

http://kth.diva-portal.org

This is an author produced version of a paper published in IEEE Systems Journal.

This paper has been peer-reviewed but does not include the final publisher proof-

corrections or proceedings pagination.

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Citation for the published paper:

Teodor Sommestad, Mathias Ekstedt, and Hannes Holm.
The Cyber Security Modeling Language : A Tool for Vulnerability Assessments of
Enterprise System Architectures.
IEEE Systems Journal.

Access to the published version may require subscription.

Published with permission from: IEEE



Abstract—The Cyber Security Modeling Language (CySeMoL)

is a modeling language for enterprise-level system architectures

coupled to a probabilistic inference engine. If the computer

systems of an enterprise are modeled with CySeMoL, this

inference engine can assess the probability that attacks on the

systems will succeed. The theory used for the attack-probability

calculations in CySeMoL is a compilation of research results on a

number of security domains and covers a range of attacks and

countermeasures. The theory has previously been validated on a

component level. In this paper, the theory is also validated on a

system level. A test indicates that the reasonableness and

correctness of CySeMoL assessments compare with the

reasonableness and correctness of the assessments of a security

professional. CySeMoL’s utility has been tested in case studies.

I. INTRODUCTION

ecurity issues related to information technology (IT)

continue to be a concern in today’s society. The IT

environments of many enterprises are composed of a large

number of systems connected to form a complex system-of-

systems. Security is also a complex problem that is difficult to

master. To fully estimate the security of an enterprise’s system

architecture, a large number of issues must be considered.

Enterprise systems security managers must be able to assess

how the vulnerabilities in one system influence the

vulnerabilities in other systems. In addition, security managers

must be able to assess how individual vulnerabilities influence

the security of the entire system-of-systems, given the

protection solutions that are used in different locations in the

architecture.

Enterprise systems security managers typically have a basic

understanding of their organization’s architecture and systems

and the losses incurred if assets are compromised. However,

the managers’ understanding of how vulnerabilities depend on

each other in the system-of-systems and how the

vulnerabilities can be exploited is often hazy. Support from

security theory can be obtained from security experts and the

literature. However, consulting security experts and studying

the literature is both costly and time-consuming. Generally,

support is missing for informed decision making concerning

security on the system-of-systems level.

Tools that help system-security managers to assess how

vulnerabilities in one system influence the vulnerabilities of

other systems in enterprise system architecture are valuable,

particularly if these tools can offer support without requiring

input data that are difficult to collect.

A. Contribution

This paper presents an analysis tool called the Cyber

Security Modeling Language (CySeMoL). This tool is built on

the framework presented in [1] and uses a probabilistic

relational model (PRM) [2] to support system-security

managers in security analysis. If an object model of the system

architecture is created according to a predefined class model,

the tool can approximate the probability that an attacker will

succeed with different attacks against the system. Security

expertise is not required to create the object model because the

PRM specifies a theory on how attributes in the object model

depend on each other. The users must only model their system

architecture and properties.

The theory used in CySeMoL is based on logical relations,

experimental research in the security domain, and domain

experts’ judgment. CySeMoL covers a variety of attacks,

including software exploits, flooding attacks, abuse of

obtained privileges, and social-engineering attacks. Emphasis

has been placed on supporting security managers concerned

with attacks on industrial control systems (also known as

Supervisory Control and Data Acquisition (SCADA) systems).

However, the tool can be used for other types of domain.

This paper presents CySeMoL’s PRM and the validation of

this PRM. The PRM has been validated on the component and

system levels. On the component level, the variables and

relationships have been validated using the literature and

domain experts. On the system level, the content validity has

been tested by comparing the PRM’s output with the responses

of five security experts to a number of scenarios. In addition,

the usability of the tool is demonstrated in two case studies at

large enterprises.

The Cyber Security Modeling Language: A

Tool for Assessing the Vulnerability of

Enterprise System Architectures

Teodor Sommestad, Mathias Ekstedt, and Hannes Holm

S

B. Outline

Section II presents related works. Section III briefly

describes the framework presented in [1], on which this tool is

built. Section IV presents the method used to create the tool.

Section V presents CySeMoL’s PRM. Section VI presents the

results of validity tests. Section VI summarizes the paper and

discusses future work.

II. STRUCTURED METHODS FOR SECURITY ASSESSMENT

A substantial number of methods have been developed to

quantify security and to support decision making related to

security. For instance, Verendel [3] reviewed more than 100

methods for security metrication. The review presented below

will cover only a subset of these methods. Emphasis is placed

on methods that are applicable to assessing the security of a

system-of-systems.

A number of prominent assessment methods require that the

user is a security expert. For instance, the IEEE standard

27000-4 [4] and NIST’s security metric guide [5] are methods

that describe how an organization should develop and maintain

a measurement program. However, the methods do not

prescribe the measurements that should be taken or explain

what different measurement values mean for security. These

methods can be used as support when the security of a system-

of-systems is assessed. However, they leave a substantial

amount of effort to the user.

A number of methods offer concrete support and give the

user a finished aggregation framework for security properties.

Examples include the following: attack trees [6], defense trees

[7], Boolean Logic Driven Markov Processes [8], the CORAS

framework [9], Secure Tropos [10], and the model proposed

by Breu et al. [11]. These methods help users combine

variables to produce a meaningful result. Thus, the methods

can help to combine the security values of single systems into

a single value for a system-of-systems (i.e., the total risk).

However, the methods require the user to produce the security

ratings. For example, for defense trees, the user must quantify

the likelihood of attacks being successful; for Boolean Logic

Driven Markov Processes, provide time-to-compromise

estimates; and in the model of Breu et al. give threat-

realization probabilities. While some methodological support

is available for quantification (e.g., [12]), expertise is still

required. In addition, many of these methods require the users

to identify causal dependencies in their systems, e.g., attack

trees must be created before they can be used. For some

systems, such causal models can be found in the literature, for

example, the model employed [13] for electronic voting

systems.

This paper describes a method that does not require security

expertise from the user. In other words, the user of the method

must only input information about the system architecture and

is not required to provide security properties such as time-to-

compromise or attack-success probability. Instead, the security

properties for the system are derived from the system

architecture and quantified according to a generic theory.

The practical utility of a method that quantifies the security

of system architectures without requiring security expertise

from the user is obvious. However, few methods of this type

exist that are applicable to assessing the security of a system-

of-systems. For instance, the Common Vulnerability Scoring

System [14] produces assessments for a single software

vulnerability, and the model presented in [15] produces

assessments for single hosts.

Several of the methods that have a high abstraction level use

best-practice standards to produce a security rating by the

organization’s compliance to the standard (e.g., Johansson’s

method [16]). The scope of such methods is useful where a

system-of-systems is assessed. However, the ratings obtained

are difficult to interpret and therefore not straightforward for

system-security managers. For instance, knowing how high a

value should be is difficult, as is deriving which risk is

associated with a certain rating. Additionally, cause-and-effect

relationships are not clear in these methods.

In recent years, a substantial number of articles have been

published to develop methods that use attack graphs. An attack

graph aims at determining which attacks can be conducted

against a system. Because potential attacks are the source of

cyber security risk, these methods fit well with decision-

making processes concerning security. CySeMoL’s approach

is similar to the approach used in attack graphs.

Methods based on attack graphs are based on a model of the

system architecture and a database of security exploits or

security vulnerabilities [17], [18]. From these data, an

algorithm calculates privileges and network states that can be

reached by an attacker who starts from a given position [17].

