
IMA Journal of Numerical Analysis Page 1 of 24
doi:10.1093/imanum/drl006

The cyclic Barzilai–Borwein method for unconstrained optimization

YU-HONG DAI†

State Key Laboratory of Scientific and Engineering Computing, Institute of Computational
Mathematics and Scientific/Engineering computing, Academy of Mathematics and Systems

Science, Chinese Academy of Sciences, PO Box 2719, Beijing 100080,
People’s Republic of China

WILLIAM W. HAGER‡

Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

KLAUS SCHITTKOWSKI§

Department of Computer Science, University of Bayreuth, 95440 Bayreuth, Germany

AND

HONGCHAO ZHANG¶

Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

[Received on 2 June 2005; revised on 11 January 2006]

In the cyclic Barzilai–Borwein (CBB) method, the same Barzilai–Borwein (BB) stepsize is reused for
m consecutive iterations. It is proved that CBB is locally linearly convergent at a local minimizer with
positive definite Hessian. Numerical evidence indicates that when m > n/2 � 3, where n is the problem
dimension, CBB is locally superlinearly convergent. In the special case m = 3 and n = 2, it is proved
that the convergence rate is no better than linear, in general. An implementation of the CBB method,
called adaptive cyclic Barzilai–Borwein (ACBB), combines a non-monotone line search and an adaptive
choice for the cycle length m. In numerical experiments using the CUTEr test problem library, ACBB
performs better than the existing BB gradient algorithm, while it is competitive with the well-known
PRP+ conjugate gradient algorithm.

Keywords: unconstrained optimization; gradient method; convex quadratic programming; non-monotone
line search.

1. Introduction

In this paper, we develop a cyclic version of the Barzilai–Borwein (BB) gradient type method (Barzilai &
Borwein, 1988) for solving an unconstrained optimization problem

min f (x), x ∈ Rn, (1.1)

where f is continuously differentiable. Gradient methods start from an initial point x0 and generate new
iterates by the rule

xk+1 = xk − αkgk, (1.2)

†Email: dyh@lsec.cc.ac.cn
‡Email: hager@math.ufl.edu
§Email: klaus.schittkowski@uni-bayreuth.de
¶Email: hzhang@math.ufl.edu

c© The author 2006. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

 IMA Journal of Numerical Analysis Advance Access published March 24, 2006

2 of 24 Y.-H. DAI ET AL.

k � 0, where gk = ∇ f (xk)
T is the gradient, viewed as a column vector, and αk is a stepsize computed

by some line search algorithm.
In the steepest descent (SD) method, which can be traced back to Cauchy (1847), the ‘exact step-

length’ is given by

αk ∈ arg min
α∈R

f (xk − αgk). (1.3)

It is well known that SD can be very slow when the Hessian of f is ill-conditioned at a local minimum
(see Akaike, 1959; Forsythe, 1968). In this case, the iterates slowly approach the minimum in a zigzag
fashion. On the other hand, it has been shown that if the exact SD step is reused in a cyclic fashion, then
the convergence is accelerated. Given an integer m � 1, which we call the cycle length, cyclic SD can
be expressed as

αm�+i = αSD
m�+1 for i = 1, . . . , m, (1.4)

� = 0, 1, . . ., where αSD
k is the exact steplength given by (1.3). Formula (1.4) was first proposed in

Friedlander et al. (1999), while the particular choice m = 2 was also investigated in Dai (2003) and
Raydan & Svaiter (2002). The analysis in Dai & Fletcher (2005a) shows that if m > n

2 , cyclic SD is
likely R-superlinearly convergent. Hence, SD is accelerated when the stepsize is repeated.

Let BB denote the original method of Barzilai & Borwein (1988). In this paper, we develop a
cyclic Barzilai–Borwein (CBB) method. The basic idea of Barzilai and Borwein is to regard the ma-
trix D(αk) = 1

αk
I as an approximation of the Hessian ∇2 f (xk) and impose a quasi-Newton property on

D(αk):

αk = arg min
α∈R

‖D(α)sk−1 − yk−1‖2, (1.5)

where sk−1 = xk − xk−1, yk−1 = gk − gk−1 and k � 2. The proposed stepsize, obtained from (1.5), is

αBB
k = sT

k−1sk−1

sT
k−1yk−1

. (1.6)

Other possible choices for the stepsize αk include Dai (2003), Dai & Fletcher (2006), Dai & Yang (2001,
2003), Friedlander et al. (1999), Grippo & Sciandrone (2002), Raydan & Svaiter (2002) and Serafini
et al. (2005). In this paper, we refer to (1.6) as the BB formula. The gradient method (1.2) corresponding
to the BB stepsize (1.6) is called the BB method.

Due to their simplicity, efficiency and low memory requirements, BB-like methods have been used in
many applications. Glunt et al. (1993) present a direct application of the BB method in chemistry. Birgin
et al. (1999) use a globalized BB method to estimate the optical constants and the thickness of thin films,
while in Birgin et al. (2000) further extensions are given, leading to more efficient projected gradient
methods. Liu & Dai (2001) provide a powerful scheme for solving noisy unconstrained optimization
problems by combining the BB method and a stochastic approximation method. The projected BB-
like method turns out to be very useful in machine learning for training support vector machines (see
Serafini et al., 2005; Dai & Fletcher, 2006). Empirically, good performance is observed on a wide variety
of classification problems.

The superior performance of cyclic SD, compared to the ordinary SD, as shown in Dai & Fletcher
(2005a), leads us to consider the CBB method:

αm�+i = αBB
m�+1 for i = 1, . . . , m, (1.7)

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 3 of 24

where m � 1 is again the cycle length. An advantage of the CBB method is that for general non-linear
functions, the stepsize is given by the simple formula (1.5) in contrast to the non-trivial optimization
problem associated with the SD step (1.3).

In Friedlander et al. (1999), the authors obtain global convergence of CBB when f is a strongly con-
vex quadratic. Dai (2003) establishes the R-linear convergence of CBB for a strongly convex quadratic.
In Section 2, we prove the local R-linear convergence for the CBB method at a local minimizer of a
general non-linear function. In Section 3, numerical evidence for strongly convex quadratic functions
indicates that the convergence is superlinear if m > n/2 � 3. In the special case m = 3 and n = 2, we
prove that the convergence is at best linear, in general.

In Section 4, we propose an adaptive method for computing an appropriate cycle length, and we
obtain a globally convergent non-monotone scheme by using a modified version of the line search de-
veloped in Dai & Zhang (2001). This new line search, an adaptive analogue of Toint’s (1997) scheme
for trust region methods, accepts the original BB stepsize more often than does Raydan’s (Raydan,
1997) strategy for globalizing the BB method. We refer to Raydan’s globalized BB implementation as
the GBB method. Numerical comparisons with the PRP+ algorithm and the SPG2 algorithm (Birgin
et al., 2000) (one version of the GBB method) are given in Section 4 using the CUTEr test problem
library (Bongartz et al., 1995).

Throughout this paper, we use the following notations. ‖·‖ is the Euclidean norm of a vector.
The subscript k is often associated with the iteration number in an algorithm. The letters i , j , k, �,
m and n, either lower or upper case, designate integers. The gradient ∇ f (x) is a row vector, while
g(x) = ∇ f (x)T is a column vector; here T denotes transpose. The gradient at the iterate xk is gk =
g(xk). We let ∇2 f (x) denote the Hessian of f at x . The ball with centre x and radius ρ is denoted
Bρ(x).

2. Local linear convergence

In this section, we prove R-linear convergence for the CBB method. In Liu & Dai (2001), it is pro-
posed that R-linear convergence for the BB method applied to a general non-linear function could be
obtained from the R-linear convergence results for a quadratic by comparing the iterates associated with
a quadratic approximation to the general non-linear iterates. In our R-linear convergence result for the
CBB method, we make such a comparison.

The CBB iteration can be expressed as

xk+1 = xk − αkgk, (2.1)

where

αk = sT
i si

sT
i yi

, i = ν(k), and ν(k) = m�(k − 1)/m�, (2.2)

k � 1. For r ∈ R, �r� denotes the largest integer j such that j � r . We assume that f is two times
Lipschitz continuously differentiable in a neighbourhood of a local minimizer x∗ where the Hessian
H = ∇2 f (x∗) is positive definite. The second-order Taylor approximation f̂ to f around x∗ is given by

f̂ (x) = f (x∗) + 1

2
(x − x∗)T H(x − x∗). (2.3)

4 of 24 Y.-H. DAI ET AL.

