (x) =

∑

λ∈ĜK

aλ(t) φλ(x)

by using either Peter-Weyl’s theorem in the case of conjugacy-invariant functions on
K, or Cartan’s theorem in the case of left K-invariant functions on G/K. We then

apply �
2

= dPt

dt

∣∣∣
t=0

to these formulas:

�pK
t (k)

2
=
∑

λ∈K̂

κλ

2
aλ(t) χ̂λ(k) = dpK

t (t)

dt
=
∑

λ∈K̂

daλ(t)

dt
χ̂λ(k),

and similarly in the case of a compact symmetric space. Thus, daλ(t)
dt

= κλ

2
aλ(t) and

aλ(t) = aλ(0) e
κλ
2

t for every class λ. The coefficient aλ(0) is given in the group case by

aλ(0) = (Dλ)2

∫

K

χ̂λ(k) δeK
(dk) = (Dλ)2 χ̂λ(eK) = (Dλ)2

and in the case of a compact symmetric space of type non-group by

aλ(0) = Dλ

〈
eλ

∣∣∣∣
∫

G

ρλ(g)(eλ) δeG
(dg)

〉
= Dλ φλ(eG) = Dλ.

Proposition 10 The density of the law μt of the Brownian motion traced on a classical

simple compact Lie group K is

pK
t (k) =

∑

λ∈K̂

e− t
2
〈λ+2ρ | λ〉

(∏
α∈�+

〈λ + ρ | α〉
∏

α∈�+
〈ρ | α〉

)2

χ̂λ(k),

and the density of the Brownian motion traced on a classical simple compact symmetric

space G/K is

pX
t (x) =

∑

λ∈ĜK

e− t
2
〈λ+2ρ | λ〉

(∏
α∈�+

〈λ + ρ | α〉
∏

α∈�+
〈ρ | α〉

)
φλ(x).

Let us now apply this in each classical case. We refer to [3], [11, Chapter 24] and
[14, Chapter 10] for most of the computations. Unfortunately, we have not found a
reference which describes explicitly the spherical representations; this explains the
following long discussion. For convenience, we shall assume:

– n ≥ 2 when considering SU(n), SU(n)/SO(n), SU(2n)/USp(n) or SU(n)/S
(U(n − q) × U(q));
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– n ≥ 3 when considering USp(n), USp(n)/U(n) or USp(n)/(USp(n − q) ×
USp(q));

– n ≥ 10 when considering SO(n), SO(2n)/U(n) or SO(n)/(SO(n − q) × SO(q)).

For SU(2n)/USp(n) and SO(2n)/U(n), the restriction will hold on the “2n”
parameter of the group of isometries. These assumptions shall ensure that the root
systems and the Schur functions of type B, C and D are not degenerate, and later this
will ease certain computations. For Grassmanian varieties, we shall also suppose by
symmetry that q ≤ ⌊ n

2
⌋.

2.3.1 Special Unitary Groups and their Quotients

In SU(n, C), a maximal torus is

T =
{

diag(z1, z2, . . . , zn)

∣∣∣∣ ∀i, zi ∈ T and
n∏

i=1

zi = 1

}
= T

n/T,

and the Weyl group is the symmetric group Sn. The simple roots and the fundamen-
tal weights, viewed as elements of t∗, are αi = ei − ei+1 and

̟i = n − i

n
(e1 + · · · + ei) − i

n
(ei+1 + · · · + en)

for i ∈ [[1, n − 1]], where ei is the coordinate form on t = iRn defined by
ei(diag(it1, it2, . . . , itn)) = ti. The dominant weights are then the

(λ1 − λ2)̟1 + · · · + λn−1̟n−1 = λ1e1 + · · · + λn−1en−1 − |λ| ̟n

n
,

where λ = (λ1 ≥ λ2 ≥ · · · ≥ λn−1) is any partition (non-increasing sequence of non-
negative integers) of length (n − 1); it is then convenient to set λn = 0. The half-sum
of positive roots is given by 2ρ = 2(̟1 + · · · + ̟n−1) =

∑n
i=1(n + 1 − 2i)ei, and the

scalar product on t∗ is 1
n

times the usual euclidian scalar product
〈
ei
∣∣ e j

〉
= δij. So,

Dλ =
∏

1≤i< j≤n

λi − λ j + j − i

j − i
; χλ(k) = sλ(z1, . . . , zn) =

det
(

z
λ j+n− j

i

)
1≤i, j≤n

det
(

z
n− j
i

)
1≤i, j≤n

,

where z1, . . . , zn are the eigenvalues of k; thus, characters are given by Schur
functions. The Casimir coefficient is

−κλ = −|λ|2

n2
+ 1

n

n∑

i=1

λ2
i + (n + 1 − 2i)λi,

where |λ| =
∑n

i=1 λi denotes the size of the partition.
Though we have chosen to examine only the Brownian motions on simple Lie

groups, the same work can be performed over the unitary groups U(n, C), which
are reducible Lie groups. Irreducible representations of U(n, C) are labelled by
sequences λ = (λ1 ≥ · · · ≥ λn) in Zn, the action of the torus Tn on a corresponding
highest weight vector being given by the morphism λ(z1, . . . , zn) = zλ1

1 · · · zλn
n . The

dimensions and characters are the same as before, and the Casimir coefficient is
1
n

∑n
i=1 λ2

i + (n + 1 − 2i)λi.
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For the spaces of quaternionic structures SU(2n,C)/USp(n,H), the involutive
automorphism defining the symmetric pair is θ(g) = J2n g J−1

2n , where J2n is the skew
symmetric matrix

J2n =

⎛
⎜⎜⎜⎜⎜⎝

0 1

−1 0

. . .

0 1

−1 0

⎞
⎟⎟⎟⎟⎟⎠

of size 2n. The subgroup Tθ is the set of matrices diag(z1, z−1
1 , . . . , zn, z−1

n ), with all
the zi’s in T. The dominant weights λ trivial on Tθ correspond then to partitions will
all parts doubled:

∀i ∈ [[1, n]] , λ2i−1 = λ2i.

In the spaces of real structures SU(n, C)/SO(n, R), θ(g) = g. The intersection
of the torus with SO(n,R) is isomorphic to (Z/2Z)n/(Z/2Z), and therefore, by
Cartan-Helgason theorem, the spherical representations correspond to partitions
with even parts:

∀i ∈ [[1, n]] , λi ≡ 0 mod 2.

Finally, for the complex Grassmannian varieties SU(n,C)/S(U(n − q, C) ×
U(q, C)), it is a little simpler to work with U(n, C)/(U(n − q, C) × U(q,C)), which
is the same space. An involutive automorphism defining the symmetric pair is then
θ(g) = Kn,q g Kn,q, where

Kn,q =

⎛
⎝

Tq

In−2q

Tq

⎞
⎠

and Tq is the (q × q)-anti-diagonal matrix with entries 1 on the anti-diagonal. The
subgroup Tθ is then the set of diagonal matrices diag(z1, . . . , zq, zq+1, . . . , zn−q,
zq, . . . , z1) with the zi’s in T. The dominant weights λ trivial on Tθ correspond then
to partitions of length q, written as

λ = (λ1, . . . , λq, 0, . . . , 0, −λq, . . . , −λ1).

2.3.2 Compact Symplectic Groups and their Quotients

Considering USp(n,H) as a subgroup of SU(2n, C), a maximal torus is

T =
{
diag(z1, z−1

1 , . . . , zn, z−1
n )

∣∣ ∀i, zi ∈ T
}
,

and the Weyl group is the hyperoctahedral group Hn = (Z/2Z) ≀ Sn. The simple
roots, viewed as elements of t∗, are αi = ei − ei+1 for i ∈ [[1, n − 1]] and αn =
2en; and the fundamental weights are ̟i = e1 + · · · + ei for i ∈ [[1, n]]. Here,
ei(diag(it1, −it1, . . . , itn, −itn)) = ti. The dominant weights can therefore be written
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as λ1e1 + · · · + λnen, where λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) is any partition of length n. This
leads to

Dλ =
∏

1≤i< j≤n

λi − λ j + j − i

j − i

∏

1≤i≤ j≤n

λi + λ j + 2n + 2 − i − j

2n + 2 − i − j
;

χλ(k) = scλ

(
z1, z−1

1 , . . . , zn, z−1
n

)
=

det
(

z
λ j+n− j+1

i − z
−(λ j+n− j+1)

i

)
1≤i, j≤n

det
(

z
n− j+1

i − z
−(n− j+1)

i

)
1≤i, j≤n

,

where z±1
1 , . . . , z±1

n are the eigenvalues of k viewed as a matrix in SU(2n,C). The
Casimir coefficient is −κλ = 1

2n

∑n
i=1 λ2

i + (2n + 2 − 2i)λi.
In the spaces of complex structures USp(n, H)/U(n,C), θ(g) = g (inside

SU(2n,C)). The subgroup Tθ is isomorphic to (Z/2Z)n, so the spherical represen-
tations correspond here again to partitions with even parts. On the other hand,
for quaternionic Grassmannian varieties USp(n, H)/(USp(n − q, H) × USp(q,H)),
a choice for the involutive automorphism is θ(g) = L2n,q g L2n,q, where

L2n,q =

⎛
⎜⎜⎜⎝

T4

. . .

T4

I2n−4q

⎞
⎟⎟⎟⎠ ,

T4 appearing q times (with all the computations made inside SU(2n,C)). Then,
Tθ is the set of diagonal matrices diag(z1, z−1

1 , z−1
1 , z1, . . . , zq, z−1

q , z−1
q , zq, z2q+1,

z−1
2q+1, . . . , zn, z−1

n ) with the zi’s in T. The dominant weights (λ1, . . . , λn) trivial on
Tθ write therefore as partitions of length q with all parts doubled:

λ = (λ1, λ1, . . . , λq, λq, 0, . . . , 0).

2.3.3 Special Orthogonal Groups and their Quotients

Odd and even special orthogonal groups do not have the same kind of root system,
and on the other hand, SO(n,R) is not simply connected and has for fundamental
group Z/2Z for n ≥ 3. So in theory, the arguments previously recalled apply only for
the universal cover Spin(n). Nonetheless, most of the results will stay true, and in
particular the labeling of the irreducible representations; see the end of [3, Chapter
5] for details on this question. In the odd case, a maximal torus in SO(2n + 1,R) is

T =
{

diag(Rθ1
, . . . , Rθn

, 1)

∣∣∣∣ ∀i, Rθi
=
(

cos θi − sin θi

sin θi cos θi

)
∈ SO(2,R)

}
,

and the Weyl group is again the hyperoctahedral group Hn. The simple roots are
αi = ei − ei+1 for i ∈ [[1, n − 1]], and αn = en; and the fundamental weights are ̟i =
e1 + · · · + ei for i ∈ [[1, n − 1]], and ̟n = 1

2
(e1 + · · · + en). Here,

ei
(
diag

((
0 −a1

a1 0

)
, . . . ,

(
0 −an

an 0

)
, 0
))

= ai

and it corresponds to the morphism diag(Rθ1
, . . . , Rθn

, 1) �→ eiθi . The dominant
weights are then the λ1e1 + · · · + λnen, where λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) is either a
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partition of length n, or an half-partition of length n, where by half-partition we mean
a non-increasing sequence of half-integers in N′ = N + 1/2. So, one obtains

Dλ =
∏

1≤i< j≤n

λi − λ j + j − i

j − i

∏

1≤i≤ j≤n

λi + λ j + 2n + 1 − i − j

2n + 1 − i − j
;

χλ(k) = sbλ

(
z1, z−1

1 , . . . , zn, z−1
n , 1

)
=

det
(

z
λ j+n− j+1/2

i − z
−(λ j+n− j+1/2)

i

)
1≤i, j≤n

det
(

z
n− j+1/2

i − z
−(n− j+1/2)

i

)
1≤i, j≤n

,

where z±1
1 , . . . , z±1

n , 1 are the eigenvalues of k. The Casimir coefficient associated to
the highest weight λ is −κλ = 1

2n+1

∑n
i=1 λ2

i + (2n + 1 − 2i)λi.
In the even case, a maximal torus in SO(2n,R) is

T =
{

diag(Rθ1
, . . . , Rθn

)

∣∣∣∣ ∀i, Rθi
=
(

cos θi − sin θi

sin θi cos θi

)
∈ SO(2,R)

}

and the Weyl group is H+
n , the subgroup of Hn of index 2 consisting in signed

permutations with an even number of signs −1. The simple roots are αi = ei − ei+1 for
i ∈ [[1, n − 1]] and αn = en−1 + en; and the fundamental weights are ̟i = e1 + · · · + ei

for i ∈ [[1, n − 2]] and ̟n−1,n = 1
2
(e1 + · · · + en−1 ± en). The dominant weights are

then λ1e1 + · · · + λn−1en−1 + ελnen, where ε is a sign and (λ1 ≥ · · · ≥ λn) is either a
partition or an half-partition of length n. So,

Dλ =
∏

1≤i< j≤n

λi − λ j + j − i

j − i

λi + λ j + 2n − i − j

2n − i − j
,

χλ(k) = sdλ

(
z1, z−1

1 , . . . , zn, z−1
n

)

=
det

(
z

λ j+n− j

i − z
−(λ j+n− j)

i

)
1≤i, j≤n

+ det
(

z
λ j+n− j

i + z
−(λ j+n− j)

i

)
1≤i, j≤n

det
(

z
n− j
i + z

−(n− j)
i

)
1≤i, j≤n

,

and −κλ = 1
2n

∑n
i=1 λ2

i + (2n − 2i)λi.
For real Grassmannian varieties SO(n, R)/(SO(n − q, R) × SO(q,R)) and for

spaces of complex structures SO(2n,R)/U(n,C), one cannot directly apply the
Cartan-Helgason theorem, since SO(n, R) is not simply connected. A rigorous way
to deal with this problem is to first look at quotients of the spin group Spin(n).
For instance, consider the Grassmannian variety of non-oriented vector spaces
Gr±

(n, q, R) ≃ Spin(n)/(Spin(n − q) × Spin(q)); Gr(n, q, R) is a 2-fold covering of
Gr±

(n, q, R). The defining map of Gr±
(n, q, R) corresponds to the involution of

SO(n,R) given by θ(g) = Nn,q g Nn,q, where

Nn,q =

⎛
⎜⎜⎜⎝

T2

. . .

T2

In−2q

⎞
⎟⎟⎟⎠

with q blocks T2. Then Tθ is (Z/2Z)q × (SO(2,R))⌊ n
2
⌋−q, so the dominant weights

trivial on Tθ write as λ = (λ1, . . . , λq, 0, . . . , 0), with λi ≡ 0 mod 2 for all i ∈
[[

1, q
]]

.
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They are therefore given by an integer partition of length q, with all parts even. Now,
for the simply connected Grassmannian variety Gr(n, q, R), there are twice as many
spherical representations, as Tθ is in this case isomorphic to ((Z/2Z)q/(Z/2Z)) ×
T⌊ n

2
⌋−q, instead of (Z/2Z)q × T⌊ n

2
⌋−q. Therefore, the condition of parity is now

∀i, j ∈
[[

1, q
]]

, λi ≡ λ j mod 2.

Similar considerations show that for the spaces SO(2n,R)/U(n,C), the dominant
weights λ trivial on the intersection Tθ are given by

λ = (λ1, λ1, . . . , λm, λm) or λ = (λ1, λ1, . . . , λm, λm, 0)

that is to say a partition with all non-zero parts that are doubled.

2.3.4 Summary

Let us summarize the previous results (this is redundant, but very useful in order
to follow all the computations of Section 3). We denote: Yn the set of partitions of
length n; Zn the set of non-decreasing sequences of (possibly negative) integers; 1

2
Yn

the set of partitions and half-partitions of length n; 2Yn the set of partitions of length
n with even parts; 2Yn ⊞ 1 the set of partitions of length n with odd parts; and YYn

the set of partitions of length n and with all non-zero parts doubled. It is understood
that if i is too big, then λi = 0 for a partition or an half-partition λ of prescribed
length.

Theorem 11 The density of the law μt of the Brownian motion traced on a classical

simple compact Lie group writes as:

∑

λ∈Yn−1

e− t
2n

(
− |λ|2

n
+
∑n−1

i=1 λ2
i +(n+1−2i)λi

)
⎛
⎝ ∏

1≤i< j≤n

λi − λ j + j − i

j − i

⎞
⎠ sλ(k);

∑

λ∈Zn

e− t
2n

∑n
i=1 λ2

i +(n+1−2i)λi

⎛
⎝ ∏

1≤i< j≤n

λi − λ j + j − i

j − i

⎞
⎠ sλ(k);

∑

λ∈Yn

e− t
4n

∑n
i=1 λ2

i +(2n+2−2i)λi

⎛
⎝ ∏

1≤i< j≤n

λi−λ j+ j−i

j − i

∏

1≤i≤ j≤n

λi+λ j+2n+2−i− j

2n + 2 − i − j

⎞
⎠ scλ(k);

∑

λ∈ 1
2
Yn

e− t
4n+2

∑n
i=1 λ2

i +(2n+1−2i)λi

⎛
⎝ ∏

1≤i< j≤n

λi−λ j+ j−i

j − i

∏

1≤i≤ j≤n

λi+λ j+2n+1−i− j

2n + 1 − i − j

⎞
⎠sbλ(k);

∑

λ∈ 1
2
Yn

e− t
4n

∑n
i=1 λ2

i +(2n−2i)λi

⎛
⎝ ∏

1≤i< j≤n

(λi−λ j+ j−i)(λi+λ j+2n−i− j)

( j − i)(2n − i − j)

⎞
⎠(sdλ(k)+sdελ(k))

respectively for special unitary groups SU(n,C), unitary groups U(n, C), symplectic

groups USp(n, H), odd special orthogonal groups SO(2n + 1,R), and even special
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orthogonal groups SO(2n,R). In this last case, ελ = (λ1, . . . , λn−1, −λn), and it is

agreed that sdλ + sdελ stands for sdλ if λn = 0.

We denote generically φλ(x) a zonal spherical function associated to a spherical

representation (the function depends of course of the implicit type of the space

considered). The density of the law μt of the Brownian motion traced on a classical

simple compact symmetric space writes then as follows:

∑

λ∈2Yn−1

e− t
2n

(
− |λ|2

n
+
∑n−1

i=1 λ2
i +(n+1−2i)λi

)
⎛
⎝ ∏

1≤i< j≤n

λi − λ j + j − i

j − i

⎞
⎠φλ(x);

∑

λ∈YY2n−1

e− t
4n

(
− |λ|2

2n
+
∑2n−2

i=1 λ2
i +(2n+1−2i)λi

)
⎛
⎝ ∏

1≤i< j≤2n

λi − λ j + j − i

j − i

⎞
⎠ φλ(x);

∑

λ∈Yq

e− t
n

∑q
i=1 λ2

i +(n+1−2i)λi

⎛
⎝ ∏

1≤i< j≤n

λi − λ j + j − i

j − i

⎞
⎠ φλ(x);

∑

λ∈2Yn

e− t
4n

∑n
i=1 λ2

i +(2n+2−2i)λi

⎛
⎝ ∏

1≤i< j≤n

λi−λ j+ j−i

j − i

∏

1≤i≤ j≤n

λi + λ j+2n+2−i− j

2n + 2 − i − j

⎞
⎠ φλ(x);

∑

λ∈YY2q

e− t
4n

∑2q
i=1 λ2

i +(2n+2−2i)λi

⎛
⎝ ∏

1≤i< j≤n

λi−λ j+ j−i

j − i

∏

1≤i≤ j≤n

λi+λ j+2n+2−i− j

2n + 2 − i − j

⎞
⎠φλ(x);

∑

λ∈YYn

e− t
4n

∑n
i=1 λ2

i +(2n−2i)λi

⎛
⎝ ∏

1≤i< j≤n

(λi − λ j + j − i)(λi + λ j + 2n − i − j)

( j − i)(2n − i − j)

⎞
⎠φλ(x);

∑

λ∈2Yq⊔2Yq⊞1

e− t
4n+2

∑q
i=1 λ2

i +(2n+1−2i)λi

⎛
⎝ ∏

1≤i< j≤n

λi−λ j+ j−i

j − i

∏

1≤i≤ j≤n

λi +λ j+2n+1−i− j

2n + 1 − i − j

⎞
⎠φλ(x);

∑

λ∈2Yq⊔2Yq⊞1

e− t
4n

∑q
i=1 λ2

i +(2n−2i)λi

⎛
⎝ ∏

1≤i< j≤n

(λi − λ j + j − i)(λi + λ j + 2n − i − j)

( j − i)(2n − i − j)

⎞
⎠φλ(x)

for real structures SU(n, C)/SO(n, R), quaternionic structures SU(2n,C)/USp(n,H),

complex Grassmannian varieties Gr(n, q, C), complex structures USp(n, H)/U(n,C),

quaternionic Grassmannian varieties Gr(n, q, H), complex structures SO(2n,R)/U(n,

C), odd real Grassmannian varieties Gr(2n + 1, q, R) and even real Grassmannian

varieties Gr(2n, q, R).
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Remark In the case of complex Grassmannian varieties, it is understood that
λn+1−i = −λi as explained before. We have not tried to reduce the expressions in the
previous formulas, so some simplifications can be made by replacing the indexing
sets of type 2Yp or YYp by Yp. On the other hand, it should be noticed that in each
case, the “degree of freedom” in the choice of partitions labeling the irreducible
or spherical representations is exactly the rank of the Riemannian variety under
consideration, that is to say the maximal dimension of flat totally geodesic sub-
manifolds.