Since the early variants of attack graphs appeared

([19],[20]), several tools have been developed that offer

different solutions to the problem. Differences can be seen

both in terms of the data they require as input and the output

the produce when they are applied. The most mature tools are

NETSPA [21], [22], MulVAL [23], and the TVA-tool [24].

These tools are described below.

NETSPA has been used to analyze networks of thousands of

hosts, and its usability has been demonstrated in case studies

[22]. However, NETSPA uses a coarse model of the attacker’s

capabilities. All software vulnerabilities in the database are

considered to be exploitable by the attacker (given that the

software can be reached) [21]. No differentiation is made with

respect to the security measures implemented on the targeted

host, to whether exploiting the vulnerability requires a

particular configuration, or to the attacker’s competence.

GARNET [25] and its successor NAVIGATOR [26] build on

NETSPA and add new visualization capabilities and support

for what-if analysis.

MulVAL does not treat all vulnerabilities as unquestionably

exploitable by the attacker. In MulVAL, each vulnerability is

associated with a probability to represent how likely an

attacker is to exploit the vulnerability [23]. This approach

makes the model of potential attacks more expressive.

Unfortunately, such probability values are not available in

vulnerability databases. In descriptions of the method, the

access-complexity rate from the US National Vulnerability

Database has been translated into probability values [27].

However, no arguments are given for why this translation is

used, and the validity of the translation remains unclear.

Additionally, the probabilities only represent success rates

generally and do not take into account protective measures that

increase the difficulty of exploiting a vulnerability.

The TVA tool [24] uses a database of exploits possessed by

the attacker instead of a database of vulnerabilities. The

exploits are associated with detailed pre- and post-conditions,

which state when the exploit can be applied and what state is

reached after the exploit has been applied. Thus, the analysis

can be constructed to represent an attacker armed with certain

exploits. However, no database of exploits exists that is

described this way. The data must be entered before use.

These three attack-graph methods offer different solutions

to the problem of assessing the security of a given system

specification. An issue all methods must address is the

complex graphs that are produced when systems of realistic

sizes are analyzed. Additionally, they need to manage cycles in

the graphs. Another issue is obtaining the input data. All three

tools described above use the vulnerability scanner Nessus to

collect these data. However, a recent accuracy test shows that

Nessus misses more than half of the vulnerabilities when given

access credentials to the hosts in a network and four out of five

vulnerabilities when credentials are not given [28]. Thus, the

automated scans on which the three tools rely are not reliable

when individual vulnerabilities must be detected. In addition,

in environments with sensitive systems (e.g., SCADA

systems), scanners must be avoided because scanners can

interrupt critical system services [29].

Another drawback of existing tools is the type of attacks

that they cover. The tools are developed for software exploits

targeting services running on the listening ports of machines.

Thus, they lack the capability to model many relevant types of

attack, e.g., password cracking, social engineering, and denial-

of-service attacks. NETSPA has been extended to include

attacks on clients (e.g., web browsers) [30]. However, the

other two tools have not. Another matter falling outside the

scope of these tools is zero-day exploits, i.e., attacks using

vulnerabilities that are unknown to the public. The user of the

tool can of course enter hypothetical data into the database and

perform the analysis with these data. However, competence is

required to identify which zero-day attacks can be reasonably

expected from the attacker.

CySeMoL also models attacks and assesses the attacks that

an attacker can execute. Compared with the three tools

discussed above, CySeMoL analyzes a wider range of attack

types and security measures. CySeMoL’s output is

probabilistic (as in MulVAL) and estimates the probability that

different attacks can be accomplished against assets in the

system architecture. The probabilities used in these

calculations have been derived from experimental studies and

studies eliciting the judgment of domain experts.

III. THE FRAMEWORK USED: THE PRM TEMPLATE

The Cyber Security Modeling Language (CySeMoL) is built

on the framework presented in [1]. This framework is a

template for a probabilistic relational model (PRM) for

security-risk analysis. Section III.A briefly describes the PRM

formalism. Section III.B describes the security template for the

PRMs presented. Section III.C describes the part of this

template that is used in CySeMoL.

A. Probabilistic relational models

A PRM [2] specifies how a Bayesian network [31] should

be constructed from an object model, i.e., how a Bayesian

network should be created from a model that instantiates a

class diagram, such as the one of the Unified Modeling

Language (UML).

In a PRM, classes can have attributes and reference slots.

The attributes are random variables with states from a discrete

domain. The reference slots refer to other classes and express

which relationships a class has with other classes. For instance,

the attributes System.Available and Person.Certified could

have the domain of values {True,False}. The reference slot

System.Administrator could refer to the class Person.

The attributes in the PRM are associated with a set of

parents. The parents of an attribute A are attributes in the

object model that A’s value depends on. Parents are defined

using a chain of reference slots that leads from the child

attribute’s object to the parent attribute’s object. For instance,

the attribute System.Available could be assigned the parent

attribute System.Administrator.Certified using the reference

slot Administrator of the class System. In this case, the slot

chain is the single slot System.Administrator. Slot chains

comprising multiple reference slots are also possible. If a slot

chain points to attributes of more than one object in an

instantiated model, an aggregate is used, e.g., one of the

Boolean operators OR or AND.

Each attribute is associated with a conditional probability

table that defines the attribute’s value given all possible

combinations of states in the attribute’s parents. For instance,

the attribute System.Available would be given different

probabilities that express the attribute’s value when

System.Administrator.Certified is True and False. The

probabilistic model enables the value of attributes in an

instantiated object model to be inferred. Such inference can

also infer values for attributes with no assigned state.

In essence, a PRM defines how a Bayesian network shall be

generated using the attributes of an object model. Thus, a

PRM constitutes a formal machinery for calculating the

probabilities of object properties in various architecture

instantiations. For example, a PRM could be used to assess the

availability of systems given that certain administrators are

assigned to the systems.

B. The PRM template for security-risk analysis

In [1], a template for PRMs is defined for security-risk

analysis. This template defines abstract classes together with

attributes, reference slots and conceptual-attribute parents. The

classes in this template are: Asset, Owner, Threat,

ThreatAgent, AttackStep, and five types of Countermeasure.

The countermeasures are: ContingencyCountermeasure,

PreventiveCountermeasure, DetectiveCountermeasure,

ReactiveCountermeasure and AccountabilityCountermeasure.

If a PRM is constructed according to this template and the

PRM’s conditional probabilities are assigned, the PRM can be

used to perform two types of analysis. The first and more

extensive analysis requires the instantiation of all the classes

and can produce values for the expected economic losses for

the architecture. This analysis includes consideration of the

probability that different attack scenarios will be attempted

and the expected loss that would be incurred if an attack is

successful. The second analysis uses a subset of the template

and can be used to calculate reachability values for different

attack paths (threat instances), as in attack graphs. CySeMoL

employs the second type of analysis.

C. The scope of the PRM

CySeMoL focuses on assessing the probability that attack

paths can be accomplished given that they are attempted. Thus,

CySeMoL uses a subset of the classes, attributes and

dependencies defined in [1]. The class AttackStep is used to

represent attacks together with the probability that the attacks

are successful and that they are detected when they are

attempted. The classes PreventiveCountermeasure,

DetectiveCountermeasure and ReactiveCountermeasure are

also included. Only one type of ThreatAgent is considered: a

threat agent who has one week and publicly available tools.

CySeMoL’s PRM includes attacks and countermeasures of

relevance to industrial control and SCADA systems security.

