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 

Abstract—The Cyber Security Modeling Language (CySeMoL) 

is a modeling language for enterprise-level system architectures 

coupled to a probabilistic inference engine. If the computer 

systems of an enterprise are modeled with CySeMoL, this 

inference engine can assess the probability that attacks on the 

systems will succeed. The theory used for the attack-probability 

calculations in CySeMoL is a compilation of research results on a 

number of security domains and covers a range of attacks and 

countermeasures. The theory has previously been validated on a 

component level. In this paper, the theory is also validated on a 

system level. A test indicates that the reasonableness and 

correctness of CySeMoL assessments compare with the 

reasonableness and correctness of the assessments of a security 

professional. CySeMoL’s utility has been tested in case studies. 

 

I. INTRODUCTION 

ecurity issues related to information technology (IT) 

continue to be a concern in today’s society. The IT 

environments of many enterprises are composed of a large 

number of systems connected to form a complex system-of-

systems. Security is also a complex problem that is difficult to 

master. To fully estimate the security of an enterprise’s system 

architecture, a large number of issues must be considered. 

Enterprise systems security managers must be able to assess 

how the vulnerabilities in one system influence the 

vulnerabilities in other systems. In addition, security managers 

must be able to assess how individual vulnerabilities influence 

the security of the entire system-of-systems, given the 

protection solutions that are used in different locations in the 

architecture. 

Enterprise systems security managers typically have a basic 

understanding of their organization’s architecture and systems 

and the losses incurred if assets are compromised. However, 

the managers’ understanding of how vulnerabilities depend on 

each other in the system-of-systems and how the 

vulnerabilities can be exploited is often hazy. Support from 

security theory can be obtained from security experts and the 

literature. However, consulting security experts and studying 

 

 

 
 

the literature is both costly and time-consuming. Generally, 

support is missing for informed decision making concerning 

security on the system-of-systems level. 

Tools that help system-security managers to assess how 

vulnerabilities in one system influence the vulnerabilities of 

other systems in enterprise system architecture are valuable, 

particularly if these tools can offer support without requiring 

input data that are difficult to collect.  

A. Contribution 

This paper presents an analysis tool called the Cyber 

Security Modeling Language (CySeMoL). This tool is built on 

the framework presented in [1] and uses a probabilistic 

relational model (PRM) [2] to support system-security 

managers in security analysis. If an object model of the system 

architecture is created according to a predefined class model, 

the tool can approximate the probability that an attacker will 

succeed with different attacks against the system. Security 

expertise is not required to create the object model because the 

PRM specifies a theory on how attributes in the object model 

depend on each other. The users must only model their system 

architecture and properties. 

The theory used in CySeMoL is based on logical relations, 

experimental research in the security domain, and domain 

experts’ judgment. CySeMoL covers a variety of attacks, 

including software exploits, flooding attacks, abuse of 

obtained privileges, and social-engineering attacks. Emphasis 

has been placed on supporting security managers concerned 

with attacks on industrial control systems (also known as 

Supervisory Control and Data Acquisition (SCADA) systems). 

However, the tool can be used for other types of domain.  

This paper presents CySeMoL’s PRM and the validation of 

this PRM. The PRM has been validated on the component and 

system levels. On the component level, the variables and 

relationships have been validated using the literature and 

domain experts. On the system level, the content validity has 

been tested by comparing the PRM’s output with the responses 

of five security experts to a number of scenarios. In addition, 

the usability of the tool is demonstrated in two case studies at 

large enterprises. 
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B. Outline 

Section II presents related works. Section III briefly 

describes the framework presented in [1], on which this tool is 

built. Section IV presents the method used to create the tool. 

Section V presents CySeMoL’s PRM. Section VI presents the 

results of validity tests. Section VI summarizes the paper and 

discusses future work.  

II. STRUCTURED METHODS FOR SECURITY ASSESSMENT 

A substantial number of methods have been developed to 

quantify security and to support decision making related to 

security. For instance, Verendel [3] reviewed more than 100 

methods for security metrication. The review presented below 

will cover only a subset of these methods. Emphasis is placed 

on methods that are applicable to assessing the security of a 

system-of-systems. 

A number of prominent assessment methods require that the 

user is a security expert. For instance, the IEEE standard 

27000-4 [4] and NIST’s security metric guide [5] are methods 

that describe how an organization should develop and maintain 

a measurement program. However, the methods do not 

prescribe the measurements that should be taken or explain 

what different measurement values mean for security. These 

methods can be used as support when the security of a system-

of-systems is assessed. However, they leave a substantial 

amount of effort to the user. 

A number of methods offer concrete support and give the 

user a finished aggregation framework for security properties. 

Examples include the following: attack trees [6], defense trees 

[7], Boolean Logic Driven Markov Processes [8], the CORAS 

framework [9], Secure Tropos [10], and the model proposed 

by Breu et al. [11]. These methods help users combine 

variables to produce a meaningful result. Thus, the methods 

can help to combine the security values of single systems into 

a single value for a system-of-systems (i.e., the total risk). 

However, the methods require the user to produce the security 

ratings. For example, for defense trees, the user must quantify 

the likelihood of attacks being successful; for Boolean Logic 

Driven Markov Processes, provide time-to-compromise 

estimates; and in the model of Breu et al. give threat-

realization probabilities. While some methodological support 

is available for quantification (e.g., [12]), expertise is still 

required. In addition, many of these methods require the users 

to identify causal dependencies in their systems, e.g., attack 

trees must be created before they can be used. For some 

systems, such causal models can be found in the literature, for 

example, the model employed [13] for electronic voting 

systems. 