Example (Brownian motions on spheres and projective spaces) Let us exam-
ine the case q = 1 for Grassmannian varieties: it corresponds to real spheres
Sn(R) = SO(n + 1,R)/SO(n,R), to complex projective spaces Pn(C) = SU(n +
1,C)/S(U(n,C) × U(1,C)) and to quaternionic projective spaces Pn(H) = USp(n +
1,H)/(USp(n,H) × USp(1,H)). In each case, spherical representations are labelled
by a single integer k ∈ N. So, the densities are:

p
Sn(R)
t (x) =

∞∑

k=0

e− k(k+n−1) t
2n+2

(n − 2 + k)!
(n − 1)! k! (2k + n − 1) φR

n,k(x); (2.8)

p
Pn(C)
t (x) =

∞∑

k=0

e− k(k+n) t
n+1

((n − 1 + k)!)2

(n − 1)! n! (k!)2
(2k + n) φC

n,k(x); (2.9)

p
Pn(H)
t (x) =

∞∑

k=0

e− k(k+2n+1) t
2(n+1)

(2n + k)! (2n − 1 + k)!
(2n + 1)! (2n − 1)! (k + 1)! k! (2k + 2n + 1) φH

n,k(x).

(2.10)

In particular, one recovers the well-known fact that, up to the aforementioned
normalization factor (n + 1), the eigenvalues of the Laplacian on the n-sphere are
the integers k(k + n − 1), each with multiplicity

(n − 2 + k)!
(n − 1)! k! (2k + n − 1);

see e.g. [25, Section 3.3].

Example (Torus and Fourier analysis) Take the circle T = U(1,C) = S1(R). The
Brownian motion on T is the projection of the real Brownian motion of density
pR

t (θ) = 1√
2π t

e−θ2/2t by the map θ �→ eiθ . Thus,

pT

t (eiθ) = 2π

∞∑

m=−∞
pR

t (θ + 2mπ) =
√

2π

t

∞∑

m=−∞
e− (θ+2mπ)2

2t =
√

2π

t
S(θ, t).
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The series S(θ, t) is smooth and 2π-periodic, so it is equal to its Fourier series∑∞
n=−∞ ck(S(t))ekiθ , with

ck(S(t)) =
∞∑

m=−∞

∫ 2π

0

e− (θ+2mπ)2

2t e−kiθ dθ

2π
= 1

2π

∫

R

e− y2

2t
−kiy dy =

√
t

2π
e− k2 t

2 .

Thus, the density of the Brownian motion on the circle with respect to the Haar
measure dθ

2π
is

pT

t (eiθ ) =
∞∑

k=−∞
e− k2 t

2 ekiθ = 1 + 2

∞∑

k=1

e− k2 t
2 cos kθ,

Since s(k)(eiθ) = ekiθ , this is indeed a specialization of the second formula of Theo-
rem 11, for U(1,C).

Example (Brownian motion on the 3-dimensional sphere) Consider the Brownian
motion on USp(1,H), which is also SU(2,C) by one of the exceptional isomorphisms.
The specialization of the first formula of Theorem 11 for SU(2, C) gives

p
SU(2,C)
t (g) =

∞∑

k=0

e− k(k+2) t
8 (k + 1)

sin(k + 1)θ

sin θ
,

if e±iθ are the eigenvalues of g ∈ SU(2,C). It agrees with the example of [19, Section
4], and also with formula 2.8 when n = 3, since the group of unit quaternions is
topologically a 3-sphere.

Remark The previous examples show that the restrictions n ≥ n0 are not entirely
necessary for the formulas of Theorem 11 to hold. One should only beware that the
root systems of type B1, C1, D1 and D2 are somewhat degenerated, and that the
dominant weights do not have the same indexing set as for Bn≥2 or Cn≥2 or Dn≥3. For
instance, for the special orthogonal group SO(3,R), the only positive root is e1, and
the only fundamental weight is also e1. Consequently, irreducible representations
have highest weights k e1 with k ∈ N; the dimension of the representation of label
k is 2k + 1, and the corresponding character is again sin(k+1)θ

sin θ
if eiθ and e−iθ are the

non-trivial eigenvalues of the considered rotation. So

p
SO(3,R)
t (g) =

∞∑

k=0

e− k(k+1) t
3 (2k + 1)

sin(k + 1)θ

sin θ

if g is a rotation of angle θ around some axis.

3 Upper Bounds after the Cut-off Time

Let μ be a probability measure on a compact Lie group K or compact symmetric
space G/K, that is absolutely continuous with respect to the Haar measure η, and
with density p. Cauchy-Schwarz inequality ensures that

4 dTV(μ, η)2 =
(∫

X

|p(x) − 1| dx

)2

≤
∫

X

|p(x) − 1|2 dx = ‖p − 1‖2
L 2(X)

.
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The discussion of Section 2 allows now to relate the right-hand side of this inequality
with the harmonic analysis on X . Let us first treat the case of a compact Lie group
K. If one assumes that p is invariant by conjugacy, then Parseval’s identity (Eq. 2.2)
shows that the right-hand side is

∑
λ∈K̂ |χλ(p − 1)|2. However, by orthogonality of

characters, for any non-trivial irreducible representation of K—i.e., not equal to 1K :
k ∈ K �→ 1—one has

χλ(1) =
∫

K

χλ(k) dk =
∫

K

χλ(k) χ 1K (k−1) dk = 0.

On the other hand, for any measure μ on the group, χ 1K (μ) =
∫

K
χ 1(k)μ(dk) =∫

K
μ(dk) = 1. Hence, the inequality now takes the form

4 dTV(μ, ηK)2 ≤
′∑

λ∈K̂

|χλ(p)|2,

where the ′ indicates that we remove the trivial representation from the summation.
Similarly, on a compact symmetric space G/K, supposing that p is K-invariant,
Parseval’s identity reads ‖p − 1‖2

L 2(G/K)
=
∑

λ∈ĜK Dλ |φλ(p − 1)|2. However, for any
non-trivial representation λ,

φλ(1) =
〈
eλ

∣∣∣∣
∫

G

ρλ(g)(eλ) dg

〉
= 0.

Indeed, using only elementary properties of the Haar measure, one sees that 1̂(λ) =∫
G

ρλ(g) dg = 0, because it is a projector and it has trace χλ(1) = 0. So again, the
previous inequality can be simplified and it becomes

4 dTV(μ, ηG/K)2 ≤
′∑

λ∈ĜK

Dλ |φλ(p)|2.

In the setting and with the notations of Proposition 10, a bound at time t on
4 dTV(μt, ηK)2 (respectively, on 4 dTV(μt, ηG/K)2) is then

′∑

λ∈K̂

e−t〈λ+2ρ | λ〉 (Dλ)2 ; respectively,

′∑

λ∈ĜK

e−t〈λ+2ρ | λ〉 Dλ.

Proposition 12 In every classical case, 4 dTV(μt, Haar)2 is bounded by∑′
λ∈Wn

An(λ) e−t Bn(λ), where the indexing sets Wn and the constants Bn(λ) are the same

as in Theorem 11, and An(λ) = (Dλ)2 for compact Lie groups and Dλ for compact

symmetric spaces.

This section is now organized as follows. In Section 3.1, we compute the weights
that minimize Bn(λ); they will give the correct order of decay of the whole series
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after cut-off time. In Section 3.2, we then show case-by-case that all the other terms
of the series Sn(t) of Proposition 12 can be controlled uniformly. Essentially, we
adapt the arguments of [22–24], though we also introduce new computational tricks.
As explained in the introduction, the main reason why one has a good control over
Sn(t) after cut-off time is that each term Tn(λ, t) = An(λ) e−t Bn(λ) of the series Sn(t)

stays bounded when t = tcut-off, for every n, every class λ and in every case. We have
unfortunately not found a way to factorize all the computations needed to prove this,
so each case will have to be treated separately. However, the scheme of the proof
will always be the same, and the reader will find the main arguments in Section 3.2.1
(for symplectic groups and their quotients), so he can safely skip Sections 3.2.2–
3.2.4 if he does not want to see the minor modifications needed to treat the other
cases.

3.1 Guessing the Order of Decay of the Dominating Series

Remember the restriction n ≥ 2 (respectively, n ≥ 3 and n ≥ 10) when studying
special unitary groups (resp., compact symplectic groups and special orthogonal
groups) and their quotients. We use the superscript ⋆ to denote a set of partitions
or half-partitions minus the trivial partition (0, 0, . . . , 0). The lemma hereafter allows
to guess the correct order of decay of the series under study.

Lemma 13 Each weight λmin indicated in the table hereafter corresponds to an irre-

ducible representation in the case of compact groups, and to a spherical irreducible

representation in the case of symmetric spaces of type non-group. The table also gives

the corresponding values of An and Bn. In the group case, Bn(λmin) is minimal among

{Bn(λ), λ ∈ W⋆
n}.

Remark For symmetric spaces of type non-group, one can also check the minimality
of Bn(λmin), except for certain real Grassmannian varieties Gr(n, q, R). For instance,
if q = 1, then (1)q labels the geometric representation of SO(n,R) on Cn, which has
indeed an invariant vector by SO(n − 1,R) × SO(1,R); and the corresponding value
of B(λ) is (n − 1)/n < 2. Fortunately, λmin, though not minimal, will still yield in this
case the correct order of decay of the series S(t).

Remark To each “minimal” weight λmin corresponds a very natural representation.
Namely, for a special orthogonal group SO(n,R) (respectively, a compact symplectic
group USp(n, H)), the minimizer is the “geometric” representation over Cn (re-
spectively C2n) corresponding to the embedding SO(n,R) →֒ SO(n, C) →֒ GL(n,C)

(respectively USp(n, H) →֒ SU(2n,C) →֒ GL(2n,C)). For a special unitary group
SU(n,C), one has again the geometric representation over Cn, and its compose with
the involution k �→ (kt)−1 corresponds to the label (1, . . . , 1)n−1, which also mini-
mizes Bn(λ). The case of spherical minimizers is more involved but still workable: we
shall detail it in Section 4.
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Proof To avoid any ambiguity, we shall use indices to precise the length of a partition
or half-partition. Let us first find the minimizers of Bn(λ) in the group case:

K or G/K λmin Bn(λmin) An(λmin)

SO(2n + 1,R) (1, 0, . . . , 0)n
2n

2n+1
(2n + 1)2

SO(2n,R) (1, 0, . . . , 0)n
2n−1

2n
4n2

SU(n,C) (1, 0, . . . , 0)n−1 1 − 1
n2 n2

USp(n,H) (1, 0, . . . , 0)n
2n+1

2n
4n2

Gr(2n + 1, q,R) (2, 0, . . . , 0)q 2 2n2 + 3n

Gr(2n, q, R) (2, 0, . . . , 0)q 2 2n2 + n − 1

Gr(n, q, C) (1, 0, . . . , 0)q 2 n2 − 1

Gr(n, q, H) (1, 1, 0, . . . , 0)2q 2 (n − 1)(2n + 1)

SO(2n,R)/U(n,C) (1, 1, 0, . . . , 0)n
2(n−1)

n
n(2n − 1)

SU(n,C)/SO(n,R) (2, 0, . . . , 0)n−1
2(n−1)(n+2)

n2

n(n+1)

2

SU(2n,C)/USp(n, H) (1, 1, 0, . . . , 0)2n−1
(n−1)(2n+1)

n2 n(2n − 1)

USp(n,H)/U(n,C) (2, 0, . . . , 0)n
2(n+1)

n
n(2n + 1)

– SU(n): one has to minimize

−|λ|2

n
+

n−1∑

i=1

λ2
i + (n + 1 − 2i)λi = 1

n

⎛
⎝ ∑

1≤i< j≤n

(λi − λ j)
2

⎞
⎠

+
(

n−1∑

i=1

i(n − i)(λi − λi+1)

)
= A + B

over Y⋆
n−1. In B, at least one term is non-zero, so

B ≥
(

min
i∈[[1,n−1]]

i(n − i)

)
= n − 1,

with equality if and only if λ = (1, 0, . . . , 0)n−1 or λ = (1, . . . , 1)n−1. In both cases,
A is then equal to n−1

n
. However, n−1

n
is also the minimum value of A over Y⋆

n−1.
Indeed, there is at least one index l ∈ [[1, n − 1]] such that λl > λl+1. Then all the
(λi − λ j)

2 with i ≤ l and j ≥ l + 1 give a contribution at least equal to 1, and there
are l(n − l) such contributions. Thus

A ≥ l(n − l)

n
≥ n − 1

n
,

and one concludes that min Bn(λ) is obtained only for the two aforementioned
partitions, and is equal to 1

n
(Amin + Bmin) = 1 − 1

n2 .
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– SO(2n): the quantity to minimize over 1
2
Y⋆

n is

(
n∑

i=1

λ2
i

)
+
(

n−2∑

i=1

i(2n − 1 − i)(λi − λi+1)

)
+ n(n − 1)λn−1 = A + B + C,

again with A, B and C non-negative in each case. Only A involves λn, so a
minimizer satisfies necessarily λn = 0 (partitions) or λn = 1

2
(half-partitions). In

the case of partitions, a minimizer of B + C is (1, 0, . . . , 0)n, which gives the
value mini∈[[1,n−1]] i(2n − 1 − i) = 2n − 2. The same sequence minimizes A over
Y⋆

n, so the minimal value of A + B + C over non-trivial partitions is 2n − 1 and
it is obtained only for (1, 0, . . . , 0)n. On the other hand, over half-partitions, the
minimizer is

(
1
2
, . . . , 1

2

)
n
, giving the value

n

4
+ n(n − 1)

2
= n(2n − 1)

4
.

Since we assume 2n ≥ 10 and therefore n ≥ 5, this value is strictly bigger than
2n − 1, so the only minimizer of Bn(λ) in 1

2
Y⋆

n is (1, 0, . . . , 0)n.
– SO(2n + 1): exactly the same reasoning gives the unique minimizer (1, 0, . . . , 0)n,

with corresponding value 2n for A + B + C = (2n + 1) Bn(λ).
– USp(n): here one has only to look at partitions, and the same reasoning as for

SO(2n) and SO(2n + 1) yields the unique minimizer (1, 0, . . . , 0)n, corresponding
to the value 2n + 1 for 2n Bn(λ).

The spherical minimizers are obtained by the same techniques; however, some cases
(with n or q too small) are exceptional, so we have only retained in the statement of
our Lemma the “generic” minimizer. The corresponding values of An(λ) and Bn(λ)

are easy calculations. ⊓⊔

Suppose for a moment that the series Sn(t) of Proposition 12 has the same behavior
as its “largest term” An(λmin) e−t Bn(λmin). We shall show in a moment that this is indeed
true just after cut-off time (for n big enough). Then, Sn(t) is a O(·) of

– n2 e−t for classical simple compact Lie groups;
– n2 e−2t for classical simple compact symmetric spaces of type non-group.

Set then tn,ε = α (1 + ε) log n, with α = 2 in the case n2 e−t, and α = 1 in the
case n2 e−2t. Under the assumption Sn(t) ∼ An(λmin) e−t Bn(λmin), one has Sn(tn,ε) =
O(n−2ε). Thus, the previous computations lead to the following guess: the mixing
time is

– 2 log n for classical simple compact Lie groups;
– log n for classical simple compact symmetric spaces of type non-group.

3.2 Growth of the Dimensions Versus Decay of the Laplace-Beltrami Eigenvalues

The estimate Sn(tn,ε) ∼ An(λmin) e−tn,ε Bn(λ) = O(n−2ε) might seem very optimistic;
nonetheless, we are going to prove that the sum of all the other terms An(λ) e−tn,ε Bn(λ)
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in Sn(t) does not change too much this bound, and that one still has at least S(tn,ε) =
O
(
n− ε

2

)
. We actually believe that at least in the group case, the exponent 2ε is

good, cf. the remark before Section 3.1—the previous discussion shows that it is then
optimal.

Suppose that one can bound An(λ) e−tn,ε Bn(λ) by c(n)|λ|, where |λ| is the size of the
partition and c(n) is some function of n that goes to 0 as n goes to infinity (say, Cn−δε).
We can then use:

Lemma 14 Assume x ≤ 1
2
. Then, the sum over all partitions

∑
λ x|λ|, which is conver-

gent, is smaller than 1 + 5x. Consequently,

∑

λ∈Yn

λ�=(0,...,0)

x|λ| ≤ 5x.

Proof The power series P(x) =
∑

λ x|λ| =
∏∞

i=1
1

1−xi = 1 + x + 2x2 + 3x3 + 5x4 + · · ·
has radius of convergence 1, and it is obviously convex on R+. Thus, it suffices to
verify the bound at x = 0 and x = 1

2
. However,

P(0) = 1 = 1 + (5 × 0) ; P

(
1

2

)
≤ 3.463 ≤ 1 +

(
5 × 1

2

)
.

⊓⊔

With this in mind, the idea is then to control the growth of the coefficients An(λ),
starting from the trivial partition (0, . . . , 0). This is also what is done in [22, 23], but
the way we make our partitions grow is different. The simplest cases to treat in this
perspective are the compact symplectic groups and their quotients.

3.2.1 Symplectic Groups and their Quotients

Set tn,ε = 2(1 + ε) log n; in particular, tn,0 = 2 log n. We fix a partition λ ∈ Yn, and
for k ≤ λn, we denote ρk,n the quotient of the dimensions Dλ associated to the two
rectangular partitions

(k, . . . , k)n and (k − 1, . . . , k − 1)n. (3.1)

Using the formula given in Section 2.3 in the case of compact symplectic groups, one
obtains:

ρk,n =
∏

1≤i≤ j≤n

2k + 2n + 2 − i − j

2k + 2n − i − j

=
∏

1≤i≤ j≤n

1 + 2

2k + 2n − i − j
≤ exp

⎛
⎝ ∑

1≤i≤ j≤n

2

2k + 2n − i − j

⎞
⎠ .
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The double sum can be estimated by standard comparison techniques between
sums and integrals. Namely, since x, y �→ 1

2k+2n−x−y
is convex on {(x, y) | x ≥ 0, y ≥

0, 2k + 2n ≥ x + y}, one can bound each term by

2

2k + 2n − i − j
≤
∫∫

[i− 1
2
,i+ 1

2 ]×[ j− 1
2
, j+ 1

2 ]

2

2k + 2n − x − y
dx dy.

We use this bound for non-diagonal terms with indices i < j, and for diagonal terms
with i = j, we use the simpler bound

n∑

i=1

1

k + n − i
=

n−1∑

u=0

1

k + u
= Hk+n−1 − Hk−1 ≤ 1

k
+ log(k + n − 1) − log k

where Hn denotes the n-th harmonic sum. So,

log ρk,n ≤
∑

1≤i≤ j≤n

2

2k + 2n − i − j
≤ Hk+n−1−Hk−1+

∫∫

[ 1
2
,n+ 1

2 ]
2

1

2k + 2n − x − y
dx dy

≤ 1

k
+ log(k + n − 1) − log k

+ (2k + 2n − 1) log(2k + 2n − 1) + (2k − 1) log(2k − 1)

− 2(2k + n − 1) log(2k + n − 1).

On the other hand, the same transformation on partitions makes −tn,0 Bn(λ) evolve
by −(2k + n) log n. So, if η2

k,n is the quotient of the quantities (Dλ)2 e−tn,0 Bn(λ) with λ

as in Eq. 3.1, then

log ηk,n ≤ −2k + n

2
log n + 1

k
+ log(k + n − 1) − log k

+ (2k + 2n − 1) log(2k + 2n − 1) + (2k − 1) log(2k − 1)

− 2(2k + n − 1) log(2k + n − 1).

Suppose k ≥ 2. Then, one can fix n ≥ 3 and study the previous expression as a
function of k. Its derivative is then always negative, so log ηk,n ≤ log η2,n, which is
also always negative. From this, one deduces that

Dλ e− tn,0
2

Bn(λ) ≤ η1,n

for any rectangular partition (λn, . . . , λn)n; indeed, the left-hand side is the product
of the contributions ηk,n for k in [[1, λn]]. However, η1,n is also smaller than 1: in this
case, the dimension is given by the exact formula

D(1,...,1)n = Catn+1 = 1

n + 2

(
2n + 2

n + 1

)
,
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so η1,n = Catn+1 e− n+2
2

log n, which can be checked to be smaller than 1 for every n ≥ 3.
So in fact,

Dλ e− tn,0
2

Bn(λ) ≤ 1

for any rectangular partition (λn, . . . , λn)n.
The previous discussion hints at the more general result:

Proposition 15 In the case of compact symplectic groups, at cut-of f time,

Dλ e− tn,0
2

Bn(λ) ≤ 14

3

for any integer partition λ of length n (not only the rectangular partitions).

Proof We fix l ∈ [[1, n − 1]], and the idea is again to study the quotient ρk,l of the
dimensions associated to the two partitions

(k+λl+1, . . . , k+λl+1, λl+1, . . . , λn)n and (k−1+λl+1, . . . , k−1+λl+1, λl+1, . . . , λn)n,

(3.2)

where k is some integer smaller than λl − λl+1—in other words, the n − l last parts of
our partition have already been constructed, and one adds k to the l first parts, until
k = λl − λl+1 ; see Fig. 3.

The transformation on partitions described by Eq. 3.2 makes the quantity
−tn,0 Bn(λ) change by − l(2k′+2n−l)

n
log n. We shall prove that this variation plus log ρk,l

is almost always negative. For convenience, we will treat separately the cases l = 1

or 2 and the case l ≥ 3; hence, suppose first that l ∈ [[3, n − 1]]. The quotients of
Vandermonde determinants can be simplified as follows:

ρk,l =
n∏

j=l+1

k + j − 1 + λl+1 − λ j

k + j − l − 1 + λl+1 − λ j

k + λl+1 + λ j + 2n + 1 − j

k + λl+1 + λ j + 2n + 1 − j − l

×
∏

1≤i≤ j≤l

2k + 2λl+1 + 2n + 2 − i − j

2k + 2λl+1 + 2n − i − j
.