We will compare an iterate xk+ j generated by (2.1) to a CBB iterate x̂k, j associated with f̂ and the
starting point x̂k,0 = xk . More precisely, we define

x̂k,0 = xk,

x̂k, j+1 = x̂k, j − α̂k, j ĝk, j , j � 0, (2.4)

where

α̂k, j =
⎧⎨
⎩

αk if ν(k + j) = ν(k)

ŝT
i ŝi

ŝT
i ŷi

, i = ν(k + j), otherwise.

Here ŝk+ j = x̂k, j+1 − x̂k, j , ĝk, j = H(x̂k, j − x∗) and ŷk+ j = ĝk, j+1 − ĝk, j .
We exploit the following result established in Dai (2003, Theorem 3.2):

LEMMA 2.1 Let {x̂k, j : j � 0} be the CBB iterates associated with the starting point x̂k,0 = xk and the
quadratic f̂ in (2.3), where H is positive definite. Given two arbitrary constants C2 > C1 > 0, there
exists a positive integer N with the following property: For any k � 1 and

α̂k,0 ∈ [C1, C2], (2.5)

‖x̂k,N − x∗‖ � 1

2
‖x̂k,0 − x∗‖.

In our next lemma, we estimate the distance between x̂k, j and xk+ j . Let Bρ(x) denote the ball
with centre x and radius ρ. Since f is two times Lipschitz continuously differentiable and ∇2 f (x∗) is
positive definite, there exist positive constants ρ, λ and Λ2 > Λ1 such that

‖∇ f (x) − H(x − x∗)‖ � λ‖x − x∗‖2 for all x ∈ Bρ(x∗) (2.6)

and

Λ1 �
yT∇2 f (x)y

yTy
� Λ2 for all y ∈ Rn and x ∈ Bρ(x∗). (2.7)

Note that if xi and xi+1 ∈ Bρ(x∗), then the fundamental theorem of calculus applied to yi = gi+1 − gi

yields

1

Λ2
�

sT
i si

sT
i yi
� 1

Λ1
. (2.8)

Hence, when the CBB iterates lie in Bρ(x∗), condition (2.5) of Lemma 2.1 is satisfied with C1 = 1/Λ2
and C2 = 1/Λ1. If we define g(x) = ∇ f (x)T, then the fundamental theorem of calculus can also be
used to deduce that

‖g(x)‖ = ‖g(x) − g(x∗)‖ � Λ2‖x − x∗‖ (2.9)

for all x ∈ Bρ(x∗).

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 5 of 24

LEMMA 2.2 Let {x j : j � k} be a sequence generated by the CBB method applied to a function f with a
local minimizer x∗, and assume that the Hessian H = ∇2 f (x∗) is positive definite with (2.7) satisfied.
Then for any fixed positive integer N , there exist positive constants δ and γ with the following property:
For any xk ∈ Bδ(x∗), αk ∈ [Λ−1

2 ,Λ−1
1], � ∈ [0, N] with

‖x̂k, j − x∗‖ � 1

2
‖x̂k,0 − x∗‖ for all j ∈ [0, max{0, � − 1}], (2.10)

we have

xk+ j ∈ Bρ(x∗) and ‖xk+ j − x̂k, j‖ � γ ‖xk − x∗‖2 (2.11)

for all j ∈ [0, �].

Proof. Throughout the proof, we let c denote a generic positive constant, which depends on fixed
constants, such as N , Λ1, Λ2 or λ, but not on k, the choice of xk ∈ Bδ(x∗) or the choice of αk ∈
[Λ−1

2 ,Λ−1
1]. To facilitate the proof, we also show that

‖g(xk+ j) − ĝ(x̂k, j)‖ � c‖xk − x∗‖2, (2.12)

‖sk+ j‖ � c‖xk − x∗‖, (2.13)

|αk+ j − α̂k, j | � c‖xk − x∗‖, (2.14)

for all j ∈ [0, �], where ĝ(x) = ∇ f̂ (x)T = H(x − x∗).
The proof of (2.11)–(2.14) is by induction on �. For � = 0, we take δ = ρ. Relation (2.11) is trivial

since x̂k,0 = xk . By (2.6), we have

‖g(xk) − ĝ(x̂k,0)‖ = ‖g(xk) − ĝ(xk)‖ � λ‖xk − x∗‖2,

which gives (2.12). Since δ = ρ and xk ∈ Bδ(x∗), it follows from (2.9) that

‖sk‖ = ‖αkgk‖ � Λ2

Λ1
‖xk − x∗‖,

which gives (2.13). Relation (2.14) is trivial since α̂k,0 = αk .
Now, proceeding by induction, suppose that there exist L ∈ [1, N) and δ > 0 with the property that

if (2.10) holds for any � ∈ [0, L − 1], then (2.11)–(2.14) are satisfied for all j ∈ [0, �]. We wish to show
that for a smaller choice of δ > 0, we can replace L by L + 1. Hence, we suppose that (2.10) holds for
all j ∈ [0, L]. Since (2.10) holds for all j ∈ [0, L − 1], it follows from the induction hypothesis and
(2.13) that

‖xk+L+1 − x∗‖ � ‖xk − x∗‖ +
L∑

i=0

‖sk+i‖ � c‖xk − x∗‖. (2.15)

Consequently, by choosing δ smaller, if necessary, we have xk+L+1 ∈ Bρ(x∗) when xk ∈ Bδ(x∗).
By the triangle inequality,

‖xk+L+1 − x̂k,L+1‖ = ‖xk+L − αk+L g(xk+L) − [x̂k,L − α̂k,L ĝ(x̂k,L)]‖
� ‖xk+L − x̂k,L‖ + |α̂k,L |‖g(xk+L) − ĝ(x̂k,L)‖

+ |αk+L − α̂k,L |‖g(xk+L)‖. (2.16)

6 of 24 Y.-H. DAI ET AL.

We now analyse each of the terms in (2.16). By the induction hypothesis, the bound (2.11) with j = L
holds, which gives

‖xk+L − x̂k,L‖ � c‖xk − x∗‖2. (2.17)

By the definition of α̂, either α̂k,L = αk ∈ [Λ−1
2 ,Λ−1

1] or

α̂k,L = ŝT
i ŝi

ŝT
i ŷi

, i = ν(k + L).

In this latter case,

1

Λ2
�

ŝT
i ŝi

ŝT
i H ŝi

= ŝT
i ŝi

ŝT
i ŷi
� 1

Λ1
.

Hence, in either case, α̂k,L ∈ [Λ−1
2 ,Λ−1

1]. It follows from (2.12) with j = L that

|α̂k,L |‖g(xk+L) − ĝ(x̂k,L)‖ � 1

Λ1
‖g(xk+L) − ĝ(x̂k,L)‖ � c‖xk − x∗‖2. (2.18)

Also, by (2.14) with j = L and (2.9), we have

|αk+L − α̂k,L |‖g(xk+L)‖ � c‖xk − x∗‖‖xk+L − x∗‖.

Utilizing (2.15) (with L replaced by L − 1) gives

|αk+L − α̂k,L |‖g(xk+L)‖ � c‖xk − x∗‖2. (2.19)

We combine (2.16)–(2.19) to obtain (2.11) for j = L + 1. Note that in establishing (2.11), we exploited
(2.12)–(2.14). Consequently, to complete the induction step, each of these estimates should be proved
for j = L + 1.

Focusing on (2.12) for j = L + 1, we have

‖g(xk+L+1) − ĝ(x̂k,L+1)‖ � ‖g(xk+L+1) − ĝ(xk+L+1)‖ + ‖ĝ(xk+L+1) − ĝ(x̂k,L+1)‖
= ‖g(xk+L+1) − ĝ(xk+L+1)‖ + ‖H(xk+L+1 − x̂k,L+1)‖
� ‖g(xk+L+1) − H(xk+L+1 − x∗)‖ + Λ2‖xk+L+1 − x̂k,L+1‖
� ‖g(xk+L+1) − H(xk+L+1 − x∗)‖ + c‖xk − x∗‖2,

since ‖H‖ � Λ2 by (2.7). The last inequality is due to (2.11) for j = L +1, which was just established.
Since we chose δ small enough that xk+L+1 ∈ Bρ(x∗) (see (2.15)), (2.6) implies that

‖g(xk+L+1) − H(xk+L+1 − x∗)‖ � λ‖xk+L+1 − x∗‖2 � c‖xk − x∗‖2.