This paper describes a method that does not require security 

expertise from the user. In other words, the user of the method 

must only input information about the system architecture and 

is not required to provide security properties such as time-to-

compromise or attack-success probability. Instead, the security 

properties for the system are derived from the system 

architecture and quantified according to a generic theory. 

The practical utility of a method that quantifies the security 

of system architectures without requiring security expertise 

from the user is obvious. However, few methods of this type 

exist that are applicable to assessing the security of a system-

of-systems. For instance, the Common Vulnerability Scoring 

System [14] produces assessments for a single software 

vulnerability, and the model presented in [15] produces 

assessments for single hosts. 

Several of the methods that have a high abstraction level use 

best-practice standards to produce a security rating by the 

organization’s compliance to the standard (e.g., Johansson’s 

method [16]). The scope of such methods is useful where a 

system-of-systems is assessed. However, the ratings obtained 

are difficult to interpret and therefore not straightforward for 

system-security managers. For instance, knowing how high a 

value should be is difficult, as is deriving which risk is 

associated with a certain rating. Additionally, cause-and-effect 

relationships are not clear in these methods. 

In recent years, a substantial number of articles have been 

published to develop methods that use attack graphs. An attack 

graph aims at determining which attacks can be conducted 

against a system. Because potential attacks are the source of 

cyber security risk, these methods fit well with decision-

making processes concerning security. CySeMoL’s approach 

is similar to the approach used in attack graphs. 

Methods based on attack graphs are based on a model of the 

system architecture and a database of security exploits or 

security vulnerabilities [17], [18]. From these data, an 

algorithm calculates privileges and network states that can be 

reached by an attacker who starts from a given position [17].  

Since the early variants of attack graphs appeared 

([19],[20]), several tools have been developed that offer 

different solutions to the problem. Differences can be seen 

both in terms of the data they require as input and the output 

the produce when they are applied. The most mature tools are 

NETSPA [21], [22], MulVAL [23], and the TVA-tool [24]. 

These tools are described below. 

NETSPA has been used to analyze networks of thousands of 

hosts, and its usability has been demonstrated in case studies 

[22]. However, NETSPA uses a coarse model of the attacker’s 

capabilities. All software vulnerabilities in the database are 

considered to be exploitable by the attacker (given that the 

software can be reached) [21]. No differentiation is made with 

respect to the security measures implemented on the targeted 

host, to whether exploiting the vulnerability requires a 

particular configuration, or to the attacker’s competence. 

GARNET [25] and its successor NAVIGATOR [26] build on 

NETSPA and add new visualization capabilities and support 

for what-if analysis.  

MulVAL does not treat all vulnerabilities as unquestionably 

exploitable by the attacker. In MulVAL, each vulnerability is 

associated with a probability to represent how likely an 

attacker is to exploit the vulnerability [23]. This approach 

makes the model of potential attacks more expressive. 

Unfortunately, such probability values are not available in 



vulnerability databases. In descriptions of the method, the 

access-complexity rate from the US National Vulnerability 

Database has been translated into probability values [27]. 

However, no arguments are given for why this translation is 

used, and the validity of the translation remains unclear. 

Additionally, the probabilities only represent success rates 

generally and do not take into account protective measures that 

increase the difficulty of exploiting a vulnerability. 

The TVA tool [24] uses a database of exploits possessed by 

the attacker instead of a database of vulnerabilities. The 

exploits are associated with detailed pre- and post-conditions, 

which state when the exploit can be applied and what state is 

reached after the exploit has been applied. Thus, the analysis 

can be constructed to represent an attacker armed with certain 

exploits. However, no database of exploits exists that is 

described this way. The data must be entered before use. 

These three attack-graph methods offer different solutions 

to the problem of assessing the security of a given system 

specification. An issue all methods must address is the 

complex graphs that are produced when systems of realistic 

sizes are analyzed. Additionally, they need to manage cycles in 

the graphs. Another issue is obtaining the input data. All three 

tools described above use the vulnerability scanner Nessus to 

collect these data. However, a recent accuracy test shows that 

Nessus misses more than half of the vulnerabilities when given 

access credentials to the hosts in a network and four out of five 

vulnerabilities when credentials are not given [28]. Thus, the 

automated scans on which the three tools rely are not reliable 

when individual vulnerabilities must be detected. In addition, 

in environments with sensitive systems (e.g., SCADA 

systems), scanners must be avoided because scanners can 

interrupt critical system services [29]. 

Another drawback of existing tools is the type of attacks 

that they cover. The tools are developed for software exploits 

targeting services running on the listening ports of machines. 

Thus, they lack the capability to model many relevant types of 

attack, e.g., password cracking, social engineering, and denial-

of-service attacks. NETSPA has been extended to include 

attacks on clients (e.g., web browsers) [30]. However, the 

other two tools have not. Another matter falling outside the 

scope of these tools is zero-day exploits, i.e., attacks using 

vulnerabilities that are unknown to the public. The user of the 

tool can of course enter hypothetical data into the database and 

perform the analysis with these data. However, competence is 

required to identify which zero-day attacks can be reasonably 

expected from the attacker. 

CySeMoL also models attacks and assesses the attacks that 

an attacker can execute. Compared with the three tools 

discussed above, CySeMoL analyzes a wider range of attack 

types and security measures. CySeMoL’s output is 

probabilistic (as in MulVAL) and estimates the probability that 

different attacks can be accomplished against assets in the 

system architecture. The probabilities used in these 

calculations have been derived from experimental studies and 

studies eliciting the judgment of domain experts. 