Fig. 3 One makes the
partitions grow layer by layer,
starting from the bottom
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Notice that the second product ρk,l,(2) in this formula is very similar to ρk,n; the main
difference is that indices i, j are now smaller than l (instead of n). Hence, by adapting
the arguments, one obtains

log ρk,l,(2) ≤
∑

1≤i≤ j≤l

2

2k′ + 2n − i − j

≤ Hk′+n−1 − Hk′+n−l−1 +
∫∫

[ 1
2
,l+ 1

2 ]
2

1

2k′ + 2n − x − y
dx dy

≤ 1

k′ + n − l
+ log(k′ + n − 1) − log(k′ + n − l)

+ (2k′ + 2n − 1) log(2k′ + 2n − 1)

+ (2k′ + 2n − 2l − 1) log(2k′ + 2n − 2l − 1)

− 2(2k′ + 2n − l − 1) log(2k′ + 2n − l − 1)

where k′ stands for k + λl+1. So, if (ηk,l)
2 is the quotient of the quantities

(Dλ)2 e−tn,0 Bn(λ) with λ as in Eq. 3.2, then log ηk,l ≤ log η̃k,l + log ρk,l,(1), where log η̃k,l

is given by

− l(2k′ + 2n − l)

2n
log n + 1

k′ + n − l
+ log(k′ + n − 1) − log(k′ + n − l)

+ (2k′ + 2n − 1) log(2k′ + 2n − 1) + (2k′ + 2n − 2l − 1) log(2k′ + 2n − 2l − 1)

− 2(2k′ + 2n − l − 1) log(2k′ + 2n − l − 1),

and ρk,l,(1) is the first product in the expansion of ρk,l. Let us analyze these two
quantities separately.

– log η̃k,l : here the technique is really the same as for log ηk,n. Namely, with n and
l fixed, log η̃k,l appears as a decreasing function of x = k′, because its derivative
with respect to x is

− l log n

n
− 1

(x + n − l)2
+ 1

x + n − 1
− 1

x + n − l

+ 2
(

log(2x + 2n − 1) + log(2x + 2n − 2l − 1) − 2 log(2x + 2n − l − 1)
)
.

A upper bound on the first line is − (l−1) log n
n

≤ 0 (remember that n ≥ 3 and there-
fore log n ≥ 1), and the second line is negative by concavity of the logarithm.
From this, one deduces that log η̃k,l ≤ log η̃1,l, and we shall use this estimate in
order to compensate the other part of log ηk,l :

log η̃k,l ≤− l(2v + 2 + 2n − l)

2n
log n+ 1

v + n + 1 − l
+log(v + n)−log(v+n+1− l)

+ (2v+2n+1) log(2v+2n+1)+ (2v + 2n − 2l + 1) log(2v + 2n − 2l + 1)

− 2(2v + 2n − l + 1) log(2v + 2n − l + 1)

where v stands for λl+1.
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– log ρk,l,(1): in the product ρk,l,(1), each term of index j writes as

(k′ + n)2 − (λ j + n + 1 − j)2

(k′ + n − l)2 − (λ j + n + 1 − j)2
≤ (k′ + n)2 − (λl+1 + n + 1 − j)2

(k′ + n − l)2 − (λl+1 + n + 1 − j)2

≤ k + j − 1

k + j − l − 1

k′′ + 2n + 1 − j

k′′ + 2n + 1 − j − l

with k′′ = k + 2λl+1 = k + 2v; and multiplying all these bounds together, one gets

ρk,l,(1) ≤ (k + n − 1)!
(k + l − 1)!

(k − 1)!
(k + n − l − 1)!

(k′′ + 2n − l)!
(k′′ + n)!

(k′′ + n − l)!
(k′′ + 2n − 2l)! .

Again, this is decreasing in k, so

ρk,l,(1) ≤ n! (2v + 2n − l + 1)! (2v + n − l + 1)!
l! (n − l)! (2v + n + 1)! (2v + 2n − 2l + 1)! .

Recall the classical Stirling estimates: for m ≥ 1,

log m!=m log m+ 1

2
log m − m + log

√
2π + 1

12m
− rm, with 0 ≤ rm ≤ 1

360m3
.

It enables us to bound log ρk,l,(1) by the sum of the following quantities:

⋆ A= (2v+2n−l+1) log(2v+2n−l+1)+(2v+n−l+1) log(2v+n−l+1)

−(2v+n+1) log(2v+n+1) − (2v + 2n − 2l + 1) log(2v + 2n − 2l + 1).
⋆ B= 1

2
(log(2v+2n − l + 1) + log(2v + n − l + 1) − log(2v + n + 1) − log(2v+

2n − 2l + 1)), which is non-positive by concavity of the logarithm.
⋆ C = n log n − l log l − (n − l) log(n − l).
⋆ D = 1

2
(log n − log l − log(n − l)). This is non-positive unless n = l + 1—

recall that we assume for the moment l ∈ [[3, n − 1]]. In that case, it is smaller
than 1

2(n−1)
.

⋆ E = 1
12

(
1
n

− 1
l

− 1
n−l

+ 1
2v+2n−l+1

+ 1
2v+n−l+1

− 1
2v+n+1

− 1
2v+2n−2l+1

)
.

⋆ F = 1
360

(
1
l3 + 1

(n−l)3 + 1
(2v+n+1)3 + 1

(2v+2n−2l+1)3

)
.

The sum of the two last terms EF = E + F happens to be negative. Indeed, E

and F are decreasing in v (we use the convexity of x �→ 1
x2 to show that dE

dv
≤ 0),

so it suffices to check the result when v = 0. Then, with l fixed,

EF(n, l)= 1

12

(
1

n
− 1

l
− 1

n − l
+ 1

2n − l + 1
+ 1

n − l + 1
− 1

n + 1
− 1

2n − 2l + 1

)

+ 1

360

(
1

l3
+ 1

(n − l)3
+ 1

(n + 1)3
+ 1

(2n − 2l + 1)3

)

is decreasing in n, hence smaller than its value when n = l + 1. So, it suffices to
look at EF(l + 1, l), which is now increasing in l, but still negative. Thus, in the
following, we shall use the bound

log ρk,l,(1) ≤ A + C + D ≤ A + C + 1

2n − 2
.
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Adding together the bounds previously demonstrated, we get

log ηk,l ≤ − l(2v+2+2n−l)

2n
log n+ 1

2n−2
+ 1

v+n+1−l
+log(v + n)−log(v+n+1−l)

+ (2v + 2n + 1) log(2v + 2n + 1) − (2v + 2n − l + 1) log(2v + 2n − l + 1)

+ (2v + n − l + 1) log(2v + n − l + 1) − (2v + n + 1) log(2v + n + 1)

+ n log n − l log l − (n − l) log(n − l).

By concavity of x log x, the sum of the second and third rows is non-positive. What
remains is decreasing in l and in v, and when l = 3 and v = 0, we get

3

2n
log n + 1

2n − 2
+ 1

n − 2
+ log

(
n

n − 2

)
+ (n − 3) log

(
n

n − 3

)
− 3 log 3

which is maximal for n = 5, and still (barely) negative at this value. Thus, we have
shown so far that ηk,l ≤ 1 for any k, any l ∈ [[3, n − 1]], and any partition λ that we fill
as in Fig. 3.

When l = 1 or l = 2, the approximations on log ηk,l that we were using before are
not good enough, but we can treat these cases separately. When l = 1,

ρk,1 = λ2 + k + n

λ2 + k + n − 1

n∏

j=2

k + j − 1 + λ2 − λ j

k + j − 2 + λ2 − λ j

k + λ2 + λ j + 2n + 1 − j

k + λ2 + λ j + 2n − j

≤ k + n

k + n − 1

n∏

j=2

k + j − 1

k + j − 2

k + 2n + 1 − j

k + 2n − j
= k + 2n − 1

k
;

ηk,1 ≤ k + 2n − 1

k
e− 2k+2n−1

2n
log n.

If k = 1, which only happens once when one makes the partition grow, then the
bound above is 2n e− 2n+1

2n
log n ≤ 2. On the other hand, if k ≥ 2, then the bound is

decreasing in k and therefore smaller than
(
n + 1

2

)
e− 2n+3

2n
log n ≤ 1. So, one also has

ηk,1 ≤ 1 for any k but k = 1, where a correct bound is 2. Similarly, when l = 2,

ρk,2 = λ3+k+n

λ3+k+n−2

2λ3+2k+2n−1

2λ3+2k+2n−3

n∏

j=3

k+ j−1+λ3 −λ j

k+ j−3+λ3 −λ j

k+λ3 +λ j+2n+1− j

k+λ3 +λ j+2n−1− j

≤ k+n

k+n−2

2k+2n−1

2k+2n−3

n∏

j=3

k+ j−1

k+ j−3

k+2n+1− j

k+2n−1− j
= k+2n−2

k

k+2n−1

k+1

2k+2n−1

2k+2n−3
;

ηk,2 ≤ k+2n−2

k

k+2n−1

k+1

2k+2n−1

2k+2n−3
e− 2n+2k−2

n
log n.

Again, the last bound is decreasing in k, smaller than 2 + 1
n

≤ 7
3

when k = 1 and
smaller than 1 when k = 2. Hence, ηk,2 ≤ 1 unless k = 1, where a correct bound is 7

3

(and again this situation occurs at most once whence making the partition grow).
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Conclusion: every quotient ηk,l satisfies ηk,l ≤ 1, but the two exceptions: k = 1 and
l = 1 or 2. The product of the bounds on these two exceptions is 2 × 7

3
= 14

3
, so for

every partition λ, one has indeed

Dλ e− tn,0
2

Bn(λ) =
n∏

l=1

λl−λl+1∏

k=1

ηk,l ≤ 14

3
.

⊓⊔

Remark A small refinement of the previous proof shows that the worst case is in fact
the partition (2, 1, 0, . . . , 0)n—by that we mean that any other partition has quotients
ρk,l that are smaller. Its dimension is provided by the exact formula

Dλ = 8n(n2 − 1)

3
,

so one can replace the bound 14
3

of Proposition 15 by 8
3
.

The upper bound (1.7) is now an easy consequence of Lemma 14 and Proposi-
tion 15. For any partition λ, notice that

Bn(λ)≥ 1

2n

n∑

i=1

(2n+2−2i)λi =
1

2n

n∑

i=1

i(2n+1−i)(λi −λi+1)≥ 1

2

n∑

i=1

i(λi −λi+1)= |λ|
2

.

From this, one deduces that in the case of compact symplectic groups,

Sn(tn,ε) =
∑

λ∈Y⋆
n

(Dλ)2 e−tn,ε Bn(λ) ≤ 64

9

∑

λ∈Y⋆
n

e−ε|λ| log n ≤ 320

9nε
≤ 36

nε

if one assumes that 1
nε ≤ 1

2
(in order to apply Lemma 14). By Proposition 12, one

concludes that

d
USp(n,H)

TV (μ2(1+ε) log n, Haar) ≤ 3

n
ε
2

.

Here one can remove the assumption 1
nε ≤ 1

2
: otherwise, the right-hand side is bigger

than 1 and therefore the inequality is trivially satisfied. This ends the proof of the
upper bound in the case of compact symplectic groups. For their quotients, one can
still use Proposition 15, as follows. For quaternionic Grassmannians,

Sn

(
tn,ε

2

)
=

∑

λ∈YY⋆
2q

Dλ e− tn,ε
2

Bn(λ) ≤ 8

3

∑

λ∈Y⋆
n

e− ε
2
|λ| log n ≤ 40

3n
ε
2

≤ 16

n
ε
2

assuming 1

n
ε
2

≤ 1
2
. This implies that

d
Gr(n,q,H)

TV (μ(1+ε) log n, Haar) ≤ 2

n
ε
4

.

Again, the assumption on n
ε
2 is superfluous, since otherwise the right-hand side is

bigger than 1. Exactly the same proof works for the spaces USp(n)/U(n), with the
same bound (it may be improved by using the fact that one looks only at even
partitions).
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3.2.2 Odd Special Orthogonal Groups and their Quotients

Though the same reasoning holds in every case, we unfortunately have to check case
by case that everything works. For odd special orthogonal groups SO(2n + 1,R), set
tn,ε = 2 (1 + ε) log(2n + 1), with in particular tn,0 = 2 log(2n + 1). The main difference
between SO(2n + 1) and USp(n) is the appearance of half-partitions, which is
solved by:

Lemma 16 For any integer partition λ, denote λ ⊞
1
2

the half-partition λ1 + 1
2
, λ2 +

1
2
, . . . , λn + 1

2
.

Dλ⊞
1
2

Dλ
e− tn,0

2 (Bn(λ⊞
1
2
)−Bn(λ)) ≤ en

(
log 2− log(2n+1)

4

)

≤ 2.

Proof The quotient of dimensions is

∏

1≤i≤ j≤n

λi + λ j + 2n + 2 − i − j

λi + λ j + 2n + 1 − i − j
≤

∏

1≤i≤ j≤n

2n + 2 − i − j

2n + 1 − i − j
= 2n,

and the difference tn,0

2

(
Bn(λ ⊞

1
2
) − Bn(λ)

)
is equal to

log(2n + 1)

2n + 1

(
n∑

i=1

λi + 1

4
+ 2n + 1 − 2i

2

)
≥ log(2n + 1)

2n + 1

(
n

4
+ n2

2

)
= n log(2n + 1)

4
.

This yields the first part of the inequality, and the second part is an easy analysis of
the variations of the bound with respect to n. ⊓⊔

Then, for any integer partition λ, one can as before prove a uniform bound on
Dλ e− log(2n+1) Bn(λ); the differences are tiny, e.g., in many formulas, 2n + 2 is replaced
by 2n + 1, or 1

2n
is replaced by 1

2n+1
. We refer to Appendix 5.1 for these computations.

Proposition 17 In the case of odd special orthogonal groups, at cut-of f time,

Dλ e− tn,0
2

Bn(λ) ≤ 11

10

for any integer partition λ of length n. For half-integer partitions, the bound is re-

placed by 11
5

.

There is one last computation that needs to be done, namely, the special case λ =
( 1

2
, . . . , 1

2
)n = (0, . . . , 0)n ⊞

1
2
—it corresponds to the spin representation of SO(2n +

1, R). The value of Bn(λ) is then n
4
, and Dλ = 2n. Thus, in this special case,

(Dλ)2 e−tn,ε Bn(λ) ≤ en log 4− n log(2n+1)

2 e− εn log(2n+1)

2 ≤ 11

4

1

(2n + 1)ε
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for every n ≥ 5. On the other hand,

Bn(λ) = 1

2n + 1

n∑

i=1

λ2
i + i(2n − i)(λi − λi+1)

≥ |λ|
2n + 1

+ n

2n + 1

n∑

i=1

i(λi − λi+1) = (n + 1)|λ|
2n + 1

≥ |λ|
2

,

so we can now write:

Sn(tn,ε) ≤ 11

4

1

(2n + 1)ε
+
∑

λ∈Y⋆
n

(Dλ)2 e−tn,ε Bn(λ) + (Dλ⊞
1
2 )2 e−tn,ε Bn(λ⊞

1
2
)

≤ 11

4

1

(2n+1)ε
+
∑

λ∈Y⋆
n

(
(Dλ)2 e−tn,0 Bn(λ)+(Dλ⊞

1
2 )2 e−tn,0 Bn(λ⊞

1
2
)
)

e−2ε log(2n+1) Bn(λ)

≤ 11

4

1

(2n + 1)ε
+
∑

λ∈Y⋆
n

(
121

100
+ 121

25

)
e−ε|λ| log(2n+1)

≤ 11

4

1

(2n + 1)ε
+ 121

20

∑

λ∈Y⋆
n

1

(2n + 1)ε|λ| ≤ 33

(2n + 1)ε
≤ 144

(2n + 1)ε

if one assumes 1
(2n+1)ε

≤ 1
2
. Thus, by Proposition 12,

d
SO(2n+1,R)

TV (μ2 (1+ε) log(2n+1), Haar) ≤ 6

(2n + 1)
ε
2

.

and again we can now remove the assumption 1
(2n+1)ε

≤ 1
2
. The same technique

applies to odd real Grassmannians, with

Sn

(
tn,ε

2

)
=

∑

λ∈(2Yq⊔2Yq⊞1)⋆

Dλ e− tn,ε
2

Bn(λ) ≤ 11

10

∑

λ∈Y⋆
n

e− ε
2
|λ| log(2n+1)

≤ 55

10(2n + 1)
ε
2

≤ 16

(2n + 1)
ε
2

,

and therefore

d
Gr(2n+1,q,R)

TV (μ(1+ε) log(2n+1), Haar) ≤ 2

(2n + 1)
ε
4

.

3.2.3 Even Special Orthogonal Groups and their Quotients

Though the computations have to be done once again, we shall prove exactly the
same bounds as before for even special orthogonal groups and even real Grassman-
nians. Denote tn,ε = 2 (1 + ε) log(2n). The possibility of a sign ± for the last part λn

of the partitions leads to a coefficient 2 in the series Sn(t), and on the other hand, the
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case of half-partitions is reduced to the case of partitions by way of an analogue of
Lemma 16. Indeed,

Dλ⊞
1
2

Dλ
e− tn,0

2 (Bn(λ⊞
1
2
)−Bn(λ)) ≤ en log 2− (2n−1) log(2n)

8 ≤ 12

5

for any n ≥ 5 and any partition. Again, we put the proof of the following Proposition
at the end of the paper, in Appendix 5.2.

Proposition 18 In the case of even special orthogonal groups, at cut-of f time,

Dλ e− tn,0
2

Bn(λ) ≤ 4

3

(
respectively,

48

15

)

for any integer partition (resp. any half-partition) λ of length n.

Besides, the same proof as in the case of odd special orthogonal groups shows
that Bn(λ) ≥ |λ|

2
for any partition. For the special half-partition λ = (0, . . . , 0)n ⊞

1
2

that cannot be treated by combining Lemmas 14 and 16, one has Dλ = 2n−1 and
Bn(λ) = n

4
, hence

(Dλ)2 e−tn,ε Bn(λ) ≤ e(n−1) log 4− n log(2n)

2 e− εn log(2n)

2 ≤ 1

(2n)ε

for n ≥ 5. We conclude that

1

2
Sn(tn,ε) ≤ 1

(2n)ε
+
∑

λ∈Y⋆
n

(Dλ)2 e−tn,ε Bn(λ) + (Dλ⊞
1
2 )2 e−tn,ε Bn(λ⊞

1
2
)

≤ 1

(2n)ε
+
∑

λ∈Y⋆
n

(
16

9
+ 2304

225

)
e−ε|λ| log(2n) ≤ 2749

45(2n)ε
≤ 72

(2nε)
,

and therefore, by Proposition 12,

d
SO(2n,R)

TV (μ2(1+ε) log(2n), Haar) ≤ 6

(2n)
ε
2

.

For even real Grassmannian varieties,

Sn

(
tn,ε

2

)
=

∑

λ∈(2Yq⊔2Yq⊞1)⋆

Dλ e− tn,ε
2

Bn(λ) ≤ 4

3

∑

λ∈Y⋆
n

e− ε
2
|λ| log(2n) ≤ 20

3(2n)
ε
2

≤ 16

(2n)
ε
2

,

and again, the total variation distance is bounded by 2/(2n)
ε
4 . So, the inequalities take

the same form for even and odd special orthogonal groups or real Grassmannians,
and the proof of the upper bound in this case is done. The same inequality holds also
for the spaces of structures SO(2n)/U(n).

3.2.4 Special Unitary Groups and their Quotients

Set tn,ε = 2(1 + ε) log n. For special unitary groups, Weyl’s dimension formula for-
tunately takes a much simpler form than before, but on the other hand, the
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computations on Bn(λ) are this time a little more subtle. We shall still prove that
almost every quotient ηk,l of the quantities Dλ e−tn,0 Bn(λ) with λ going from

(λl+1 + k − 1, . . . , λl+1 + k − 1, λl+1, . . . , λn−1)n−1

to (λl+1 + k, . . . , λl+1 + k, λl+1, . . . , λn−1)n−1

is smaller than 1; but in practice, what will happen is that the negative exponentials
may be much larger than before, whereas the quotients of dimensions ρk,l will be
much smaller. Consider for a start ηk,n−1. One has

ρk,n−1 =
n−1∏

i=1

k + n − i

k − 1 + n − i
= k + n − 1

k
,

whereas Bn(λ) is changed by (n−1)(n+2k−1)

n2 . So,

ηk,n−1 = k + n − 1

k
e− (n−1)(n+2k−1)

n2 log n ≤

⎧
⎨
⎩

n e− n2−1

n2
log n = e

log n

n2 ≤ 2
1
4 if k = 1,

n+1
2

e− n2+2n−3

n2 log n ≤ n+1
2n

≤ 1 if k ≥ 2,

by using the decreasing behavior with respect to k. Notice that ρ1,n−1 is indeed much
smaller than before (linear in n whereas before it grew exponentially in n), but Bn(λ)

for k = 1 is almost constant instead of linear in n.
In the general case,

ρk,l =
n∏

j=l+1

k′ − λ j + j − 1

k′ − λ j + j − l − 1
≤

n∏

j=l+1

k + j − 1

k + j − l − 1

with the usual notation k′ = k + λl+1. On the other hand, the transformation on
partitions makes Bn(λ) change by

−l(n − l)(n + 2k′ − 1) + 2l|λ|l+1,n

n2
,

where |λ|l+1,n is the restricted size
∑n

j=l+1 λ j. Notice now that

−(n − l)k′ + |λ|l+1,n =
n∑

j=l+1

λ j − λl+1 − k ≤
n∑

j=l+1

−k = −(n − l)k.

So,

ηk,l ≤
n∏

j=l+1

k + j − 1

k + j − l − 1
e− l(n−l)(n+2k−1)

n2
log n ≤

(
n

l

)
e− l(n−l)(n+1)

n2
log n

which can as usual be estimated by Stirling (this is the same kind of computations as
before). Hence, with l ≥ 3, the last bound is always smaller than 1, and also if l = 2

unless n = 4. If n = 4 and l = 2, then

ηk,2 ≤ (k + 2)(k + 3)

k(k + 1)
e− 3+2k

2
log 2 ≤

{
3

23/2 if k = 1,

1 if k ≥ 2.
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Finally, when l = 1, one has exactly the same bound as for l = n − 1, so 2
1
4 when

k = 1 and 1 for k = 2, Multiplying together all the bounds (3/2
3
2 and twice 2

1
4 ), we

obtain:

Proposition 19 In the case of special unitary groups, at cut-of f time,

Dλ e− tn,0
2

Bn(λ) ≤ 3

2

for any integer partition λ of length n − 1.