Threats against these systems are primarily related to the

systems’ availability and integrity properties (and not

confidentiality). However, SCADA systems comprise the same

type of subsystems as other information systems. Thus, the

PRM can be used to analyze such systems but with limited

support for threats against confidentiality. In addition, the

PRM has other limitations, e.g., the countermeasures that the

PRM can cover. These limitations are discussed in section IV.

IV. THE METHOD USED TO CONSTRUCT CYSEMOL

This section presents the method used to construct

CySeMoL, including a description of the qualitative structure

(section IV.A) and the quantitative parameters associated with

this structure (section IV.B). A summary is given in section

IV.C.

Because this tool has been the subject of a considerable

number of studies in the security field, this section does not

describe each study in detail. The interested reader can find

more information about these studies in the references.

A. Qualitative structure

The PRM’s qualitative structure includes everything but the

quantitative parameters, i.e., the classes, reference slots,

attributes, and parents of attributes. CySeMoL’s qualitative

structure has been developed using the literature and judgment

of security experts.

1) Literature study

The literature was studied extensively to identify an initial

set of assets and which attack steps to include. This research

included a review of a large number of textbooks (e.g., [32]),

standards and reports (e.g., [29]), overviews (e.g., [33]) and

security databases (e.g., [34]). Descriptions of attacks and

countermeasures in these sources were used to create an initial

model of a suitable level of abstraction and scope.

When the initial model was finished, the literature on

specific attacks was consulted. This literature was used to

determine the parents of attack steps, i.e., the countermeasures

and privileges (completed attack steps) that influenced the

probability that an attack step could be accomplished. A large

number of sources were used for each type of attack. For

instance, sources such as [35–39] were used to identify parents

of remote code-exploitation attacks, and sources such as [40–

42] were used to identify the parents of password-cracking

attacks.

2) Review by domain experts

Before more detailed studies were conducted on specific

attack types, the initial model was reviewed by three domain

experts. All three were professional penetration testers. In

interviews, these domain experts were asked to evaluate

whether the model included the variables that are most useful

when the security of a system-of-systems is to be assessed. To

be useful, a variable should not only be important to security

but also possible to assess. Thus, the experts were asked to

consider which information was worthwhile to collect from a

decision-making perspective. Several minor changes were

made based on the suggestions by the experts. For example,

firewall was modeled with fewer attributes and password

protection was emphasized.

In addition to the general validation of the model, a number

of domain experts were consulted on specific attacks and the

parents to include for these attacks. Because such input

requires a good understanding of the specific type of attack,

different domain experts were used for different areas (cf.

Table I). For example, three persons were interviewed about

intrusion-detection systems and the performance variables of

such systems, and three persons were interviewed regarding

remote arbitrary-code exploits. Few changes were suggested to

the initial model during these validation efforts. Input from the

domain experts helped to define variables in a practical way

and to determine which variables to include (e.g., variables

influencing the effort required to find new software

vulnerabilities). Overall, the domain experts agreed with each

other about variables relevance. This agreement suggests that

the final model offered a good tradeoff between scope and

usability.

B. Quantitative parameters

A PRM requires quantitative parameters for conditional

probability distributions. CySeMoL’s PRM consists of both

logical dependencies with deterministic influences and

probabilistic dependencies with uncertain influence. These

dependencies are used to estimate the probability that a

professional penetration tester can succeed with attacks against

the architecture within one week using publicly available tools.

1) Logical, deterministic dependencies

A substantial portion (82 %) of the entries in the PRM’s

conditional probability tables is deterministic. These

deterministic dependencies are used in the following cases:

a) Attack steps that are specializations of the same goal are

aggregated into one attack step to simplify the model.

b) Certain preconditions are required for an attack to be

possible.

The deterministic dependencies created for the first case are

modeling constructs added for practical reasons. For example,

denial-of-service attacks against services are decomposed into

two variables representing two ways denial-of-service attacks

can be conducted (semantic attacks or flooding attacks). This

decomposition makes the conditional probabilities for each

attack type easier to follow.

Deterministic dependencies of the second type are present

when a condition is necessary to accomplish an attack step.

For example, to perform remote code execution against a

software service, two necessary (but not sufficient) conditions

are that the attacker must be able to send data to the port the

service listens to and that the service has a software

vulnerability. The second type of deterministic dependency

was identified from the literature and validated by domain

experts in interviews. Examples of such dependencies are

given in section V.B.

2) Probabilistic, uncertain dependencies

Dependencies not determined by logical dependencies are

uncertain and are defined using probabilities. Such

dependencies are uncertain because the PRM does not include

all the details that determine the variable’s actual, which is the

case if the PRM lacks a variable that could be important (e.g.,

the countermeasure application whitelisting) or if a variable’s

states represent a range of values (e.g., the severity rating of

software vulnerabilities, divided into three levels). Such

simplifications arise from the practical reasons discussed

above, i.e., the creation of an instance model should not be

costly.

Some probabilistic relationships could be specified based on

published data from experiments and observations. For

instance, data on the success of password cracking given

different conditions could be found in [40–43]. However, for

most of the conditional probabilities required, reliable

quantitative data cannot be found in the literature. For

instance, experiments on intrusion-detection systems are

difficult to generalize from [44], and data on efforts required

to find new software vulnerabilities are not gathered in a

systematic way [45].

When reliable data could not be found in the literature,

estimates were collected from domain experts. The data

collected this way come from five surveys. The number of

respondents to these surveys varies between four and 165

individuals. In four of the five surveys ([46–49]), the

respondents’ judgment was weighted using Cooke’s classical

method [50], a well-established method for weighting domain

experts based on their ability to accurately assess a set of test

questions on the same topic as the real questions. The

effectiveness of the method is demonstrated in [50]. In the fifth

study [51], the experts were weighted based on the number of

real systems on which they had tested the variable’s state.

C. Summary

The attacks and countermeasures included in CySeMoL

were identified using the literature and input from domain

experts. The aim of the qualitative structure was to be as

complete as possible while remaining useful to a typical

system-security manager. The quantitative parameters in the

PRM are deterministic dependencies between attributes and

uncertain dependencies between attributes. The probabilities

for the uncertain dependencies are derived from observations

of systems, experiment, and studies based on structured expert

elicitation. An overview is given in Table I.

TABLE I

OVERVIEW OF METHODS USED

Part of the PRM Qualitative

validation

method

Parameterization method

Discovering new

vulnerabilities

Literature and

3 experts.

Cooke’s classical method applied to

17 domain experts’ judgment [46].

Remote arbitrary

code exploitation

attacks

Literature,

pilot study,

and 3 experts.

Cooke’s classical method applied to

21 domain experts’ judgment [47].

Intrusion detection Literature and

3 experts.

Cooke’s classical method applied to

165 domain experts’ judgment [49].

Denial-of-service

attacks

Literature and

2 experts.

Cooke’s classical method applied to

23 domain experts’ judgment [48].

Exploitation of

network

configuration

mistakes

Literature and

2 domain

experts.

Data described in [52] and [53]

combined with four domain experts’

judgment [51].

Attacks on

password

protection

Literature and

one domain

expert.

A review and synthesis of password-

guessing data [40–42] and the

capabilities of rainbow tables [43].

Social-engineering

attacks

Literature. Experiments [54–57] on social-

engineering attacks.