III. THE FRAMEWORK USED: THE PRM TEMPLATE 

The Cyber Security Modeling Language (CySeMoL) is built 

on the framework presented in [1]. This framework is a 

template for a probabilistic relational model (PRM) for 

security-risk analysis. Section III.A briefly describes the PRM 

formalism. Section III.B describes the security template for the 

PRMs presented. Section III.C describes the part of this 

template that is used in CySeMoL. 

A. Probabilistic relational models 

A PRM [2] specifies how a Bayesian network [31] should 

be constructed from an object model, i.e., how a Bayesian 

network should be created from a model that instantiates a 

class diagram, such as the one of the Unified Modeling 

Language (UML).   

In a PRM, classes can have attributes and reference slots. 

The attributes are random variables with states from a discrete 

domain. The reference slots refer to other classes and express 

which relationships a class has with other classes. For instance, 

the attributes System.Available and Person.Certified could 

have the domain of values {True,False}. The reference slot 

System.Administrator could refer to the class Person.  

The attributes in the PRM are associated with a set of 

parents. The parents of an attribute A are attributes in the 

object model that A’s value depends on. Parents are defined 

using a chain of reference slots that leads from the child 

attribute’s object to the parent attribute’s object. For instance, 

the attribute System.Available could be assigned the parent 

attribute System.Administrator.Certified using the reference 

slot Administrator of the class System. In this case, the slot 

chain is the single slot System.Administrator. Slot chains 

comprising multiple reference slots are also possible. If a slot 

chain points to attributes of more than one object in an 

instantiated model, an aggregate is used, e.g., one of the 

Boolean operators OR or AND.  

Each attribute is associated with a conditional probability 

table that defines the attribute’s value given all possible 

combinations of states in the attribute’s parents. For instance, 

the attribute System.Available would be given different 

probabilities that express the attribute’s value when 

System.Administrator.Certified is True and False. The 

probabilistic model enables the value of attributes in an 

instantiated object model to be inferred. Such inference can 

also infer values for attributes with no assigned state. 

In essence, a PRM defines how a Bayesian network shall be 

generated using the attributes of an object model. Thus, a 

PRM constitutes a formal machinery for calculating the 

probabilities of object properties in various architecture 

instantiations. For example, a PRM could be used to assess the 

availability of systems given that certain administrators are 

assigned to the systems. 

B. The PRM template for security-risk analysis 

In [1], a template for PRMs is defined for security-risk 

analysis. This template defines abstract classes together with 

attributes, reference slots and conceptual-attribute parents. The 



classes in this template are: Asset, Owner, Threat, 

ThreatAgent, AttackStep, and five types of Countermeasure. 

The countermeasures are: ContingencyCountermeasure, 

PreventiveCountermeasure, DetectiveCountermeasure, 

ReactiveCountermeasure and AccountabilityCountermeasure. 

If a PRM is constructed according to this template and the 

PRM’s conditional probabilities are assigned, the PRM can be 

used to perform two types of analysis. The first and more 

extensive analysis requires the instantiation of all the classes 

and can produce values for the expected economic losses for 

the architecture. This analysis includes consideration of the 

probability that different attack scenarios will be attempted 

and the expected loss that would be incurred if an attack is 

successful. The second analysis uses a subset of the template 

and can be used to calculate reachability values for different 

attack paths (threat instances), as in attack graphs. CySeMoL 

employs the second type of analysis. 

C. The scope of the PRM 

CySeMoL focuses on assessing the probability that attack 

paths can be accomplished given that they are attempted. Thus, 

CySeMoL uses a subset of the classes, attributes and 

dependencies defined in [1]. The class AttackStep is used to 

represent attacks together with the probability that the attacks 

are successful and that they are detected when they are 

attempted. The classes PreventiveCountermeasure, 

DetectiveCountermeasure and ReactiveCountermeasure are 

also included. Only one type of ThreatAgent is considered: a 

threat agent who has one week and publicly available tools. 

CySeMoL’s PRM includes attacks and countermeasures of 

relevance to industrial control and SCADA systems security. 

Threats against these systems are primarily related to the 

systems’ availability and integrity properties (and not 

confidentiality). However, SCADA systems comprise the same 

type of subsystems as other information systems. Thus, the 

PRM can be used to analyze such systems but with limited 

support for threats against confidentiality. In addition, the 

PRM has other limitations, e.g., the countermeasures that the 

PRM can cover. These limitations are discussed in section IV.  

IV. THE METHOD USED TO CONSTRUCT CYSEMOL 

This section presents the method used to construct 

CySeMoL, including a description of the qualitative structure 

(section IV.A) and the quantitative parameters associated with 

this structure (section IV.B). A summary is given in section 

IV.C.  

Because this tool has been the subject of a considerable 

number of studies in the security field, this section does not 

describe each study in detail. The interested reader can find 

more information about these studies in the references. 

A. Qualitative structure 

The PRM’s qualitative structure includes everything but the 

quantitative parameters, i.e., the classes, reference slots, 

attributes, and parents of attributes. CySeMoL’s qualitative 

structure has been developed using the literature and judgment 

of security experts.  