Another big difference with the previous cases is that one cannot use Lemma 14
anymore. Indeed, for λ = (k, . . . , k)n−1, Bn(λ) = k(n−1)

n
= |λ|

n
, so there is no hope to

have an inequality of the type Bn(λ) ≥ α |λ| for any partition. That said, set δi =
λi − λi+1; then,

Bn(λ) = 1

n2

∑

1≤i< j≤n

(λi − λ j)
2 + 1

n

n−1∑

i=1

i(n − i) δi ≥
n−1∑

i=1

i(n − i)

n
δi.

This leads us to study the series

Tn(x) =
∑

δ1,...,δn−1≥0

x
∑n−1

i=1
i(n−i)

n
δi =

n−1∏

i=1

1

1 − x
i(n−i)

n

.

Clearly, each Tn(x) is convex on R+, so if we can show for example that Tn

(
1
8

)
stays

smaller than 1 + K
8

for every n, then we will also have the inequality Tn(x) ≤ 1 + Kx

for every 0 ≤ x ≤ 1
8
. Set Un(x) = log(Tn(x)); one has

Un(x) =
n−1∑

i=1

− log
(

1 − x
i(n−i)

n

)
≤

n−1∑

i=1

x
i(n−i)

n ≤ 2

⌊ n
2
⌋∑

i=1

x
i
2 ≤ 2

1 − x
1
2

for 0 ≤ x ≤ 1
8
. It follows that Tn(x) ≤ 1 + Kx with K ≤ 169. Suppose 1

n2ε ≤ 1
8
. Then,

Sn(tn,ε) =
∑

λ∈Y⋆
n−1

(Dλ)2 e−tn,ε Bn(λ) ≤ 9

4

∑

λ∈Y⋆
n−1

(
1

n2ε

)Bn(λ)

≤ 9

4

(
Tn

(
1

n2ε

)
− 1

)
≤ 1521

4n2ε
≤ 400

n2ε
,

which leads to

d
SU(n,C)

TV (μ2(1+ε) log n, Haar) ≤ 10

nε
.

If 1
n2ε ≥ 1

8
, then this inequality is also trivially satisfied. Hence, the case of special

unitary groups is done. For the quotients SU(n)/SO(n), one obtains

Sn

(
tn,ε

2

)
≤ 3

2

(
Tn

(
1

nε

)
− 1

)
≤ 507

2nε
≤ 256

nε
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and therefore

d
SU(n,C)/SO(n,R)

TV (μ(1+ε) log n, Haar) ≤ 8

n
ε
2

.

The proof is exactly the same for SU(2n)/USp(n) and gives the same inequality,
however with (2n)

ε
2 instead of n

ε
2 .

For the complex Grassmannian varieties, we have seen that it was easier to
see them as quotients of U(n) (instead of SU(n)), and this forces us to do some
additional computations. Though the cut-off phenomenon also holds in the case of
U(n), the set of irreducible representations is then labelled by sequences of possibly
negative integers, which makes our scheme of growth of partitions a little bit more
cumbersome to apply. Fortunately, for Grassmannians, the spherical representations
can be labelled by true partitions, but then the dimensions are given by a different
formula and we have to do once again the estimates of quotients ρk,l and ηk,l. We
refer to Appendix 5.3 for a proof of the following:

An(λ) e− log n Bn(λ) ≤ 1

for any partition. Then, one can compare directly Bn(λ) to |λ|:

Bn(λ) = 2

n

p∑

i=1

λ2
i + (n + 1 − 2i)λi ≥ 2

p∑

i=1

i(n − i)

n
(λi − λi+1) ≥

p∑

i=1

i(λi − λi+1) = |λ|.

We conclude that

Sn

(
tn,ε

2

)
≤
∑

λ∈Y∗
q

e−ε|λ| log n ≤ 5

nε
≤ 16

nε
; d

Gr(n,q,C)

TV (μ(1+ε) log n, Haar) ≤ 2

n
ε
2

and this ends the proof of all the upper bounds of type (Eq. 1.7).

4 Lower Bounds Before the Cut-Off Time

The proofs of the lower bounds before cut-off time rely on the following simple
ideas, which appeared already in some cases for instance in [25, Section 7]. Denote
λmin the (spherical) irreducible representation “of minimal eigenvalue” identified in
Section 3.1. We then consider the random variable:

� =
{

χλmin(k) in the case of groups,√
Dλmin φλmin(gK) in the case of symmetric spaces of type non-group.

(4.1)

In this equation, k or gK will be taken at random either under the Haar measure of
the space, or under a marginal law μt of the Brownian motion; we shall denote E∞
and Et the corresponding expectations. When � is real valued, we also denote Var∞
and Vart the corresponding variances:

Var[�] = E[�2] − E[�]2 = E
[
(� − E[�])2

]
.
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In the case of unitary groups and their quotients, � will be complex valued, and we
shall use the notations Var∞ and Vart for the expectation of the square of the module

of � − E[�]:

Var[�] = E
[
|�|2

]
− |E[�]|2 = E

[
|� − E[�]|2

]
.

The normalization of Eq. 4.1 is actually chosen so that � is in any case of mean 0 and
variance 1 under the Haar measure.

Remark In fact, much more is known about the asymptotic distribution of these
functions under Haar measure, when n goes to infinity; see [8]. For instance, over
the unitary groups, the moments of order smaller than n0 of χ (1,0,...,0)(g) = tr g agree
with those of a standard complex gaussian variable as soon as n is bigger than n0.
In particular, if g is distributed according to the Haar measure of U(n, C), then
tr g converges (without any normalization) towards a standard complex gaussian
variable. One has similar results for orthogonal and symplectic groups, this time with
standard real gaussian variables. As far as we know, the same problem with spherical
functions on the classical symmetric spaces is still open, and certain computations
performed in this section are related to this question.

One will also prove that under a marginal law μt, the variance of � stays small for
every value of t, whereas its mean before cut-off time is big (not at all near zero).
Standard methods of moments allow then to prove that the probability of a event

Eα = {k | |�(k)| ≥ α} or {gK | |�(gK)| ≥ α}

is before cut-off time near 1 under μt, and near 0 under Haar measure (for an
adequate choice of α). This is sufficient to prove the lower bounds, see Section 4.2;
in other words, � is a discriminating random variable for the cut-off phenomenon.

The method presented above reduces the problem mainly to the expansion in
irreducible characters or in spherical zonal functions of �2 or of |�|2; cf. Section 4.1.
In the case of compact groups, this amounts simply to understand the tensor product
of Vλmin with itself, or with its conjugate when the character � is complex valued.
However, for compact symmetric spaces of type non-group, this is far less obvious.
Notice that a zonal spherical function φλ can be uniquely characterized by the
following properties:

– it is a linear combination of matrix coefficients of the representation Vλ:

φλ(gK) =
Dλ∑

i=1

Dλ∑

j=1

cijρλ
ij(gK).

– it is in L 2(G/K)K, i.e., it is K-bi-invariant; and it is normalized so that
φλ(eK) = 1.

Consequently, if (Vλmin)⊗2 = Vν1 ⊕ · · · ⊕ Vνs ⊕ Vǫ1 ⊕ · · · ⊕ Vǫt with the Vνi spherical
irreducible representations and the Vǫ j non-spherical irreducible representations,
then there exists an expansion

(φλmin)2 = cν1
φν1 + cν2

φν2 + · · · + cνs
φνs . (4.2)
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Nonetheless, it seems difficult to guess at the same time the values of the coefficients
cν in this expansion. The only “easy” computation is the coefficient of the constant
function in (φλ)2, or more generally in a product φλ φρ :

cφ1G [φλ φρ] =
∫

X

φλ(x) φρ(x) dx =
{

0 if φρ �= φλ,
1

Dλ otherwise.

As far as we know, for a general zonal spherical function, there is a definitive
solution to Eq. 4.2 only:

– in the case of symmetric spaces of rank 1, see [12];
– for the spherical functions of low degree of the pairs (SU(n), SO(n)) and

(SU(2n), USp(n)), because they are known to be Jack polynomials of parameter
2 or 1/2; see [21, Chapter VII].

For our problem, one can fortunately give in every case a geometric description
of the discriminating spherical representation and of the corresponding spherical
vector. This yields an expression of φλmin(gK) as a degree 2 polynomial of the matrix
coefficients of g. Now it turns out that the joint moments of these coefficients under
μt and μ∞ = Haar can be calculated by mean of the stochastic differential equations
defining the G-valued Brownian motion; see Lemma 23, which we reproduce from
[18, Proposition 1.4]. As (φλmin(gK))2 or |φλmin(gK)|2 is also a polynomial in the
coefficients gij, one can therefore compute its expectation under μt, and this actually
gives back the coefficients in the expansion (4.2). Thus, the algebraic difficulties
raised in our proof of the lower bounds will be solved by arguments of stochastic
analysis.

4.1 Expansion of the Square of the Discriminating Zonal Spherical Functions

The orthogonality of characters or of zonal spherical functions ensures that for every
non-trivial (spherical) irreducible representation λ,

E∞[χλ] = E∞[χλ(k) χ 1K (k)] =
〈
χλ
∣∣ χ 1K

〉
L 2(K)

= 0;

E∞
[√

Dλ φλ
]

=
√

Dλ E∞[φλ(gK) φ1G(gK)] =
√

Dλ
〈
φλ
∣∣ φ1K

〉
L 2(G/K)

= 0.

The function corresponding to the trivial representation, which is just the constant
function equal to 1, has of course mean 1 under the Haar measure, and also under
μt. On the other hand, Theorem 11 allows one to compute the mean of a non-trivial
irreducible character of zonal spherical function under μt:

Et[χλ] =
∫

K

pK
t (k) χλ(k) dk = [χλ](pK

t ) = Dλ e− t
2

Bn(λ) =
{

An(λ) e−t Bn(λ)
} 1

2

Et

[√
Dλ φλ

]
=

√
Dλ

∫

X=G/K

pX
t (x) φλ(x) dx =

√
Dλ

[φλ](pX
t )

Dλ
=
{

An(λ) e−t Bn(λ)
} 1

2

with the notations of Proposition 12, and where [χλ]( f ) or [φλ]( f ) denotes the
coefficient of χλ or φλ in the expansion of f . So, with the help of the table of
Lemma 13, we can compute readily Et[�] in each case, and also E∞[�].



The Cut-off Phenomenon for Brownian Motions 475

In order to estimate Vart[�] and Var∞[�], we now need to find a representation-
theoretic interpretation of either �2 when � is real-valued, or of |�|2 when � is
complex-valued. We begin with compact groups:

Lemma 20 Suppose G = SO(2n,R) or SO(2n + 1,R) or USp(n,H). Then � =
χ (1,0,...,0)n is real-valued, and

�2 = (χ (1,0,...,0)n)2 = χ (2,0,...,0)n + χ (1,1,0,...,0)n + χ (0,0,...,0)n . (4.3)

On the other hand, when G = SU(n,C), � is complex-valued, and

|�|2 = χ (1,0,...,0)n−1 χ (1,...,1)n−1 = χ (2,1,...,1)n−1 + χ (0,0,...,0)n−1 . (4.4)

Proof In each case, �(k) = tr k, up to the map (Eq. 1.2) in the symplectic case; this
explains why � is real-valued in the orthogonal and symplectic case, and complex-
valued in the unitary case. Then, the simplest way to prove the identities 4.3 and 4.4 is
by manipulating the Schur functions of type A, B, C and D; indeed, these polynomials
evaluated on the eigenvalues are known to be the irreducible characters of the
corresponding groups, see Section 2.3. We start with the special orthogonal groups.
In type Bn, (z1 + · · · + zn + z−1

1 + · · · + z−1
n + 1)2 is indeed equal to the sum of the

three terms

sb (2,0,...,0)(Z , Z −1, 1) =

⎛
⎝ ∑

1≤i≤ j≤n

ziz j + ziz
−1
j + z−1

i z j + z−1
i z−1

j

⎞
⎠

+
(

n∑

i=1

zi + z−1
i

)
− n;

sb (1,1,0,...,0)(Z , Z −1, 1) =

⎛
⎝ ∑

1≤i< j≤n

ziz j + ziz
−1
j + z−1

i z j + z−1
i z−1

j

⎞
⎠

+
(

n∑

i=1

zi + z−1
i

)
+ n;

sb (0,...,0)(Z , Z −1, 1) = 1;

whereas in type Dn, (z1 + · · · + zn + z−1
1 + · · · + z−1

n )2 is equal to the sum of the three
terms

sd(2,0,...,0)(Z , Z −1) =

⎛
⎝ ∑

1≤i≤ j≤n

ziz j + ziz
−1
j + z−1

i z j + z−1
i z−1

j

⎞
⎠− n − 1;

sd(1,1,0,...,0)(Z , Z −1) =

⎛
⎝ ∑

1≤i< j≤n

ziz j + ziz
−1
j + z−1

i z j + z−1
i z−1

j

⎞
⎠+ n;

sd(0,...,0)(Z , Z −1) = 1.
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For compact symplectic groups, hence in type Cn, (z1 + · · · + zn + z−1
1 + · · · + z−1

n )2

is indeed equal to the sum of the three terms

sc(2,0,...,0)(Z , Z −1) =

⎛
⎝ ∑

1≤i≤ j≤n

ziz j + ziz
−1
j + z−1

i z j + z−1
i z−1

j

⎞
⎠− n;

sc(1,1,0,...,0)(Z , Z −1) =

⎛
⎝ ∑

1≤i< j≤n

ziz j + ziz
−1
j + z−1

i z j + z−1
i z−1

j

⎞
⎠+ n − 1;

sc(0,...,0)(Z , Z −1) = 1;

and this is also (sc(1,0,...,0)(Z , Z −1))2 = (χ (1,0,...,0)(k))2 = �(k)2. Thus, formula 4.3 is
proved. In type An−1, notice that for every character χλ, χλ(k) = χλ(k−1) = χλ∗

(k),
where λ∗ is the sequence obtained from λ by the simple transformation

(λ1 ≥ λ2 ≥ · · · ≥ λn−1)n−1 �→ (λ1 ≥ λ1 − λn−1 ≥ · · · ≥ λ1 − λ2)n−1. (4.5)

Indeed, if z1, . . . , zn are the eigenvalues of k, then

χλ(k) = s(λ1,...,λn−1)n−1
(z−1

1 , . . . , z−1
n ) = s(λ1,...,λn−1,0)n

(z−1
1 , . . . , z−1

n )

= s(0,−λn−1,...,−λ1)n
(zn, . . . , z1) = s(λ1,λ1−λn−1,...,0)n

(z1, . . . , zn)

= s(λ1,λ1−λn−1,...,λ1−λ2)n−1
(z1, . . . , zn) = χλ∗

(k)

Here, one uses the relation z1z2 · · · zn = 1 for every element of the torus of SU(n,C),
which enables one to transform a n-vector of possibly negative integers into a
(n − 1)-vector of non-negative integers. In particular, |�(k)|2 = |χ (1,0,...,0)n−1(k)|2 =
χ (1,0,...,0)n−1(k) χ (1,1,...,1)n−1(k). Then, a simple calculation with symmetric functions
yields formula 4.4:

χ (1,0,...,0)n−1(k) χ (1,1,...,1)n−1(k) = (z1 + · · · + zn)(z
−1
1 + · · · + z−1

n )

=

⎛
⎝n − 1 +

∑

i< j

ziz
−1
j + z−1

i z j

⎞
⎠+ 1

= s(1,0,...,0,−1)n
(Z ) + s(0,...,0)n

(Z )

= s(2,1,...,1)n−1
(Z ) + s(0,...,0)n−1

(Z )

= χ (2,1,...,1)n−1(k) + χ (0,...,0)n−1(k)

where Z = {z1, . . . , zn} is the alphabet of the eigenvalues of k. ⊓⊔

4.1.1 Values of the Zonal Functions and Abstract Expansions of their Squares

As explained in the introduction of this part, the case of compact symmetric spaces of
type non-group is much more involved. We start by finding an expression of �(gK)

in terms of the matrix coefficients gij of the matrix g.
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Proposition 21 In terms of the matrix coef f icients of g, φλmin(gK) is given by:

G/K Vλmin φλmin (gK) k

Gr(n, q, R) so⊥(n, C) 1
p

∑p
i=1

∑p
j=1

(gij)
2 + 1

q

∑n
i=p+1

∑n
j=p+1(gij)

2 − 1 R

Gr(n, q, C) sl(n, C) 1
p

∑p
i=1

∑p
j=1

|gij|2 + 1
q

∑n
i=p+1

∑n
j=p+1 |gij|2 − 1 R

Gr(n, q, H) sp⊥(2n, C) 1
p

∑p
i=1

∑p
j=1

|gij|2 + 1
q

∑n
i=p+1

∑n
j=p+1 |gij|2 − 1 R

SO(2n, R)/U(n, C) A2(C2n) 1
n

∑n
i=1

∑n
j=1 g(2i)(2 j)g(2i−1)(2 j−1) − g(2i)(2 j−1)g(2i−1)(2 j) R

SU(n, C)/SO(n, R) S2(Cn) 1
n

∑n
i=1

∑n
j=1(gij)

2 C

SU(2n, C)/USp(n, H) A2(C2n) 1
n

∑n
i=1

∑n
j=1 g(2i)(2 j)g(2i−1)(2 j−1) − g(2i)(2 j−1)g(2i−1)(2 j) C

USp(n, H)/U(n, C) S2(C2n) 1
n

∑n
i=1

∑n
j=1([1](gij))

2 + ([j](gij))
2 − ([i](gij))

2 − ([k](gij))
2 R

For real Grassmannians, so⊥(n, C) denotes the orthogonal complement of so(n, C)

in sl(n,C); and for quaternionic Grassmannians, sp⊥(2n,C) denotes the orthogonal

complement of sp(2n,C) in sl(2n,C).

Proof Each space Vλmin described in the statement of our proposition is endowed
with a natural action of G = SO(n) or SU(n) or USp(n), namely, the action by
conjugation in the case of Grassmannian varieties, and the diagonal action on tensors
in the case of spaces of structures. Then, to say that

V
(2,0,...,0)⌊ n

2
⌋

SO(n,R)
= so⊥(n, C) ; V

(1,0,...,0,−1)n

U(n,C)
= sl(n,C) ; V

(1,1,0,...,0)n

USp(n,H)
= sp⊥(2n,C) ;

V
(1,1,0,...,0)n

SO(2n,R)
= A

2(Cn) ; V
(2,0,...,0)n−1

SU(n,C)
= S

2(Cn) ; V
(1,1,0,...,0)2n−1

SU(2n,C)
= A

2(C2n) ;

V
(2,0,...,0)n

USp(n,H)
= S

2(C2n)

is equivalent to the following statements: the trace of g ∈ SO(n,R) acting on
so⊥(n,C) is given by the Schur function of type B or D and label (2, 0, . . . , 0)⌊ n

2
⌋;

the trace of g ∈ U(n,C) acting on sl(n, C) is given by the Schur function of type A
and label (1, 0, . . . , 0, −1)n; etc. Let us detail for instance this last case. We have seen
in the previous Lemma that

s(1,0,...,0,−1)n
(Z ) = (z1 + · · · + zn)(z

−1
1 + · · · + z−1

n ) − 1.

On the other hand, the module gl(n, C) on which SU(n,C) acts by conjugation is
the tensor product of modules (Cn) ⊗ (Cn)∗. It follows that the trace of the action by
conjugation of g ∈ SU(n,C) on gl(n,C) is

χ(g) = (trg) (tr(g−1)t) = (z1 + · · · + zn)(z
−1
1 + · · · + z−1

n )

if z1, . . . , zn are the eigenvalues of g. Subtracting 1 amounts to look at the irreducible
submodule sl(n,C) inside gl(n,C). The other cases are entirely similar, and the
corresponding values of the Schur functions have all been computed in Lemma 20.

Once the discriminating representations have been given a geometric interpreta-
tion, it is easy to find the corresponding K-invariant (spherical) vectors. We endow
each space of matrices with the invariant scalar product 〈M | N〉 = tr MN†, and each
space of tensors with the scalar product 〈x1 ⊗ x2 | y1 ⊗ y2〉 = 〈x1 | y1〉 〈x2 | y2〉, where
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〈v | w〉 is the usual Hermitian scalar product on Cn or C2n. We also denote (ei)i the
canonical basis of Cn or C2n. Then, the K-spherical vectors write as:

G K eλmin

SO(n) SO(p) × SO(q) 1√
npq

(
−qIp 0

0 pIq

)

SU(n) S(U(p) × U(q)) 1√
npq

(
−qIp 0

0 pIq

)

USp(n) USp(p) × USp(q) 1√
2npq

(
−qI2 p 0

0 pI2q

)

SO(2n) U(n) 1√
2n

∑n
i=1 e2i ⊗ e2i−1 − e2i−1 ⊗ e2i

SU(n) SO(n) 1√
n

∑n
i=1 ei ⊗ ei

SU(2n) USp(n) 1√
2n

∑n
i=1 e2i ⊗ e2i−1 − e2i−1 ⊗ e2i

USp(n) U(n) 1√
2n

∑2n
i=1 ei ⊗ ei

In each case, eλmin belongs trivially to Vλmin and is of norm 1, so the only thing to
check then is the K-invariance. In the case of Grassmannian varieties, the matrix
eλmin commutes indeed with G(p) × G(q), since it is also (p, q)-block-diagonal and
with scalar multiples of the identity matrix in each diagonal block. The notation
USp(n, H) used in this paper was meant to avoid any confusion between Sp(2n,C)

and its compact form, the compact symplectic group. For U(n) inside SO(2n), we use
the well-known fact that inside SL(2n, C),

SO(2n, R) ∩ Sp(2n,C) ≃ U(n, C), (4.6)

the isomorphism being given by the map (Eq. 1.1). This implies in particular
that U(n) leaves invariant the skew-symmetric tensor

∑n
i=1 e2i ⊗ e2i−1 − e2i−1 ⊗ e2i

corresponding to the skew-symmetric form defining Sp(2n,C). The intersection
formula 4.6 also proves that U(n) leaves invariant the symmetric tensor

∑2n
i=1 ei ⊗ ei,

whence the value of the spherical vector for U(n) inside USp(n). Finally, for SO(n)

inside SU(n) and USp(n) inside SU(2n), we use again the defining symmetric bilinear
form or skew-symmetric bilinear form associated to the group K to construct a K-
invariant vector.