Hence, ‖g(xk+L+1) − ĝ(x̂k,L+1)‖ � c‖xk − x∗‖2, which establishes (2.12) for j = L + 1.

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 7 of 24

Observe that αk+L+1 equals either αk ∈ [Λ−1
2 ,Λ−1

1] or (sT
i si)/(sT

i yi), where k + L � i =
ν(k + L + 1) > k. In this latter case, since xk+ j ∈ Bρ(x∗) for 0 � j � L + 1, it follows from
(2.8) that

αk+L+1 �
1

Λ1
.

Combining this with (2.9), (2.15) and the bound (2.13) for j � L , we obtain

‖sk+L+1‖ = ‖αk+L+1g(xk+L+1)‖ � Λ2

Λ1
‖xk+L+1 − x∗‖ � c‖xk − x∗‖.

Hence, (2.13) is established for j = L + 1.
Finally, we focus on (2.14) for j = L + 1. If ν(k + L + 1) = ν(k), then α̂k,L+1 = αk+L+1 = αk , so

we are done. Otherwise, ν(k + L + 1) > ν(k), and there exists an index i ∈ (0, L] such that

αk+L+1 = sT
k+i sk+i

sT
k+i yk+i

and α̂k,L+1 = ŝT
k+i ŝk+i

ŝT
k+i ŷk+i

.

By (2.11) and the fact that i � L , we have

‖sk+i − ŝk+i‖ � c‖xk − x∗‖2.

Combining this with (2.13), and choosing δ smaller, if necessary, gives

|sT
k+i sk+i − ŝT

k+i ŝk+i | = |2sT
k+i (sk+i − ŝk+i) − ‖ŝk+i − sk+i‖2| � c‖xk − x∗‖3. (2.20)

Since α̂k,i ∈ [Λ−1
2 ,Λ−1

1], we have

‖ŝk+i‖ = ‖α̂k,i ĝk,i‖ � 1

Λ2
‖H(x̂k,i − x∗)‖ � Λ1

Λ2
‖x̂k,i − x∗‖.

Furthermore, by (2.10), it follows that

‖ŝk+i‖ � Λ1

2Λ2
‖x̂k,0 − x∗‖ = Λ1

2Λ2
‖xk − x∗‖. (2.21)

Hence, combining (2.20) and (2.21) gives∣∣∣∣∣1 − sT
k+i sk+i

ŝT
k+i ŝk+i

∣∣∣∣∣ = |sT
k+i sk+i − ŝT

k+i ŝk+i |
ŝT
k+i ŝk+i

� c‖xk − x∗‖. (2.22)

Now let us consider the denominators of αk+i and α̂k,i . Observe that

sT
k+i yk+i − ŝT

k+i ŷk+i = sT
k+i (yk+i − ŷk+i) + (sk+i − ŝk+i)

T ŷk+i

= sT
k+i (yk+i − ŷk+i) + (sk+i − ŝk+i)

T Hŝk+i . (2.23)

By (2.11) and (2.13), we have

|(sk+i − ŝk+i)
T Hŝk+i | = |(sk+i − ŝk+i)

T Hsk+i − (sk+i − ŝk+i)
T H(sk+i − ŝk+i)|

� c‖xk − x∗‖3 (2.24)

8 of 24 Y.-H. DAI ET AL.

for δ sufficiently small. Also, by (2.12) and (2.13), we have

|sT
k+i (yk+i − ŷk+i)| � ‖sk+i‖(‖gk+i+1 − ĝk,i+1‖ + ‖gk+i − ĝk,i‖) � c‖xk − x∗‖3. (2.25)

Combining (2.23)–(2.25) yields

|sT
k+i yk+i − ŝT

k+i ŷk+i | � c‖xk − x∗‖3. (2.26)

Since xk+i and xk+i+1 ∈ Bρ(x∗), it follows from (2.7) that

sT
k+i yk+i = sT

k+i (gk+i+1 − gk+i) � Λ1‖sk+i‖2 = Λ1|αk+i |2‖gk+i‖2. (2.27)

By (2.8) and (2.7), we have

|αk+i |2‖gk+i‖2 � 1

Λ2
2

‖gk+i‖2 = 1

Λ2
2

‖g(xk+i) − g(x∗)‖2 �
Λ2

1

Λ2
2

‖xk+i − x∗‖2. (2.28)

Finally, (2.10) gives

‖xk+i − x∗‖2 � 1

4
‖xk − x∗‖2. (2.29)

Combining (2.27)–(2.29) yields

sT
k+i yk+i �

Λ3
1

4Λ2
2

‖xk − x∗‖2. (2.30)

Combining (2.26) and (2.30) gives∣∣∣∣∣1 − ŝT
k+i ŷk+i

sT
k+i yk+i

∣∣∣∣∣ = |sT
k+i yk+i − ŝT

k+i ŷk+i |
sT
k+i yk+i

� c‖xk − x∗‖. (2.31)

Observe that

|αk+L+1 − α̂k,L+1| =
∣∣∣∣∣ s

T
k+i sk+i

sT
k+i yk+i

− ŝT
k+i ŝk+i

ŝT
k+i ŷk+i

∣∣∣∣∣ = α̂k,L+1

∣∣∣∣∣1 −
(

sT
k+i sk+i

ŝT
k+i ŝk+i

)(
ŝT
k+i ŷk+i

sT
k+i yk+i

)∣∣∣∣∣
� 1

Λ1

∣∣∣∣∣1 −
(

sT
k+i sk+i

ŝT
k+i ŝk+i

)(
ŝT
k+i ŷk+i

sT
k+i yk+i

)∣∣∣∣∣
= 1

Λ1
|a(1 − b) + b| � 1

Λ1
(|a| + |b| + |ab|), (2.32)

where

a = 1 − sT
k+i sk+i

ŝT
k+i ŝk+i

and b = 1 − ŝT
k+i ŷk+i

sT
k+i yk+i

.

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 9 of 24

Together, (2.22), (2.31) and (2.32) yield

|αk+L+1 − α̂k,L+1| � c‖xk − x∗‖
for δ sufficiently small. This completes the proof of (2.11)–(2.14). �
THEOREM 2.3 Let x∗ be a local minimizer of f , and assume that the Hessian ∇2 f (x∗) is positive
definite. Then there exist positive constants δ and γ and a positive constant c < 1 with the property that
for all starting points x0, x1 ∈ Bδ(x∗), x0 �= x1, the CBB iterates generated by (2.1) and (2.2) satisfy

‖xk − x∗‖ � γ ck‖x1 − x∗‖.
Proof. Let N > 0 be the integer given in Lemma 2.1, corresponding to C1 = Λ−1

1 and C2 = Λ−1
2 ,

and let δ1 and γ1 denote the constants δ and γ given in Lemma 2.2 Let γ2 denote the constant c in
(2.13). In other words, these constant δ1, γ1 and γ2 have the property that whenever ‖xk − x∗‖ � δ1,
αk ∈ [Λ−1

2 ,Λ−1
1] and

‖x̂k, j − x∗‖ � 1

2
‖x̂k,0 − x∗‖ for 0 � j � � − 1 < N ,

we have

‖xk+ j − x̂k, j‖� γ1‖xk − x∗‖2, (2.33)

‖sk+ j‖� γ2‖xk − x∗‖, (2.34)

xk+ j ∈ Bρ(x∗), (2.35)

for all j ∈ [0, �]. Moreover, by the triangle inequality and (2.34), it follows that

‖xk+ j − x∗‖ � (Nγ2 + 1)‖xk − x∗‖ = γ3‖xk − x∗‖, γ3 = (Nγ2 + 1), (2.36)

for all j ∈ [0, �]. We define

δ = min{δ1, ρ, (4γ1)
−1}. (2.37)

For any x0 and x1 ∈ Bδ(x∗), we define a sequence 1 = k1 < k2 < · · · in the following way: Starting
with the index k1 = 1, let j1 > 0 be the smallest integer with the property that∥∥x̂k1, j1 − x∗∥∥ � 1

2

∥∥x̂k1,0 − x∗∥∥ = 1

2
‖x1 − x∗‖.