V. THE CYBER SECURITY MODELING LANGUAGE’S PRM

This section describes the main contribution of this paper:

CySeMoL. This section gives an overview of the metamodel

(section V.A), the deterministic and probabilistic dependencies

embedded in the PRM (section V.B), and the instantiation of

attack paths (section V.C). A full description of all concepts

and dependencies is not given here because of the space the

description would require. The description presented here

gives an overview of CySeMoL and provides concrete

examples of parts of the model. The interested reader can

download the PRM and the software tool in which the PRM is

implemented from [58].

A. Metamodel overview

The metamodel comprises 22 classes, 102 attributes, and 32

class relationships (reference slots). These classes, attributes,

and class relationships dictate what information an architecture

model should contain and are depicted in Fig. 1. Two types of

attribute are distinguished in Fig. 1: countermeasures and

attack steps. The upper box in a class describes the

countermeasures associated with the class. The lower box

describes the attack steps associated with the class.

Relationships are marked by the dashed lines between classes.

The metamodel contains three concretized types of

software: OperatingSystem, Service, and ApplicationClient.

All types of SoftwareInstance are related to the

SoftwareProduct the types are an installation of. An

OperatingSystem can be related to a NetworkZone in which

traffic between software instances is permitted (i.e., not

filtered). The class NetworkInterface can connect multiple

instances of NetworkZone and mark the instances as trusted or

untrusted zones. A NetworkInterface can allow certain

instances of DataFlow. The other data flows are assumed to be

blocked. A DataFlow has a Protocol, and a DataFlow can

read or write to a DataStore owned by a SoftwareInstance.

 The NetworkInterface is related to the Firewall that

enforces the NetworkInterface’s rules. A Firewall can be

related to the class DeepPacketInspection and to an IDSsensor

that enhances the Firewall’s capabilities. An IDSsensor can be

associated with an OperatingSystem when the

OperatingSystem is a host-based intrusion-detection system. A

DeepPacketInspection can be associated with the Service on

which the DeepPacketInspection focuses or the

ApplicationClient for which it acts as a proxy.

All types of SoftwareInstance can be associated with an

AccessControlPoint, which controls access to the software,

e.g., a network Service or OperatingSystem. An

AccessControlPoint is associated with an

AuthenticationMechanism, which authenticates access requests

and the Account instances that are allowed access. Because

passwords are common, the two preceding classes have been

specialized to PasswordAuthenticationMechanism and

PasswordAccount. An Account is owned by a Person, and a

Person can be covered by an AwarenessProgram.

A ZoneManagementProcess is related to a NetworkZone

and describes how systems within the NetworkZone are

managed, e.g., if the machines have been hardened.

B. Attribute dependencies

The 22 classes have 102 attributes. The attributes’ values in an

instantiated model are used to assess the security of the

modeled enterprise systems. More precisely, the probability

that certain attack paths (i.e., chains of attack steps) can be

accomplished is used to assess the security of the architecture.

This section gives examples of attack paths that may be

instantiated in an instance model and the countermeasures that

influence their probability of success.

If an attacker attempts to log on to a SoftwareInstance, the

attacker may be required to bypass an AccessControlPoint,

i.e., if the SoftwareInstance has a relationship to the

AccessControlPoint. An AccessControlPoint is associated with

an AuthenticationMechanism and Accounts that belong to

Persons who are authorized to access the system. An

Account’s password may be compromised by being guessed

online, offline, or through social engineering.

Because password authentication is widely used, CySeMoL

focuses on password authentication. The difficulty of

compromising a PasswordAccount online depends on the

presence of default passwords, whether password policies are

automatically enforced, and whether the number of guesses

that can be produced is limited.

The success of offline guessing depends on the possibility of

extracting the password repository, whether password policies

are automatically enforced, whether passwords are hashed, and

whether passwords are salted. The success probability for

social engineering is decreased if the account-owner is

included in an AwarenessProgram.

Another way to obtain access to the OperatingSystem is to

execute arbitrary code via Services, ApplicationClients, or

services in the OperatingSystem that are unknown to the

system owner. To accomplish these attack steps, the attacker

must be able to connect to the SoftwareInstance in question,

e.g., the attacked Service in question. Once connected, the

attacker must accomplish a remote arbitrary-code attack.

To connect from another NetworkZone, the attacker must

have access to a machine in the other NetworkZone and be

able to send data over the NetworkZone that connects the two.

Data can be sent if the attacker can produce a request in a

DataFlow that has the Service as server or a response in a

DataFlow that has the ApplicationClient as client. Requests

and responses can be produced if the attacker has gained

access to the software that produces the responses (e.g., an

operating system) or by compromising the DataFlow’s

integrity in a different way (e.g., by executing a man-in-the-

middle attack using ARP-spoofing). To exploit unknown

services in an OperatingSystem, the attacker must find such

services. The probability that the attacker can find such

services is influenced by attributes in the

ZoneManagementProcess associated to the OperatingSystem’s

NetworkZone.

To connect from the same zone, the attacker must obtain an

own address in the NetworkZone. An address can be obtained

by gaining access to an OperatingSystem in the zone, by

breaking the PhysicalZone of the NetworkZone and connecting

an own machine, or by finding an unknown entry point (e.g.,

an undocumented dual-homed computer) to the NetworkZone.

The attributes in the ZoneManagementProcess influence the

possibility the attacker may find unknown entries to a

NetworkZone.