1) Literature study 

The literature was studied extensively to identify an initial 

set of assets and which attack steps to include. This research 

included a review of a large number of textbooks (e.g., [32]), 

standards and reports (e.g., [29]), overviews (e.g., [33]) and 

security databases (e.g., [34]). Descriptions of attacks and 

countermeasures in these sources were used to create an initial 

model of a suitable level of abstraction and scope.  

When the initial model was finished, the literature on 

specific attacks was consulted. This literature was used to 

determine the parents of attack steps, i.e., the countermeasures 

and privileges (completed attack steps) that influenced the 

probability that an attack step could be accomplished. A large 

number of sources were used for each type of attack.  For 

instance, sources such as [35–39] were used to identify parents 

of remote code-exploitation attacks, and sources such as [40–

42] were used to identify the parents of password-cracking 

attacks. 

2) Review by domain experts 

Before more detailed studies were conducted on specific 

attack types, the initial model was reviewed by three domain 

experts. All three were professional penetration testers. In 

interviews, these domain experts were asked to evaluate 

whether the model included the variables that are most useful 

when the security of a system-of-systems is to be assessed. To 

be useful, a variable should not only be important to security 

but also possible to assess. Thus, the experts were asked to 

consider which information was worthwhile to collect from a 

decision-making perspective. Several minor changes were 

made based on the suggestions by the experts. For example, 

firewall was modeled with fewer attributes and password 

protection was emphasized. 

In addition to the general validation of the model, a number 

of domain experts were consulted on specific attacks and the 

parents to include for these attacks. Because such input 

requires a good understanding of the specific type of attack, 

different domain experts were used for different areas (cf. 

Table I).   For example, three persons were interviewed about 

intrusion-detection systems and the performance variables of 

such systems, and three persons were interviewed regarding 

remote arbitrary-code exploits. Few changes were suggested to 

the initial model during these validation efforts. Input from the 

domain experts helped to define variables in a practical way 

and to determine which variables to include (e.g., variables 

influencing the effort required to find new software 

vulnerabilities). Overall, the domain experts agreed with each 

other about variables relevance. This agreement suggests that 

the final model offered a good tradeoff between scope and 

usability. 

B. Quantitative parameters 

A PRM requires quantitative parameters for conditional 

probability distributions. CySeMoL’s PRM consists of both 

logical dependencies with deterministic influences and 



probabilistic dependencies with uncertain influence. These 

dependencies are used to estimate the probability that a 

professional penetration tester can succeed with attacks against 

the architecture within one week using publicly available tools. 

1) Logical, deterministic dependencies 

A substantial portion (82 %) of the entries in the PRM’s 

conditional probability tables is deterministic. These 

deterministic dependencies are used in the following cases:  

a) Attack steps that are specializations of the same goal are 

aggregated into one attack step to simplify the model. 

b) Certain preconditions are required for an attack to be 

possible. 

The deterministic dependencies created for the first case are 

modeling constructs added for practical reasons. For example, 

denial-of-service attacks against services are decomposed into 

two variables representing two ways denial-of-service attacks 

can be conducted (semantic attacks or flooding attacks). This 

decomposition makes the conditional probabilities for each 

attack type easier to follow. 

Deterministic dependencies of the second type are present 

when a condition is necessary to accomplish an attack step. 

For example, to perform remote code execution against a 

software service, two necessary (but not sufficient) conditions 

are that the attacker must be able to send data to the port the 

service listens to and that the service has a software 

vulnerability. The second type of deterministic dependency 

was identified from the literature and validated by domain 

experts in interviews. Examples of such dependencies are 

given in section V.B.  

2) Probabilistic, uncertain dependencies 

Dependencies not determined by logical dependencies are 

uncertain and are defined using probabilities. Such 

dependencies are uncertain because the PRM does not include 

all the details that determine the variable’s actual, which is the 

case if the PRM lacks a variable that could be important (e.g., 

the countermeasure application whitelisting) or if a variable’s 

states represent a range of values (e.g., the severity rating of 

software vulnerabilities, divided into three levels). Such 

simplifications arise from the practical reasons discussed 

above, i.e., the creation of an instance model should not be 

costly. 

Some probabilistic relationships could be specified based on 

published data from experiments and observations. For 

instance, data on the success of password cracking given 

different conditions could be found in [40–43]. However, for 

most of the conditional probabilities required, reliable 

quantitative data cannot be found in the literature. For 

instance, experiments on intrusion-detection systems are 

difficult to generalize from [44], and data on efforts required 

to find new software vulnerabilities are not gathered in a 

systematic way [45]. 

When reliable data could not be found in the literature, 

estimates were collected from domain experts. The data 

collected this way come from five surveys. The number of 

respondents to these surveys varies between four and 165 

individuals. In four of the five surveys ([46–49]), the 

respondents’ judgment was weighted using Cooke’s classical 

method [50], a well-established method for weighting domain 

experts based on their ability to accurately assess a set of test 

questions on the same topic as the real questions. The 

effectiveness of the method is demonstrated in [50]. In the fifth 

study [51], the experts were weighted based on the number of 

real systems on which they had tested the variable’s state. 

C. Summary 

The attacks and countermeasures included in CySeMoL 

were identified using the literature and input from domain 

experts. The aim of the qualitative structure was to be as 

complete as possible while remaining useful to a typical 

system-security manager. The quantitative parameters in the 

PRM are deterministic dependencies between attributes and 

uncertain dependencies between attributes. The probabilities 

for the uncertain dependencies are derived from observations 

of systems, experiment, and studies based on structured expert 

elicitation. An overview is given in Table I. 