Since x0 and x1 ∈ Bδ(x∗) ⊂ Bρ(x∗), it follows from (2.8) that

α̂1,0 = α1 = sT
0 s0

sT
0 y0

∈ [Λ−1
2 ,Λ−1

1].

By Lemma 2.1, j1 � N . Define k2 = k1 + j1 > k1. By (2.33) and (2.37), we have∥∥xk2 − x∗∥∥= ∥∥xk1+ j1 − x∗∥∥ � ∥∥xk1+ j1 − x̂k1, j1

∥∥+ ∥∥x̂k1, j1 − x∗∥∥
� γ1

∥∥xk1 − x∗∥∥2 + 1

2

∥∥x̂k1,0 − x∗∥∥
= γ1

∥∥xk1 − x∗∥∥2 + 1

2

∥∥xk1 − x∗∥∥ � 3

4

∥∥xk1 − x∗∥∥ . (2.38)

Since ‖x1 − x∗‖ � δ, it follows that xk2 ∈ Bδ(x∗). By (2.35), x j ∈ Bρ(x∗) for 1 � j � k1.

10 of 24 Y.-H. DAI ET AL.

Now, proceed by induction. Assume that ki has been determined with xki ∈ Bδ(x∗) and x j ∈ Bρ(x∗)
for 1 � j � ki . Let ji > 0 be the smallest integer with the property that

∥∥x̂ki , ji − x∗∥∥ � 1

2

∥∥x̂ki ,0 − x∗∥∥ = 1

2

∥∥xki − x∗∥∥ .

Set ki+1 = ki + ji > ki . Exactly as in (2.38), we have

∥∥xki+1 − x∗∥∥ � 3

4

∥∥xki − x∗∥∥ .

Again, xki+1 ∈ Bδ(x∗) and x j ∈ Bρ(x∗) for j ∈ [1, ki+1].
For any k ∈ [ki , ki+1), we have k � ki + N − 1 � Ni , since ki � N (i − 1) + 1. Hence, i � k/N .

Also, (2.36) gives

‖xk − x∗‖� γ3
∥∥xki − x∗∥∥ � γ3

(
3

4

)i−1 ∥∥xk1 − x∗∥∥
� γ3

(
3

4

)(k/N)−1

‖x1 − x∗‖

= γ ck‖x1 − x∗‖,
where

γ =
(

4

3

)
γ3 and c =

(
3

4

)1/N

< 1.

This completes the proof. �

3. The CBB method for convex quadratic programming

In this section, we give numerical evidence which indicates that when m is sufficiently large, the CBB
method is superlinearly convergent for a quadratic function

f (x) = 1

2
xT Ax − bTx, (3.1)

where A ∈ Rn×n is symmetric and positive definite and b ∈ Rn . Since CBB is invariant under an or-
thogonal transformation and since gradient components corresponding to identical eigenvalues can be
combined (see, e.g. Dai & Fletcher, 2005b), we assume without loss of generality that A is diagonal:

A = diag(λ1, λ2, . . . , λn) with 0 < λ1 < λ2 < · · · < λn . (3.2)

In the following subsections, we give an overview of the experimental convergence results; we then
show in the special case m = 2 and n = 3 that the convergence rate is no better than linear, in general.
Finally, we show that the convergence rate for CBB is strictly faster than that of SD. We obtain some
further insights by applying our techniques to cyclic SD.

3.1 Asymptotic behaviour and cycle number

In the quadratic case, it follows from (1.2) and (3.1) that

gk+1 = (I − αk A)gk . (3.3)

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 11 of 24

TABLE 1 Transition to superlinear convergence

n 2 3 4 5 6 8 10 12 14
Superlinear m 1 3 2 4 4 5 6 7 8
Linear m 2 1 3 3 4 5 6 7

If g(i)
k denotes the i th component of the gradient gk , then by (3.3) and (3.2), we have

g(i)
k+1 = (1 − αkλi)g

(i)
k , i = 1, 2, . . . , n. (3.4)

We assume that g(i)
k �= 0 for all sufficiently large k. If g(i)

k = 0, then by (3.4), component i remains
zero during all subsequent iterations; hence, it can be discarded. In the BB method, starting values are
needed for x0 and x1 in order to compute α1. In our study of CBB, we treat α1 as a free parameter. In
our numerical experiments, α1 is the exact stepsize (1.3).

For different choices of the diagonal matrix (3.2) and the starting point x1, we have evaluated the
convergence rate of CBB. By the analysis given in Friedlander et al. (1999) for positive definite quadrat-
ics or by the result given in Theorem 2.3 for general non-linear functions, the convergence rate of the
iterates is at least linear. On the other hand, for m sufficiently large, we observe experimentally that the
convergence rate is superlinear. For fixed dimension n, the value of m where the convergence rate makes
a transition between linear and non-linear is shown in Table 1. More precisely, for each value of n, the
convergence rate is superlinear when m is greater than or equal to the integer given in the second row of
Table 1. The convergence is linear when m is less than or equal to the integer given in the third row of
Table 1.

The limiting integers appearing in Table 1 are computed in the following way: For each dimension,
we randomly generate 30 problems, with eigenvalues uniformly distributed on (0, n], and 50 starting
points—a total of 1500 problems. For each test problem, we perform 1000n CBB iterations, and we
plot log(log(‖gk‖∞)) versus the iteration number. We fit the data with a least squares line, and we
compute the correlation coefficient to determine how well the linear regression model fits the data. If
the correlation coefficient is 1 (or −1), then the linear fit is perfect, while a correlation coefficient of
0 means that the data are uncorrelated. A linear fit in a plot of log(log(‖gk‖∞)) versus the iteration
number indicates superlinear convergence. For m large enough, the correlation coefficients are between
−1.0 and −0.98, indicating superlinear convergence. As we decrease m, the correlation coefficient
abruptly jumps to the order of −0.8. The integers shown in Table 1 reflect the values of m where the
correlation coefficient jumps.

Based on Table 1, the convergence rate is conjectured to be superlinear for m > n/2 � 3. For n < 6,
the relationship between m and n at the transition between linear and superlinear convergence is more
complicated, as seen in Table 1. Graphs illustrating the convergence appear in Fig. 1. The horizontal
axis in these figures is the iteration number, while the vertical axis gives log(log(‖gk‖∞)). Here ‖·‖∞
represents the sup–norm. In this case, straight lines correspond to superlinear convergence—the slope
of the line reflects the convergence order. In Fig. 1, the bottom two graphs correspond to superlinear
convergence, while the top two graphs correspond to linear convergence—for these top two examples,
a plot of log(‖gk‖∞) versus the iteration number is linear.

3.2 Analysis for the case m = 2 and n = 3

The theoretical verification of the experimental results given in Table 1 is not easy. We have the
following partial result in connection with the column m = 2.

12 of 24 Y.-H. DAI ET AL.

FIG. 1. Graphs of log(log(‖gk‖∞)) versus k; (a) 3 � n � 6 and m = 3; (b) 6 � n � 9 and m = 4.

THEOREM 3.1 For n = 3, there exists a choice for the diagonal matrix (3.2) and a starting guess x1
with the property that αk+8 = αk for each k, and the convergence rate of CBB with m = 2 is at most
linear.

Proof. To begin, we treat the initial stepsize α1 as a variable. For each k, we define the vector uk by

u(i)
k = (g(i)

k)2

‖gk‖2
, i = 1, . . . , n. (3.5)

The above definition is important and is used for some other gradient methods (see Forsythe,1968; Dai &
Yang, 2001). For the case m = 2, we can obtain by (2.1), (2.2) and (3.4) and the definition of uk that

u(i)
2k+1 = (1 − α2k−1λi)

4u(i)
2k−1∑n

�=1(1 − α2k−1λ�)4u(�)
2k−1

(3.6)

for all k � 1 and i = 1, . . . , n. In the same fashion, we have

α2k+1 =
∑n

i=1(1 − α2k−1λi)
2u(i)

2k−1∑n
i=1 λi (1 − α2k−1λi)2u(i)

2k−1

. (3.7)

We want to force our examples to satisfy

u9 = u1 and α9 = α1. (3.8)

For k � 1, a subsequent iteration of the method is uniquely determined by u2k−1 and α2k−1. It follows
from (3.8) that u8k+1 = u1 and α8k+1 = α1 for all k � 1, and hence a cycle occurs.