The value of φλmin is then given by the formula φλ(g) =
〈
eλ
∣∣ ρλ(g)eλ

〉
, that is to say

tr(Mp,q g Mp,q gt) ; tr(Mp,q g Mp,q g†) ; 1

2
tr(M̃p,q g̃ M̃p,q g̃†)

for real, complex and quaternionic Grassmannians;

1

n

n∑

i, j=1

(gij)
2 ; 1

2n

2n∑

i, j=1

(̃gij)
2

for SU(n)/SO(n) and USp(n)/U(n); and

1

n

n∑

i=1

n∑

j=1

g(2i)(2 j)g(2i−1)(2 j−1) − g(2i)(2 j−1)g(2i−1)(2 j)
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for SO(2n)/U(n) and SU(2n)/USp(n). Here by g̃ we mean the complex matrix of size
2n × 2n obtained from a quaternionic matrix of size n × n by the map (Eq. 1.2). In
this last case, the computations can in fact be done inside M(n, H): indeed,

(̃g(2i−1)(2 j−1))
2 + (̃g(2i−1)(2 j))

2 + (̃g(2i)(2 j−1))
2 + (̃g(2i)(2 j))

2

= 2
(
([1](gij))

2 + ([j](gij))
2 − ([i](gij))

2 − ([k](gij))
2
)
,

whereas M̃⋆ = (M̃)† and 1
2

trM̃ = ℜ(tr M). Thus, the formulas for the discriminat-
ing spherical functions of the spaces of structures are entirely proved, and for
Grassmannian varieties, it suffices to check that for any unitary quaternionic ma-
trix N,

ℜ(tr Mp,qNMp,qN⋆) = 1

p

p∑

i=1

p∑

j=1

|gij|2 + 1

q

n∑

i=p+1

n∑

j=p+1

|gij|2 − 1;

indeed the real and complex cases are specializations of this formula. This is easily
done. ⊓⊔

Lemma 22 There exists coef f icients a, b , c, . . . (dif ferent on each line, and depending

on n and q) such that the following expansions hold:

Gr(n, q, R) :
(
φ

(2,0,...,0)⌊ n
2

⌋
)2

= 2

n2 + n − 2
+ a φ

(2,0,...,0)⌊ n
2

⌋ + b φ
(1,1,0...,0)⌊ n

2
⌋

+ c φ
(2,2,0,...,0)⌊ n

2
⌋ + d φ

(3,1,0,...,0)⌊ n
2

⌋ + e φ
(4,0,...,0)⌊ n

2
⌋;

Gr(n, q, C) :
(
φ(2,1,...,1)n−1

)2 = 1

n2 − 1
+a φ(2,1,...,1)n−1 +b φ(4,2,...,2)n−1 +c φ(2,2,1,...,1,0)n−1;

Gr(n, q, H) :
(
φ(1,1,0,...,0)n

)2 = 1

2n2 − n − 1
+a φ(12,0,...,0)n−1+b φ(14,0,...,0)n +c φ(2,2,0,...,0)n;

SO(2n)/U(n) :
(
φ(1,1,0,...,0)n

)2 = 1

2n2 − n
+a φ(12,0,...,0)n +b φ(14,0,...,0)n +c φ(2,2,0,...,0)n;

SU(n)/SO(n) :
∣∣φ(2,0,...,0)n−1

∣∣2 = 2

n2 + n
+ a φ(4,2,...,2)n−1 ;

SU(2n)/USp(n) :
∣∣φ(1,1,0,...,0)2n−1

∣∣2 = 1

2n2 − n
+ a φ(2,2,1,...,1,0)2n−1;

USp(n)/U(n) :
(
φ(2,0,...,0)n

)2 = 1

2n2 + n
+ a φ(2,0,...,0)n + b φ(2,2,0,...,0)n + c φ(4,0,...,0)n .

In these formulas, it is understood that if the label λ of the spherical function φλ does

not make sense for a choice of n and q, then this term does not appear in the expansion.

Proof Each time, one computes the expansion in irreducible representations of
Vλmin ⊗ Vλmin in the case of real-valued spherical functions, and of Vλmin ⊗ Vλ∗

min in
the case of complex-valued spherical functions, where λ �→ λ∗ is the transformation
of weights given by Eq. 4.5. This expansion can be found with Schur functions; let us
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detail for instance the case of complex Grassmannian varieties Gr(n, q, C). With an
alphabet of eigenvalues Z = {z1, . . . , zn} such that z1z2 · · · zn = 1, one has

s(0,...,0)n−1
(Z ) = 1

s(2,1,...,1)n−1
(Z ) = s(1,0,...,0,−1)n

(Z ) =

⎛
⎝

n∑

i, j=1

ziz
−1
j

⎞
⎠− 1

s(4,2,...,2)n−1
(Z ) = s(2,0,...,0,−2)n

(Z ) =

⎛
⎝ ∑

1≤i≤ j≤n

∑

1≤k≤l≤n

ziz jz
−1
k z−1

l

⎞
⎠−

⎛
⎝

n∑

i, j=1

ziz
−1
j

⎞
⎠

s(2,2,1,...,1,0)n−1
(Z ) = s(1,1,0,...,0,−1,−1)n

(Z )=

⎛
⎝ ∑

1≤i< j≤n

∑

1≤k<l≤n

ziz jz
−1
k z−1

l

⎞
⎠−

⎛
⎝

n∑

i, j=1

ziz
−1
j

⎞
⎠

s(3,1,...,1,0)n−1
(Z ) = s(2,0,...,0,−1,−1)n

(Z )=

⎛
⎝ ∑

1≤i≤ j≤n

∑

1≤k<l≤n

ziz jz
−1
k z−1

l

⎞
⎠−

⎛
⎝

n∑

i, j=1

ziz
−1
j

⎞
⎠+1

s(3,3,2,...,2)n−1
(Z ) = s(1,1,0,...,0,−2)n

(Z )=

⎛
⎝ ∑

1≤i< j≤n

∑

1≤k≤l≤n

ziz jz
−1
k z−1

l

⎞
⎠−

⎛
⎝

n∑

i, j=1

ziz
−1
j

⎞
⎠+1.

Consequently,

(V(2,1,...,1)n−1)⊗2 = V(0,...,0)n−1 ⊕ 2 V(2,1,...,1)n−1 ⊕ V(4,2,...,2)n−1 ⊕ V(2,2,1,...,1,0)n−1

⊕V(3,3,2,...,2)n−1 ⊕ V(3,1,...,1,0)n−1 ,

because the same equality with Schur functions holds. The second line corresponds
to non spherical representations, so only the terms of the first line can contribute to
(φ(2,1,...,1)n−1)2. Entirely similar calculations yield:

– Gr(n, q, R):
(

V
(2,0,...,0)⌊ n

2
⌋
)⊗2

= V
(0,...,0)⌊ n

2
⌋ ⊕ V

(2,0,...,0)⌊ n
2

⌋ ⊕ V
(1,1,0...,0)⌊ n

2
⌋

⊕ V
(2,2,0,...,0)⌊ n

2
⌋ ⊕ V

(3,1,0,...,0)⌊ n
2

⌋ ⊕ V
(4,0,...,0)⌊ n

2
⌋

– Gr(n, q, H):
(
V(1,1,0,...,0)n

)⊗2 = V(0,...,0)n ⊕ V(1,1,0,...,0)n ⊕ V(1,1,1,1,0,...,0)n ⊕ V(2,2,0,...,0)n

⊕ V(2,1,1,0,...,0)n .

Only the terms on the first line are spherical.
– SO(2n,R)/U(n,C):

(
V(1,1,0,...,0)n

)⊗2 = V(0,...,0)n ⊕ V(1,1,0,...,0)n ⊕ V(1,1,1,1,0,...,0)n ⊕ V(2,2,0,...,0)n

⊕ V(2,0,...,0)n ⊕ V(2,1,1,0,...,0)n ,

again with non-spherical representations gathered on the second line.
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– SU(n,C)/SO(n,R):

V(2,0,...,0)n−1 ⊗ V(2,2,...,2)n−1 = V(0,...,0)n−1 ⊕ V(4,2,...,2)n−1 ⊕ V(2,1,...,1)n−1,

and the last term is not a spherical representation.
– SU(2n,C)/USp(n,H):

V(1,1,0,...,0)2n−1 ⊗ V(1,...,1,0)2n−1 = V(0,...,0)2n−1 ⊕ V(2,2,1,...,1,0)2n−1 ⊕ V(2,1,...,1)2n−1 ,

and again the last term is not spherical.
– USp(n, H)/U(n,C):

(
V(2,0,...,0)n

)⊗2 = V(0,...,0)n ⊕ V(2,0,...,0)n ⊕ V(2,2,...,0)n ⊕ V(4,0,...,0)n

⊕ V(1,1,0,...,0)n ⊕ V(3,1,0,...,0)n .

The terms on the second line corresponds to non-spherical representations.

As mentioned before, the coefficient of the constant function in |φλmin |2 is then always
equal to 1

Dλmin
. ⊓⊔

For the spaces SU(n)/SO(n) and SU(2n)/USp(n), the remaining coefficient a can
be found by evaluating the spherical functions at eG. Thus,

SU(n)/SO(n) :
∣∣φ(2,0,...,0)n−1

∣∣2 = 2

n2 + n
+ n2 + n − 2

n2 + n
φ(4,2,...,2)n−1 ;

SU(2n)/USp(n) :
∣∣φ(1,1,0,...,0)2n−1

∣∣2 = 1

2n2 − n
+ 2n2 − n − 1

2n2 − n
φ(2,2,1,...,1,0)2n−1 .

But in the other cases, the values of the spherical functions appearing in the right-
hand side of the formulas of Lemma 22 are unfortunately not known a priori, which
makes finding the coefficients a, b , c, . . . quite difficult. However, since one only
needs to compute Et[(φλmin)2], and since φλmin is explicit in terms of matrix coefficients,
one can use the following Lemma (cf. [18, Proposition 1.4]).

Lemma 23 Let k ≥ 1 be any integer, and (gt)t∈R+ be the Brownian motion on SO(n)

or SU(n). The joint moments of order k of the matrix coef f icients of gt are given by

E[g⊗k
t ] = exp

⎛
⎝t

k αg

2
(In)

⊗k + t
∑

1≤i< j≤k

ηi, j(Cg)

⎞
⎠ (4.7)

where αg is the coef f icient introduced on page 10; Cg is the Casimir operator; and ηi, j

is the linear map from M(n,k)⊗2 to M(n,k)⊗k def ined on simple tensors X ⊗ Y by

X ⊗ Y �→ (In)
⊗(i−1) ⊗ X ⊗ (In)

⊗( j−i−1) ⊗ Y ⊗ (In)
⊗k− j.

In the complex case, one has also:

E[(gt)
⊗k ⊗ (gt)

⊗l] = exp

⎛
⎝t

(k + l) αg

2
(In)

⊗k+l + t
∑

1≤i< j≤k+l

η̃i, j(Cg)

⎞
⎠ ,
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with

η̃i, j(X ⊗ Y) =

⎧
⎪⎨
⎪⎩

ηi, j(X ⊗ Y) if i, j ∈
[[

1, k
]]

;
−ηi, j(X ⊗ Y t) if i ∈

[[
1, k

]]
and j ∈

[[
k + 1, k + l

]]
;

ηi, j(X t ⊗ Y t) if i, j ∈
[[

k + 1, k + l
]]

.

Proof In the complex case, recall the stochastic differential equation satisfied by gt,
and therefore by gt:

dgt = gt dBt + αg

2
gt dt ; dgt = −gt dBt

t + αg

2
gt dt.

Itô’s formula yields then a stochastic differential equation for (gt)
⊗k ⊗ (gt)

⊗l:

d(g⊗k ⊗ g⊗l)t = (gt)
⊗k ⊗ (gt)

⊗l

⎛
⎝ (k + l) αg

2
dt +

∑

1≤i< j≤k

η̃i, j(dBt ⊗ dBt)

⎞
⎠

+ (gt)
⊗k ⊗ (gt)

⊗l

(
k∑

i=1

(In)
⊗i−1 ⊗ dBt ⊗ (In)

⊗k+l−i

−
k+l∑

i=k+1

(In)
⊗i−1 ⊗ dBt

t ⊗ (In)
⊗k+l−i

)
.

The quadratic variation of Bt is given by the Casimir operator: dBt ⊗ dBt = Cg dt.
Taking expectations in the formula above leads now to a differential equation for
E[(gt)

⊗k ⊗ (gt)
⊗l], whose solution is the exponential of matrices in the statement

of this lemma. The real case is the specialization l = 0 of the previous discussion,
though with a different Casimir operator. In the quaternionic case, one has to be
more careful. In particular, since the quaternionic conjugate of pq is q⋆ p⋆ instead of
p⋆q⋆, in the previous argument the SDE for g⋆

t does not take the same form. A way
to overcome this problem is to use the doubling map (Eq. 1.2). Thus, we write an
equation for g̃t instead of gt:

E
[
(̃gt)

⊗k
]

= exp

⎛
⎝t

k αg

2
(I2n)

⊗k + t
∑

1≤i< j≤k

ηi, j(Cg)

⎞
⎠ ,

where the Casimir is now considered as an element of (End(C2n))⊗2. As we shall see
later, joint moments of the entries of g and g⋆ are combinations of the joint moments
of the entries of g̃, so the previous formula will prove sufficient to solve our problem
in the quaternionic case. ⊓⊔

It turns out that in each case important for our computations, the matrix∑
1≤i< j≤k η̃i, j(Cg) can be explicitly diagonalized, with a basis of eigenvectors that is

quite tractable (to be honest, with the help of a computer). In the following, we de-
scribe the eigenvalues and eigenvectors of these matrices, and leave the reader check
that they are indeed eigenvalues and eigenvectors: this is each time an immediate
computation with elementary matrices, though quite tedious if k = 4 or k + l = 4.
For simplification, we write e[i1, i2, . . . , ir] = ei1 ⊗ ei2 ⊗ · · · ⊗ eir .
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4.1.2 Quotients of Orthogonal Groups

For special orthogonal groups, set 1
n

Mn,k =
∑

1≤i< j≤k ηi, j(Cso(n)), to be considered
as an element of End((Rn)⊗k). If k = 2, then the eigenvalues and eigenvectors of
Mn,2 =

∑
1≤i< j≤n(Eij − E ji)

⊗2 are:

Eigenvalue Multiplicity Eigenvectors

n − 1 1
∑n

i=1 e[i, i]
1 n(n−1)

2
e[i, j] − e[ j, i], i < j

−1 (n+2)(n−1)

2
e[i, j] + e[ j, i], i < j

e[i, i] − e[i + 1, i + 1], i ≤ n − 1

This allows to compute exp(− (n−1)t
n

) exp( t
n

Mn,2), which is the right-hand side of
formula 4.7 in the case of SO(n, R) and for k = 2. One obtains:

E[(gii)
2] = 1

n
+
(

1 − 1

n

)
e−t ; E[(gij)

2] = 1

n

(
1 − e−t

)
;

E[giig jj] = 1

2

(
e−t + e− n−2

n
t
)

; E[gijg ji] = 1

2

(
e−t − e− n−2

n
t
)

;

and all the other mixed moments vanish (e.g., E[giigij] or E[gijgkl]). Now, if k = 4,
then the eigenvalues and eigenvectors of Mn,4 are:

Eigenvalue Multiplicity Eigenvectors (not exhaustive, some repetitions)

2n − 2 3
∑n

k=1

∑n
l=1 e[k, k, l, l], ⋆

n 3n(n − 1)
∑n

k=1 e[i, j, k, k] − e[ j, i, k, k], i < j, ⋆

n − 2 3(n + 2)(n − 1)
∑n

k=1 e[i, j, k, k] + e[ j, i, k, k], i < j, ⋆
∑n

k=1 e[i, i, k, k] − e[i + 1, i + 1, k, k], i ≤ n − 1, ⋆

6 n(n−1)(n−2)(n−3)
24

∑
σ∈S4

ε(σ ) e[i, j, k, l]σ , i < j < k < l

2 3n(n+2)(n−1)(n−3)
8

D
η

1(i, j, k, l), D
η

2(i, j, k, l), D
η

3(i, j, k, l), i �= j �= k �= l

0 n(n+1)(n+2)(n−3)
6

S1(i, j, k, l), S2(i, j, k, l), i �= j �= k �= l

K1(i, j, k, l), K2(i, j, k, l), i �= j �= k �= l

−2 3(n−1)(n−2)(n+1)(n+4)
8

(
e[i, j]⊗2+e[ j,k]⊗2+e[k,i]⊗2

−e[ j,i]⊗2−e[k, j]⊗2−e[i,k]⊗2

)
, i �= j �= k, ⋆

Dθ
1(i, j, k, l), Dθ

2(i, j, k, l), Dθ
3(i, j, k, l), i �= j �= k �= l

−6 n(n−1)(n+1)(n+6)
24

∑
σ∈S4

e[i, j, k, l]σ , i < j < k < l

e[i, i, i, i] + e[ j, j, j, j] −
∑′

σ∈S4
e[i, i, j, j]σ , i < j

The star ⋆ means that the eigenvectors of a basis are listed up to action of S4;
and the symbols

∑′
σ∈S4

mean that we take the sum of all distinct permutations
of the tensors. For the eigenvectors associated to the value 2, denote D4,(1) =
〈(1, 3, 2, 4), (1, 2)〉, D4,(2) = 〈(1, 2, 3, 4), (1, 3)〉 and D4,(3) = 〈(1, 2, 4, 3), (1, 4)〉 the



484 P.-L. Méliot

three dihedral groups of order 4 (hence cardinality 8) that can be found inside S4.
Each dihedral group of order 4 has for presentation

D4 = 〈r, s | r4 = s2 = (rs)2 = 1〉,

so the parity η(σ) of the number of occurrences of s in a reduced writing of σ ∈ D4 is
well-defined, and provides a morphism η : D4,(v) → {±1} for v = 1, 2, 3. Then, it can
be checked that for every i �= j �= k �= l and any v,

Dη
v(i, j, k, l) =

∑

σ∈D4,(v)

η(σ) e[i, j, k, l]σ

is in V2. The eigenvectors Dθ
1(i, j, k, l), Dθ

2(i, j, k, l) and Dθ
3(i, j, k, l) associated to

the eigenvalue −2 are defined exactly the same way, but with the morphism θ :
D4,(v) → {±1} associated to the parity of the number of occurrences of r in a reduced
decomposition of σ ∈ D4 (again it is well defined):

Dθ
v(i, j, k, l) =

∑

θ∈D4,(v)

θ(σ) e[i, j, k, l]σ .

For the eigenvectors associated to the value 0, S1(i, j, k, l) is defined by

e[i, i, k, k] + e[k, k, i, i] + e[ j, j, l, l] + e[l, l, j, j] − e[i, i, l, l] − e[l, l, i, i] − e[ j, j, k, k]

− e[k, k, j, j] − e[i, k, k, i] − e[k, i, i, k] − e[ j, l, l, j] − e[l, j, j, l] + e[i, l, l, i]
+ e[l, i, i, l] + e[ j, k, k, j] + e[k, j, j, k]

and S2(i, j, k, l) is obtained by replacing each term a ⊗ b ⊗ b ⊗ a by a ⊗ b ⊗ a ⊗ b

in the previous formula. On the other hand, if K4 = {id, (1, 2)(3, 4), (1, 3)(2,4),

(1, 4)(2, 3)} denotes the Klein group, then K1(i, j, k, l) and K2(i, j, k, l) are defined as

K1(i, j, k, l) =
∑

σ∈K4

e[i, j, k, l]σ −
∑

σ∈(1,2,3)K4

e[i, j, k, l]σ ;

K2(i, j, k, l) =
∑

σ∈K4

e[i, j, k, l]σ −
∑

σ∈(1,3,2)K4

e[i, j, k, l]σ .