TABLE I 

OVERVIEW OF METHODS USED 

Part of the PRM Qualitative 

validation 

method 

Parameterization method 

Discovering new 

vulnerabilities  

Literature and 

3 experts. 

Cooke’s classical method applied to 

17 domain experts’ judgment [46]. 

Remote arbitrary 

code exploitation 

attacks 

Literature, 

pilot study, 

and 3 experts. 

Cooke’s classical method applied to 

21 domain experts’ judgment [47]. 

Intrusion detection Literature and 

3 experts. 

Cooke’s classical method applied to 

165 domain experts’ judgment [49]. 

Denial-of-service 

attacks 

Literature and 

2 experts. 

Cooke’s classical method applied to 

23 domain experts’ judgment [48]. 

Exploitation of 

network 

configuration 

mistakes 

Literature and 

2 domain 

experts. 

Data described in [52] and [53] 

combined with four domain experts’ 

judgment  [51].  

Attacks on 

password 

protection 

Literature and 

one domain 

expert. 

A review and synthesis of password-

guessing data [40–42] and the 

capabilities of rainbow tables [43]. 

Social-engineering 

attacks 

Literature. Experiments [54–57] on social-

engineering attacks. 

V. THE CYBER SECURITY MODELING LANGUAGE’S PRM 

This section describes the main contribution of this paper: 

CySeMoL. This section gives an overview of the metamodel 

(section V.A), the deterministic and probabilistic dependencies 

embedded in the PRM (section V.B), and the instantiation of 

attack paths (section V.C). A full description of all concepts 

and dependencies is not given here because of the space the 

description would require. The description presented here 

gives an overview of CySeMoL and provides concrete 

examples of parts of the model. The interested reader can 

download the PRM and the software tool in which the PRM is 

implemented from [58]. 

 



A. Metamodel overview 

The metamodel comprises 22 classes, 102 attributes, and 32 

class relationships (reference slots). These classes, attributes, 

and class relationships dictate what information an architecture 

model should contain and are depicted in Fig. 1. Two types of 

attribute are distinguished in Fig. 1: countermeasures and 

attack steps. The upper box in a class describes the 

countermeasures associated with the class. The lower box 

describes the attack steps associated with the class. 

Relationships are marked by the dashed lines between classes. 

The metamodel contains three concretized types of 

software: OperatingSystem, Service, and ApplicationClient. 

All types of SoftwareInstance are related to the 

SoftwareProduct the types are an installation of. An 

OperatingSystem can be related to a NetworkZone in which 

traffic between software instances is permitted (i.e., not 

filtered). The class NetworkInterface can connect multiple 

instances of NetworkZone and mark the instances as trusted or 

untrusted zones. A NetworkInterface can allow certain 

instances of DataFlow. The other data flows are assumed to be 

blocked. A DataFlow has a Protocol, and a DataFlow can 

read or write to a DataStore owned by a SoftwareInstance. 

 The NetworkInterface is related to the Firewall that 

enforces the NetworkInterface’s rules. A Firewall can be 

related to the class DeepPacketInspection and to an IDSsensor 

that enhances the Firewall’s capabilities. An IDSsensor can be 

associated with an OperatingSystem when the 

OperatingSystem is a host-based intrusion-detection system. A 

DeepPacketInspection can be associated with the Service on 

which the DeepPacketInspection focuses or the 

ApplicationClient for which it acts as a proxy. 

All types of SoftwareInstance can be associated with an 

AccessControlPoint, which controls access to the software, 

e.g., a network Service or OperatingSystem. An 

AccessControlPoint is associated with an 

AuthenticationMechanism, which authenticates access requests 

and the Account instances that are allowed access. Because 

passwords are common, the two preceding classes have been 

specialized to PasswordAuthenticationMechanism and 

PasswordAccount. An Account is owned by a Person, and a 

Person can be covered by an AwarenessProgram. 

A ZoneManagementProcess is related to a NetworkZone 

and describes how systems within the NetworkZone are 

managed, e.g., if the machines have been hardened. 

B. Attribute dependencies 

The 22 classes have 102 attributes. The attributes’ values in an 

instantiated model are used to assess the security of the 

modeled enterprise systems. More precisely, the probability 

that certain attack paths (i.e., chains of attack steps) can be 

accomplished is used to assess the security of the architecture. 

This section gives examples of attack paths that may be 

instantiated in an instance model and the countermeasures that 

influence their probability of success.  

If an attacker attempts to log on to a SoftwareInstance, the 

attacker may be required to bypass an AccessControlPoint, 

i.e., if the SoftwareInstance has a relationship to the 

AccessControlPoint. An AccessControlPoint is associated with 

an AuthenticationMechanism and Accounts that belong to 

Persons who are authorized to access the system. An 

Account’s password may be compromised by being guessed 

online, offline, or through social engineering. 

Because password authentication is widely used, CySeMoL 

focuses on password authentication. The difficulty of 

compromising a PasswordAccount online depends on the 

presence of default passwords, whether password policies are 

automatically enforced, and whether the number of guesses 

that can be produced is limited.  

The success of offline guessing depends on the possibility of 

extracting the password repository, whether password policies 

are automatically enforced, whether passwords are hashed, and 

whether passwords are salted. The success probability for 

social engineering is decreased if the account-owner is 

included in an AwarenessProgram. 

Another way to obtain access to the OperatingSystem is to 

execute arbitrary code via Services, ApplicationClients, or 

services in the OperatingSystem that are unknown to the 

system owner. To accomplish these attack steps, the attacker 

must be able to connect to the SoftwareInstance in question, 

e.g., the attacked Service in question. Once connected, the 

attacker must accomplish a remote arbitrary-code attack. 