For any i and j , let bi j be defined by

bi j = 1 − α2i−1λ j . (3.9)

Henceforth, we focus on the case n = 3 specified in the statement of the Theorem 3.1. To satisfy
relation (3.8), we impose the following condition on the stepsizes {α1, α3, α5, α7}:∣∣∣∣∣

4∏
i=1

bi j

∣∣∣∣∣ = τ, j = 1, 2, 3, (3.10)

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 13 of 24

where τ > 0 is a positive number. By (3.6) and (3.10), we know that the first equation of (3.8) is
satisfied. On the other hand, (3.6), (3.7), α9 = α1 and the definition of (3.9) imply the following system
of linear equations for u1:

T u1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b2
11b21 b2

12b22 b2
13b23

b4
11b2

21b31 b4
12b2

22b32 b4
13b2

23b33

b4
11b4

21b2
31b41 b4

12b4
22b2

32b42 b4
13b4

23b2
33b43

b5
11b4

21b4
31b2

41 b5
12b4

22b4
32b2

42 b5
13b4

23b4
33b2

43

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u(1)
1

u(2)
1

u(3)
1

⎤
⎥⎥⎥⎥⎦ = 0. (3.11)

The above system has three variables and four equations. Multiplying the j th column by b−2
1 j b−1

2 j b4 j for
j = 1, 2, 3 and using condition (3.10), it follows that the rank of the coefficient matrix T is the same
as the rank of the 4 × 3 matrix B with entries bi j . By the definition of bi j , the rank of T is at most 2;
hence, the linear system (3.11) has a non-zero solution u1.

To complete the construction, u1 should satisfy the constraints

u(i)
1 > 0, i = 1, 2, 3, (3.12)

and

u(1)
1 + u(2)

1 + u(3)
1 = 1. (3.13)

The above conditions are fulfilled if we look for a solution {α1, α3, α5, α7} of (3.10) such that

α−1
1 , α−1

3 ∈ (λ1, λ2) and α−1
5 , α−1

7 ∈ (λ2, λ3). (3.14)

In this case, we may choose

u1 = t

[
b−2

11 b−1
21

(
b13

b43
− b12

b42

)
, b−2

12 b−1
22

(
b11

b41
− b13

b43

)
, b−2

13 b−1
23

(
b12

b42
− b11

b41

)]T

, (3.15)

where t > 0 is a scaling factor such that (3.13) holds. Therefore, if we choose {α1, α3, α5, α7} satisfying
(3.10) and (3.14) and furthermore u1 from (3.15), relation (3.8) holds. Hence, we have that u8+i = ui

and α8+i = αi for all i � 1.
Now we discuss a possible choice of τ > 0 in (3.10). Specifically, we are interested in the maximal

value τ ∗ of τ such that (3.10) and (3.14) hold. By continuity assumption, we know that suitable solutions
exist for any τ ∈ (0, τ ∗). This leads to the maximization problem

max

{
τ :

4∏
i=1

bi j = τ(j = 1, 2, 3); α−1
1 , α−1

3 ∈ (λ1, λ2), α
−1
5 , α−1

7 ∈ (λ2, λ3)

}
. (3.16)

To solve (3.16), we consider the Lagrangian function

L(τ, α1, α3, α5, α7, µ1, µ2, µ3) = τ +
3∑

j=1

µ j

[
τ −

4∏
i=1

(1 − α2i−1λ j)

]
, (3.17)

14 of 24 Y.-H. DAI ET AL.

where {µ j } are the multipliers corresponding to equality constraints. Since at a KKT point of (3.16) the
partial derivatives of L are zero, we require {µi } to satisfy relation (3.10), µ1 + µ2 + µ3 = 1 and

3∑
j=1

µ jλ j

4∏
� = 1
� �= i

(1 − α2�−1λ j) = 0 (i = 1, 2, 3, 4). (3.18)

Dividing each relation in (3.18) by τ and using (3.10), we obtain the following linear equations for
µ = (µ1, µ2, µ3)

T:

Hµ = 0, where H ∈ R4×3 with hi j = λ j b
−1
i j . (3.19)

To guarantee that system (3.19) has a non-zero solution µ, the rank of the coefficient matrix H must be
at most 2. Let H3,3 denote the submatrix formed by the first three rows of H . By direct calculation, we
obtain

det(H3,3) = λ1λ2λ3(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)(α1 − α3)(α3 − α5)(α5 − α1)∏
i, j∈{1,2,3} bi j

. (3.20)

Thus, det(H3,3) = 0 and inequality constraints (3.14) lead to α1 = α3. Similarly, we can get α5 = α7.
From (3.10), we know that (3.16) achieves its maximum

τ ∗ = (λ1 − λ2)
2(λ2 − λ3)

2

(λ1λ2 + λ2λ3 + λ3λ1 − λ2
2)

2
(3.21)

at

α∗
1 = α∗

3 = (λ̄ − ξ̄)−1, α∗
5 = α∗

7 = (λ̄ + ξ̄)−1, (3.22)

where λ̄ = λ1+λ3
2 , ξ̄ =

√
ξ1+ξ2

2 , ξ1 = (λ̄ − λ1)
2 and ξ2 = (λ̄ − λ2)

2. From the continuity argument, we
know that there exist cyclic examples of the CBB method with m = 2 for any τ ∈ (0, τ ∗). For example,
we may consider the following symmetric subfamily of examples with η ∈ (0, 1

2]:

α1, α5 = [λ̄ ∓√ηξ1 + (1 − η)ξ2]−1, α3, α7 = [λ̄ ∓√(1 − η)ξ1 + ηξ2]−1. (3.23)

It is easy to check that the above {αi } satisfies (3.10) and (3.14). When η moves from 0 to 1
2 , we can see

that the value τ moves from 0 to τ ∗. �
Now we present some numerical examples. Suppose that λ1 = 1, λ2 = 5 and λ3 = 8. Because of

(3.22), we choose α∗
1 = α∗

3 = 1
2 and α∗

5 = α∗
7 = 1

7 from where the maximizer τ ∗ = 9
49 is found. From

(3.11), we get u1 = (972
1001 , 28

1001 , 1
1001)T. By the definition of u1, the previous discussions and choosing

g1 = t̄(±18
√

3, ±2
√

7, ±1)T with any t̄ > 0 and α1 = 1
2 , the CBB method with m = 2 produces

cycling of the sequence given by {ui } and {αi }.
By assuming that the Hessian matrix is A = diag(1, 5, 8), we also compute the sequences {u2k−1}

and {α2k−1} generated by (3.6) and (3.7), respectively. Initial values for u1 and α1 are obtained by an
SD step at u0, i.e.

α1 = α0 = uT
0 u0

uT
0 Au0

, u(i)
1 = (1 − α0λi)

2(u(i)
0)2∑

�(1 − α0λ�)2(u(�)
0)2

(i = 1, 2, 3).

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 15 of 24

For different u0, we see that different cycles are obtained, which are numerically stable. In Table 2, the
index k̄ can be different for each vector u0 so that α−1

k̄+1
, α−1

k̄+3
∈ (λ1, λ2).

3.3 Comparison with SD

The analysis in Section 3.2 shows that CBB with m = 2 is at best linearly convergent. By (3.4) and
(3.10), we obtain

‖gk+8‖2 = τ‖gk‖2 for all k � 1, (3.24)

where τ is the parameter in (3.10). The above relation implies that the convergence rate of the method
only depends on the value τ . Furthermore, Table 2 tells us that this value of τ is related to the starting
point. It may be very small or relatively large. The maximal possible value of τ is the τ ∗ in (3.21). In
the 3D case, we get

‖gk+1‖2 �
λ3 − λ1

λ3 + λ1
‖gk‖2 (3.25)

for the SD method (see Akaike, 1959). It is not difficult to show that

τ ∗ <

[
λ3 − λ1

λ3 + λ1

]4

. (3.26)

Thus, we see that CBB with m = 2 is faster than the SD method if n = 3. This result could be extended
to the arbitrary dimensions since we observe that CBB with m = 2 generates similar cycles for higher-
dimensional quadratics.