ZoneManagementProcess

NetworkZone

DNSSEC

PortSecurity

Protocol

FreshnessIndicator

CryptographicAuthentication

CryptographicObufuscation

DataFlow

Disrupt

Replay

Eavesdrop

ManInTheMiddle

ProduceRequest

ProduceResponse

DataStore

ReadData

WriteData

DeleteData

PhysicalZone

Access

SoftwareInstallation

SoftwareProduct

GetProductInformation

ObtainSourceCode

ObtainBinaryCode

DevelopPatchableExploitForLowSeverityVuln

DevelopPatchableExploitForMediumSeverityVunl

DevelopPatchableExploitForHighSeverityVuln

DevelopUnpatchableExploitForLowSeverityVuln

DevelopUnpatchableExploitForMediumSeverityVunl

DevelopUnpatchableExploitForHighSeverityVuln

NetworkInterface

ARPSpoof

DenialOfService

StaticARPTables

IDSsensor

Service

OperatingSystem

ConnectToFromOtherZone

ExecutionOfArbitaryCodeFromOtherZone

ConnectToFromSameZone

ExecutionOfArbitaryCodeFromSameZone

StaticARPTables

HostFirewall

AddressSpaceLayoutRandomization

NonExecutableMemory

Person
SecurityAwarenessProgram

Account

GuessAuthenticationCodesOffline

SocialEngineerAuthenticationCode

GuessAuthenticationCodeOnline

PasswordAccount

AuthenticationMechanism

PasswordAuthentication

Mechanism

AutomatedPolicyEnforcer

HashedRepository

HashedRepositorySalted

DefaultPasswordsRemoved

UntrustedZone
TrustedZone

AllowedDF

PerimeterIDS

Protocol

Read Write

Medium

PhysicalZone

Product

PhysicalZone

ManagementProcess

AuthenticationMechanism

Owner

AwarenessProgram

HIDS

OperatingSystem

Owner

Zone

VPN Gateway

Server

Client
Server

Client

ApplicationClient

ACLsubject

CryptographicObufuscation

IncidentHandlingProcedures

HostHardeningProcedures

FormalPatchAndUpdatingProcess

RegularLogReviews

RegularSecurityAudits

FormalChangeManagentProcess

DeepPacketInspection

DPI

Proxy

ExtractPasswordRepository
BackoffTechnique

ProxyGateway

ExecutionOfArbitaryCodeFromSameZone

ExecutionOfArbitaryCodeFromOtherZone

CheckedWithStaticCodeAnalysis

HasBeenScrutinized

OnlyUsesSafeLanguages

SourceCodeClosed

BinaryCodeSecret

HasPublicPatchableSeverityVuln

HasPublicPatchableMediumSeverityVuln

HasPublicPatchableHighSeverityVuln

HasPublicUnpatchableLowSeverityVuln

HasPublicUnpatchableMediumSeverityVuln

HasPublicUnpatchableHighSeverityVuln

FindUnknownServiceFromOtherZone

ExecutionOfArbitaryCodeInUnknownServicesFromOtherZone

AccessThroughPortableMedia

AccessTroughUIFromOtherZone

AccessFromOtherZone

FindUnknownServiceFromSameZone

ExecutionOfArbitaryCodeInUnknownServicesFromSameZone

AccessTroughUIFromOtherZone

AccessFromSameZone

ARPspoof

Firewall

Firewall

AccessControlPoint

AccessControl

Bypass

Functioning

Tuned

Updated

DNSspoof

DenialOfService

FindUnknownEntryPoint

ObtainOwnAddress

HasAllLowSeverityPatches

HasAllMediumSeverityPatches

HasAllHighSeverityPatches

OperatingSystem

TerminalService

Access

DenialOfService

FindLowSeverityVulnerability

FindMediumSeverityVulnerability

FindHighSeverityVulnerability

Functioning

Functioning

Functioning

Fig. 1. Metamodel of CySeMoL’s PRM. The upper box in a class contains the countermeasures associated with the class. The lower box contains the attack

steps associated with the class.

When an attacker can send data to the software, the attacker

can attempt to execute arbitrary code remotely. The possibility

of succeeding with this approach is influenced by the presence

of address space layout randomization, non-executable

memory protection, and whether the attacker has access rights

to the software in question. If the attack is executed from

another zone, the existence of deep-packet inspection in

firewalls will have an influence. An IDSsensor will influence

the possibility of detecting the attack. The influence of the

IDSsensor depends on whether the attack is from the same

NetworkZone or not.

The possibility of performing remote arbitrary-code exploits

is also contingent on the existence of a high-severity software

vulnerability in the target. The attacker may search the

SoftwareInstance’s SoftwareProduct for publicly known

vulnerabilities that have not been patched, or the attacker may

invest time in searching for previously unknown vulnerabilities

in the SoftwareProduct. The success rate of the former

approach depends on the existence of known vulnerabilities

and patches as well as the patching procedures in the

ZoneManagementProcess. The success of the latter approach

depends on attributes related to the SoftwareProduct (e.g., if

developers have tested the SoftwareProduct’s security using

static analysis tools).

A denial-of-service attack against a SoftwareInstance can be

accomplished if the attacker has access to the

SoftwareInstance’s OperatingSystem. Network-based denial-

of-service attacks can be performed against a Service or

OperatingSystem if the attacker can connect to the Service or

OperatingSystem. Such attacks can also be conducted against a

DataFlow if the attacker can accomplish unavailability in

associated clients, servers, or mediating NetworkZones.

C. Attack-path generation and assessment

An attack path is an ordered set of attack steps. Because the

causal dependencies are expressed in CySeMoL’s PRM,

producing an exhaustive list of all attack paths that should be

assessed is straightforward as long as the maximum number of

steps is specified.

For each identified attack path, the corresponding Bayesian

network is created and the success probabilities for all

included attack steps are calculated. The attack steps in an

identified attack path will be influenced by the attack steps in

the path, the attack steps not in the path, and countermeasures

in the system architecture. Attack steps not in the path are

assigned a success probability of zero (because these steps are

not attempted). All other attribute values are calculated as the

PRM prescribes.

VI. VERIFICATION AND VALIDATION

CySeMoL can be viewed as an expert system that assesses

attack paths in a system architecture and estimates the

probability that different attack paths can be traversed by a

professional penetration tester within one week. The

correctness and accuracy of this estimate is essential for the

practical utility of CySeMoL. This section describes the

verification and validation of CySeMoL based on the

terminology and recommendations of [59].

A. Verification

Verification concerns the consistency, completeness, and

correctness of the software implementation of the expert

system [59]. A verification procedure can either be domain

dependent and check for anomalies in the system using meta-

knowledge on what is typical in the domain, or the verification

procedure can be domain independent and look for general

anomalies and errors in the implementation [59].

Domain-independent verification has been performed

through inspections of the output produced by the tool. The

result produced for both fictive test cases and real architectures

has been inspected. These checks ensured that all attack paths

that should be created by the model are present in the output

and that the model does not contain redundant attack paths.

The checks also verified that changes to a system’s

architecture produce the results prescribed by the theory in the

model.

Domain-independent verification has focused on inspecting

whether the PRM implementation is consistent (e.g., in naming

attributes), complete (i.e., that all attribute parents are

included), has the correct weights (i.e., the conditional

probabilities), and infers data correctly (i.e., attack-generation

procedure). CySeMoL is implemented as an extension to the

Enterprise Architecture Analysis Tool (EAAT) [60]. EAAT

implements PRM-inference with the SMILE library used in

Genie [61]. Thus, the probabilistic inference mechanism has

been verified in other projects.

B. Validation

An expert system’s validity should be assessed in relation to

a criterion [59]. CySeMoL has been validated using the

criterion that CySeMoL should have expertise similar to that

of a security expert.

Validity tests can be performed on a component level to

validate pieces of the expert system or on a system level to

validate the full expert system against the criterion. CySeMoL

has been validated on both levels.

On a component level, CySeMoL has been validated by

domain experts in interviews and surveys. As described in

Section IV, these experts have validated the dependencies in

the model and the prioritizations. In other words, the experts

have validated the qualitative part of the underlying theory.

The quantitative part of the theory has been validated on a

component level in the studies from which the theory is

developed. CySeMoL’s theory is drawn from the experts

directly or from published empirical studies in the domain.

Thus, further tests on a component level of the quantitative

model’s validity by experts would be redundant.

To test the validity of CySeMoL on a system level, a Turing

test was performed. Turing tests are particularly useful when

the answers to test cases are unknown (or costly to determine)

and it cannot be assumed that a particular domain expert is

correct [59]. The Turing test was designed to validate the

attack paths and estimates against the criterion, i.e., that

CySeMoL performs as a domain expert. Turing tests of expert

systems have several advantages over other tests [59].

However, no standards have been established for how the

Turing tests should be designed. The test of CySeMoL was

similar to the tests described in [68] and [71]. Two pools of

human experts are used: one that produces assessments of the

same type as the expert system and one that rates the first

pool’s assessments and the expert system’s assessments based

on how reasonable the assessments are. The test’s design is

described below.

Three system architectures were presented to five domain

experts experienced in penetration testing. The system

architectures were depicted in a graphical format together with

tables showing attributes of objects in the architecture during

interviews lasting one hour. The graphical drawings and tables

contained the information prescribed by CySeMoL’s

metamodel (cf. section V.A). The five domain experts were

asked to reason about ways that three different attack goals

could be reached in the system architecture. The experts were

asked to focus on the attacks with a relatively high probability

of success, i.e., to disregard attacks that are unlikely to

succeed. The resulting attack scenarios contained a brief

description of the attack and estimates of the probability that a

professional penetration tester would succeed with the

included attack steps within one week. During the hour-long

interviews, the experts produced one to three attack paths or

solutions for each of the nine cases presented.