To connect from another NetworkZone, the attacker must 

have access to a machine in the other NetworkZone and be 

able to send data over the NetworkZone that connects the two. 

Data can be sent if the attacker can produce a request in a 

DataFlow that has the Service as server or a response in a 

DataFlow that has the ApplicationClient as client. Requests 

and responses can be produced if the attacker has gained 

access to the software that produces the responses (e.g., an 

operating system) or by compromising the DataFlow’s 

integrity in a different way (e.g., by executing a man-in-the-

middle attack using ARP-spoofing). To exploit unknown 

services in an OperatingSystem, the attacker must find such 

services. The probability that the attacker can find such 

services is influenced by attributes in the 

ZoneManagementProcess associated to the OperatingSystem’s 

NetworkZone.  

To connect from the same zone, the attacker must obtain an 

own address in the NetworkZone. An address can be obtained 

by gaining access to an OperatingSystem in the zone, by 

breaking the PhysicalZone of the NetworkZone and connecting 

an own machine, or by finding an unknown entry point (e.g., 

an undocumented dual-homed computer) to the NetworkZone. 

The attributes in the ZoneManagementProcess influence the 

possibility the attacker may find unknown entries to a 

NetworkZone. 
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Fig. 1. Metamodel of CySeMoL’s PRM. The upper box in a class contains the countermeasures associated with the class. The lower box contains the attack 

steps associated with the class. 

When an attacker can send data to the software, the attacker 

can attempt to execute arbitrary code remotely. The possibility 

of succeeding with this approach is influenced by the presence 

of address space layout randomization, non-executable 

memory protection, and whether the attacker has access rights 

to the software in question. If the attack is executed from 

another zone, the existence of deep-packet inspection in 

firewalls will have an influence. An IDSsensor will influence 

the possibility of detecting the attack. The influence of the 

IDSsensor depends on whether the attack is from the same 

NetworkZone or not. 

The possibility of performing remote arbitrary-code exploits 

is also contingent on the existence of a high-severity software 

vulnerability in the target. The attacker may search the 



SoftwareInstance’s SoftwareProduct for publicly known 

vulnerabilities that have not been patched, or the attacker may 

invest time in searching for previously unknown vulnerabilities 

in the SoftwareProduct. The success rate of the former 

approach depends on the existence of known vulnerabilities 

and patches as well as the patching procedures in the 

ZoneManagementProcess. The success of the latter approach 

depends on attributes related to the SoftwareProduct (e.g., if 

developers have tested the SoftwareProduct’s security using 

static analysis tools). 

A denial-of-service attack against a SoftwareInstance can be 

accomplished if the attacker has access to the 

SoftwareInstance’s OperatingSystem. Network-based denial-

of-service attacks can be performed against a Service or 

OperatingSystem if the attacker can connect to the Service or 

OperatingSystem. Such attacks can also be conducted against a 

DataFlow if the attacker can accomplish unavailability in 

associated clients, servers, or mediating NetworkZones. 

C. Attack-path generation and assessment 

An attack path is an ordered set of attack steps. Because the 

causal dependencies are expressed in CySeMoL’s PRM, 

producing an exhaustive list of all attack paths that should be 

assessed is straightforward as long as the maximum number of 

steps is specified. 

For each identified attack path, the corresponding Bayesian 

network is created and the success probabilities for all 

included attack steps are calculated. The attack steps in an 

identified attack path will be influenced by the attack steps in 

the path, the attack steps not in the path, and countermeasures 

in the system architecture. Attack steps not in the path are 

assigned a success probability of zero (because these steps are 

not attempted). All other attribute values are calculated as the 

PRM prescribes. 

VI. VERIFICATION AND VALIDATION 

CySeMoL can be viewed as an expert system that assesses 

attack paths in a system architecture and estimates the 

probability that different attack paths can be traversed by a 

professional penetration tester within one week. The 

correctness and accuracy of this estimate is essential for the 

practical utility of CySeMoL. This section describes the 

verification and validation of CySeMoL based on the 

terminology and recommendations of [59].  

A. Verification 

Verification concerns the consistency, completeness, and 

correctness of the software implementation of the expert 

system [59]. A verification procedure can either be domain 

dependent and check for anomalies in the system using meta-

knowledge on what is typical in the domain, or the verification 

procedure can be domain independent and look for general 

anomalies and errors in the implementation [59]. 

Domain-independent verification has been performed 

through inspections of the output produced by the tool. The 

result produced for both fictive test cases and real architectures 

has been inspected. These checks ensured that all attack paths 

that should be created by the model are present in the output 

and that the model does not contain redundant attack paths. 

The checks also verified that changes to a system’s 

architecture produce the results prescribed by the theory in the 

model.  

Domain-independent verification has focused on inspecting 

whether the PRM implementation is consistent (e.g., in naming 

attributes), complete (i.e., that all attribute parents are 

included), has the correct weights (i.e., the conditional 

probabilities), and infers data correctly (i.e., attack-generation 

procedure).  CySeMoL is implemented as an extension to the 

Enterprise Architecture Analysis Tool (EAAT) [60]. EAAT 

implements PRM-inference with the SMILE library used in 

Genie [61]. Thus, the probabilistic inference mechanism has 

been verified in other projects. 