The examples provided in Section 3.2 for CBB with m = 2 are helpful in understanding and
analysing the behaviour of other non-monotone gradient methods. For example, we can also use the
same technique to construct cyclic examples for the alternate step (AS) gradient method, at least the-
oretically. The AS method corresponds to the cyclic SD method (1.4) with m = 2. In fact, if we
define uk as in (3.5), we obtain for all k � 1

α2k−1 =
∑

� u(�)
2k−1∑

� λ�u
(�)
2k−1

, u(i)
2k+1 = (1 − α2k−1λi)

4u(i)
2k−1∑

�(1 − α2k−1λ�)4u(�)
2k−1

(3.27)

TABLE 2 Different choices of u0 generate different cycles

uT
0 α−1

k̄+1
α−1

k̄+3
α−1

k̄+5
α−1

k̄+7
τ

(1, 2, 3) 4.9103 1.0000 8.0000 5.0008 4.2186×10−6

(1, 3, 2) 3.2088 1.3409 6.9100 7.2058 1.2890×10−1

(2, 1, 3) 1.1099 1.2764 5.0197 7.9938 1.5024×10−2

(2, 3, 1) 1.5797 2.0807 5.7248 7.7683 1.3706×10−1

(3, 1, 2) 4.9846 1.0026 7.9086 7.7458 1.6018×10−3

(3, 2, 1) 1.0015 4.9912 7.8776 7.8866 9.4127×10−4

16 of 24 Y.-H. DAI ET AL.

for i = 1, . . . , n. For any n with u2n+1 = u1 and α2n+1 = α1, we require the stepsizes {α2k−1: k =
1, . . . , n − 1} to satisfy ∣∣∣∣∣

n−1∏
i=1

bi j

∣∣∣∣∣ = τ, j = 1, . . . , n, (3.28)

where bi j is given by (3.9). At the same time, we obtain the following linear equations for u1:

T u1 = 0, where T ∈ R(n−1)×n with Ti j = bi j

i−1∏
�=1

b4
�j . (3.29)

The above system (3.29) has n variables, but n − 1 equations. If there is a positive solution ū1, then we
may scale the vector and obtain another positive solution u1 = cū1 with

∑
� u(�)

1 = 1, which completes
the construction of a cyclic example. Here we present a 5D example. We first fix α1 = 1, α3 = 0.1,
α5 = 0.2 and α7 = 0.0625, and then choose

λ = (0.73477, 1.3452, 4.2721, 10.554, 16.154)

which are five roots of the equation
∏4

k=1(1 − α2k−1w) = 0.2. Therefore, we get the matrix

T =

⎛
⎜⎜⎝

0.26523 −0.34515 −3.2721 −9.5537 −15.154
0.00458 0.01228 65.659 −461.26 −32451
0.00311 0.00582 1.7964 −0.08696 −16870
0.00184 0.00208 0.00406 0.04056 −1800.5

⎞
⎟⎟⎠.

The system T u1 = 0 has the positive solution

ū1 = (5.6163 × 105, 3.3397 × 105, 7.3848 × 103, 9.9533 × 102, 1.0)T

which leads to

u1 = (6.2128 × 10−1, 3.6945 × 10−1, 8.1693 × 10−3, 1.1011 × 10−3, 1.1062 × 10−6)T.

Therefore, if we choose the above initial vector u1, we get u10k+1 = u1 and α10k+1 = α1 for all k � 1,
and hence, the AS method falls into a cycle. Unlike CBB with m = 2, we have not found any cyclic
example for the AS method which are numerically stable.

4. An adaptive cyclic Barzilai–Borwein method

In this section, we examine the convergence speed of CBB for different values of m ∈ [1, 7], using
quadratic programming problems of the form:

f (x) = 1

2
xT Ax, A = diag(λ1, . . . , λn). (4.1)

We will see that the choice for m has a significant impact on performance. This leads us to propose
an adaptive choice for m. The BB algorithm with this adaptive choice for m and a non-monotone line
search is called adaptive cyclic Barzilai–Borwein (ACBB). Numerical comparisons with SPG2 and with
conjugate gradient codes using the CUTEr test problem library are given later in Section 4.

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 17 of 24

4.1 A numerical investigation of CBB

We consider the test problem (4.1) with four different condition numbers C for the diagonal matrix,
C = 102, C = 103, C = 104 and C = 105, and with three different dimensions n = 102, n = 103 and
n = 104. We let λ1 = 1, λn = C , the condition number. The other diagonal elements λi , 2 � i � n − 1,
are randomly generated on the interval (1, λn). The starting points x (i)

1 , i = 1, . . . , n, are randomly
generated on the interval [−5, 5]. The stopping condition is

‖gk‖2 � 10−8.

For each case, 10 runs are made and the average number of iterations required by each algorithm is listed
in Table 3 (under the columns labelled BB and CBB). The upper bound for the number of iterations is
9999. If this upper bound is exceeded, then the corresponding entry in Table 3 is F .

In Table 3, we see that m = 2 gives the worst numerical results—in Section 3, we saw that as m
increases, convergence became superlinear. For each case, a suitably chosen m drastically improves the
efficiency of the BB method. For example, in case of n = 102 and cond = 105, CBB with m = 7 only
requires one-fifth of the iterations of the BB method. The optimal choice of m varies from one test case
to another. If the problem condition is relatively small (cond = 102, 103), a smaller value of m (3 or
4) is preferred. If the problem condition is relatively large (cond = 104, 105), a larger value of m is
more efficient. This observation is the motivation for introducing an adaptive choice for m in the CBB
method.

Our adaptive idea arises from the following considerations. If a stepsize is used infinitely often in
the gradient method, namely, αk ≡ α, then under the assumption that the function Hessian A has no
multiple eigenvalues, the gradient gk must approximate an eigenvector of A, and gT

k Agk/gT
k gk tends to

the corresponding eigenvalue of A (see Dai, 2003). Thus, it is reasonable to assume that repeated use of
a BB stepsize leads to good approximations of eigenvectors of A. First, we define

νk = gT
k Agk

‖gk‖‖Agk‖ . (4.2)

TABLE 3 Comparing CBB(m) method with an ACBB method

CBB Adaptive

n Cond BB m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 M = 5 M = 10

102 102 147 219 156 145 150 160 166 136 134
103 505 2715 468 364 376 395 412 367 349
104 1509 F 1425 814 852 776 628 878 771
105 5412 F 5415 3074 1670 1672 1157 2607 1915

103 102 147 274 160 158 162 166 181 150 145
103 505 1756 548 504 493 550 540 481 460
104 1609 F 1862 1533 1377 1578 1447 1470 1378
105 5699 F 6760 4755 3506 3516 2957 4412 3187

104 102 156 227 162 166 167 170 187 156 156
103 539 3200 515 551 539 536 573 497 505
104 1634 F 1823 1701 1782 1747 1893 1587 1517
105 6362 F 6779 5194 4965 4349 4736 4687 4743

18 of 24 Y.-H. DAI ET AL.

If gk is exactly an eigenvector of A, we know that νk = 1. If νk ≈ 1, then gk can be regarded as an
approximation of an eigenvector of A and αBB

k ≈ αSD
k . In this case, it is worthwhile to calculate a new

BB stepsize αBB
k so that the method accepts a step close to the SD step. Therefore, we test the condition

νk � β, (4.3)

where β ∈ (0, 1) is constant. If the above condition holds, we calculate a new BB stepsize. We also intro-
duce a parameter M , and if the number of cycles m > M , we calculate a new BB stepsize. Numerical
results for this ACBB with β = 0.95 are listed under the column Adaptive of Table 3, where two values
of M = 5, 10 are tested.

From Table 3, we see that the adaptive strategy makes sense. The performance with M = 5 or
M = 10 is often better than that of the BB method. This motivates the use of a similar strategy for
designing an efficient gradient algorithms for unconstrained optimization.

4.2 Non-monotone line search and cycle number

As mentioned in Section 1, the choice of the stepsize αk is very important for the performance of
a gradient method. For the BB method, function values do not decrease monotonically. Hence, when
implementing BB or CBB, it is important to use a non-monotone line search.

Assuming that dk is a descent direction at the kth iteration (gT
k dk < 0), a common termination

condition for the steplength algorithm is

f (xk + αkdk) � fr + δαkgT
k dk, (4.4)

where fr is the so-called ‘reference function value’ and δ ∈ (0, 1) a constant. If fr = f (xk), then the
line search is monotone since f (xk+1) < f (xk). The non-monotone line search proposed in Grippo
et al. (1986) chooses fr to be the maximum function value for the M most recent iterates. That is, at the
kth iteration, we have

fr = fmax = max
0�i�min{k,M−1}

f (xk−i). (4.5)

This non-monotone line search is used by Raydan (1997) to obtain GBB. Dai & Schittkowski (2005)
extended the same idea to a sequential quadratic programming method for general constrained non-
linear optimization. An even more adaptive way of choosing fr is proposed by Toint (1997) for trust
region algorithms and then extended by Dai & Zhang (2001). Compared with (4.5), the new adaptive
way of choosing fr allows big jumps in function values, and is therefore very suitable for the BB
algorithm (see Dai & Fletcher, 2005b, 2006; Dai & Zhang, 2001).