To limit the time required to evaluate these solutions, a

subset of the five experts’ solutions was used in the Turing

test. One solution from each expert was randomly selected for

each of the nine cases. The same principle was applied when

solutions from CySeMoL were selected: one solution was

randomly selected from the three solutions with the highest

probability of success. Thus, solutions to nine cases from six

experts were used. One of these experts was CySeMoL. To

disguise the sources of the attack scenarios, the scenarios were

described using the same language and abstraction level. In

addition, all probabilities were rounded to the nearest

percentile, which is a factor of 5 % because this resolution was

used by most of the experts.

The database of 54 solutions was then presented in

randomized order in a questionnaire to two domain experts.

Using a five-point scale, the experts were asked to say if they

agreed with the statement "this assessment is reasonable and

correct”. On this scale, one means that the evaluator

completely disagrees with the statement. Five means that the

evaluator completely agrees with the statement.

The sample size prohibits drawing reliable statistical

conclusions from this test. The median score that the

evaluators gave the experts and CySeMoL attack scenarios is

shown in Table II. The summary statistics indicate that the

reasonableness of CySeMoL’s assessments is comparable to

that of the assessments of the domain experts. In mean score,

CySeMoL ranked fourth in a tie with expert 2. In median

score, CySeMoL ranked fifth.

TABLE II

RESULTS FROM THE TURING TEST

 Evaluator 1 Evaluator 2 Mean Median

Expert 1 [2,4,3,2,2,2,5,4,3] [4,4,3,4,4,2,4,4,4] 3.3 4

Expert 2 [4,4,2,2,4,2,3,2,1] [4,4,3,3,4,2,2,4,3] 2.8 3

Expert 3 [2,4,3,4,3,3,3,4,3] [4,2,4,5,3,4,2,4,3] 3.3 3

Expert 4 [4,1,4,2,2,3,4,4,4] [4,2,4,3,3,3,3,4,3] 3.2 3

Expert 5 [2,2,2,1,1,1,2,2,2] [2,2,2,2,2,2,2,2,2] 1.8 2

CySeMoL [2,2,3,1,2,2,3,3,2] [5,5,4,3,4,2,1,4,2] 2.8 2.5

Novice 1 [2,4,3,1,2,2,2,3,2] [2,3,2,2,2,2,2,2,2] 2.2 2

Novice 2 [1,2,4,1,2,2,2,1,1] [3,3,3,4,2,2,3,2,2] 2.2 2

Novice 3 [4,2,2,4,4,4,3,2,1] [2,2,2,3,3,2,2,2,1] 2.5 2

Considerable variation exists between the evaluators’

scores. A potential concern is that the scoring is arbitrary, i.e.,

that the experts are unable to distinguish a reasonable solution

from an unreasonable one. To test the discriminatory ability of

the evaluators, they were requested to evaluate the solutions of

three IT security novices. These novices had more than five

years of experience in information technology but without a

focus on security matters. The novices’ solutions were elicited

the same way as the experts’ solutions were elicited and their

solutions were presented in the same format to the evaluators.

The evaluators did not know that these solutions were

produced by novices.

As shown in Table II, the novices score better individually

than one expert. However, the novices receive low median and

mean scores compared with the experts overall, suggesting that

the evaluators can discriminate reasonable solutions from less

reasonable.

C. Applicability and usability

To apply CySeMoL, the user must model the system

architecture according to the metamodel depicted in Fig. 1.

However, the user is not required to input all the information

in the metamodel. In particular, the user does not need to input

the attributes included in the lower box of the classes (the

attack steps). Thus, the user is required to model concepts such

as network zone, data flow, and software installation and

assign values to attributes that determine whether

countermeasures such as DNSSEC and non-executable

memory are functioning. However, the user is not required to

ascertain whether attacks succeed. In addition, for a number of

attributes, the PRM can estimate values for the attributes in the

upper tile. For example, the presence of unpatched publicly

known vulnerabilities in installed software can be estimated

based on the product’s attributes and the presence of

automated patching procedures.

The usability of this tool has been assessed in [63]. Areas

for improvement in graphical attractiveness and the automated

support for time-demanding tasks are identified in [63].

However, users without security expertise can comprehend the

concepts used to model systems with CySeMoL when the

textual definition of the concepts is presented.

CySeMoL has also been evaluated with respect to usability

in three case studies that analyzed the security of system

architectures. The case studies focused on the following: (1)

the control center and adjacent environments of one of

Sweden’s largest electrical power utilities, (2) the electrical

substations and remote communication of one of Sweden’s

largest power systems, and (3) reference architectures for one

of the world’s most common electrical-power management

systems. An excerpt from an instance model with one assessed

attack path is depicted in Fig. 2.

The results of these three CySeMoL applications were

appreciated by the system owners, and previously unknown

security issues were identified in all three studies. However,

the potential for improvement in data collection and the

visualization of assessment results was identified. Meanwhile, data-collection support has been implemented (see [64]).

DE 400

DevelopUnpatchableExploitForHighSeverityVuln T=2%

GetBinaryCode T=3%

GetProductInformation T=3%

CheckedWithStaticCodeAnalysis T=NO

HasBeenScrutinized T=NO

OnlyUsesSafeLanguages T=NO

SourceCodeClosed T=YES

BinaryCodeSecret T=NO

Windows 2007

OperatingSystem

AccessFromOtherZone T=YES

Engineering server

OperatingSystem

AddressSpaceLayoutRandomization T=NO

NonExecutableMemory T=YES

Access T=1%

AccessFromOtherZone T=1%

Application server

OperatingSystem

AddressSpaceLayoutRandomization T=NO

NonExecutableMemory T=YES

Engineering database

Service

ConnectToFromOtherZone T=3%

FindHighSeverityVulnerability T=2%

ExecutionOfArbitaryCodeFromOtherZone T=1%

OperatingSystem

Engineering data

Data Flow

ProduceRequest T=3%

IIS

SoftwareProduct

DevelopPatchableExploitForHighSeverityVuln T=33%

ProbeProduct T=33%

Internet

NetworkZone

Internet Perimeter

NetworkInterface

Zone

Office network

NetworkZone

FindUnknownEntryPoint T=33%

ObtainOwnAddress T=33%

UntrustedZone TrustedZone

Web server

Service

ConnectToFromSameZone T=33%

FindHighSeverityVulnerability T=13%

ExecutionOfArbitaryCodeFromSameZone T=3%

OperatingSystem

Office managent procedures

ZoneManagementProcess

RegularLogReviews T=NO

RegularSecurityAudits T=YES

FormalChangeManagentProcess T=NO

AutomatedPatchingProcedures T=NO

ManagementProcess

Access T=3%

AccessFromSameZone T=3%

Client

Product

Server

Control center

NetworkZone

Office to Control center

NetworkInterface
UntrustedZone

TrustedZone

Product

Zone

Allow

1

3

4

8

9

10

11

13

17

19

Cisco

Firewall

Functioning T=46%

Firewall
Firewall

12

12

18

HasAllHighSeverityPatches T=61%

ObtainOwnAddress T=100% 2

BinaryCodeSecret T=NO

HasNoPublicPatchableHighSeverityVuln T=NO

5

6

7

14

16

15

Fig. 2. An excerpt from an instance model of 19-step attack path together with the probabilities that each step along this path will be reached (T=True). The

links in the attack path are the enumerated bold arrows.