B. Validation 

An expert system’s validity should be assessed in relation to 

a criterion [59]. CySeMoL has been validated using the 

criterion that CySeMoL should have expertise similar to that 

of a security expert.  

Validity tests can be performed on a component level to 

validate pieces of the expert system or on a system level to 

validate the full expert system against the criterion. CySeMoL 

has been validated on both levels. 

On a component level, CySeMoL has been validated by 

domain experts in interviews and surveys. As described in 

Section IV, these experts have validated the dependencies in 

the model and the prioritizations. In other words, the experts 

have validated the qualitative part of the underlying theory. 

The quantitative part of the theory has been validated on a 

component level in the studies from which the theory is 

developed. CySeMoL’s theory is drawn from the experts 

directly or from published empirical studies in the domain. 

Thus, further tests on a component level of the quantitative 

model’s validity by experts would be redundant. 

To test the validity of CySeMoL on a system level, a Turing 

test was performed. Turing tests are particularly useful when 

the answers to test cases are unknown (or costly to determine) 

and it cannot be assumed that a particular domain expert is 

correct [59]. The Turing test was designed to validate the 

attack paths and estimates against the criterion, i.e., that 

CySeMoL performs as a domain expert. Turing tests of expert 

systems have several advantages over other tests [59]. 

However, no standards have been established for how the 

Turing tests should be designed. The test of CySeMoL was 

similar to the tests described in [68] and [71]. Two pools of 

human experts are used: one that produces assessments of the 

same type as the expert system and one that rates the first 

pool’s assessments and the expert system’s assessments based 

on how reasonable the assessments are. The test’s design is 

described below. 

Three system architectures were presented to five domain 

experts experienced in penetration testing. The system 

architectures were depicted in a graphical format together with 



tables showing attributes of objects in the architecture during 

interviews lasting one hour. The graphical drawings and tables 

contained the information prescribed by CySeMoL’s 

metamodel (cf. section V.A). The five domain experts were 

asked to reason about ways that three different attack goals 

could be reached in the system architecture. The experts were 

asked to focus on the attacks with a relatively high probability 

of success, i.e., to disregard attacks that are unlikely to 

succeed. The resulting attack scenarios contained a brief 

description of the attack and estimates of the probability that a 

professional penetration tester would succeed with the 

included attack steps within one week. During the hour-long 

interviews, the experts produced one to three attack paths or 

solutions for each of the nine cases presented.  

To limit the time required to evaluate these solutions, a 

subset of the five experts’ solutions was used in the Turing 

test. One solution from each expert was randomly selected for 

each of the nine cases. The same principle was applied when 

solutions from CySeMoL were selected: one solution was 

randomly selected from the three solutions with the highest 

probability of success. Thus, solutions to nine cases from six 

experts were used. One of these experts was CySeMoL. To 

disguise the sources of the attack scenarios, the scenarios were 

described using the same language and abstraction level. In 

addition, all probabilities were rounded to the nearest 

percentile, which is a factor of 5 % because this resolution was 

used by most of the experts. 

The database of 54 solutions was then presented in 

randomized order in a questionnaire to two domain experts. 

Using a five-point scale, the experts were asked to say if they 

agreed with the statement "this assessment is reasonable and 

correct”. On this scale, one means that the evaluator 

completely disagrees with the statement. Five means that the 

evaluator completely agrees with the statement.  

The sample size prohibits drawing reliable statistical 

conclusions from this test. The median score that the 

evaluators gave the experts and CySeMoL attack scenarios is 

shown in Table II. The summary statistics indicate that the 

reasonableness of CySeMoL’s assessments is comparable to 

that of the assessments of the domain experts. In mean score, 

CySeMoL ranked fourth in a tie with expert 2.  In median 

score, CySeMoL ranked fifth.  

TABLE II 

RESULTS FROM THE TURING TEST 

 Evaluator 1 Evaluator 2 Mean Median 

Expert 1 [2,4,3,2,2,2,5,4,3] [4,4,3,4,4,2,4,4,4] 3.3 4 

Expert 2 [4,4,2,2,4,2,3,2,1] [4,4,3,3,4,2,2,4,3] 2.8 3 

Expert 3  [2,4,3,4,3,3,3,4,3] [4,2,4,5,3,4,2,4,3] 3.3 3 

Expert 4  [4,1,4,2,2,3,4,4,4] [4,2,4,3,3,3,3,4,3] 3.2 3 

Expert 5 [2,2,2,1,1,1,2,2,2] [2,2,2,2,2,2,2,2,2] 1.8 2 

CySeMoL [2,2,3,1,2,2,3,3,2] [5,5,4,3,4,2,1,4,2] 2.8 2.5 

Novice 1 [2,4,3,1,2,2,2,3,2] [2,3,2,2,2,2,2,2,2] 2.2 2 

Novice 2 [1,2,4,1,2,2,2,1,1] [3,3,3,4,2,2,3,2,2] 2.2 2 

Novice 3 [4,2,2,4,4,4,3,2,1] [2,2,2,3,3,2,2,2,1] 2.5 2 

 

Considerable variation exists between the evaluators’ 

scores. A potential concern is that the scoring is arbitrary, i.e., 

that the experts are unable to distinguish a reasonable solution 

from an unreasonable one. To test the discriminatory ability of 

the evaluators, they were requested to evaluate the solutions of 

three IT security novices. These novices had more than five 

years of experience in information technology but without a 

focus on security matters. The novices’ solutions were elicited 

the same way as the experts’ solutions were elicited and their 

solutions were presented in the same format to the evaluators. 