The numerical results which we report in this section are based on the non-monotone line search
algorithm given in Dai & Zhang (2001). The line search in our paper differs from the line search in
Dai & Zhang (2001) in the initialization of the stepsize. Here, the starting guess for the stepsize coincides
with the prior BB step until the cycle length has been reached; at which point, we recompute the step
using the BB formula. In each subsequent subiteration, after computing a new BB step, we replace (4.4)
with

f (xk + ᾱkdk) � min{ fmax, fr } + δᾱkgT
k dk,

where fr is the reference value given in Dai & Zhang (2001) and ᾱk is the initial trial stepsize (the
previous BB step). It is proved in Dai & Zhang (2001, Theorem 3.2) that the criteria given for choosing

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 19 of 24

the non-monotone stepsize ensures convergence in the sense that

lim inf
k→∞ ‖gk‖ = 0.

We now explain how we decided to terminate the current cycle, and recompute the stepsize using the
BB formula. Note that the re-initialization of the stepsize has no effect on convergence, it only affects
the initial stepsize used in the line search. Loosely, we would like to compute a new BB step in any of
the following cases:

R1. The number of times m the current BB stepsize has been reused is sufficiently large: m � M ,
where M is a constant.

R2. The following non-quadratic analogue of (4.3) is satisfied:

sT
k yk

‖sk‖2‖yk‖2
� β, (4.6)

where β < 1 is near 1. We feel that Condition (4.6) should only be used in a neighbourhood of a
local minimizer, where f is approximately quadratic. Hence, we only use Condition (4.6) when
the stepsize is sufficiently small:

‖sk‖2 < min

{
c1 fk+1

‖gk+1‖∞
, 1

}
, (4.7)

where c1 is a constant.

R3. The current step sk is sufficiently large:

‖sk‖2 � max

{
c2

fk+1

‖gk+1‖∞
, 1

}
, (4.8)

where c2 is a constant.

R4. In the previous iteration, the BB step was truncated in the line search. That is, the BB step had
to be modified by the non-monotone line search routine to ensure convergence.

Nominally, we recompute the BB stepsize in any of the cases R1–R4. One case where we prefer to
retain the current stepsize is the case where the iterates lie in a region where f is not strongly convex.
Note that if sT

k yk < 0, then there exists a point between xk and xk+1 where the Hessian of f has negative
eigenvalues. In detail, our rules for terminating the current cycle and re-initializing the BB stepsize are
the following conditions.

4.2.1 Cycle termination/stepsize initialization.

T1. If any of the conditions R1 through R4 are satisfied and sT
k yk > 0, then the current cycle is

terminated and the initial stepsize for the next cycle is given by

αk+1 = max

{
αmin, min

{
sT
k sk

sT
k yk

, αmax

}}
,

where αmin < αmax are fixed constants.

20 of 24 Y.-H. DAI ET AL.

T2. If the length m of the current cycle satisfies m � 1.5M , then the current cycle is terminated and
the initial stepsize for the next cycle is given by

αk+1 = max{1/‖gk+1‖∞, αk}.
Condition T2 is a safeguard for the situation where sT

k yk < 0 in a series of iterations.

4.3 Numerical results

In this subsection, we compare the performance of our ACBB stepsize algorithm, denoted ACBB,
with the SPG2 algorithm of Birgin et al. (2000, 2001), with the PRP+ conjugate gradient code devel-
oped by Gilbert & Nocedal (1992) and with the CG DESCENT code of Hager & Zhang (2005b, to ap-
pear). The SPG2 algorithm is an extension of Raydan’s (1997) GBB algorithm which was downloaded
from the TANGO web page maintained by Ernesto Birgin. In our tests, we set the bounds in SPG2
to infinity. The PRP+ code is available at http://www.ece.northwestern.edu/∼nocedal/software.html.
The CG DESCENT code is found at http://www.math.ufl.edu/∼hager/papers/CG. The line search in
the PRP+ code is a modification of subroutine CSRCH of Moré & Thuente (1994), which employs
various polynomial interpolation schemes and safeguards in satisfying the strong Wolfe conditions.
CG DESCENT employs an ‘approximate Wolfe’ line search. All codes are written in Fortran and
compiled with f77 under the default compiler settings on a Sun workstation. The parameters used by
CG DESCENT are the default parameter values given in Hager & Zhang (2006) for version 1.1 of
the code. For SPG2, we use parameter values recommended on the TANGO web page. In particular,
the steplength was restricted to the interval [10−30, 1030], while the memory in the non-monotone line
search was 10.

The parameters of the ACBB algorithm are αmin = 10−30, αmax = 1030, c1 = c2 = 0.1 and M = 4.
For the initial iteration, the starting stepsize for the line search was α1 = 1/‖g1‖∞. The parameter
values for the non-monotone line search routine from Dai & Zhang (2001) were δ = 10−4, σ1 = 0.1,
σ2 = 0.9, β = 0.975, L = 3, M = 8 and P = 40.

Our numerical experiments are based on the entire set of 160 unconstrained optimization problem
available from CUTEr in the fall of 2004. As explained in Hager & Zhang (2006), we deleted problems
that were small or problems where different solvers converged to different local minimizers. After the
deletion process, we were left with 111 test problems with dimension ranging from 50 to 104.

Nominally, our stopping criterion was the following:

‖∇ f (xk)‖∞ � max{10−6, 10−12‖∇ f (x0)‖∞}. (4.9)

In a few cases, this criterion was too lenient. For example, with the test problem PENALTY1, the com-
puted cost still differs from the optimal cost by a factor of 105 when Criterion (4.9) is satisfied. As
a result, different solvers obtain completely different values for the cost, and the test problem would
be discarded. By changing the convergence criterion to ‖∇ f (xk)‖∞ � 10−6, the computed costs all
agreed to six digits. The problems for which the convergence criterion was strengthened were DQRTIC,
PENALTY1, POWER, QUARTC and VARDIM.

The CPU time in seconds and the number of iterations, function evaluations and gradient evaluations
for each of the methods are posted at the following web site: http://www.math.ufl.edu/∼hager/papers/CG.
Here we analyse the performance data using the profiles of Dolan & Moré (2002). That is, we plot the
fraction p of problems for which any given method is within a factor τ of the best time. In a plot of

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 21 of 24

FIG. 2. Performance based on CPU time.

TABLE 4 Number of times each method was fastest
(time metric, stopping criterion (4.9))

Method Fastest
CG DESCENT 70
ACBB 36
PRP+ 9
SPG2 9

performance profiles, the top curve is the method that solved the most problems in a time that was within
a factor τ of the best time. The percentage of the test problems for which a method is the fastest is given
on the left axis of the plot. The right side of the plot gives the percentage of the test problems that were
successfully solved by each of the methods. In essence, the right side is a measure of an algorithm’s
robustness.

In Fig. 2, we use CPU time to compare the performance of the four codes ACBB, SPG2, PRP+
and CG DESCENT. Note that the horizontal axis in Fig. 2 is scaled proportional to log2(τ). The best
performance, relative to the CPU time metric, was obtained by CG DESCENT, the top curve in Fig. 2,
followed by ACBB. The horizontal axis in the figure stops at τ = 16 since the plots are essentially flat
for larger values of τ . For this collection of methods, the number of times any method achieved the best
time is shown in Table 4. The column total in Table 4 exceeds 111 due to ties for some test problems.

The results of Fig. 2 indicate that ACBB is much more efficient than SPG2, while it performed better
than PRP+, but not as well as CG DESCENT. From the experience in Raydan (1997), the GBB algo-
rithm, with a traditional non-monotone line search (Grippo et al., 1986), may be affected significantly by
nearly singular Hessians at the solution. We observe that nearly singular Hessians do not affect ACBB
significantly. In fact, Table 3 also indicates that ACBB becomes more efficient as the problem becomes
more singular. Furthermore, since ACBB does not need to calculate the BB stepsize at every iteration,
CPU time is saved, which can be significant when the problem dimension is large. For this test set, we
found that the average cycle length for ACBB was 2.59. In other words, the BB step is re-evaluated after
two or three iterations, on average. This memory length is smaller than the memory length that works

22 of 24 Y.-H. DAI ET AL.