VII. SUMMARY AND FUTURE WORK

CySeMoL is a modeling language coupled to an inference

engine for analyzing the security of enterprise system

architectures. The inference engine produces attack paths from

one attack step to another. For these attack paths, the inference

engine estimates the probability that the attack can be

accomplished by a professional penetration tester within one

week using publicly available tools.

CySeMoL has been implemented in an existing tool [60]

and validated on the component and system levels. On the

component level, the theory specified in the dependencies is

drawn from empirical studies in domain security and domain

experts. On the system level, a Turing test suggests that the

reasonableness of assessments produced by CySeMoL

compares with that of a security expert and that both

CySeMoL and the experts are more reasonable than security

novices. These results suggest that CySeMoL would be useful

where no security expert is available.

These results are promising. They suggest that assembling

the body of system-security knowledge in a tool that can

automate the assessments produced by experts in the field is

feasible. Further work can be directed towards increasing

CySeMoL’s scope, refining and testing the model’s accuracy,

and maintaining and updating the theory.

When it comes to the scope, CySeMoL has been developed

to support decision making related to the security of industrial

control systems. This design focus has delimited the attacks

that are covered by CySeMoL. Particularly, attacks on

confidentiality are not well covered by CySeMoL because

confidentiality is of lesser importance in industrial-control

systems than in many other information systems. Further work

is required if CySeMoL is to cover such attacks in a

comprehensive manner. Effort can also be applied in modeling

how attackers behave (i.e., determining which attacks attackers

will attempt) and the consequences of successful attacks (i.e.,

to assess expected losses).

When it comes to accuracy, further tests are required to

assess CySeMoL’s accuracy with confidence. These tests can

be on a component level and test a few probabilities or on

system level and test the attack paths predicted for system

architectures. Realization values can be sought in empirical

tests, e.g., in conjunction with security tests or security

exercises and competitions. Research can also be focused on

refining the model and improving CySeMoL’s accuracy.

CySeMoL has been designed to produce assessments at a

reasonable cost. In other words, it should not be overly costly

to model a system-of-systems using CySeMoL. Work that

refines the theory of CySeMoL by adding more detail to the

metamodel to improve accuracy should take the cost of using

these additions into consideration.

The threat environment and the countermeasures used at

enterprises change over time. These changes will decrease

CySeMoL’s accuracy and value unless the theory is

maintained and updated. As discussed in [65], some changes

have a fundamental effect on the security domain. For

example, when operating systems with containing new

countermeasures become widely adopted. When fundamental

changes occur, they are hopefully easy to identify along with

the components of the theory they affect.

Other changes have limited impact on the overall threat

environment or IT-landscape of enterprises. CySeMoL covers

the most frequent of these changes. For instance, CySeMoL

can detect the discovery of new vulnerabilities in a software

product. Smaller changes that are not covered by CySeMoL

can be problematic to detect and adjust the theory for. Regular

reviews of the theory (e.g., annual Turing tests) will be

required to identify such gradual evolutions of the threat

environment and the IT landscape. In any case, the theory will

require ongoing study to preserve its accuracy.

REFERENCES

[1] T. Sommestad, M. Ekstedt, and P. Johnson, “A Probabilistic Relational

Model for Security Risk Analysis,” Computers & Security, 2010.

[2] B. Taskar et al., “Probabilistic Relational Models,” in Introduction to

Statistical Relational Learning, L. Getoor and B. Taskar, Eds. MIT

Press, 2007, pp. 129-175.

[3] V. Verendel, “Quantified security is a weak hypothesis: a critical survey

of results and assumptions,” New Security Paradigms Workshop, 2009.

[4] ISO/IEC, “Information technology -- Security techniques -- Information

security management measurements, ISO/IEC 27004,” Geneva,

Switzerland, 2009.

[5] M. Swanson et al., “Security Metrics Guide for Information Technology

Systems,” National Institute of Standards and Technology, NIST Special

Publication 800- 55, Gaithersburg, MD, USA, 2003.

[6] B. Schneier, “Attack trees: Modeling security threats,” Dr. Dobb’s

Journal, 1999.

[7] S. Bistarelli, F. Fioravanti., and P. Peretti., “Defense trees for economic

evaluation of security investments,” 2006, pp. 416-423.

[8] L. Piètre-Cambacédès and M. Bouissou, “Beyond Attack Trees: Dynamic

Security Modeling with Boolean Logic Driven Markov Processes

(BDMP),” 2010 European Dependable Computing Conference, pp. 199-

208, 2010.

[9] M. S. Lund, B. Solhaug, and K. Stolen, Model-driven risk analysis: the

CORAS approach. Springer Verlag, 2011.

[10] H. Mouratidis, P. Giorgini, G. Manson, and I. Philp, “A natural extension

of tropos methodology for modelling security,” in the Proceedings of the

Agent Oriented Methodologies Workshop (OOPSLA 2002), 2002.

[11] R. Breu, F. Innerhofer-Oberperfler, and A. Yautsiukhin, “Quantitative

Assessment of Enterprise Security System,” 2008 Third International

Conference on Availability, Reliability and Security, pp. 921-928, Mar.

2008.

[12] H. Pardue, J. Landry, and A. Yasinsac, “A risk assessment model for

voting systems using threat trees and monte carlo simulation,” in

Requirements Engineering for e-Voting Systems (RE-VOTE), 2009 First

International Workshop on, 2010, pp. 55–60.

[13] H. Pardue, J. P. Landry, and A. Yasinsac, “E-Voting Risk Assessment,”

International Journal of Information Security and Privacy, vol. 5, no. 3,

pp. 19-35, 2011.

[14] P. Mell, K. Scarfone, and S. Romanosky, “A Complete Guide to the

Common Vulnerability Scoring System (CVSS), Version 2.0, Forum of

Incident Response and Security Teams.” 2007.

[15] M. McQueen et al.l, “Time-to-compromise model for cyber risk reduction

estimation,” Quality of Protection, 2006.

[16] E. Johansson, “Assessment of Enterprise Information Security–How to

make it Credible and efficient,” PhD dissertation, KTH - The Royal

Institute of Technology, 2005.

[17] T. Heberlein, et al. (2012, March 21). “A Taxonomy for Comparing

Attack-Graph Approaches,” [Online]

http://netsq.com/Documents/AttackGraphPaper.pdf.

[18] S. Roschke et al., “Towards Unifying Vulnerability Information for

Attack Graph Construction,” in Proceedings of the 12th International

Conference on Information Security, 2009, p. 233.

[19] L. P. Swiler et al., “Computer-attack graph generation tool,” in

Proceedings DARPA Information Survivability Conference and

Exposition II. DISCEX’01, 2000, pp. 307-321.

[20] O. M. Sheyner, “Scenario graphs and attack graphs,” PhD dissertation,

Carnegie Mellon University, 2004.

[21] R. Lippmann, “Netspa: A network security planning architecture,”

M.Eng. thesis, Massachusetts Institute of Technology, 2002.

[22] R. Lippmann et al., “Validating and restoring defense in depth using

attack graphs,” in MILCOM 2006, p. 10 pp. -.

[23] J. Homer, et al., “A Sound and Practical Approach to Quantifying

Security Risk in Enterprise Networks,” Kansas, 2010.

[24] S. Noel et al., Advances in Topological Vulnerability Analysis.

Washington, DC: IEEE, 2009, pp. 124-129.