That said, the deduction of the mixed moments of order 4 of the coefficients of g

goes as follows. One notices that

(n + 2)

n∑

i=1

e⊗4
i =

⎛
⎝

n∑

k,l=1

e[k, k, l, l] + e[k, l, k, l] + e[k, l, l, k]

⎞
⎠

+
∑

i< j

⎛
⎝e⊗4

i + e⊗4
j −

′∑

σ∈S4

e[i, i, j, j]σ
⎞
⎠
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with the first sum in the eigenspace V2n−2 and the second sum in the eigenspace V−6.
On the other hand, for any i �= j,

(n + 4)(e⊗4
i − e⊗4

j ) = 6 e[i, i, i, i] +
∑

k �=i, j

′∑

σ∈S4

e[i, i, k, k]σ

−
∑

k �=i, j

′∑

σ∈S4

e[ j, j, k, k]σ − 6 e[ j, j, j, j]

+
∑

k �=i, j

⎛
⎝e[i, i, i, i] + e[k, k, k, k] −

′∑

σ∈S4

e[i, i, k, k]σ
⎞
⎠

−

⎛
⎝e[ j, j, j, j] + e[k, k, k, k] −

′∑

σ∈S4

e[ j, j, k, k]σ
⎞
⎠ ,

with the two first lines in Vn−2 and the two last lines in V−6. Since e⊗4
i = 1

n

∑n
j=1 e⊗4

j +
1
n

∑n
j=1(e

⊗4
i − e⊗4

j ), one concludes that

e⊗4
i = 1

n(n + 2)

n∑

k,l=1

e[k, k, l, l] + e[k, l, k, l] + e[k, l, l, k]

+ 1

n(n + 4)

′∑

σ∈S4

n∑

k,l=1

(e[i, i, k, k] − e[l, l, k, k])σ

+ n + 1

(n + 2)(n + 4)

∑

k �=i

⎛
⎝e[i, i, i, i] + e[k, k, k, k] −

′∑

σ∈S4

e[i, i, k, k]σ
⎞
⎠

− 1

(n + 2)(n + 4)

∑

(k<l) �=i

⎛
⎝e[k, k, k, k] + e[l, l, l, l] −

′∑

σ∈S4

e[k, k, l, l]σ
⎞
⎠ ,

each line being in a different eigenspace: V2n−2, Vn−2, V−6 and V−6. The technique is
now the following: to compute E[gij1 gij2 gij3 gij4 ], one counts the number of occurrences
of e[ j1, j2, j3, j4] in each term of the previous expansion. This leads to:

E[(gii)
4] = 3

n(n + 2)
+ 6(n − 1)

n(n + 4)
e−t + (n + 1)(n − 1)

(n + 2)(n + 4)
e− 2n+4

n
t;

E[(gij)
4] = 3

n(n + 2)
− 6

n(n + 4)
e−t + 3

(n + 2)(n + 4)
e− 2n+4

n
t;

E[(gii)
2(gij)

2] = 1

n(n + 2)
+ (n − 2)

n(n + 4)
e−t − (n + 1)

(n + 2)(n + 4)
e− 2n+4

n
t;

E[(gij)
2(gik)

2] = 1

n(n + 2)
− 2

n(n + 4)
e−t + 1

(n + 2)(n + 4)
e− 2n+4

n
t;
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and one sees also that the other expectations E[gijgikgilgim] vanish (e.g., E[gijgik(gil)
2]

with i �= j �= k �= l). Similar manipulations yield the decomposition in eigenvectors of
e⊗2

i ⊗ e⊗2
j :

n + 1

n(n − 1)(n + 2)

n∑

k,l=1

e[k, k, l, l] − 1

(n − 1)n(n + 2)

n∑

k,l=1

e[k, l, k, l] + e[k, l, l, k]

+ 1

n(n − 2)

∑

k �=i, j

(
n∑

l=1

e[i, i, l, l] − e[k, k, l, l] +
n∑

l=1

e[l, l, j, j] − e[l, l, k, k]
)

− 1

n(n − 2)(n + 4)

∑

k �=i, j

′∑

σ∈S4

×
(

n∑

l=1

(e[i, i, l, l] − e[k, k, l, l])σ +
n∑

l=1

(e[l, l, j, j] − e[l, l, k, k])σ

)

+ 1

6(n − 1)(n − 2)

∑

(k<l) �=i, j

S1(i, k, j, l) + S1(i, l, j, k) + S2(i, k, j, l) + S2(i, l, j, k)

+ 1

2n

∑

k �=i, j

e[i, i, j, j] + e[ j, j, k, k] + e[k, k, i, i] − e[ j, j, i, i] − e[k, k, j, j]

− e[i, i, k, k] + 1

6(n + 4)

⎛
⎝∑

k �=i

⎛
⎝e⊗4

i + e⊗4
k −

′∑

σ∈S4

e[i, i, k, k]σ
⎞
⎠

+
∑

k �= j

⎛
⎝e⊗4

j + e⊗4
k −

′∑

σ∈S4

e[ j, j, k, k]σ
⎞
⎠
⎞
⎠− 1

6

⎛
⎝e⊗4

i + e⊗4
j −

′∑

σ∈S4

e[i, i, j, j]σ
⎞
⎠

− 1

3(n + 2)(n + 4)

∑

(k<l)

⎛
⎝e⊗4

k + e⊗4
l −

′∑

σ∈S4

e[k, k, l, l]σ
⎞
⎠ ,

where the eigenspaces associated to each part are V2n−2, Vn−2, V0, V−2 and V−6. As
a consequence,

E[(gii)
2(g jj)

2] = n + 1

(n − 1)n(n + 2)
+ 2(n + 3)

n(n + 4)
e−t + n − 3

3(n − 1)
e− 2n−2

n
t + n − 2

2n
e−2t

+ n2 + 4n + 6

6(n + 2)(n + 4)
e− 2n+4

n
t;

E[(gij)
2(g ji)

2] = n + 1

n(n − 1)(n + 2)
− 2

n(n + 4)
e−t + n − 3

3(n − 1)
e− 2n−2

n
t − n − 2

2n
e−2t

+ n2 + 4n + 6

6(n + 2)(n + 4)
e− 2n+4

n
t;

E[(gii)
2(g jk)

2] = n + 1

n(n − 1)(n + 2)
+ n2 − 8

n(n − 2)(n + 4)
e−t − n − 3

3(n − 1)(n − 2)
e− 2n−2

n
t

− 1

2n
e−2t − n

6(n + 2)(n + 4)
e− 2n+4

n
t;
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E[(gij)
2(g jk)

2] = n + 1

n(n − 1)(n + 2)
− 2

(n − 2)(n + 4)
e−t − n − 3

3(n − 1)(n − 2)
e− 2n−2

n
t

+ 1

2n
e−2t − n

6(n + 2)(n + 4)
e− 2n+4

n
t;

E[(gij)
2(gkl)

2] = n + 1

n(n − 1)(n + 2)
− 2(n + 2)

n(n − 2)(n + 4)
e−t + 2

3(n − 1)(n − 2)
e− 2n−2

n
t

+ 1

3(n + 2)(n + 4)
e− 2n+4

n
t;

E[giigijg jjg ji] = − 1

n(n − 1)(n + 2)
− 2

n(n + 4)
e−t − n − 3

6(n − 1)
e− 2n−2

n
t

+ n2 + 4n + 6

6(n + 2)(n + 4)
e− 2n+4

n
t;

E[gikgilg jkg jl] = − 1

n(n − 1)(n + 2)
+ 4

n(n − 2)(n + 4)
e−t − 1

3(n − 1)(n − 2)
e− 2n−2

n

+ 1

3(n + 2)(n + 4)
e− 2n+4

n
t.

Finally, the elementary tensor ei ⊗ e j ⊗ ek ⊗ el with i �= j �= k �= l can be expanded
as a combination of eigenvectors in V6, V2, V0, V−2 and V−6. This expansion is
related to a remarkable identity in the group algebra CS4, which can be considered
as a relation of orthogonality of characters, but that only involves one-dimensional
representations. Denote

D
η

1 =
∑

σ∈D4,(1)

η(σ) σ,

and similarly for D
η

2, D
η

3, Dθ
1, Dθ

2 and Dθ
3. We also introduce I =

∑
σ∈S4

σ , E =∑
σ∈S4

ε(σ) σ , and

K1 =
∑

σ∈K4

σ −
∑

σ∈(1,2,3)K4

σ ; K2 =
∑

σ∈K4

σ −
∑

σ∈(1,3,2)K4

σ.

As explained before, all these sums correspond to eigenvectors in V6, V2, V0, V−2

and V−6. Then,

id[[1,4]] = 1

24
I + 1

8
(D

η

1 + D
η

2 + D
η

3) + 1

12
(K1 + K2) + 1

8
(Dθ

1 + Dθ
2 + Dθ

3) + 1

24
E.

As a consequence, e[i, j, k, l] is equal to

1

24

∑

σ∈S4

ε(σ) e[i, j, k, l]σ + 1

8
(D

η

1(i, j, k, l) + D
η

2(i, j, k, l) + D
η

3(i, j, k, l))

+ 1

12
(K1(i, j, k, l) + K2(i, j, k, l)) + 1

8
(Dθ

1(i, j, k, l) + Dθ
2(i, j, k, l) + Dθ

3(i, j, k, l))

+ 1

24

∑

σ∈S4

e[i, j, k, l]σ
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with each term respectively in V6, V2, V0, V−2 and V−6. This leads to

E[giig jjgkkgll] = 1

24
e− 2n−8

n
t + 3

8
e− 2n−4

n
t + 1

6
e− 2n−2

n
t + 3

8
e−2t + 1

24
e− 2n+4

n
t;

E[gijg jkgklgli] = − 1

24
e− 2n−8

n
t + 1

8
e− 2n−4

n
t − 1

8
e−2t + 1

24
e− 2n+4

n
t;

E[giig jjgklglk] = − 1

24
e− 2n−8

n
t − 1

8
e− 2n−4

n
t + 1

8
e−2t + 1

24
e− 2n+4

n
t;

E[gijg jigklglk] = 1

24
e− 2n−8

n
t − 1

8
e− 2n−4

n
t + 1

6
e− 2n−2

n
t − 1

8
e−2t + 1

24
e− 2n+4

n
t;

and we are done with the computations in the case of special orthogonal groups.

Proposition 24 For the real Grassmannian varieties Gr(n, q,R) and the spaces

SO(2n)/U(n), the coef f icients of Lemma 22 are:

Gr(n, q,R) : 2

n2 + n − 2
+ 2n2

3

(
1

(n − 1)(n − 2)
− 1

pq(n − 2)

)
φ

(2,2,0,...,0)⌊ n
2

⌋

+
4n2

pq
− 16

(n − 2)(n + 4)
φ

(2,0,...,0)⌊ n
2

⌋

+ n2

3

(
1

(n + 2)(n + 4)
+ 2

pq(n + 4)

)
φ

(4,0,...,0)⌊ n
2

⌋ ;

SO(2n)/U(n) : 1

2n2 − n
+ n − 1

3n
φ(14,0,...,0)n + 4(n2 − 1)

(3n)(2n − 1)
φ(2,2,0,...,0)n .

Proof One expands the square of the sum given by Proposition 21, and one gathers
the joint moments of the coefficients according to the possible identities between the

indices. For real Grassmannians,
(
φ

(2,0,...,0)⌊ n
2

⌋
)2

has for expansion:

⎛
⎝ 1

p

∑

i, j≤p

(gij)
2 + 1

q

∑

i, j>p

(gij)
2 − 1

⎞
⎠

2

=

⎛
⎝ 1

p

∑

i, j≤p

(gij)
2 + 1

q

∑

i, j>p

(gij)
2

⎞
⎠

2

−2 φ
(2,0,...,0)⌊ n

2
⌋ − 1

=
(

n

pq

)
T[(g11)

4] +
(

4 − n

pq

)
T[(g11g22)

2]

+
(

2 − n

pq

)(
4 T[(g11g12)

2] + T[(g12)
4]

+T[(g12g21)
2]
)

+
(

4n − 16 + 4n

pq

)
T[(g11g23)

2]

+
(

2n−12+ 4n

pq

) (
T[(g12g13)

2]+T[(g12g23)
2]
)

+
(

n2 − 8n + 24 − 6n

pq

)
T[(g12g34)

2]

−2 φ
(2,0,...,0)⌊ n

2
⌋ − 1.
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where by T[(g11)
4] we mean a linear combination of products (gii)

4, whose ex-
pectation is therefore E[(g11)

4]; by T[(g11g22)
2] we mean a linear combination of

products (gii g jj)
2 whose expectation will be E[(g11g22)

2], etc. Thus, the expectation

of
(
φ

(2,0,...,0)⌊ n
2

⌋
)2

is

2

n2 + n − 2
+

4n2

pq
− 16

(n − 2)(n + 4)
e−t + 2n2

3

(
1

(n − 1)(n − 2)
− 1

pq(n − 2)

)
e− 2n−2

n
t

+ n2

3

(
1

(n + 2)(n + 4)
+ 2

pq(n + 4)

)
e− 2n+4

n
t,

and by identifying the Casimir coefficients of the spherical functions, one deduces
from this the expansion of the square of the discriminating zonal function in zonal
functions.

For the spaces SO(2n)/U(n), one computes again the square of the homogeneous
polynomial of degree 2 given by Proposition 21. Thus, 1

n2 (
∑n

i, j=1 g2i,2 j g2i−1,2 j−1 −
g2i,2 j−1 g2i−1,2 j)

2 equals

1

n

(
T[(g11g22)

2] + T[(g12g21)
2] − 2 T[g11g12g22g21]

)

+ n − 1

n

(
2 T[(g12g34)

2] − 2 T[g13g14g23g24]
)

+ n − 1

n
(2 T[g12g21g34g43] − 2 T[g12g23g34g41])

+ n − 1

n
(T[g11g22g33g44] + T[g12g21g34g43] − 2 T[g11g22g34g43])

+ remainder,

with the same notations as before, and where the remainder is a combination
of products of coefficients whose expectation vanish under Brownian (and Haar)
measures. More precisely, terms with a certain symmetry cancel with one another
when taking the expectation: for instance,

(g2i,2 j g2i−1,2 j−1 − g2i,2 j−1 g2i−1,2 j) × (g2k,2l g2k−1,2l−1 − g2k,2l−1 g2k−1,2l) (4.8)

with i �= j �= k �= l is equal to a + b − c − d , where a, b , c, d are products of type
gijgklgmngop, and have therefore the same expectation. Consequently, every product
of type (Eq. 4.8) will not contribute to the expectation of (φ

(1,1,0,...,0)⌊ n
2

⌋)2. The
following sets of indices have the same property of “self-cancellation”:

(i, i, i, j) ; (i, i, j, i) ; (i, j, i, i) ; ( j, i, i, i) ; (i, i, j, k) ; ( j, k, i, i) ;
(i, j, i, k) ; ( j, i, k, i) ; (i, j, k, i) ; ( j, i, i, k) ; (i, j, k, l) ; (i, j, k, l) ;

so it suffices to consider products with sets of indices (i, i, i, i), (i, j, i, j), (i, j, j, i) or
(i, i, j, j)—these are the four lines of the previous expansion. Using the formulas given
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before for the joint moments of the entries (beware that one has to use them with the
parameter 2n), we obtain:

E[(φ(1,1,0,...,0)n )2] = 1

n(2n − 1)
+ n − 1

3n
e− 2n−4

n
t + 4(n2 − 1)

(3n)(2n − 1)
e− 2n−1

n
t

and it suffices then to identify the coefficients of the negative exponentials. ⊓⊔

4.1.3 Quotients of Unitary Groups

For special unitary groups, set 1
n2 Mn,k,l =

∑
1≤i< j≤k+l η̃i, j(Csu(n)), to be considered as

an element of End((Cn)⊗k+l). If k = l = 1, then

E[|gii|2] = 1

n
+
(

1 − 1

n

)
e−t ; E[|gij|2] = 1

n

(
1 − e−t

)
; E[giig jj] = e−t

since the eigenvalues and eigenvectors of Mn,1,1 = iIn ⊗ iIn + n
∑n

i, j=1 Eij ⊗ Eij are:

Eigenvalue Multiplicity Eigenvectors

n2 − 1 1
∑n

i=1 e[i, i]
−1 n2 − 1 e[i, j], 1 ≤ i �= j ≤ n

e[i, i] − e[i + 1, i + 1], i ≤ n − 1

If k = l = 2, then the eigenvalues and eigenvectors of Mn,2,2 are:

Eigenvalue Multiplicity Eigenvectors (not exhaustive, some repetitions)

2n2 − 2 2
∑n

k=1

∑n
l=1 e[k, l, k, l],

∑n
k=1

∑n
l=1 e[k, l, l, k]

n2 − 2 4(n + 1)(n − 1)
∑n

k=1 e[i, k, i, k] − e[i + 1, k, i + 1, k], i ≤ n − 1
∑n

k=1 e[k, i, k, i] − e[k, i + 1, k, i + 1], i ≤ n − 1
∑n

k=1 e[i, k, k, i] − e[i + 1, k, k, i + 1], i ≤ n − 1
∑n

k=1 e[k, i, i, k] − e[k, i + 1, i + 1, k], i ≤ n − 1

2n − 2 n2(n+1)(n−3)

4

(
(e[i, j]−e[ j,i])⊗2−(e[ j,k]−e[k, j])⊗2

+(e[k,l]−e[l,k])⊗2 −(e[l,i]−e[i,l])⊗2

)
, i �= j �= k �= l

−2 (n+2)(n+1)(n−1)(n−2)

2

(
e[i, j,i, j]+e[ j,k, j,k]+e[k,i,k,i]

−e[ j,i, j,i]−e[k, j,k, j]−e[i,k,i,k]

)
, i < j < k

(
e[i, j, j,i]+e[ j,k,k, j]+e[k,i,i,k]

−e[ j,i,i, j]−e[k, j, j,k]−e[i,k,k,i]

)
, i < j < k

−2n − 2 n2(n−1)(n+3)

4
e[i, i, i, i] + e[ j, j, j, j] − (e[i, j] + e[ j, i])⊗2, i < j
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Again, we can use the previous table to decompose some elementary 4-tensors in
eigenvectors of Mn,2,2; we refer to Appendix 5.4. Thus,

E[|gii|4] = 2

n(n + 1)
+ 4(n − 1)

n(n + 2)
e−t + n(n − 1)

(n + 1)(n + 2)
e− 2n+2

n
t;

E[|gij|4] = 2

n(n + 1)
− 4

n(n + 2)
e−t + 2

(n + 1)(n + 2)
e− 2n+2

n
t;

E[|gii|2|gij|2] = 1

n(n + 1)
+ n − 2

n(n + 2)
e−t − n

(n + 1)(n + 2)
e− 2n+2

n
t;

E[|gij|2|gik|2] = 1

n(n + 1)
− 2

n(n + 2)
e−t + 1

(n + 1)(n + 2)
e− 2n+2

n
t;

E[|gii|2|g jj|2] = 1

(n − 1)(n + 1)
+ 2(n + 1)

n(n + 2)
e−t + n − 3

4(n − 1)
e− 2n−2

n
t

+ n − 2

2n
e−2t + n2 + n + 2

4(n + 1)(n + 2)
e− 2n+2

n
t;

E[|gij|2|g ji|2] = 1

(n − 1)(n + 1)
− 2

n(n + 2)
e−t + n − 3

4(n − 1)
e− 2n−2

n
t

− n − 2

2n
e−2t + n2 + n + 2

4(n + 1)(n + 2)
e− 2n+2

n
t;

E[|gii|2|g jk|2] = 1

(n − 1)(n + 1)
+ n2 − 2n − 2

n(n − 2)(n + 2)
e−t − n − 3

4(n − 1)(n − 2)
e− 2n−2

n
t

− 1

2n
e−2t − n − 1

4(n + 1)(n + 2)
e− 2n+2

n
t;

E[|gij|2|g jk|2] = 1

(n − 1)(n + 1)
− 2(n − 1)

n(n − 2)(n + 2)
e−t − n − 3

4(n − 1)(n − 2)
e− 2n−2

n
t

+ 1

2n
e−2t − n − 1

4(n + 1)(n + 2)
e− 2n+2

n
t;

E[|gij|2|gkl|2] = 1

(n − 1)(n + 1)
− 2

(n − 2)(n + 2)
e−t + 1

2(n − 1)(n − 2)
e− 2n−2

n
t

+ 1

2(n + 1)(n + 2)
e− 2n+2

n
t.
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Proposition 25 For the symmetric spaces with isometry group SU(n) or SU(2n), the

coef f icients of Lemma 22 are:

Gr(n, q, C) : 1

n2−1
+ n2

2

(
2n2

pq
−8

n2−4
φ(2,1,...,1)n−1

1

(n−1)(n−2)
− 1

pq(n−2)

)
φ(2,2,1,...,1,0)n−1;

+ n2

2

(
1

(n + 1)(n + 2)
+ 1

pq(n + 2)

)
φ(4,2,...,2)n−1 ;

SU(n)/SO(n) : 2

n2 + n
+ n2 + n − 2

n2 + n
φ(4,2,...,2)n−1 ;

SU(2n)/USp(n) : 1

2n2 − n
+ 2n2 − n − 1

2n2 − n
φ(2,2,1,...,1,0)2n−1 .