TABLE 5 CPU times for selected problems

Problem Dimension ACBB CG DESCENT
FLETCHER 5000 9.14 989.55
FLETCHER 1000 1.32 27.27
BDQRTIC 1000 0.37 3.40
VARDIM 10000 0.05 2.13
VARDIM 5000 0.02 0.92

well for quadratic function. When the iterates are far from a local minimizer of a general non-linear
function, the iterates may not behave like the iterates of a quadratic. In this case, better numerical results
are obtained when the BB stepsize is updated more frequently.

Even though ACBB did not perform as well as CG DESCENT for the complete set of test problems,
there were some cases where it performed exceptionally well (see Table 5). One important advantage
of the ACBB scheme over conjugate gradient routines such as PRP+ or CG DESCENT is that in many
cases, the stepsize for ACBB is either the previous stepsize or the BB stepsize (1.5). In contrast, with
conjugate gradient routines, each iteration requires a line search. Due to the simplicity of the ACBB
stepsize, it can be more efficient when the iterates are in a regime where the function is irregular and
the asymptotic convergence properties of the conjugate gradient method are not in effect. One such
application is bound-constrained optimization problems—as components of x reach the bounds, these
components are often held fixed, and the associated partial derivative change discontinuously. In Hager
& Zhang (2005a) ACBB is combined with CG DESCENT to obtain a very efficient active set algorithm
for box-constrained optimization problems.

5. Conclusion and discussion

In this paper, we analyse the CBB method. For general non-linear functions, we prove linear conver-
gence. For convex quadratic functions, our numerical results indicate that when m > n/2 � 3, CBB is
likely to be R-superlinear. For the special case n = 3 and m = 2, the convergence rate, in general, is
no better than linear. By utilizing non-monotone line search techniques, we develop an ACBB stepsize
algorithm for general non-linear unconstrained optimization problems.

The test results in Fig. 2 indicate that ACBB is significantly faster than SPG2. Since the math-
ematical foundations of ACBB and the conjugate gradient algorithms are completely different, the per-
formance seems to depend on the problem. Roughly speaking, if the objective function is ‘close’ to
quadratic, the conjugate gradient routines seem to be more efficient; if the objective function is highly
non-linear, then ACBB is comparable to or even better than conjugate gradient algorithms.

Acknowledgements

Constructive and detailed comments by the referees are gratefully acknowledged and appreciated.
Y-HD was supported by the Alexander von Humboldt Foundation under grant CHN/1112740 STP
and Chinese National Science Foundation grants 10171104 and 40233029. WWH and HZ were sup-
ported by US National Science Foundation grant no. 0203270.

REFERENCES

AKAIKE, H. (1959) On a successive transformation of probability distribution and its application to the analysis of
the optimum gradient method. Ann. Inst. Stat. Math. Tokyo, 11, 1–17.

THE CBB METHOD FOR UNCONSTRAINED OPTIMIZATION 23 of 24

BARZILAI, J. & BORWEIN, J. M. (1988) Two point step size gradient methods. IMA J. Numer. Anal., 8, 141–148.
BIRGIN, E. G., CHAMBOULEYRON, I. & MARTÍNEZ, J. M. (1999) Estimation of the optical constants and the

thickness of thin films using unconstrained optimization. J. Comput. Phys., 151, 862–880.
BIRGIN, E. G., MARTÍNEZ, J. M. & RAYDAN, M. (2000) Nonmonotone spectral projected gradient methods for

convex sets. SIAM J. Optim., 10, 1196–1211.
BIRGIN, E. G., MARTÍNEZ, J. M. & RAYDAN, M. (2001) Algorithm 813: SPG—software for convex-constrained

optimization. ACM Trans. Math. Softw., 27, 340–349.
BONGARTZ, I., CONN, A. R., GOULD, N. I. M. & TOINT, P. L. (1995) CUTE: constrained and unconstrained

testing environments. ACM Trans. Math. Softw., 21, 123–160.
CAUCHY, A. (1847) Méthode générale pour la résolution des systèms d’equations simultanées. Comp. Rend. Sci.

Paris, 25, 46–89.
DAI, Y. H. (2003) Alternate stepsize gradient method. Optimization, 52, 395–415.
DAI, Y. H. & FLETCHER, R. (2005a) On the asymptotic behaviour of some new gradient methods. Math. Prog.,

103, 541–559.
DAI, Y. H. & FLETCHER, R. (2005b) Projected Barzilai-Borwein methods for large-scale box-constrained quadratic

programming. Numer. Math., 100, 21–47.
DAI, Y. H. & FLETCHER, R. (2006) New algorithms for singly linearly constrained quadratic programs subject to

lower and upper bounds. Math. Prog., 106, 403–421.
DAI, Y. H. & SCHITTKOWSKI, K. (2005) A sequential quadratic programming algorithm with non-monotone line

search. Technical Report. Department of Mathematics, University of Bayreuth (submitted).
DAI, Y. H. & YANG, X. Q. (2006) A new gradient method with an optimal stepsize property. Comput. Optim.

Appl., 33, 73–88.
DAI, Y. H. & YUAN, Y. (2003) Alternate minimization gradient method. IMA J. Numer. Anal., 23, 377–393.
DAI, Y. H. & ZHANG, H. (2001) An adaptive two-point stepsize gradient algorithm. Numer. Algorithms, 27,

377–385.
DOLAN, E. D. & MORÉ, J. J. (2002) Benchmarking optimization software with performance profiles. Math.

Program., 91, 201–213.
FORSYTHE, G. E. (1968) On the asymptotic directions of the s-dimensional optimum gradient method. Numer.

Math., 11, 57–76.
FRIEDLANDER, A., MARTÍNEZ, J. M., MOLINA, B. & RAYDAN, M. (1999) Gradient method with retards and

generalizations. SIAM J. Numer. Anal., 36, 275–289.
GILBERT, J. C. & NOCEDAL, J. (1992) Global convergence properties of conjugate gradient methods for opti-

mization. SIAM J. Optim., 2, 21–42.
GLUNT, W., HAYDEN, T. L. & RAYDAN, M. (1993) Molecular conformations from distance matrices. J. Comput.

Chem., 14, 114–120.
GRIPPO, L., LAMPARIELLO, F. & LUCIDI, S. (1986) A nonmonotone line search technique for Newton’s method.

SIAM J. Numer. Anal., 23, 707–716.
GRIPPO, L. & SCIANDRONE, M. (2002) Nonmonotone globalization techniques for the Barzilai-Borwein gradient

method. Comput. Optim. Appl., 23, 143–169.
HAGER, W. W. & ZHANG, H. (2005a) A new active set algorithm for box constrained optimization. SIAM J.

Optim. (to appear).
HAGER, W. W. & ZHANG, H. (2005b) A new conjugate gradient method with guaranteed descent and an efficient

line search. SIAM J. Optim., 16, 170–192.
HAGER, W. W. & ZHANG, H. (2006) Algorithm 851: CG DESCENT, a conjugate gradient method with guaran-

teed descent. ACM Trans. Math. Softw., 32.
LIU, W. B. & DAI, Y. H. (2001) Minimization algorithms based on supervisor and searcher cooperation. J. Optim.

Theory Appl., 111, 359–379.

24 of 24 Y.-H. DAI ET AL.

MORÉ, J. J. & THUENTE, D. J. (1994) Line search algorithms with guaranteed sufficient decrease. ACM Trans.
Math. Softw., 20, 286–307.

RAYDAN, M. (1997) The Barzilai and Borwein gradient method for the large scale unconstrained minimization
problem. SIAM J. Optim., 7, 26–33.

RAYDAN, M. & SVAITER, B. F. (2002) Relaxed steepest descent and Cauchy-Barzilai-Borwein method. Com-
put. Optim. Appl., 21, 155–167.

SERAFINI, T. ZANGHIRATI, G. & ZANNI, L. (2005) Gradient projection methods for quadratic programs and
applications in training support vector machines. Optim. Methods Softw., 20, 353–378.

TOINT, P. L. (1997) A non-monotone trust region algorithm for nonlinear optimization subject to convex con-
straints. Math. Prog., 77, 69–94.