[25] R. P. Lippmann and L. L. C. Williams, “GARNET: a Graphical Attack

graph and Reachability Network Evaluation Tool,” in Visualization for

Computer Security, K. Prole, Ed. Heidelberg-Berlin: Springer Berlin /

Heidelberg, 2008, pp. 44-59.

[26] M. Chu et al., “Visualizing attack graphs, reachability, and trust

relationships with NAVIGATOR,” in Proceedings of the Seventh

International Symposium on Visualization for Cyber Security, 2010, pp.

22–33.

[27] R. Sawilla and X. Ou, “Identifying critical attack assets in dependency

attack graphs,” in 13th European Symposium on Research in Computer

Security (ESORICS), 2008, no. 716665, pp. 18-34.

[28] H. Holm et al., “A quantitative evaluation of vulnerability scanning,”

Information Management & Computer Security, vol. 19, no. 4, 2011.

[29] K. Stouffer, J. Falco, and K. Kent, “Guide to Industrial Control Systems (

ICS) Security Recommendations of the National Institute of Standards

and Technology,” Nist Special Publication, vol. 800, no. 82, 2008.

[30] K. Ingols et al., “Modeling Modern Network Attacks and

Countermeasures Using Attack Graphs,” in Annual Computer Security

Applications Conference, 2009, pp. 117-126.

[31] F. . Jensen, Bayesian Networks and Decision Graphs. Secaucus, NJ,

USA.: Springer New York, 2001.

[32] R. J. Anderson, Security Engineering: A guide to building dependable

distributed systems. New York, NY, USA: Wiley Publishing, 2008.

[33] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS

defense mechanisms,” ACM SIGCOMM Computer Communication

Review, vol. 34, no. 2, p. 39, Apr. 2004.

[34] The MITRE Corporation (2012, March 21), “The Common Attack

Pattern Enumeration and Classification,” (website), 2011. [Online].

Available: http://capec.mitre.org/.

[35] J. Wilander and M. Kamkar, “A comparison of publicly available tools

for dynamic buffer overflow prevention,” in Proceedings of the 10th

Network and Distributed System Security Symposium, 2003, pp. 149–

162.

[36] C. Cowan et al., “Buffer Overflows : Attacks and Defenses for the

Vulnerability of the Decade,” in Foundations of Intrusion Tolerant

Systems, 2003 [Organically Assured and Survivable Information

Systems], 2003, pp. 227-237.

[37] N. Frykholm, “Countermeasures against buffer overflow attacks,” RSA

Tech Note, pp. 1-9, 2000.

[38] I. Simon, (2012, March 21) “A comparative analysis of methods of

defense against buffer overflow attacks,” 2001, [Report]. Available:

http://www. mcs. csuhayward. edu/\~ simon/security/boflo. html

[39] Y. Younan, “Efficient countermeasures for software vulnerabilities due to

memory management errors,” PhD dissertation, Katholieke Universiteit

Leuven, 2008.

[40] S. Marechal, “Advances in password cracking,” Journal in Computer

Virology, vol. 4, no. 1, pp. 73-81, 2007.

[41] M. Dell’ Amico et al., “Password Strength: An Empirical Analysis,”

2010 Proceedings IEEE INFOCOM, pp. 1-9, 2010.

[42] J. Cazier, “Password security: An empirical investigation into e-

commerce passwords and their crack times,” Information Security

Journal: A Global, 2006.

[43] “Free Rainbow Tables,” 2011. [Online]. Available:

http://www.freerainbowtables.com/. [Accessed: 01-Apr-2011].

[44] J. McHugh, “Testing Intrusion detection systems: a critique of the 1998

and 1999 DARPA intrusion detection system evaluations as performed

by Lincoln Laboratory,” ACM Transactions on Information and System

Security, vol. 3, no. 4, pp. 262-294, Nov. 2000.

[45] A. Ozment, “Improving vulnerability discovery models,” in Proceedings

of the 2007 ACM workshop on Quality of protection, 2007, pp. 6–11.

[46] T. Sommestad, H. Holm, and M. Ekstedt, “Effort estimates for

vulnerability discovery projects,” in HICSS’12: Proceedings of the 45th

Hawaii International Conference on System Sciences, 2012.

[47] T. Sommestad, H. Holm, and M. Ekstedt, “Estimates of success rates of

remote arbitrary code execution attacks,” Information Management &

Computer Security, (Accepted) .

[48] T. Sommestad, H. Holm, and M. Ekstedt, “Estimates of success rates of

Denial-of-Service attacks,” in TrustCom 2011, 2011, no. 1.

[49] T. Sommestad et al., “Quantifying the effectiveness of intrusion detection

systems in operation through domain experts,” (submitted).

[50] R. Cooke, “TU Delft expert judgment data base,” Reliability Engineering

& System Safety, vol. 93, no. 5, pp. 657-674, May 2008.

[51] T. Sommestad, “Exploiting network configuration mistakes: practitioners

self-assessed success rate,” KTH, Technical Report TRITA-EE 2011:069,

Stockholm, Sweden, 2011.

[52] T. Sommestad et al., “Security mistakes in information system

deployment projects,” Information Management and Computer Security,

vol. 19, no. 2, 2011.

[53] A. Wool, “A quantitative study of firewall configuration errors,”

Computer, pp. 62–67, 2004.

[54] J. R. Jacobs, “Measuring the Effectiveness of the USB Flash Drive as a

Vector for Social Engineering Attacks on Commercial and Residential

Computer Systems,” Embry Riddle Aeronautical University, 2011.

[55] S. Stasiukonis, “Social engineering, the USB way,” Dark Reading, vol. 7,

2006.

[56] T. N. Jagatic et al., “Social phishing,” Communications of the ACM, vol.

50, no. 10, pp. 94–100, Mar. 2007.

[57] R. Dodge and A. Ferguson, “Using Phishing for User Email Security

Awareness,” in Security and Privacy in Dynamic Environments, vol.

201, S. Fischer-Hübner, K. Rannenberg, L. Yngström, and S. Lindskog,

Eds. Springer Boston, 2006, pp. 454-459.

[58] M. Buschle (2012. March 21), “KTH | The Enterprise Architecture Tool,”

2011. [Online]. Available: http://www.kth.se/ees/omskolan/organisation/

avdelningar/ics/research/eat.

[59] R. M. O’Keefe and D. E. O’Leary, “Expert system verification and

validation: a survey and tutorial,” Artificial Intelligence Review, vol. 7,

no. 1, pp. 3-42, Feb. 1993.

[60] M. Buschle et al., “A Tool for Enterprise Architecture Analysis using the

PRM formalism,” in Proc. CAiSE Forum 2010, 2010.

[61] M. J. Druzdzel, “GeNIe: A development environment for graphical

decision-analytic models,” in Proceedings of the 1999 Annual

Symposium of the American Medical Informatics Association, 1999, p.

1206.

[62] R. Agarwal, R. Kannan, and M. Tanniru, “Formal validation of a

knowledge-based system using a variation of the Turing test,” Expert

Systems with Applications, vol. 6, no. 2, pp. 181-192, Apr. 1993.

[63] M. Österlind, “Validering av vektyget Enterprise Architecture Tool,”

Royal Institute of Technology (KTH), 2011.

[64] M. Buschle et al., “A Tool for automatic Enterprise Architecture

modeling,” in CAISE’11 Forum, 2011.

	IEEEförsättsblad.pdf
	FULLTEXT01