Proof For SU(n)/SO(n) and SU(2n)/USp(n), the only missing coefficient has al-
ready been computed. For complex Grassmannians, (φ(2,1,...,1)n−1)2 has exactly the
same expansion as in the real case, but with square modules. From the computation
of the joint moments E[|gijgkl|2] performed previously, one deduces that the expec-
tation of the square of the discriminating zonal function is

1

n2 − 1
+

2n2

pq
− 8

n2 − 4
e−t + n2

2

(
1

(n − 1)(n − 2)
− 1

pq(n − 2)

)
e− 2n−2

n
t

+ n2

2

(
1

(n + 1)(n + 2)
+ 1

pq(n + 2)

)
e− 2n+2

n
t

whence the expansion in zonal spherical functions by identifying the coefficients. ⊓⊔

4.1.4 Quotients of Symplectic Groups

Finally, set 1
n

Mn,k =
∑

1≤i< j≤k+l η̃i, j(Cusp(n)), which is considered as an element of
End((C2n)⊗k). Recall that the diagonalization of these matrices will yield the joint
moments of the entries of g̃, the matrix obtained from g by the map (Eq. 1.2). Again,
as a warm-up, let us compute the joint moments of order 2. If k = 2, then

E
[
|gii|2

]
= 1

n
+ n − 1

n
e−t ; E

[
|gij|2

]
= 1

n

(
1 − e−t

)
∀i, j ∈ [[1, n]] ;

E
[
(̃gii)

2
]

= e− n+1
n

t ; E
[
(̃gij)

2
]

= 0 ∀i, j ∈ [[1, 2n]] ;

since the eigenvectors and eigenvalues of Mn,2 are:

Eigenvalue Multiplicity Eigenvectors

2n+1
2 1

∑n
i=1 e[2i − 1, 2i] − e[2i, 2i − 1]

1
2

(n−1)(2n+1) (e[2i−1, 2i]−e[2i, 2i−1])−(e[2i+1, 2i+2]−e[2i+2, 2i+1]), i≤n−1

e[2i−1, 2 j−1]−e[2 j−1, 2i−1], e[2i, 2 j]−e[2 j, 2i], 1≤ i< j≤n

e[2i − 1, 2 j] − e[2 j, 2i − 1], 1 ≤ i �= j ≤ n

− 1
2

n(2n + 1) ek ⊗ el + el ⊗ ek, 1 ≤ k ≤ l ≤ 2n
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For k = 4, we refer to Appendix 5.5 for the expansion in eigenvectors of simple
tensors. One obtains:

E
[
(̃gii)

4
]

= e− 2n+4
n

t;

E
[
(̃gij)

4
]

= E
[
(̃gii g̃ij)

2
]

= E
[
(̃gij g̃ik)

2
]

= 0;

E[(̃g2i−1,2i−1 g̃2i,2i)
2] = 1

n(2n + 1)
+ n − 1

n(n + 1)
e−t + 1

n + 1
e− n+1

n
t

+ (2n − 1)(2n − 2)

3(2n + 1)(2n + 2)
e− 2n+1

n
t + n − 1

2(n + 1)
e− 2n+2

n
t + 1

6
e− 2n+4

n
t;

E[(̃g2i−1,2i g̃2i,2i−1)
2] = 1

n(2n + 1)
+ n − 1

n(n + 1)
e−t − 1

n + 1
e− n+1

n
t

+ (2n − 1)(2n − 2)

3(2n + 1)(2n + 2)
e− 2n+1

n
t − n − 1

2(n + 1)
e− 2n+2

n
t + 1

6
e− 2n+4

n
t;

E[(̃g2i−1,2 j−1 g̃2i,2 j)
2] = E[(̃g2i−1,2 j g̃2i,2 j−1)

2] = 1

n(2n + 1)
− 1

n(n + 1)
e−t

+ 1

(2n + 1)(n + 1)
e− 2n+1

n
t;

and the other moments of type E[(̃g2i−1,a g̃2i,b )2] vanish. On the other hand, assuming
that {a, b } is not a pair {2i − 1, 2i} in [[1, 2n]], one has also

E[(̃gaa g̃bb )2] = 1

3
e− 2n+1

n
t + 1

2
e− 2n+2

n
t + 1

6
e− 2n+4

n
t;

E[(̃gab g̃ba)
2] = 1

3
e− 2n+1

n
t − 1

2
e− 2n+2

n
t + 1

6
e− 2n+4

n
t;

and the other moments of type E[(̃gab g̃cd)
2] with {c, d} �= {a, b } vanish.

The same expansions enable one to compute many moments of type E[|gij gkl|2],
namely, all those that write as E[|gij gik|2]. For instance, since |gii|4 = (̃g2i−1,2i−1 g̃2i,2i −
g̃2i−1,2i g̃2i,2i−1)

2, its expectation is a combination of those of (̃g2i−1,2i−1 g̃2i,2i)
2,

(̃g2i−1,2i g̃2i,2i−1)
2 and g̃2i−1,2i−1 g̃2i−1,2i g̃2i,2i g̃2i,2i−1. This last expectation is

− 1

2n(2n + 1)
− n − 1

2n(n + 1)
e−t − (2n − 1)(2n − 2)

6(2n + 1)(2n + 2)
e− 2n+1

n
t + 1

6
e− 2n+4

n
t.

Thus, with a few more computations, one gets

E[|gii|4] = 3

n(2n + 1)
+ 3(n − 1)

n(n + 1)
e−t + (2n − 1)(2n − 2)

(2n + 1)(2n + 2)
e− 2n+1

n
t;

E[|gij|4] = 3

n(2n + 1)
− 3

n(n + 1)
e−t + 3

(2n + 1)(n + 1)
e− 2n+1

n
t;
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E[|gii gij|2] = 2

n(2n + 1)
+ (n − 2)

n(n + 1)
e−t − 2(2n − 1)

(2n + 1)(2n + 2)
e− 2n+1

n
t;

E[|gij gik|2] = 2

n(2n + 1)
− 2

n(n + 1)
e−t + 2

(2n + 1)(n + 1)
e− 2n+1

n
t;

E[|gii g jj|2] = 2n − 1

n(n − 1)(2n + 1)
+ 2

n + 1
e−t + n − 3

6(n − 1)
e− 2n−2

n
t

+n − 2

2n
e−2t + 2n2 − n + 3

3(n + 1)(2n + 1)
e− 2n+1

n
t;

E[|gij g ji|2] = 2n − 1

n(n − 1)(2n + 1)
− 2

n(n + 1)
e−t + n − 3

6(n − 1)
e− 2n−2

n
t

−n − 2

2n
e−2t + 2n2 − n + 3

3(n + 1)(2n + 1)
e− 2n+1

n
t;

E[|gii g jk|2] = 2n − 1

n(n − 1)(2n + 1)
+ n2 − 3n + 1

n(n + 1)(n − 2)
e−t − n − 3

6(n − 1)(n − 2)
e− 2n−2

n
t

− 1

2n
e−2t − 2n − 3

3(n + 1)(2n + 1)
e− 2n+1

n
t;

E[|gij g jk|2] = 2n − 1

n(n − 1)(2n + 1)
− 2n − 3

n(n + 1)(n − 2)
e−t − n − 3

6(n − 1)(n − 2)
e− 2n−2

n
t

+ 1

2n
e−2t − 2n − 3

3(n + 1)(2n + 1)
e− 2n+1

n
t;

E[|gij gkl|2] = 2n − 1

n(n − 1)(2n + 1)
− 2n − 2

n(n + 1)(n − 2)
e−t + 1

3(n − 1)(n − 2)
e− 2n−2

n
t

+ 4

3(n + 1)(2n + 1)
e− 2n+1

n
t.

Proposition 26 For the quaternionic Grassmannian varieties Gr(n, q,H) and the

spaces USp(n)/U(n), the coef f icients of Lemma 22 are:

Gr(n, q, H) : 1

2n2 − n − 1
+ n2

3

(
1

(n − 1)(n − 2)
− 1

pq(n − 2)

)
φ(14,0,...,0)n

+
n2

pq
−4

(n−2)(n+1)
φ(12,0,...,0)n−1

+ n2

3

(
4

(n+1)(2n+1)
+ 1

pq(n+1)

)
φ(2,2,0,...,0)n;

USp(n)/U(n) : 1

2n2 + n
+ 4(n − 1)(n + 1)

3n(2n + 1)
φ(2,2,0,...,0)n + n + 1

3n
φ(4,0,...,0)n .
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Proof The case of quaternionic Grassmannians is again done by using the expansion
on page 62, with square modules instead of squares. One obtains the following
formula for the expectation of (φ(1,1,0,...,0)n)2:

1

2n2 − n − 1
+

n2

pq
− 4

(n − 2)(n + 1)
e−t + n2

3

(
1

(n − 1)(n − 2)
− 1

pq(n − 2)

)
e− 2n−2

n
t

+ n2

3

(
4

(n + 1)(2n + 1)
+ 1

pq(n + 1)

)
e− 2n+1

n
t,

hence the expansion in zonal functions by identification of the coefficients. Finally,
for the structure spaces USp(n)/U(n), (φ(2,0,...,0)n)2 is equal to

1

2n

(
T[(̃g11)

4] + T[(̃g11g̃22)
2] + T[(̃g12g̃21)

2]
)

+n − 1

n

(
T[(̃g13 g̃24)

2] + T[(̃g11g̃33)
2] + T[(̃g13g̃31)

2]
)

plus some remainder whose expectation under Brownian measures will be zero. Hence,

E[(φ(2,0,...,0)n)2] = 1

n(2n + 1)
+ 4(n − 1)(n + 1)

3n(2n + 1)
e− 2n+1

n
t + n + 1

3n
e− 2n+4

n
t,

and 2n+1
n

is the exponent corresponding to the spherical representation of label
(2, 2, 0, . . . , 0)n, whereas 2n+4

n
is the exponent corresponding to the spherical rep-

resentation of label (4, 0, . . . , 0)n. ⊓⊔

4.2 Proof of the Lower Bound on the Total Variation Distance

The proof of the lower bound is now a simple application of Bienaymé-Chebyshev
inequality. First, under the Haar measure, we have:

Proposition 27 If Ea is the event {|�| ≥ a}, then the Haar measure of Ea satisf ies the

inequality

ηX(Ea) ≤ 1

a2

for every classical simple compact Lie group X = K and every classical simple

compact symmetric space X = G/K.

Proof The previous computations ensure that E∞[|�|2] = 1 in every case, so

ηX [|�| ≥ a] = ηX [|�|2 ≥ a2] ≤ E∞[|�|2]
a2

= 1

a2
. ⊓⊔

Next, let us estimate Et[�] and Vart[�] for t = α (1 − ε) log n. The exact values are
listed in the table on the following page. We assume ε < 1

4
; indeed, Lemma 3 ensures

that it is sufficient to control the total variation distance around the mixing time. We
shall use a lot the inequality of convexity

exp(x) ≤ 1 + ey − 1

y
x ∀x ∈ (0, y) .
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Lemma 28 Under the usual assumptions on n, for groups and spaces of structures (but

not for Grassmannian varieties), Vart[�] is uniformly bounded for every t = α (1 −
ε) log n with ε ∈ (0, 1/4). Possible upper bounds are listed below:

SU(n), SU(n)/SO(n), SU(2n)/USp(n) : 1 ;
SO(2n)/U(n), USp(n), USp(n)/U(n) : 3 ;
SO(n) : 8.

Proof We proceed case by case, and denote �t(λ,μ) = e−λt − e−μt. Notice that
�t(λ,μ) ≤ 0 if λ ≥ μ. On the other hand, �t(λ,μ) is always smaller than 1 for
λ,μ ≥ 0.

– SO(n):

Vart[�] = �t

(
0,

n−1

n

)
+ n(n−1)

2
�t

(
n−4

n
,

n−1

n

)
+
(

n(n+1)

2
−1

)
�t

(
1,

n−1

n

)

≤ 1+ n(n − 1)

2
�t

(
n − 4

n
,

n − 1

n

)
= 1 + n(n − 1)

2
e− n−1

n
t
(

e
3t
n − 1

)

≤ 1 + 13

2
n log n e− n−1

n
t

since 6 log n
n

≤ 1.382 when n ≥ 10, and e1.382−1
1.382

≤ 13
6

. Then,

e− n−1
n

t ≤ e− 3(n−1) log n
2n = n−1 e− (n−3) log n

2n ≤ 14

13
(n log n)−1

for n ≥ 10, so Vart[�] ≤ 1 + 7 = 8.

K or G/K Et[�] Vart[�]

SO(n) n e− n−1
2n t 1 + n(n−1)

2
e− n−4

n t +
(

n(n+1)
2

− 1
)

e−t − n2 e− n−1
n t

SU(n) n e− n2−1

2n2 t
1 + (n2 − 1) e−t − n2 e− n2−1

n2 t

USp(n) 2n e− 2n+1
4n t 1 + (2n + 1)(n − 1) e−t + (2n + 1) n e− n+1

n t − 4n2 e− 2n+1
2n t

Gr(n, q, R)

√
(n+2)(n−1)

2
e−t 1 +

(
2n2

pq − 8
)

(n−1)(n+2)
(n−2)(n+4)

e−t + n2

3

(
n+2
n−2

− (n+2)(n−1)
pq(n−2)

)
e− 2n−2

n t

+ n2

6

(
n−1
n+4

+ 2(n+2)(n−1)
pq(n+4)

)
e− 2n+4

n t − (n+2)(n−1)
2

e−2t

Gr(n, q, C)
√

n2 − 1 e−t 1 +
(

2n2

pq − 8
)

n2−1
n2−4

e−t + n2

2

(
n+1
n−2

− n2−1
pq(n−2)

)
e− 2n−2

n t

+ n2

2

(
n−1
n+2

+ n2−1
pq(n+2)

)
e− 2n+2

n t − (n2 − 1) e−2t

Gr(n, q, H)
√

(2n + 1)(n − 1) e−t 1 +
(

n2

pq − 4
)

(n−1)(2n+1)
(n−2)(n+1)

e−t + n2

3

(
2n+1
n−2

− (2n+1)(n−1)
pq(n−2)

)
e− 2n−2

n t

+ n2

3

(
4(n−1)
(n+1)

+ (2n+1)(n−1)
pq(n+1)

)
e− 2n+1

n t − (2n + 1)(n − 1) e−2t

SO(2n)/U(n)
√

n(2n − 1) e− n−1
n t 1 + (n−1)(2n−1)

3
e− 2n−4

n t + 4(n2−1)
3

e− 2n−1
n t − n(2n − 1) e− 2n−2

n t

SU(n)/SO(n)

√
n(n+1)

2
e− (n−1)(n+2)

n2 t
1 + (n+2)(n−1)

2
e− 2n+2

n t − n(n+1)
2

e− (n−1)(2n+4)

n2 t

SU(2n)/USp(n)
√

2n2 − n e− (n−1)(2n+1)

2n2 t
1 + (2n2 − n − 1) e− 2n−1

n t − (2n2 − n) e− (n−1)(2n+1)

n2 t

USp(n)/U(n)
√

n(2n + 1) e− n+1
n t 1 + 4(n−1)(n+1)

3
e− 2n+1

n t + (2n+1)(n+1)
3

e− 2n+4
n t − n(2n + 1) e− 2n+2

n t
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– SU(n):

Vart[�] = �t

(
0,

n2 − 1

n2

)
+ (n2 − 1)�t

(
1,

n2 − 1

n2

)
≤ 1.

– USp(n):

Vart[�] = �t

(
0,

2n + 1

2n

)
+ (2n + 1)(n − 1)�t

(
1,

2n + 1

2n

)

+ (2n + 1) n �t

(
2n + 2

2n
,

2n + 1

2n

)

≤ 1 + (2n + 1)(n − 1)�t

(
1,

2n + 1

2n

)
≤ 1 + 2n2 e− 2n+1

2n
t
(

e
t

2n − 1
)

≤ 1 + 5

2
n log n e− 2n+1

2n
t

since log n
n

≤ 0.367 when n ≥ 3, and e0.367−1
0.367

≤ 5
4
. Then,

e− 2n+1
2n

t ≤ e− 3 log n
2 = n− 3

2 ≤ 4

5
(n log n)−1

for n ≥ 3, so Vart[�] ≤ 1 + 2 = 3.
– SO(2n)/U(n):

Vart[�] = �t

(
0,

2n − 2

n

)
+ (n − 1)(2n − 1)

3
�t

(
2n − 4

n
,

2n − 2

n

)

+4(n2 − 1)

3
�t

(
2n − 1

n
,

2n − 2

n

)

≤ 1 + (n − 1)(2n − 1)

3
�t

(
2n − 4

n
,

2n − 2

n

)
≤ 1 + 2n2

3
e− 2n−2

n
t
(

e
2t
n − 1

)

≤ 1 + 20

9
n log 2n e− 2n−2

n
t

since 2 log 2n

n
≤ 0.922 when 2n ≥ 10, and e0.922−1

0.922
≤ 5

3
. Since

e− 2n−2
n

t ≤ e− 3(n−1) log 2n
2n = 1

2
n−1 e− (n−3) log 2n

2n ≤ 3

4
(n log 2n)−1

for 2n ≥ 10, one concludes that Vart[�] ≤ 1 + 5
3

≤ 3.
– SU(n)/SO(n):

Vart[�]=�t

(
0,

2(n−1)(n+2)

n2

)
+ (n+2)(n−1)

2
�t

(
2(n+1)

n
,

2(n−1)(n+2)

n2

)
≤1.

– SU(2n)/USp(n):

Vart[�]=�t

(
0,

(n − 1)(2n + 1)

n2

)
+(2n2−n−1) �t

(
2n − 1

n
,
(n − 1)(2n + 1)

n2

)
≤1.
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– USp(n)/U(n):

Vart[�] = �t

(
0,

2n + 2

n

)
+ 4(n2 − 1)

3
�t

(
2n + 1

n
,

2n + 2

n

)

+2n2 + 3n + 1

3
�t

(
2n + 4

n
,

2n + 2

n

)

≤ 1 + 4(n2 − 1)

3
�t

(
2n + 1

n
,

2n + 2

n

)
≤ 1 + 4n2

3
e− 2n+2

n
t
(

e
t
n − 1

)

≤ 1 + 5

3
n log n e− 2n+2

n
t

by using the same estimate on log n
n

as in the case of USp(n). Since

e− 2n+2
n

t ≤ e− 3 log n
2 = n− 3

2 ≤ 4

5
(n log n)−1

for n ≥ 3, one obtains Vart[�] ≤ 1 + 4
3

≤ 3.

It is not possible to prove such uniform bounds for Grassmannians, because of the
term e−t that appears in the variance. We shall address this problem in Lemma 30.

⊓⊔

Proposition 29 Denote KX the bound computed in the previous Lemma for the

variance of the discriminating zonal function � associated to a space X. Then,

dTV(μt, Haar) ≥ 1 − 4(KX + 1)

(Et[�])2
.

Proof Assuming a smaller than m = Et[�], if |� − m| ≤ a, then |�| ≥ m − a.
Consequently,

μt[|�| ≥ m − a] ≥ 1 − P[|� − m| > a] ≥ 1 − Vart[�]
a2

= 1 − KX

a2
.

Next, take a = m
2

. The combination of Lemma 27 and of the previous inequality
yields

dTV(μt, Haar) ≥ μt(Ea) − ηX (Ea) ≥ 1 − KX + 1

a2
= 1 − 4(KX + 1)

m2
.

Since m2 behaves as n2ε , this essentially ends the proof of the lower bounds in the
case of compact Lie groups and compact spaces of structures. More precisely:

– SO(n): m2 ≥ n2ε so the constant c in our main Theorem 6 is 4(8 + 1) = 36.
– SU(n): again, m2 ≥ n2ε , so the constant is 4(1 + 1) = 8.
– USp(n): here, m2 ≥ 4 n2ε e− log n

2n ≥ 16
5

n2ε for n ≥ 3, so the constant is
5

16
4(3 + 1) = 5.

– SO(2n)/U(n): m2 ≥ 2n−1
4n

(2n)2ε ≥ 9
20

(2n)2ε for 2n ≥ 10, whence a constant
9

20
4(3 + 1) = 36

5
≤ 8.

– SU(n)/SO(n): m2 ≥ n2ε

2
e− 2(n−2) log n

n2 ≥ n2ε

3
for n ≥ 2, so a possible constant is 3 ×

4(1 + 1) = 24.
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– SU(2n)/USp(n): m2 ≥ 2n−1
4n

(2n)2ε ≥ 3
8
(2n)2ε, and a possible constant is 8

3
4(1 +

1) = 64
3

≤ 22.

– USp(n)/U(n): m2 ≥ 2n2ε e− 2 log n
n ≥ 16

17
n2ε for n ≥ 3, whence a constant 17

16
4(3 +

1) = 17. ⊓⊔

Unfortunately, for Grassmannian varieties, the variance of � at time t = (1 −
ε) log n can only be bounded by a constant times nε . However, since the mean of � is
also of order nε , this will still ensure that the discriminating zonal spherical function
has not at all the same behavior under Haar measure and under Brownian measures
before cut-off time. The only downside is the loss of a factor nε in the estimate of the
total variation distance.

Lemma 30 Under the usual assumptions on n, for Grassmannian varieties,

Vart[�]
nε

≤
{

3 if k = R,

5 if k = C or H,

for every t = α (1 − ε) log n with ε ∈ (0, 1/4).

Proof The quantity 1
pq

is bounded by

4

n2
≤ 1

pq
≤ 1

n − 1
,

the extremal values corresponding to p = q = n
2

and to p = n − 1 or q = n − 1. In
particular, in the expansions hereafter, all the coefficients that precede differences of
exponentials �t(λ,μ) are positive. Now, we proceed case by case:

– Gr(n, q, R):

Vart[�] = �t(0, 2) +
(

2n2

pq
− 8

)
(n − 1)(n + 2)

(n − 2)(n + 4)
�t(1, 2)

+n2

3

(
n + 2

n − 2
− (n + 2)(n − 1)

pq(n − 2)

)
�t

(
2n − 2

n
, 2

)

+n2

6

(
n − 1

n + 4
+ 2(n + 2)(n − 1)

pq(n + 4)

)
�t

(
2n + 4

n
, 2

)

≤ 1 + 2n �t(1, 2) + n2

3
�t

(
2n − 2

n
, 2

)
.

For the difference �t(1, 2), one cannot obtain a better bound than e−t = nε−1.
The second difference �t

(
2n−2

n
, 2
)

is bounded from above by

e−2t
(

e
2t
n − 1

)
≤ n− 3

2
8 log n

3n
≤ 2n−2

by using similar arguments as in the proof of Lemma 28, and the inequality n ≥
10. So,

Vart[�] ≤ 1 + 2

3
+ 2nε ≤ 3nε.
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– Gr(n, q, C):

Vart[�] = �t(0, 2) +
(

2n2

pq
− 8

)
n2 − 1

n2 − 4
�t(1, 2)

+n2

2

(
n + 1

n − 2
− n2 − 1

pq(n − 2)

)
�t

(
2n − 2

n
, 2

)

+n2

2

(
n − 1

n + 2
+ n2 − 1

pq(n + 2)

)
�t

(
2n + 2

2
, 2

)

≤ 1 + 2n �t(1, 2) + n2

2
�t

(
2n − 2

n
, 2

)
.

The second difference is controlled exactly as in the case of real Grassmannians,
but under the constraint n ≥ 2:

�t

(
2n − 2

n
, 2

)
≤ e−2t

(
e

2t
n − 1

)
≤ n− 3

2
3 log n

n
≤ 9

4
n−2.

Hence, Vart[�] ≤ 1 + 9
8

+ 2nε ≤ 5nε.