The evaluators did not know that these solutions were 

produced by novices. 

As shown in Table II, the novices score better individually 

than one expert. However, the novices receive low median and 

mean scores compared with the experts overall, suggesting that 

the evaluators can discriminate reasonable solutions from less 

reasonable. 

C. Applicability and usability 

To apply CySeMoL, the user must model the system 

architecture according to the metamodel depicted in Fig. 1. 

However, the user is not required to input all the information 

in the metamodel. In particular, the user does not need to input 

the attributes included in the lower box of the classes (the 

attack steps). Thus, the user is required to model concepts such 

as network zone, data flow, and software installation and 

assign values to attributes that determine whether 

countermeasures such as DNSSEC and non-executable 

memory are functioning. However, the user is not required to 

ascertain whether attacks succeed. In addition, for a number of 

attributes, the PRM can estimate values for the attributes in the 

upper tile. For example, the presence of unpatched publicly 

known vulnerabilities in installed software can be estimated 

based on the product’s attributes and the presence of 

automated patching procedures. 

The usability of this tool has been assessed in [63]. Areas 

for improvement in graphical attractiveness and the automated 

support for time-demanding tasks are identified in [63]. 

However, users without security expertise can comprehend the 

concepts used to model systems with CySeMoL when the 

textual definition of the concepts is presented. 

CySeMoL has also been evaluated with respect to usability 

in three case studies that analyzed the security of system 

architectures. The case studies focused on the following: (1) 

the control center and adjacent environments of one of 

Sweden’s largest electrical power utilities, (2) the electrical 

substations and remote communication of one of Sweden’s 

largest power systems, and (3) reference architectures for one 

of the world’s most common electrical-power management 

systems. An excerpt from an instance model with one assessed 

attack path is depicted in Fig. 2.  

The results of these three CySeMoL applications were 

appreciated by the system owners, and previously unknown 

security issues were identified in all three studies. However, 

the potential for improvement in data collection and the 



visualization of assessment results was identified. Meanwhile, data-collection support has been implemented (see [64]). 
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Fig. 2. An excerpt from an instance model of 19-step attack path together with the probabilities that each step along this path will be reached (T=True). The 

links in the attack path are the enumerated bold arrows. 

VII. SUMMARY AND FUTURE WORK 

CySeMoL is a modeling language coupled to an inference 

engine for analyzing the security of enterprise system 

architectures. The inference engine produces attack paths from 

one attack step to another. For these attack paths, the inference 

engine estimates the probability that the attack can be 

accomplished by a professional penetration tester within one 

week using publicly available tools. 

CySeMoL has been implemented in an existing tool [60] 

and validated on the component and system levels. On the 

component level, the theory specified in the dependencies is 

drawn from empirical studies in domain security and domain 

experts. On the system level, a Turing test suggests that the 

reasonableness of assessments produced by CySeMoL 

compares with that of a security expert and that both 

CySeMoL and the experts are more reasonable than security 

novices. These results suggest that CySeMoL would be useful 

where no security expert is available. 

These results are promising. They suggest that assembling 

the body of system-security knowledge in a tool that can 

automate the assessments produced by experts in the field is 

feasible. Further work can be directed towards increasing 

CySeMoL’s scope, refining and testing the model’s accuracy, 

and maintaining and updating the theory.  

When it comes to the scope, CySeMoL has been developed 

to support decision making related to the security of industrial 

control systems. This design focus has delimited the attacks 

that are covered by CySeMoL. Particularly, attacks on 

confidentiality are not well covered by CySeMoL because 

confidentiality is of lesser importance in industrial-control 

systems than in many other information systems. Further work 

is required if CySeMoL is to cover such attacks in a 

comprehensive manner. Effort can also be applied in modeling 

how attackers behave (i.e., determining which attacks attackers 

will attempt) and the consequences of successful attacks (i.e., 

to assess expected losses).  

When it comes to accuracy, further tests are required to 

assess CySeMoL’s accuracy with confidence. These tests can 

be on a component level and test a few probabilities or on 

system level and test the attack paths predicted for system 

architectures. Realization values can be sought in empirical 

tests, e.g., in conjunction with security tests or security 

exercises and competitions. Research can also be focused on 

refining the model and improving CySeMoL’s accuracy. 

CySeMoL has been designed to produce assessments at a 

reasonable cost. In other words, it should not be overly costly 

to model a system-of-systems using CySeMoL. Work that 

refines the theory of CySeMoL by adding more detail to the 

metamodel to improve accuracy should take the cost of using 

these additions into consideration. 

The threat environment and the countermeasures used at 

enterprises change over time. These changes will decrease 

CySeMoL’s accuracy and value unless the theory is 

maintained and updated. As discussed in [65], some changes 

have a fundamental effect on the security domain. For 

example, when operating systems with containing new 

countermeasures become widely adopted. When fundamental 

changes occur, they are hopefully easy to identify along with 

the components of the theory they affect. 

Other changes have limited impact on the overall threat 

environment or IT-landscape of enterprises. CySeMoL covers 

the most frequent of these changes. For instance, CySeMoL 

can detect the discovery of new vulnerabilities in a software 



product. Smaller changes that are not covered by CySeMoL 

can be problematic to detect and adjust the theory for. Regular 

reviews of the theory (e.g., annual Turing tests) will be 

required to identify such gradual evolutions of the threat 

environment and the IT landscape. In any case, the theory will 

require ongoing study to preserve its accuracy. 
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