– Gr(n, q, H):

Vart[�] = �t(0, 2) + n2

3

(
2n + 1

n − 2
− (2n + 1)(n − 1)

pq(n − 2)

)
�t

(
2n − 2

n
, 2

)

+
(

n2

pq
− 4

)
(n − 1)(2n + 1)

(n − 2)(n + 1)
�t(1, 2)

+n2

3

(
4(n − 1)

(n + 1)
+ (2n + 1)(n − 1)

pq(n + 1)

)
�t

(
2n + 1

n
, 2

)

≤ 1 + 2n �t(1, 2) + 2n2

3
�t

(
2n − 2

n
, 2

)
≤ 1 + 2nε + 3

2
≤ 5nε.

⊓⊔

Now, Proposition 29 still holds, but with KX varying with n and equal to 3nε or
5nε according to the field k = R, C or H. Thus:

Proposition 31 For Grassmannian varieties Gr(n, q, k), if t = (1 − ε) log n with ε ∈
(0, 1/4), then

dTV(μt, Haar) ≥ 1 − Lnε

m2
with L =

{
16 if k = R,

24 if k = C or H.

Finally, the deduction of the constants in Theorem 6 goes as follows:

– Gr(n, q, R): m ≥ n2ε

2
, so the constant can be taken equal to 2 × 16 = 32.

– Gr(n, q, C): m ≥ n2−1
n2 n2ε ≥ 3

4
n2ε, so a possible constant is again 4

3
24 = 32.

– Gr(n, q, H): m ≥ 2n2−n−1
2

n2ε ≥ 3
2

n2ε for n ≥ 3, whence a constant 2
3

24 = 16.

These computations end the proof of the cut-off phenomenon.
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5 Appendices (Technical Computations)

5.1 Proof of the Upper Bound for Odd Special Orthogonal Groups

With the same scheme of growth of partitions as for compact symplectic groups, one
has the following bounds:

– η1,n: it is given by the exact formula
(

2n+1

n+1

)
e− n(n+1)

2n+1
log(2n+1), which is indeed smaller

than 1 for n ≥ 5.
– ηk≥2,n: the comparison techniques between sums and integrals give

log ηk,n ≤ −n(2k − 1 + n)

2n + 1
log(2n + 1) + 2

2k − 1
+ 1

k
+ log(k + n − 2) − log k

+ (2k + 2n − 2) log(2k + 2n − 2) + (2k − 2) log(2k − 2)

− 2(2k + n − 2) log(2k + n − 2).

This bound is decreasing in k, whence smaller than its value when k = 2, which
is negative for every value of n ≥ 5.

– ηk,l∈[[3,n−1]]: as before, ρk,l splits into ρk,l,(1) and ρk,l,(2):

ρk,l =
n∏

j=l+1

k + j − 1 + λl+1 − λ j

k + j − l − 1 + λl+1 − λ j

k + λl+1 + λ j + 2n − j

k + λl+1 + λ j + 2n − j − l

×
∏

1≤i≤ j≤l

2k + 2λl+1 + 2n + 1 − i − j

2k + 2λl+1 + 2n − 1 − i − j
.

The bound on log η̃k,l , the sum of log ρk,l,(2) and of the variation of − tn,0

2
Bn(λ), is

log η̃k,l ≤ − l(2k′ − 1 + 2n − l)

2n + 1
log(2n + 1) + 1

k′ + n − l − 1

+ log(k′ + n − 2) − log(k′ + n − l − 1)

+ (2k′ + 2n − 2) log(2k′ + 2n − 2)

+ (2k′ + 2n − 2l − 2) log(2k′ + 2n − 2l − 2)

−2(2k′ + 2n − l − 2) log(2k′ + 2n − l − 2)

≤ − l(2v + 2n + 1 − l)

2n + 1
log(2n + 1) + 1

v + n − l

+ log(v + n − 1) − log(v + n − l) + (2v + 2n) log(2v + 2n)

+ (2v + 2n − 2l) log(2v + 2n − 2l)

− 2(2v + 2n − l) log(2v + 2n − l)
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with k′ = k + λl+1 = k + v. On the other hand, in the product ρk,l,(1), each term
of index j writes as

(k′+n−1/2)2−(λ j+n+1/2− j)2

(k′+n−1/2−l)2−(λ j+n+1/2− j)2
≤ (k′+n−1/2)2−(λl+1 +n+1/2− j)2

(k′+n−1/2−l)2−(λl+1 +n+1/2− j)2

≤ k+ j−1

k+ j−l−1

k′′+2n− j

k′′+2n− j−l
,

so the quantity ρk,l,(1) is bounded by

(k + n − 1)!
(k + l − 1)!

(k − 1)!
(k + n − l − 1)!

(k′′ + 2n − l − 1)!
(k′′ + n − 1)!

(k′′ + n − l − 1)!
(k′′ + 2n − 2l − 1)!

≤ n! (2v + 2n − l)! (2v + n − l)!
l! (n − l)! (2v + n)! (2v + 2n − 2l)! .

Again, Stirling approximation leads to

log ρk,l,(1) ≤ (2v + 2n − l) log(2v + 2n − l) + (2v + n − l) log(2v + n − l)

− (2v + n) log(2v + n) − (2v + 2n − 2l) log(2v + 2n − 2l)

+ n log n − l log l − (n − l) log(n − l) + 1

2n − 2
,

and therefore

log ηk,l ≤− l(2v + 2n + 1 − l)

2n + 1
log(2n + 1) + 1

v+n−l
+log(v+n−1)−log(v+n−l)

+ (2v + 2n) log(2v + 2n) + (2v + n − l) log(2v + n − l)

− (2v + n) log(2v + n) − (2v + 2n − l) log(2v + 2n − l)

+ n log n − l log l − (n − l) log(n − l) + 1

2n − 2

≤ − l(2n + 1 − l)

2n + 1
log(2n + 1) + 1

n − l
+ log(n − 1) − log(n − l)

+ n log n − l log l − (n − l) log(n − l) + 1

2n − 2
.

The last bound is decreasing in l, so it suffices to look at the case l = 3; then the
bound is decreasing in n, so it suffices to check that the bound is negative when
n = 5, which is just a computation. We conclude that log ηk,l ≤ 0 for any k and
any l ∈ [[3, n − 1]].
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– ηk,1: a bound on ρk,1 is k+n−2
k

2k+2n−1
2k+2n−3

, so

ηk,1 ≤ k + n − 2

k

2k + 2n − 1

2k + 2n − 3
e− 2k+2n−2

2n+1
log(2n+1) ≤ (n − 1)(2n + 1)

2n − 1
e− 2n

2n+1
log(2n+1)

≤ n − 1

2n − 1
e

log(2n+1)

2n+1 ≤ 1

2
e

log 11

11 ≤ 1.

– ηk,2: a bound on ρk,2 is k+2n−4
k

k+2n−3
k+1

2k+2n−1
2k+2n−5

k+n−1
k+n−2

, so

ηk,2 ≤ k+2n−4

k

k+2n−3

k+1

2k+2n−1

2k+2n−5

k+n−1

k+n−2
e− 4k+4n−6

2n+1
log(2n+1) ≤ n

2n + 1
e

4 log(2n+1)

2n+1 .

The last bound is bigger than 1 only when n = 5 or 6. The maximal value is
obtained for n = 5, and is smaller than 1.09 ≤ 11

10
. Moreover, if k ≥ 2, then one

has a much better bound, that is smaller than 1 even when n = 5 or 6.

Putting all together, one sees that at most one quotient ηk,l may be bigger than 1 (and
actually only when n = 5 or 6). Thus, we have proved Proposition 17.

5.2 Proof of the Upper Bound for Even Special Orthogonal Groups

We analyze as before the various quotients ρk,l and ηk,l corresponding to the growth
of partition described by Eq. 3.2:

– ηk,n: the general formula is

ηk,n =
(

n−1∏

i=1

2k + 2n − 2i − 1

2k + n − i − 1

2k + 2n − 2i − 2

2k + n − i − 2

)
e− 2k+n−2

2
log(2n),

which is decreasing in k and reduces to
(

2n−1

n

)
e− n log(2n)

2 when k = 1. This latter
bound is always smaller than 1.

– ηk,l∈[[2,n−1]]: the quotient of dimensions ρk,l = ρk,l,(1) ρk,l,(2) is equal to

n∏

j=l+1

k + j − 1 + λl+1 − λ j

k + j − l − 1 + λl+1 − λ j

k + λl+1 + λ j + 2n − 1 − j

k + λl+1 + λ j + 2n − 1 − j − l

×
∏

1≤i< j≤l

2k + 2λl+1 + 2n − i − j

2k + 2λl+1 + 2n − 2 − i − j
.

The main difference with the previous computations is that ρk,l,(2) is a product
over distinct indices i < j, so we will not have to worry about diagonal terms
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in the corresponding sum (see the argument at the beginning of Section 3.2.1).
Hence, with the same notations as before,

log η̃k,l ≤ − l(2k′ − 2 + 2n − l)

2n
log(2n) + (2k′ + 2n − 3) log(2k′ + 2n − 3)

+ (2k′ + 2n − 2l − 3) log(2k′ + 2n − 2l − 3)

− 2(2k′ + 2n − l − 3) log(2k′ + 2n − l − 3)

≤ − l(2v + 2n − l)

2n
log(2n) + (2v + 2n − 1) log(2v + 2n − 1)

+ (2v + 2n − 2l − 1) log(2n − 2l − 1)

− 2(2v + 2n − l − 1) log(2v + 2n − l − 1);

log ρk,l,(1) ≤ (2v + 2n − l − 1) log(2v + 2n − l − 1)

+ (2v + n − l − 1) log(2v + n − l − 1)

− (2v + n − 1) log(2v + n − 1)

− (2v + 2n − 2l − 1) log(2v + 2n − 2l − 1)

+ n log n − l log l − (n − l) log(n − l) + 1

2n − 2
.

Adding together these bounds, using the concavity of x log x and then the
decreasing character with respect to v gives

log ηk,l = log η̃k,l + log ρk,l,(1) ≤ − l(2n − l)

2n
log(2n)

+ n log n − l log l − (n − l) log(n − l) + 1

2n − 2
,

which is decreasing in l ≥ 2. Then,

−2n − 2

n
log(2n) + n log(n) − 2 log 2 − (n − 2) log(n − 2) + 1

2n − 2

is decreasing in n, and one can check that it is negative when n = 5. So, ηk,l ≤ 1

for any k and any l ∈ [[2, n − 1]].
– ηk,1: one has ρk,1 ≤ k+2n−3

k
k+n−1
k+n−2

, and therefore

ηk,1 ≤ k + 2n − 3

k

k + n − 1

k + n − 2
e− 2n+2k−3

2n
log(2n).

Suppose k ≥ 2; then the right-hand side is smaller than 2n−1
2n

n+1
2n

, so ηk,1 ≤ 1. On
the other hand, for k = 1, which happens only once,

η1,1 ≤ e
log(2n)

2n ≤ e
log 10

10 ≤ 4

3
.

This proves Proposition 18.
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5.3 Proof of the Upper Bound for Complex Grassmannians

For a partition of size p = ⌊ n
2
⌋, one has Bn(λ) = 2

n

∑p
i=1 λ2

i + (n + 1 − 2i)λi and either

An(λ) =

⎛
⎝

p∏

i=1

p∏

j=1

λi + λ j + n + 1 − i − j

n + 1 − i − j

⎞
⎠
⎛
⎝ ∏

1≤i< j≤p

λi − λ j + j − i

j − i

⎞
⎠

2

if n = 2p, or

An(λ) =

⎛
⎝

p+1∏

i=1

p+1∏

j=1

λi + λ j + n + 1 − i − j

n + 1 − i − j

⎞
⎠
⎛
⎝ ∏

1≤i< j≤p

λi − λ j + j − i

j − i

⎞
⎠

2

when n = 2p + 1. Let us give the details when n = 2p. Again, one looks at ρk,l =
An(λ)/An(μ) and ηk,l = ρk,l e− log n(Bn(λ)−Bn(μ)), with μ and λ equal to

(λl+1 + k − 1, . . . , λl+1 + k − 1, λl+1, . . . , λp)p and

(λl+1 + k, . . . , λl+1 + k, λl+1, . . . , λp)p.

The quotient of dimensions is

ρk,l =

⎛
⎝

l∏

j=1

(2k′ + n − j)(2k′ + n − j − 1)

(2k′ + n − j − l)(2k′ + n − j − l − 1)

⎞
⎠

×

⎛
⎝

p∏

j=l+1

(k′ − λ j + j − 1)(k′ + λ j + n − j)

(k′ − λ j + j − l − 1)(k′ + λ j + n − j − l)

⎞
⎠

2

,

and a lower bound is then obtained by the usual replacement λl+1 = λ j = 0 and
then k = 1:

ρk,l ≤ n − 2l + 1

n + 1

(
n + 1

l

)2

; ηk,l ≤ n − 2l + 1

n + 1

(
n + 1

l

)2

e− 2l(n+1−l)
n

log n

The last quantity is decreasing in l, as the quotient of two consecutive terms of
parameters n, l and n, l + 1 is smaller than

(
n + 1 − l

l + 1
e− n−2l

n
log n

)2

≤ 1.

So,

ηk,l ≤ n − 1

n + 1
(n + 1)2 e−2 log n = n2 − 1

n2
≤ 1

and An(λ) e− log n Bn(λ) is smaller than 1 for any partition (we leave to the reader the
verification of the other case n = 2p + 1, which is very similar).
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5.4 Expansion of Elementary 4-Tensors for Unitary Groups

For the eigenvectors associated to the value 2n − 2, we shall write

S(i, j, k, l) = (e[i, j] − e[ j, i])⊗2 − (e[ j, k] − e[k, j])⊗2

+ (e[k, l] − e[l, k])⊗2 − (e[l, i] − e[i, l])⊗2.

The elementary tensor e⊗4
i is equal to

1

n(n+1)

n∑

k,l=1

e[k, l, k, l]+e[k, l, l, k]+ 1

n(n+2)

∑

k �=i

n∑

l=1

(
(e[i,l,i,l]−e[k,l,k,l])+(e[l,i,l,i]−e[l,k,l,k])

+(e[i,l,l,i]−e[k,l,l,k])+(e[l,i,i,l]−e[l,k,k,l])

)

+ 1

n + 2

∑

k �=i

e⊗4
i + e⊗4

k − (e[i, k] + e[k, i])⊗2

− 1

(n + 1)(n + 2)

∑

k<l

e⊗4
k + e⊗4

l − (e[k, l] + e[l, k])⊗2

with the two first terms respectively in V2n2−2 and Vn2−2, and the second line in
V−2n−2. Similarly, ei ⊗ e j ⊗ ei ⊗ e j is equal to

1

(n − 1)(n + 1)

n∑

k=1

n∑

l=1

e[k, l, k, l] − 1

n(n − 1)(n + 1)

n∑

k=1

n∑

l=1

e[k, l, l, k]

+ 1

n(n + 2)

(
n∑

l=1

(
e[i,l,i,l]−e[ j,l, j,l]

+e[l, j,l, j]−e[l,i,l,i]

))
+ 1

(n − 2)(n + 2)

∑

k �=i, j

(
n∑

l=1

(
e[i,l,i,l]−e[k,l,k,l]

+e[l, j,l, j]−e[l,k,l,k]

))

− 1

n(n − 2)(n + 2)

∑

k �=i, j

(
n∑

l=1

(
e[i,l,l,i]+e[ j,l,l, j]−2e[k,l,l,k]

+e[l,i,i,l]+e[l, j, j,l]−2e[l,k,k,l]

))

+ 1

4(n−1)(n−2)

∑

(k<l) �=i, j

2S(i, j, k, l)−S(i, k, j, l)+ 1

2n

∑

k �=i, j

(
e[i, j,i, j]+e[ j,k, j,k]+e[k,i,k,i]

−e[ j,i, j,i]−e[k, j,k, j]−e[i,k,i,k]

)

+ 1

4(n + 2)

⎛
⎝∑

k �=i

e⊗4
i +e⊗4

k −(e[i, k]+e[k, i])⊗2 +
∑

k �= j

e⊗4
j +e⊗4

k −(e[ j, k]+e[k, j])⊗2

⎞
⎠

−1

4

(
e⊗4

i + e⊗4
j − (e[i, j] + e[ j, i])⊗2

)

− 1

2(n + 1)(n + 2)

(∑

k<l

e⊗4
k + e⊗4

l − (e[k, l] + e[l, k])⊗2

)

with the parts of this expansion respectively in V2n2−2, Vn2−2, V2n−2, V−2 and V−2n−2.

5.5 Expansion of Elementary 4-Tensors for Compact Symplectic Groups

It is a little more tedious than before to find a complete list of “simple” eigenvectors
of Mn,4 (or at least a sufficient list to expand simple tensors). The list of possible
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eigenvalues of Mn,4 is {2n + 1, n + 1, n, 3, 1, 0, −1, −3}, and on the other hand, one
can easily identify a basis of V2n+1: it consists in the three vectors

v2n+1,1 =
n∑

i, j=1

(
e[2i−1,2i,2 j−1,2 j]+e[2i,2i−1,2 j,2 j−1]

−e[2i,2i−1,2 j−1,2 j]−e[2i−1,2i,2 j,2 j−1]

)
;

v2n+1,2 =
n∑

i, j=1

(
e[2i−1,2 j−1,2i,2 j]+e[2i,2 j,2i−1,2 j−1]

−e[2i,2 j−1,2i−1,2 j]−e[2i−1,2 j,2i,2 j−1]

)
;

v2n+1,3 =
n∑

i, j=1

(
e[2i−1,2 j−1,2 j,2i]+e[2i,2 j,2 j−1,2i−1]

−e[2i,2 j−1,2 j,2i−1]−e[2i−1,2 j,2 j−1,2i]

)
.

But then, it becomes really difficult to describe the other eigenspaces. However,
one can still find the eigenvector expansion of simple tensors such as e⊗4

i , e⊗2
i e⊗2

j ,
or e[i, j, k, l]; hence, in the following, we just give these expansions (again it is easy to
check that each part of an expansion is indeed an eigenvector). The tensor e[i, i, i, i]
is an eigenvector in V−3, and on the other hand, e[2i − 1, 2i − 1, 2i, 2i] decomposes
into the eigenvectors

1

2n(2n + 1)

(
v2n+1,2 + v2n+1,3

)

+ n − 2

4n(n + 1)

∑

σ∈S

∑

j�=i

(
e[2i−1,2 j−1,2i,2 j]+e[2i,2 j,2i−1,2 j−1]

−e[2i−1,2 j,2i,2 j−1]−e[2i,2 j−1,2i−1,2 j]

)σ

+ 1

4n(n + 1)

∑

σ∈S

∑

j,k �=i

(
e[2 j−1,2k,2 j,2k−1]+e[2 j,2k−1,2 j−1,2k]

−e[2 j−1,2k−1,2 j,2k]−e[2 j,2k,2 j−1,2k−1]

)σ

+ n − 1

2n(n + 1)

(
2e[2i−1,2i−1,2i,2i]+2e[2i,2i,2i−1,2i−1]−e[2i−1,2i,2i−1,2i]
−e[2i,2i−1,2i,2i−1]−e[2i,2i−1,2i−1,2i]−e[2i−1,2i,2i,2i−1]

)

+ 1

4(n + 1)

∑

σ∈S

n∑

j=1

(
e[2i−1,2 j−1,2i,2 j]+e[2i,2 j−1,2i−1,2 j]

−e[2i−1,2 j,2i,2 j−1]−e[2i,2 j,2i−1,2 j−1]

)σ

+ 2n − 1

2(2n + 1)(2n + 2)

∑

σ∈S

∑

j�=i

(
e[2i−1,2 j,2 j−1,2i]+e[2i,2 j−1,2 j,2i−1]

−e[2i−1,2 j−1,2 j,2i]−e[2i,2 j,2 j−1,2i−1]

)σ

+ 1

2(2n + 1)(2n + 2)

∑

σ∈S

∑

j,k �=i

(
e[2 j−1,2k−1,2 j,2k]+e[2 j,2k,2 j−1,2k−1]

−e[2 j−1,2k,2 j,2k−1]−e[2 j,2k−1,2 j−1,2k]

)σ

+ (2n − 1)(2n − 2)

6(2n + 1)(2n + 2)

(
2e[2i−1,2i−1,2i,2i]+2e[2i,2i,2i−1,2i−1]−e[2i−1,2i,2i−1,2i]
−e[2i,2i−1,2i,2i−1]−e[2i,2i−1,2i−1,2i]−e[2i−1,2i,2i,2i−1]

)

+ n − 1

2(n + 1)
(e[2i − 1, 2i − 1, 2i, 2i] − e[2i, 2i, 2i − 1, 2i − 1])

+ 1

4(n + 1)

∑

σ∈S

∑

j�=i

(
e[2i−1,2 j,2 j−1,2i]+e[2i,2 j,2 j−1,2i−1]

−e[2i−1,2 j−1,2 j,2i]−e[2i,2 j−1,2 j,2i−1]

)σ

+1

6

′∑

σ∈S4

e[2i − 1, 2i − 1, 2i, 2i]σ
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with the parts of this expansion respectively in V2n+1, Vn+1, Vn, V0, V−1,
and V−3. In these expansions, S = (Z/2Z)2 denotes the group of permutations
{id, (1, 2), (3, 4), (1, 2)(3, 4)}.

The expansion in eigenvectors of e[2i, 2i, 2 j, 2 j] is

1

6

(
2e[2i,2i,2 j,2 j]+2e[2 j,2 j,2i,2i]−e[2i,2 j,2i,2 j]
−e[2 j,2i,2 j,2i]−e[2i,2 j,2 j,2i]−e[2 j,2i,2i,2 j]

)
+ 1

2

(
e[2i,2i,2 j,2 j]

−e[2 j,2 j,2i,2i]

)
+ 1

6

′∑

σ∈S4

e[2i, 2i, 2 j, 2 j]σ

with each part respectively in V0, V−1 and V−3; and similarly for the expansions of
e[2i − 1, 2i − 1, 2 j, 2 j] or e[2i − 1, 2i − 1, 2 j − 1, 2 j − 1]. Finally, we skip the expan-
sion in eigenvectors of e[2i − 1, 2i, 2 j − 1, 2 j], since it is two pages long.
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